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Prediction of m6A and m5C at single-
molecule resolution reveals a transcriptome-
wide co-occurrence of RNA modifications
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N E Shirokikh 2 & E Eyras 1,2,3,9

The epitranscriptome embodies many new and largely unexplored functions
of RNA. A significant roadblock hindering progress in epitranscriptomics is the
identification of more than one modification in individual transcript mole-
cules. We address this with CHEUI (CH3 (methylation) Estimation Using Ionic
current). CHEUI predicts N6-methyladenosine (m6A) and 5-methylcytosine
(m5C) in individual molecules from the same sample, the stoichiometry at
transcript reference sites, and differential methylation between any two con-
ditions. CHEUI processes observed and expected nanopore direct RNA
sequencing signals to achieve high single-molecule, transcript-site, and stoi-
chiometry accuracies in multiple tests using synthetic RNA standards and cell
line data. CHEUI’s capability to identify two modification types in the same
sample reveals a co-occurrence of m6A and m5C in individual mRNAs in cell
line and tissue transcriptomes. CHEUI provides new avenues to discover and
study the function of the epitranscriptome.

The identification of transcriptome-wide maps of two modified ribo-
nucleotides in messenger RNAs (mRNA), 5-methylcytosine (m5C) and
N6-methyladenosine (m6A)1–3, has sparked over the last decade a new
and expanding area of epitranscriptomics. Techniques based on
immunoprecipitation, enzymatic, or chemical reactivity enrichment
methods, coupled with high-throughput sequencing, have uncovered
the role of these and other modifications in multiple steps of mRNA
metabolism, including translation of mRNA into protein4,5, mRNA
stability6, and mRNA processing such as pre-RNA alternative splicing7

and RNA export from the nucleus8. Several physiological processes
have also been functionally linked with RNAmodifications, such as sex
determination9, early embryonic development10, neurogenesis11 and
learning12. Moreover, growing evidence indicates that RNA modifica-
tion pathways are dysregulated in diseases such as cancer13 and neu-
rological disorders11. Most of these studies have focused on changes at
global or gene levels or on the dysregulation of the RNA modification
machinery, whereas little is known about how multiple modifications
occur in individual mRNA molecules.
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A major roadblock preventing rapid progress in research on RNA
modifications is the general lack of universal modification detection
methods. Although over 300 naturally occurring RNA modifications
have been described14, only a handful of them can be mapped and
quantified across the transcriptome15,16. Nanopore direct RNA
sequencing (DRS) is the only currently available technology that can
determine the sequence of individual RNA molecules in their native
format a transcriptome-wide level. DRScan capture information about
the chemical structure, including naturally occurring covalent mod-
ifications in nucleotide residues (nucleotides)17,18. Nonetheless, RNA
modification detection from DRS signals presents various challenges.
Thedifferences betweenmodified andunmodified signals are subtle at
single molecule level and depend on the sequence context. Addition-
ally, due to the variable translocation rate of themolecules through the
pores and the potential pore-to-pore variability, different copies of the
same molecule present considerable signal variations19. These chal-
lenges necessitate the application of advanced computational models
to interpret the signals and identify modification state.

Several computational methods have been developed in the past
few years to detect RNAmodifications in DRSdata. Thesemethods can
be broadly grouped into two categories. The first one includes meth-
ods that rely on comparing DRS signals between two conditions, one
corresponding to a sample of interest, often the wild type (WT) sam-
ple, and the other with a reduced presence of a specific modification,
usually obtained through a knock-out (KO) or knock-down (KD) of a
modification writer enzyme or through in-vitro transcription. This
category includes Nanocompore20, Xpore21, DRUMMER22, nanoDOC23,
Yanocomp24 and Tombo25 in sample comparisonmode, among others,
all utilizing the collective properties of DRS signals in the two condi-
tions. This category also includes ELIGOS26 and Epinano27, which
compare base-calling errors between two experiments; and
NanoRMS28, which compares signal features between twosamples.The
second category of tools can operate in a single condition, i.e., without
using a KO/KD or an otherwise control. This category includes
MINES29, Nanom6A30, and m6Anet31, all predicting m6A on specific
sequence contexts, Tombo25 in alternate mode, which identifies tran-
scriptomic sites with potential m5C modification, and Epinano-RMS,
which predicts pseudouridine on high stoichiometry sites28. Other
methods have been recently developed that use one or more of these
strategies to predict RNA modifications32–35.

Despite the numerous advances in direct RNA modification
detection, somemajor limitations remain. Approaches comparing two
conditions generally require a control sample, which can be difficult or
impossible to generate. Their modification calling is also indirect, as it
relies on changes in the control sample relative to wild type (WT) and
these changes may not be directly related to the modification of
interest. For instance, depletionofm5C leads to a reduction of hm5C36,
hence potentially confounding the results. Regarding the methods
that use error patterns, they depend on the specific accuracy of the
base caller method, which will vary over time with the base caller
version and architecture. Moreover, this may not be applicable to all
modifications. For instance, it was described that error patterns were
not consistent enough to confidently identify m5C methylation26.
Limitations also exist in methods that work with individual samples.
MINES, Nanom6A, and m6Anet only predict m6A modifications in 5′-
DRACH/RRACH-3′ motifs, and Epinano-RMS only detects pseudour-
idine in transcriptome sites of high stoichiometry. Additionally, the
ability of current methods from both categories to predict stoichio-
metry is limited. Some of them cannot predict it, whereas others only
estimate the stoichiometry at 5′-DRACH-3′ sites or rely on a control
sample devoid of modifications. Transcriptome-wide methods that
can predict multiple modifications in individual RNA molecules could
enable more precise study of their function.

To advance the field in this direction, we have developed CHEUI
(CH3 (methylation) Estimation Using Ionic current) for the prediction

ofm6Aandm5C from the same sample at a transcriptome-wide level in
individual molecules, at transcript reference sites, and between con-
ditions. CHEUI is based on a two-stage neural network and was trained
using read signals generated from in-vitro transcripts (IVTs). We vali-
dated CHEUI’s accuracy through a comprehensive set of benchmark-
ing analyses using synthetic RNA standards, orthogonal experiments,
and cell line data. Using CHEUI in cell line transcriptomes, we further
identified a co-occurrence of m6A and m5C in individual mRNA
molecules. CHEUI addresses some of the current limitations in the
transcriptome-wide identification of RNA modifications and provides
new opportunities for the study of the epitranscriptome.

Results
CHEUI detectsm6A andm5C in individual reads, transcriptomic
sites, and across conditions
For signal preprocessing, CHEUI uses the nanopore read signals cor-
responding to the 9mer, composed of five overlapping 5mers, cen-
tered at every single adenosine (A) for m6A or cytosine (C) for m5C
(Fig. 1a) (Suppl. Fig. 1). Signal preprocessing further includes derivation
of distances between the observed signals and expected unmodified
signal values for each 9mer (Fig. 1a) (Suppl. Fig. 2a–c). The inclusion of
the distance increased accuracy by ~10% in a test using independent
data (Suppl. Fig. 2d). After preprocessing the signals, CHEUI employs
two different modules: CHEUI-solo (Fig. 1b), which makes predictions
in individual reads and transcript reference sites in given input sample;
and CHEUI-diff (Fig. 1c), which tests differential methylation between
any two samples. CHEUI-solo predicts RNA methylation at two differ-
ent levels. Model 1 predicts m6A or m5C at nucleotide resolution on
individual read signals. Model 2 predicts m6A or m5C at the transcript
site level, i.e., relative to a position in the reference transcript, basedon
the per-read predictions from Model 1 (Fig. 1b). Both CHEUI-solo
Models 1 and 2 are Convolutional Neural Networks (CNNs) (Suppl.
Fig. 3). CHEUI-diff uses a statistical test to compare the individual read
probabilities from CHEUI-solo Model 1 across two conditions, to pre-
dict differential stoichiometry of m6A or m5C at each transcriptomic
site (Fig. 1c). More details about the models are provided in the
Methods section.

CHEUI accurately detects m5C and m6A in reads and sequence
contexts not seen during training
To evaluate CHEUI’s accuracy, we first tested CHEUI-solo’s ability to
correctly classify individual read signals not previously used but from
9mer contexts seen during training, also known as sensor
generalization37. For this test, only read signals from 9mers with a
single modified nucleotide were considered, i.e., 9mers where only
one A or one C was present, which were collectively called IVT set 127.
CHEUI achieved accuracy, precision, and recall values of ~0.8 for m6A
and m5C predictions in individual reads (Fig. 2a, IVT set 1). Then, to
determine CHEUI’s ability to classify signals from 9mer contexts not
seen during training, also known as kmer generalization37, we used
signals from a different set of IVTs from a different sequencing
experiment26, which we called IVT set 2. As before, this test only
included signals from 9mer sites with a single middle A or C. CHEUI
achieved accuracy, precision, and recall of ~0.8 for m6A and ~0.75 for
m5C (Fig. 2a, IVT set 2).

Inspection of the individual read probability distributions showed
thatmodificationcalls withCHEUI-soloModel 1 probability close to0.5
aremore likely to be mislabeled (Suppl. Fig. 4a–4d). We thus explored
whether a double cutoff for the individual read probability would
improve the accuracy. In this setting, predictions above a first prob-
ability cutoff would be considered methylated, whereas those below a
second probability cutoff would be considered non-methylated, with
all other read signals between these two cutoff values being discarded.
Similar double-cutoff strategies have been shown before to improve
the accuracy of methylation and stoichiometry estimation from DNA
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nanopore sequencing38. Amongst the configurations tested, the dou-
ble cutoff 0.7 and 0.3 provided the optimal balance between accuracy
gain and the number of preserved reads, with an improved area (AUC)
under the receiver operating characteristic curve (ROC) form6A (from
0.857 – 0.899) andm5C (from0.827 to 0.877) (Fig. 2b), while retaining
about 73% of the reads (Fig. 2c).

To train and test CHEUI-solo Model 2 for predicting the methy-
lation probability at the transcript site level, we built in-silico con-
trolled mixtures of reads, with pre-defined proportions of modified
and unmodified read signals from the IVT set 1 not included previously
in the training or testing of CHEUI-solo Model 1. CHEUI achieved an
AUC of 0.92 for m6A and 0.953 for m5C at transcript site detection
(Fig. 2d). Moreover, at a per-site probability > 0.99, the estimated false

positive rate (FPR) on the test data was 0.00074 form6A and 0.00034
for m5C (Fig. 2e).

CHEUI accurately detects m6A and m5C stoichiometry levels
We next compared CHEUI-solo with Nanocompore20, Xpore21 and
Epinano27 for the ability to detect and quantify RNA modifications. To
achieve this, we built positive and negative independent test datasets
using read signals from IVT test 2 not used before, but with known
modification state. The positive sites were built asmixtures with a pre-
defined stoichiometry of 20, 40, 60, 80, and 100percent, using 81 sites
for m6A and 84 sites for m5C for each stoichiometry mixture. The
negative sites consisted of 512 sites for A and 523 sites for C, using only
signals from non-modified IVTs. The positive and negative sites were
built by sampling reads randomly at a variable level of coverage,
resulting in a lifelike coverage range of 20 – 149 reads per site. Since
Nanocompore, Xpore, and Epinano required a control sample to
detect modifications, a second dataset containing only unmodified
signals was created for the same sites, randomly sub-sampling inde-
pendent reads to the same level of coverage. We observed that the
number of true positives (TP) detected by most tools increased with
the site stoichiometry (Fig. 2f). Notably, CHEUI-solo recovered a higher
number of true methylated sites compared to the other tools at all
stoichiometry levels for both m6A and m5C. We next estimated the
false positives by predicting with all tools on the built negative sites,
using a single sample for CHEUI-solo and two independent negative
samples for Xpore, Epinano, and Nanocompore. Xpore and Epinano
showed the highest false positive rate (FPR) for m6A andm5C. CHEUI-
solo had 1 misclassified site for m5C and none for m6A, whereas
Nanocompore had no false positives (Fig. 2g).

We next evaluated the stoichiometry prediction in a site-wise
manner. For this analysis, we included nanoRMS28 and Tombo25, which
canestimate stoichiometries at pre-defined sites. Stoichiometrieswere
calculated for the sites that were previously predicted to be modified
by each tool. For NanoRMS and Tombo, the predictions for all sites
were considered since these tools do not specifically predictwhether a
site is modified or not. CHEUI-solo outperformed all the other tools,
showing a higher correlation for m6A (Pearson r =0.839) and m5C
(Pearson r =0.839) with the ground truth (Fig. 2h). CHEUI-solo was
followed by Xpore (r =0.524) and Nanocompore (r =0.498) for m6A,
and by Xpore (r =0.556) (Fig. 2h) and NanoRMS (r =0.46) (Suppl.
Fig. 5) for m5C.

CHEUI identifies m6A modifications in cellular mRNA
We next tested CHEUI’s ability to correctly identify m6A in cellular
RNA. Using DRS reads fromwild-type (WT) HEK293 cells21 (Suppl. Data
S1), we tested 3,138,914 transcriptomic adenosine sites with a coverage
of >20 reads in all three available replicates. Prior to any significance
filtering, these sites showed a high correlation among replicates in the
predicted stoichiometry andmodification probability per site (Fig. 3a).
Analyzing the replicates together, we considered as significant those
sites with prediction probability > 0.9999, which was estimated to
result in an FDR nearing 0 using an empirical permutation test. After
imposing this cutoff, CHEUI-solo identified 10,036 significant m6A
transcriptomic sites on 3905 transcripts, corresponding to 8776
genomic sites (Suppl. Data S2 and S3). Most of the modifications were
detected on single As, with a minor proportion of AA and AAA sites
predicted as modified (Suppl. Fig. 6a). Moreover, 85.12% of the tran-
scriptomic sites identified by CHEUI (84.5% genomic sites) had the 5′-
DRACH-3′ motif, which is a higher proportion than the 76.57% identi-
fied in m6ACE-seq and miCLIP experiments39,40. Interestingly, CHEUI-
solo predicted m6A in 1,493 non-DRACHmotifs (1,356 genomic sites),
with the two most common ones being 5′-GGACG-3′ (203 genomic
sites) and 5′-GGATT-3′ (121 genomic sites). These motifs were also the
two most common non-DRACH motifs identified previously by

Fig. 1 | CHEUI architecture, modules, and signal processing approach. a CHEUI
first processes signals for each 9mer consisting of five consecutive overlapping
5mers. The signals for each 5mer are converted into 20 median values, yielding a
vector of length 100. A vector of length 100 is obtained for the expected (unmo-
dified) signals for the same five 5mers and a vector of distances between the
expected and observed signal values is calculated. These signal and distance vec-
tors are used as inputs for Model 1. b CHEUI-solo Model 1 takes the signal and
distance vectors corresponding to individual read signals associated with a 9mer
centered at every A (indicated asmodified inpink, or unmodified in black) or C, and
predicts the probability for each readof beingmodifiedA (m6Amodel) ormodified
C (m5C model). Model 2 uses the distribution of Model 1 probabilities for all the
read signals at each reference transcript site and predicts the probability of the site
being methylated and its stoichiometry, which estimated as the proportion of
modified reads from Model 1 at that site. c CHEUI-diff uses the individual read
probabilities fromModel 1 in any twoconditions to test for differentialm6Aorm5C
at reference transcript sites using a two-tailed Mann–Whitney U-test.
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miCLIP2 experiments in the same cell line, occurring at 245 (5′-GGACG-
3′) and 96 (5′-GGATT-3′) sites41.

Them6Amodification rate alongmRNAs recapitulated the profile
described previously, with an enrichment at the 3’ and 5’ UTRs1,3,42

(Suppl. Fig. 6b).Moreover, CHEUI predictions recovered the depletion
of m6A sites in the range of <200nt from the splice-sites, as was
recently described43–45 (Fig. 3b). Furthermore, considering the m6A
sites identified in HEK293 cells by GLORI46, a method based on the

chemical conversion of adenosines, the 6368 sites predicted by CHEUI
and GLORI (out of the 28,865 GLORI sites with >20 nanopore reads)
showed a high correlation in their estimated stoichiometries (Fig. 3c).
We next assessed CHEUI’s false positive rate (FPR) by predicting m6A
on DRS data from in-vitro transcribed HeLa transcriptomes47, which
are fully non-modified. The FPR was on average 0.0003 (i.e., 3 false
predictions at P >0.9999 for every 10,000 tested sites) across three
replicates (Suppl. Fig. 7a). Furthermore, CHEUI Model 2 probabilities
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detection. a Accuracy, precision, recall, and area (AUC) under the receiver oper-
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and double cutoffs are color-matched. c The proportion of reads selected (y-axis)
for each double cutoff (x-axis). d ROC and AUC for CHEUI-solo Model 2 for m6A
(upper panel) and m5C (lower panel) on an independent dataset (IVT set 2). e True

positive rate (TPR) and false positive rate (FPR) for CHEUI-solo Model 2 for m6A
(upper panel) andm5C (lower panel) for different probability cutoffs (x-axis). fTrue
Positives (y-axis) at different stoichiometry levels (x-axis) for m6A (upper panel)
andm5C (lowerpanel).g False PositiveRate (FPR) (y-axis) on 512m6A (upper panel)
and 523m5C (lower panel) negative sites for each tool (x-axis): Xpore (m6A:14 FPs,
m5C:32 FPs) Epinano (m6A:2, m5C:6), CHEUI-solo (m6A:0, m5C:1), and Nano-
compore (no FPs). h Correlation between ground truth (x-axis) and predicted (y-
axis) stoichiometry for m6A (upper panel) and m5C (lower panel) for CHEUI-solo,
Xpore, Nano-RMSwith the kNN algorithm, and Tombo (alternatemode, onlym5C).
Other tools tested are shown in Suppl. Fig. 5. In the box plots, the box represents
the first and third quartiles, with themedianmarked inside. Thewhiskers extendup
to the highest and lowest values within 1.5 times the interquartile range. Source
data are provided as a Source Data file.
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were skewed towards zero (Suppl. Fig. 7b) and the FPR decreased with
increasing coverage (Suppl. Fig. 7c), with most of the tested sites
having coverage of 21–100 reads (Suppl. Fig. 7d).

Next, we considered previously published DRS data fromHEK293
cells with a knockout of them6Awriter METTL3 (METTL3-KO)21. Using
CHEUI-solo predictions at individual read level, we confirmed a sig-
nificant decrease in the proportion of m6A nucleotides in METTL3-KO
with respect to the WT (p-value = 1.3E-254) (Suppl. Fig. 8a). Further-
more, using a transcriptomic site modification probability of >0.9999
as before, we corroborated the overall decrease in the proportion of
modified sites along mRNAs in the KO samples (Suppl. Fig. 8b). How-
ever, CHEUI predicted 4603 significant m6A transcriptomic sites in
METTL3-KO (Suppl. Data S4), with 2068 of them also present in the
WT, which is consistent with recent estimates from other methods
using the same cells41,46 and with the observation that the used
METTL3-KO is not a complete allelic knockout48. Using an additional
independent method41, we were able to confirm this observation
(Suppl. Fig. 9).

To compare CHEUI with other methods, we investigated the dif-
ferential stoichiometry for m6A sites between HEK293 WT and
METTL3-KO. CHEUI-diff showed enrichment of significant cases with
higher modification stoichiometry in WT (Suppl. Fig. 8c) (Suppl. Data
S5). In comparisonwith Xpore andNanocompore, CHEUI-diff detected
more sites with higher modification stoichiometry in WT at three dif-
ferent significance thresholds (Fig. 3d). CHEUI-diff also predicted a
higher proportion of sites with supporting evidence from m6ACE-seq
or miCLIP experiments in HEK293 cells39,40 (Suppl. Fig. 10a) and con-
taining the 5′-DRACH-3′ motif (Suppl. Fig. 10b), except at the
0.001 significance level, where 0.70 of CHEUI-diff sites and 0.71 of
Xpore sites contained the motif. Comparing two METTL3-KO repli-
cates to estimate false positives, CHEUI-diff predicted the lowest

number of sites (0, 1, and 3, at the three significance thresholds,
respectively) (Suppl. Fig. 10c). In contrast, Xpore predicted over
2000 sites at 0.001 significance and over 12,000 sites at 0.05 sig-
nificance. Only 9.8% of theseXpore sites at 0.05 significance contained
the 5′-DRACH-3′ motif. This was a substantially lower proportion than
the 46% found by Xpore in the WT vs. METTL3-KO comparison at the
same significance level, suggesting that most of the Xpore sites in the
comparison of the twoMETLL3-KO replicates were false positives. The
overall low overlap of the nanopore-based methods with orthogonal
experimental techniques suggests a different repertoire of modifica-
tions is visible to each method. This is further confirmed by the low
overlap of the modification detections among diverse experimental
techniques (Suppl. Fig. 11).

CHEUI identifies m5C modifications in cellular mRNA
We next used CHEUI to identify m5C in cell-derived RNA. To accom-
plish this, we used CRISPR-cas9 gene editing technology in HeLa cells
to generate a knock-out (KO) of the NOP2/Sun RNAMethyltransferase
2 (NSUN2), which modifies cytosines in mRNAs and tRNAs4,49. The KO
was confirmed by Sanger sequencing (Suppl. Fig. 12a) and western
blotting (Suppl. Fig. 12b). The DRS (Suppl. Data S1) yielded 2,700,022
transcriptomic sites with a coverage of >20 reads for the WT and
1,637,178 for the NSUN2-KOHeLa cells. Testing these sites with CHEUI-
solo Model 2, prior to any significance filtering, we observed a high
correlation in the predicted stoichiometry and modification prob-
ability between the replicates (Fig. 3e). Analyzing the three replicates
together, significant transcriptomic sites were considered at prob-
ability > 0.9999, which we estimated corresponds to FDR nearing 0
using an empirical permutation test. We obtained 3167 significant
transcriptomic sites in WT (Suppl. Data S6) and 1841 in NSUN2-KO
(Suppl. Data S7). As above, we also assessed CHEUI’s false positive rate
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(FPR) using an in-vitro transcribed WT HeLa transcriptome47. We cal-
culated an average FPR of 0.0006 (i.e., 6 false predictions for every
10,000 tested sites) across three replicates (Suppl. Fig. 7a). As form6A,
CHEUI-solo Model 2 probabilities were skewed towards zero (Suppl.
Fig. 7b) and the FPR decreased with increasing coverage (Suppl.
Fig. 7c), with most of the tested sites having coverage of 21–100 reads
(Suppl. Fig. 7d).

As we observed before for m6A, the prediction of two or more
adjacent m5C sites was rare, and most of the predictions were indivi-
dual m5C sites (Suppl. Fig. 13a). We then compared CHEUI-solo m5C
calls with a union set of 7918 sites previously detected in HeLa using
bisulfite RNA sequencing (bsRNA-seq) in three independent
studies4,8,49 (Suppl. Fig. 13b). From these sites, 372 (4.7%) had> 20
nanopore reads and could be tested by CHEUI. These sites showed a
higher probability than sites without bsRNA-seq evidence (Suppl.
Fig. 13c). Additionally, CHEUI-solodetectionprobabilities on this union
set of 372 sites were significantly higher in WT compared with NSUN2-
KO (Fig. 3f). Further validating this result, a permutation analysis to
compare the probability of these sites against the background dis-
tribution of probabilities in the same samples confirmed that CHEUI-
solo returned higher probability modification detection values in the
WT samples than expected by chance (p-value = 0.001) (Suppl.
Fig. 13d). In contrast, the NSUN2-KO did not show this enrichment (p-
value = 0.025) (Suppl. Fig. 13e). In contrast to what we found for m6A,
looking at individual nucleotideswithCHEUI-soloModel 1weobserved
only a mild reduction in the proportion of m5C over the total cytosine
occurrences in the NSUN2-KO compared with the WT (p-value = 1.2E-
35) (Suppl. Fig. 14a). Moreover, the profile of significant m5C sites
along mRNAs did not change between the WT and NSUN2-KO (Suppl.
Fig. 14b). These results are consistent with reports showing that a
fraction of m5C sites in mRNA are NSUN2-independent4,49, which have
been proposed to be regulated by NSUN650,51.

To investigate NSUN2-dependent sites, we used CHEUI-diff to
identify differentially modified sites between WT and NSUN2-KO
(Suppl. Data S8). This yielded 186 potential NSUN2-dependent unique
genomic sites, 18 of which were previously identified by bsRNA-seq. In
contrast, Nanocompore and Xpore only found 4 and 11 overlaps with
bsRNA-seq sites in this comparison, respectively, while they predicted
manymore sites transcriptome-wide (Suppl. Fig. 15). Furthermore, the
186 potential NSUN2-dependent sites showed similarity to the pre-
viously described sequence motif for NSUN2-dependent sites: 5′-
m5CNGGG-3′49 (Fig. 3g). We also identified 1250 NSUN2-independent
sites, defined as those predicted in WT but with no significant change
relative to KO, which showed a differentmotif (Fig. 3g). Encouragingly,
these NSUN2-independent sites occurred in genes significantly enri-
ched in mitotic cell cycle function (p-value = 6.206E-5) and processes
(p-value = 1.594E-4),which agreeswith previousfindings for geneswith
NSUN2-independent sites52.

To further assess the validity of our predictions, we investigated
the likelihood of RNA secondary structure formation in their vicinity.
Consistent with previous studies4,49, canonical base-pair probabilities
were higher in NSUN2-dependent sites compared to NSUN2-
independent sites (Fig. 3h, i), and the potential base-pairing arrange-
ments suggested a higher occurrence of stem-loops at around 5 nt
downstreamof theNSUN2-dependentm5C site (Suppl. Figs. 16 and 17).
Further supporting CHEUI results, NSUN2-dependent sites identified
previously by bsRNA-seq49 showed significantly higher stoichiometry
differences between WT and NSUN2-KO than all other m5C sites
(Suppl. Fig. 18).

To further investigate the correspondence between nanopore-
based predictions and bsRNA-seq, we performed DRS and bsRNA-seq
on the RNA obtained from newly designed IVT templates s generated
to be either fully m5C modified or non-modified (Suppl. Data S9).
Applying permissive parameters to the analysis of bsRNA-seq data
(Methods), we estimated a conversion rate of 0.9987 in the non-

modified samples and 0.0269 in themodified samples. However, from
the 4423C sites on the IVT templates, 99.55%were covered in the non-
modified sample but only 72.12% in the modified sample. In contrast,
>99% of the C sites were covered with >20 nanopore reads in both
samples, and hence visible to CHEUI (Suppl. Data S9). Unlike for the
cellular transcriptome, we cannot use the permutation analysis to
select a CHEUI probability cutoff. We thus calculated at various
probability cutoffs the recall, as the proportion of m5C-sites detected
in the modified IVTs, and the false positive rate, as the proportion of
predictedm5C sites in the non-modified IVTs. At P > 0.99, the FPR was
<1%, with a recall of 65.22% (Suppl. Data S9). Moreover, at P >0.99,
CHEUI predicts 824 of the 1,219 sites missed by bsRNA-seq, with 26 of
these 9mers also predicted by CHEUI but not by bsRNA-seq in the
HeLaWTdata. These 26 9mers included sites with 2 and 3Cs together.
This suggests that at C-rich sites, nanopore sequencingmay present an
advantage over bsRNA-seq in the identification of m5C.

Impact of other modifications on the prediction of m6A
and m5C
To test if other modifications could impact the detection of m6A
or m5C in individual read signals, we tested CHEUI on the signals
from IVTs containing other modifications not used for training,
namely, 1-methyladenosine (m1A), hydroxymethylcytosine (hm5C),
5-formylcytosine (f5C), 7-methylguanosine (m7G), pseudouridine (Y)
and inosine (I)26. All read signals were processed for each 9mer cen-
tered at A or C as before, with the modification either at the same
central base (m1A andm6A for A, and m5C, 5fC, and hm5C for C) or in
the neighboring bases in the 9mer (Y, m7G, I, m1A, m6A for C; or Y,
m7G, I, m5C, 5fC, hm5C for A) (Fig. 4a). As a general trend, the pro-
portion of signals containing other modifications predicted as posi-
tives by CHEUI recapitulated the results for signals without any
additional modifications (Fig. 4b). This was the case for all modifica-
tions, except for predictions by the m6A model in signals containing
m1A, a chemical isomer ofm6A, which followed a similar trend asm6A
(Fig. 4b, upper panel).

To investigate whether m1A misclassification might be due to the
similarity between them1A andm6A nanopore signals, we used Xpore
and Nanocompore to test the discrimination of m6A andm1A without
any a priori assumption about the modification type. We used 81
9mers centered at A and made all possible pairwise comparisons
among three sets of read signals: one with no modifications, one with
all signals having m1A, and one with all signals having m6A. Coverage
per site ranged between 21 and 324 reads, with a median coverage of
62 reads. When comparing m6A or m1A against unmodified signals,
Xpore identified significant differences for 11 and 16 sites, Nano-
compore detected 5 and 3 sites, and CHEUI m6A model predicted
19 sites in both cases (Fig. 4c). In the comparison of m6A against m1A
read signals, Xpore found a significant difference in only two of the
sites, whereas Nanocompore found none (Fig. 4c). These results sug-
gest that the DRS signals for these two isomers may be indistinguish-
able with the current statistical models and/or pore chemistry (Suppl.
Fig. 19). To further address the m6A andm1A DRS signal similarity, we
retrained the CHEUI-solo m6A model using m1A signals as negatives
and m6A signals as positives. Although this new model achieved
accuracy comparable to the original one in the separation ofm6A from
non-modified signals (Suppl. Fig. 20a), it showed a trade-off between
accurately detecting m6A and correctly separating m6A from m1A
(Suppl. Fig. 20b), further indicating existing limitations to separate
these isomeric RNA modifications using the nanopore signals.

We further assessed how the presence of one modification may
impact the detection of the other at short distances in individual reads.
We analyzed the detection ofm5Cat9mers in non-modified individual
reads and in reads where m6A was present nearby, using reads from
the IVT test 2 datasets. The proportion of false positives (0.07–0.14)
for the CHEUI m5C Model 1 when m6A was 1–4 nt away was similar to
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the background proportion with no modification (0.08). The propor-
tion of false positives for m6A detection in the presence of a nearby
m5Cmodification (0.08-0.12) was also similar to the background level
(0.13) (Suppl. Fig. 21).

Transcriptome-wide analysis suggests m6A and m5C co-
occurrence in individual mRNA molecules
We next used CHEUI’s ability to identify m6A and m5C from the same
sample to investigate the potential co-occurrence ofmodifications in a
mammalian transcriptome. Using WT HEK293 data, we calculated
whether individual reads covering two predicted modified tran-
scriptomic sites presented specific modification combinations (i.e.,
m6A-m5C,m6A-m6A,m5C-m5C)more frequently or at a similar rate in
comparison with random pairs of modifications sites from different
transcripts. Intriguingly, we observed that read-level modification co-
occurrence, defined as the proportion of molecules with both sites
having the same modification state, was higher than expected by
chance for m6A and m5C modifications (Fig. 5a). This increased co-
occurrence was observed at short distances (<5 nt) as well as long
distances (>5 nt). Given the observed partial influence of nearby
modifications in the prediction of m5C and m6C described above, we
decided to perform an additional test. At each position, we compared
the observed co-occurrence with the expected value calculated by
independently permuting the modification state across the reads. As a
result, m5C upstream of m6A (i.e., 5’-m5C…m6A-3’) showed a sig-
nificant co-occurrence at short distances (5–8nt) and at longer dis-
tances (11–12 nt) (Fig. 5b),whereasm6Aupstreamofm5C (i.e. 5’-m6A…
m5C-3) showed a significant co-occurrence only at longer distances

(13–15 nt) (Fig. 5b). We also found that m6A-m5C sites with 40-60%
stoichiometry showed the most significant overrepresentation com-
pared to the values expected by chance (Suppl. Fig. 22). The co-
occurrenceofm6A-m6Aorm5C-m5Cwas also higher than expected at
short distances (1–4 nt) but was close to expected values at longer
distances (5–15 nt) (Suppl. Fig. 23). Furthermore, discarding m6A and
m5C sites at distances <5 nt from each other, we also observed an
enrichment of transcripts harboring bothmodifications relative to the
total number of m6A and m5C transcriptomic sites, both in HEK293
(Fig. 5c) and HeLa (Suppl. Fig. 24).

To examine how CHEUI resolves m6A andm5C co-occurrences in
RNAmolecules, we visualized a region of 38 nt from 34 RNAmolecules
derived from the transcript ENST00000258214 of the geneCCDC102A,
which codes for a protein component of themyosin complex (Fig. 5d).
These RNA sequences present high confidence predictions by CHEUI-
solo Model 2 (probability > 0.9999) for m6A (position 2179 nt of the
transcript) with 0.72 stoichiometry and m5C (position 2150 nt of the
transcript) with 0.66 stoichiometry, with 78% of the individual mole-
cules containing both modifications (Fig. 5d). While nucleotides adja-
cent to these modified sites had a high modification probability at the
level of individual reads by CHEUI-solo Model 1 (probability > 0.7), the
corresponding transcript reference sites were not considered sig-
nificant by CHEUI-solo Model 2. Generally, consecutive modified sites
were rarely detected using our defined cutoff for CHEUI-solo Model 2
(probability > 0.9999) (Suppl. Figs. 6a and 13a).

An intriguing question is the possibility of a coordinatedm6A and
m5C occurrence in a physiological context, where RNA modifications
play an important role. We decided to study m6A and m5C during

a

m6A

m5C

b c

d

CGUCACCCU
UUUCACGGG
CGCGACCUU
GGCUACCCU

CGUCACCCU
UUUCACGGG
CGCGACCUU
GGCUACCCU

AGUAACAAU
UUUAACGGG
GGAGACUUU
GGCUAGGGU

Prediction site

m1A 5fC none

CHEUI-solo m6A model

CHEUI-solo m5C model

CGUACUGGG
UUUACGGGU
CGAGCUUUU
GGAUCAAAU

CCUCCCGCU
UUUCCCGGG
AAAGCAAUU
AGUUCUUUC

GGUGCAUCU
UUUGCAGGG
GGUACUGUG
GGAUCGGGC

m7G m6A hm5C

0.2

0.4

0.6

1.0

Po
si

tiv
e 

pr
ed

ic
tio

n 
fr

eq
ue

nc
y

0.0

0.8

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

1.0

Po
si

tiv
e 

pr
ed

ic
tio

n 
fr

eq
ue

nc
y

Probability of prediction

0.0

0.8

0.0 0.2 0.4 0.6 0.8 1.0

m6A model

m5C model

none

CHEUI
-soloXporeNano-

compore

m1A 

m6A 

m1A
vs. m6A 

0.2

0.4

0.6

0.8

1.0

0

41.070.0 85.011.0 90.080.0

Re
ad

 p
re

di
ct

io
n 

pr
ob

ab
ili

ty

unmod 4 3 2 1
m5C

m5C model 

Prediction site

m6A distance from middle C

Fig. 4 | Impact of the nearby presence of other RNA modifications on the
detection accuracy of m6A and m5C in nanopore signals. a Examples of some
configurations forwhichCHEUI-soloModel 1 was tested in individual reads form6A
(upper panel) and m5C (lower panel) using signals from IVTs containing other
modifications. b The number of read signals identified as m6A- (upper panel) and
m5C- (lower panel) containing by CHEUI-soloModel 1 (y-axis) at different values of
the probability cutoff (x-axis). c The number of significant sites identified by each
tool (x-axis) in each of the conditions (y-axis). The m6A and m1A rows show the
number of sites with 100% stoichiometry predicted as m6A by each method. For
Nanocompore andXpore, thesewere calculatedby comparing each sample against
the unmodified sample. The m6A vs. m1A row shows the number of sites with a
significant differencebetween the twomodified samples. ForCHEUI, the number of

sites was calculated as those detected only in one of the samples. d CHEUI-solo’s
detection probability of m5C at individual read level (y-axis) using IVT set 2 read
signals at 9mers with a single C at the center and considering various configura-
tions: 9mers with nom5C (unmod), 9mers withm6A present at relative position 1,
2, 3, or 4 from the central C, and 9mers with a modified middle C (m5C). The
proportion of read signals identified as modified with probability > 0.7 is indicated
above each distribution. The box plots in the inset represent the first and third
quartiles by the white vertical box, with the median marked by a white dot and
whiskers indicated as vertical white lines extending up to the highest and lowest
valueswithin 1.5 times the interquartile range. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-47953-7

Nature Communications |         (2024) 15:3899 7



brain development, wherem6A has been reported to be relevant53. We
collected cortex tissue from wild-type mice at three different
embryonic stages E12, E15 and E18, and performed DRS of 3′ poly(A)+

RNA (Suppl. Fig. 25) (Suppl. Data S1). We tested a total of 1.4M–2.2M
transcriptomic A sites and 1.2M–2M transcriptomic C sites. Using the
probability cutoff of >0.9999, we obtained 2,876 – 6,040 m6A sites
and 1390–2180 m5C sites (Suppl. Data S2 and S10), with modification
rates along mRNAs similar to those observed for the cell lines (Suppl.
Fig. 26). We found that in all three conditions, m6A and m5C mod-
ifications at distances of 5 nt or more co-occurred in transcripts sig-
nificantly more often than expected by the random incidence of the
two modifications (Suppl. Fig. 27).

The pairs of methylated sites (m6A-m5C and m5C-m6A) in each
condition showed a wide variation in co-occurrence at the level of
individual reads, but the global co-occurrence valueswere significantly
higher than expected by chance at each of the three developmental
stages (Fig. 5e). Moreover, read-level co-occurrences were higher than
expected by chance at distances 5–15 nt and at low and intermediate
stoichiometries (Suppl. Fig. 28). Furthermore, co-occurrence values of
m6A-m5C sites showed a high correlation among the three embryonic
stages, suggesting that the co-occurrence of modifications is
transcript-specific and conserved across this developmental timeline
(Fig. 5f). The conservation of the co-occurrence was apparent even for

the sites of low stoichiometry across developmental points, which can
be exemplified by a 35 nt region from the transcript
ENSMUST00000014438 (gene Ndufa2), where co-occurring m6A and
m5C sites were found 13 nt apart (Suppl. Fig. 29). While the modifica-
tion frequency in these siteswasmoderate at about 30%, them6A-m5C
andm5C-m6Aco-occurrence inmoleculeswere0.961, 0.957and0.913
for the E12, E15 and E18, respectively, consistent with the identified
high conservation across conditions.

Discussion
WehavedevelopedCHEUI for the transcriptome-wide identification of
m6A and m5C from the same sample, both in individual molecules as
well as in transcriptome reference sites, together with their stoichio-
metry quantification, without requiring a KO/KD or an otherwise
control sample. To assess the expected performance of CHEUI, we
performed an in-depth benchmarking using in-vitro transcribed RNA
for which we knew the methylation state in each read. This was parti-
cularly effective for the assessment of stoichiometry, which is chal-
lenging to test in cellular RNA where a complete knowledge of the
modification state of all RNAmolecules is generallynot available. Using
controlled mixtures of modified and non-modified reads, we tested
variable coverage and stoichiometry values using different nanopore-
based approaches. These analyses showed that CHEUI accomplishes
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Fig. 5 | Co-occurrenceofm6Aandm5C inRNA invivo. aCo-occurrence (y-axis) of
m6A and m5C at read level at various distances (x-axis). Blue indicates A upstream
of C, and red A downstream of C, dark blue/orange lines indicate mean co-occur-
rence, and shades indicate the 95% confidence intervals. The black line and gray
shades indicate the mean and 95% confidence interval of random co-occurrence.
Distances are measured as the difference between positions, e.g., 5′-
m6ANNNNm5C-3′ is a relative distance of 5 nt. b Significance (one-sided Mann-
Whitney U-test) (y-axis) of the comparison between observed and expected co-
occurrences at different distances for pairs of m6A andm5C sites (x-axis); blue line
indicates p-value = 0.05. Expected co-occurrences were calculated by permuting
the modification state of reads in each site independently. c Number of human
mRNAs containing m6A and m5C sites (separated by 5 nt or more), only one of
them, or none (two-tailed Fisher’s test p-value = 1.76E-06). d Region in transcript
ENST00000258214 (geneCCDC102A) showingm6A andm5C in individual reads (y-
axis) at various positions (x-axis). Blue (red) scale indicates CHEUI read-level
probability for m6A (m5C). Modified positions identified by CHEUI were 2,150nt

(m5C, 0.66 stoichiometry), and 2,179nt (m6A, 0.72 stoichiometry) (both high-
lighted). Co-occurrence (0.78) was calculated with molecules that contained both
sites. e Distribution of observed and expected read-level co-occurrences of m6A
and m5C (any order) at distances 5–15 nt (y-axis) in mouse embryonic cortex at
development stages E12, E15, and E18 (x-axis) (pooled biological replicates). One-
sided Mann-Whitney U-tests comparing observed and expected, p-values 0.0044
(E12), 0.0148 (E15), and 1.5586E-14 (E18). Expected random distributions obtained
by permuting individual read methylation states at each site independently. Box
plots in the inset represent the first and third quartiles, with themedianmarked by
a white dot and whiskers indicated as vertical black lines extending up to the
highest and lowest values within 1.5 times the interquartile range. f Correlations of
read-level co-occurrence values for pairs of m6A and m5C sites between develop-
mental stages. Two-tailed Pearson correlation r(E12,E15) = 0.68 (p-value 7.8E-12),
r(E12,E18) = 0.64 (p-value 4.2E-10), and r(E15,E18) = 0.78 (p-value 1.3E-16). Source
data are provided as a Source Data file.
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high sensitivity, precision, and modification stoichiometry accuracy
compared to other nanopore-based tools. We further used the IVT
strategy to compare side-by-side bisulfite RNA-sequencing (bsRNA-
seq) andCHEUI for the identification ofm5Con aground truthdataset.
This showed that CHEUI presents a trade-off between the recall ofm5C
in modified IVTs and the false positive rate in non-modified IVTs. This
analysis also indicated a potential limitation of bsRNA-seq for the
detection of m5C in C-rich contexts, which can be recovered using
nanopore sequencing.

For the analysis of cell transcriptomes, given the large number of
sites tested, we used very strict cut-offs to maintain a low expected
false discovery rate (FDR). While these strict cutoffs resulted in a
reduction of CHEUI sensitivity, many of sites identified by orthogonal
methods had high CHEUI probabilities that were below the set
thresholds. Relaxing these thresholds would recover more sites found
by orthogonal techniques but at the cost of introducing potential false
positives. This limitationmay stem from the variability of the nanopore
signals, where the differences between modified and non-modified
reads are often comparable to the differences observed in the popu-
lation of non-modified reads. Improvements in the prediction models
and in the RNA sequencing chemistry can potentially facilitate the
identification of m6A and m5C at higher sensitivity.

In cell transcriptomes, CHEUI and other tested nanopore-based
methods showed a low correspondence with orthogonal experimental
methods. For m6A, we observed a low overlap with CLIP-based sites,
which also showed a low overlap among different experiments in the
same cell models. We also observed a low overlap with bsRNA-seq for
m5C. Furthermore, CHEUI and other nanopore-based methods gen-
erally detectedmany potential m5C sites there were not present in the
bsRNA-seq datasets. These results suggest that there are biases and
differences in detection rates associated with each technology and
that much is yet to be learned about the full distribution of modifica-
tions in mRNA. Independent validation experiments of the modified
sites detected only from nanopore reads will be necessary to confirm
these predictions or establishwhether they are due to other sources of
nanopore signal variation. Further strategies to address these dis-
crepancies between technologies could involve identifying consensus
approaches that combinemultiple experimental sources or nanopore-
based methods trained on a wider range of experimental inputs.

We observed that CHEUI and other nanopore-based methods
tested could not accurately separate the positional isomers m1A and
m6A. Visual inspection of the signals for m6A and m1A in the same k -
mer contexts suggests that they deviate in the same way from the
signals corresponding to unmodified nucleotides. In contrast, m5C
and hm5C, which have different chemical groups attached to the same
position, may be visually distinguished from each other and from the
unmodified nucleotides. Difficulties to separate the isomeric m1A and
m6A have also been described with other technologies54. More
sophisticated predictive models including additional features to the
nanopore signal, such as neighboring sequence motifs or secondary
structure, could overcome the observed limitation.

CHEUI’s capacity to predict twomodifications in the same sample
enabled us to measure the co-occurrence of m6A and m5C in tran-
scripts.While our systematic analysis of signals shows that at distances
of > 5 nt the co-occurrence of m6A and m5C can be reliably identified
in the reference transcriptome and in individual molecules, we
observed a residual mutual signal interference of the modifications at
distances <5 nt. This effect on the individual read prediction would be
exacerbated in ribosomal RNA molecules since they are highly and
densely modified. This limitation could be addressed by incorporating
additional predictive features or developing new models trained on
datasets with defined combinations of adjacent modifications.

The mechanisms underlying the identified co-occurrence of
modifications in reads and across transcripts remain to be elucidated.
A possibility could be crosstalk between RNA modification enzymes,

whereby the binding of RNA by readers or writers for onemodification
may drive the deposition or removal of the other. There are other
reasonable explanations for non-random modification co-occurrence
that do not require the interaction of themethylationmachineries. Co-
occurring modifications at a single-molecule level may represent the
relics from the history of the RNA molecule, which acquired the
modifications by passing through certain processing steps or points of
cellular response55. Such epitranscriptomic relics may contain entan-
gled modifications of various types, combinations of which can be
characteristic of a subpopulation of the cell’s RNA with a shared his-
tory. Another possibility is an enhanced accessibility of the RNA to the
methylation enzymes induced by one or the other modification, pos-
sibly in contrast to the caseswhere such accessibility is notpresent due
to the mRNA localization or translation. A more evolutionary-inspired
possibility is the correctionof function,wherebyonce amodification is
introduced, it enhances or compensates for the functional effects of a
pre-existing modification. Using more targeted experiments with
methodologies that can identify more than one modification from the
same sample, such as CHEUI, can potentially provide further insights
into the co-occurrence of modifications in individual molecules and
open new opportunities to study the functions embodied by the
epitranscriptome.

Methods
We confirm that our research complies with all relevant ethical reg-
ulations. Procedures were conducted in accordance with the Aus-
tralian National University Animal Experimentation Ethics Committee
(protocol number A2019/46).

Nanopore signal preprocessing
The nanopore sequencing data was preprocessed using the following
steps prior to running CHEUI. First, the FAST5 files were basecalled
using Guppy. IVT datasets were basecalled with Guppy version 4.0.14.
Data frommouse (E12, E15, E18) and cell lines (WT and METTL3-KO in
HEK293 cells, and WT and NSUN2-KO in HeLa) were basecalled using
Guppy version 5.0. Reads were then aligned to the corresponding
reference transcriptome using Minimap256. The genome and annota-
tion references used were GRCh38 and Gencode v38 for the human
data, and GRCm39 and Ensembl v104 for the mouse data. For the IVT
reads, options -ax map-ont -k 5 were used, whereas for human and
mouse transcriptomes, the options -axmap-ont –k14were used. Reads
were then filtered to select the best match for each read using sam-
tools -F 232457. Nanopolish’s (version 0.13.2)17 eventalignwas then used
to align the read signals to thematched transcript references using the
options --scale-events --signal-index --samples --print-read-names.
Nanopolish eventalign output consists of 5mers along the transcript
reference and a list of signal values for each of those 5mers. Although
each 5mer is given in the 5′ – 3′ orientation, the list of signals per 5mer
is ordered in the 3′ – 5′ orientation. To process the signals in the right
5′ – 3′ orientation, we thus flipped the signals per 5mer before con-
catenating the signals from overlapping 5mers. All the (per read) sig-
nals for every 5 overlapping consecutive 5mers, togetherwith the read
ID and sequence, were then used to create the input for CHEUI-solo
Model 1.

CHEUI-solo Model 1
Model description. CHEUI-solo Model 1 is a convolutional neural
network (CNN) modified from the Jasper model58. The model archi-
tecture (Suppl. Fig. 3) was implemented using Keras59 and
Tensorflow60. The input for this CNN is defined as follows. For a given
position of interest, e.g., adenosine (A) for the m6Amodel or cytosine
(C) for the m5C model, given the 9mer centered at that position, i.e.,
NNNN(A | C)NNNN, CHEUI uses the signals corresponding to the five
consecutive overlapping 5mers including that middle position of
interest. The number of signals is, in general, variable and was fixed

Article https://doi.org/10.1038/s41467-024-47953-7

Nature Communications |         (2024) 15:3899 9



before being used as input for the CNN model. The signals for each
5mer are then converted into a 20-length vector by dividing the values
into 20 segments preserving their order and calculating the median
value for each segment. If a 5mer contained >20 values, the values
were divided into 20 equal subsets, and the median value of each
subset was used. If the event had fewer than 20 values, themedianwas
appended to these values until it reached 20 values. As a result, each
9mer was thenmapped to a vector of 5 × 20 = 100 signal values, which
is used as input for CHEUI-solo Model 1. CHEUI also uses as input the
distance between the observed and the expected signal for every
5mer. The expected signal is built using the kmer model from
Nanopolish17, which describes the signal value for each 5mer in the
absence of modifications. For each of the 5 overlapping 5mers in the
observed signals, each expected valuewas repeated 20 times to obtain
a vector of expected values of length 100. Then, a vector of length 100
with the absolute distances between the components of the expected
and the observed signal vectors is calculated. These vectors of
observed signals and absolute distances are used as input for CHEUI-
solo Model 1. Of note, CHEUI-solo Model 1 does not use the actual
kmer (k = 9) sequence, only the vector of observed signals and the
vector of distances, providing a high level of abstraction form the
sequence context.

Training and testing of CHEUI-soloModel 1. CHEUI-solo Model 1 was
trained using read signals generated from in-vitro transcript (IVT)
data26,27 to produceonemodel for eachmodification,m6Aorm5C. The
positive training set contained m6A (or m5C) in place of the canonical
nucleotides, i.e., every A was replaced by m6A (or every C by m5C)27.
For both models, the negative sets were made from read signals from
IVTs but with no modifications. For both modifications, we con-
structed non-overlapping datasets for training (IVT train 1), validation
(IVT validation 1), and testing (IVT test 1, IVT test 2) (Suppl. Data S11).
Datasets IVT train 1, IVT test 1, IVT validation 1 were built from publicly
available reads27, using non-overlapping signal reads for each dataset
that could share the same 9mer sequence contexts. IVT train 1 was
composed of 9mers with any number of As (or Cs) in themodified and
unmodified sequences. IVT validation 1, used for parameter optimi-
zation, was composed of 9mers containing only one A (or C) at the
center of the 9mer. IVT test 1, which was used to test sensor general-
ization, was also composed of 9-mers with only one A (or C) at the
center. On the other hand, IVT test 2, used to test kmer generalization,
was built from independent IVT experiments26. IVT test 2 contained
non-overlapping signal reads and included 9mer contexts that were
not present in the other train, test, or validationdatasets. IVT test 2was
also composed of 9mers with only one A (or C) at the center of the
9mer. Importantly, the training and testing was performed on indivi-
dual read signals.

Binary cross-entropywasused as the objective function, AMSGrad
was used as the optimizer, and the Nvidia Tesla V100 was used to
accelerate computing. Training was performed for 10 epochs and for
every 200,000 read signals the accuracy, precision, recall and binary
cross-entropy loss were calculated on the IVT validation 1 set along
with the parameters of the model at that stage. After 10 epochs, there
was no improvement on the validation accuracy, so the training was
terminated. Accuracy was defined as the proportion of correct cases,
i.e. (TN +TP)/(TN +TP + FN+ FP); precision was calculated as the pro-
portion of predicted modifications that were correct, i.e. TP/(TP + FP)
and recall as the proportion of actualmodifications thatwere correctly
predicted, i.e., TP/(TP + FN); where TP = true positive, FP = false posi-
tive, TN= true negative, FN = false negative. Binary cross-entropy was
defined as

HpðqÞ= 1=N �
XN

i= 1
yi � log2ðpðyiÞÞ+ ð1� yiÞ � log2ð1� pðyiÞÞ ð1Þ

where yi = 1 for a modified base in a specific position of a read and 0
otherwise, and p(yi) is the posterior probability from Model 1.

CHEUI-solo Model 2
Model description. CHEUI-solo Model 2 is a binary classifier imple-
mented as a CNN like for Model 1. CHEUI-solo Model 2 takes as input
the distribution of probabilities generated by Model 1 for all read sig-
nals at a given transcriptomic site, i.e., a position in a reference tran-
script, and predicts the stoichiometry andprobability of that site being
methylated (m6A or m5C). Model 2 assumes that the distribution of
the individual-read probabilities at a given transcriptomic site origi-
nates from two classes, one with a subset or all reads having high
Model 1 probabilities (modified site), and a second onewith lowModel
1 probabilities (unmodified site).

Model training and testing. CHEUI-solo Model 2 was trained using
controlled mixtures of modified and unmodified reads not used pre-
viously for training, validation, or testing of CHEUI-soloModel 1. These
controlled mixtures were built to comprise a wide range of values for
coverage and stoichiometry and with a high proportion of low cover-
age and low stoichiometry sites to mimic what was previously
observed in transcriptomes4,49,61. The new read signals were processed
as described above and used to make predictions with CHEUI-solo
Model 1. The training set forModel 2 consisted ofmixtures ofmodified
and unmodified reads from IVTs27 with their corresponding Model 1
probabilities. Tomodel the low stoichiometry and coverage values, the
training sites were built as follows: (1) a site was chosen to bemodified
or unmodified with 50% probability; (2) if unmodified, a coverage was
chosen randomly between 0 and 100, using a linear decay, i.e., the
higher the coverage, the less likely it was to be selected, and the per-
read probabilities were assigned at random from the pool of unmo-
dified signals; (3) if, on the contrary, the site was selected to be mod-
ified, the coverage and stoichiometry of the site were chosen using the
same linear decay as before, with high coverage and stoichiometry
values less likely to be chosen. The linear decay was implemented
using the random.choices function from the general python distribu-
tion using theweights (10 - coverage) × 0.01 +0.9 as argument.Weights
indicate the relative likelihoodof each element on the list to be chosen,
with each incremental unit of coverage or stoichiometry correspond-
ing to a decrease in their weight by one unit. Using this procedure, we
generated ~1.5M synthetic sites per modification with variable cover-
age and stoichiometry. These sites were randomly split into training
and testing in a 9:1 proportion.

Comparison with other tools
Tools selected for comparison. We chose tools available for each
specific benchmarking comparison. We used Epinano27, which imple-
ments a linear regression with two samples, one depleted of mod-
ifications to detect outliers, i.e., observations with large residuals, to
identify modifications. We used EpiNano-Error, which combines all
types of read errors (mismatches, insertions and deletions) in pairwise
mode.We also usedNanoRMS28, which does not predictmodified sites
but uses predictions from another method to calculate the stoichio-
metry with a sample comparison approach. Specifically, NanoRMS
uses the signals processed by Tombo or Nanopolish and implements a
supervised k-NN method based on the sample labels, or an unsu-
pervised method based on k-means with k = 2, to separate modified
and unmodified signals. For NanoRMS, the stoichiometry was calcu-
lated from theproportionof reads from theWTsample in themodified
cluster, divided by the total number of WT reads. We also tested
Nanocompore20, which uses the assignment of raw signals to a tran-
scriptome reference with Nanopolish and the mean current value and
mean dwell time of all signals per 5mer, and then compares the dis-
tributions for all read signals aligning on the same site between two
conditions. Nanocompore then fits a Gaussianmixturemodel with two
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components to the data and performs a statistical test to determine
whether each cluster is significantly associated with a sample. We also
tested Xpore21, which operates similarly to Nanocompore, using the
assignment of raw signals to the transcript reference with Nanopolish
and comparing the mean current values between two or more condi-
tions for each transcriptomic site. Xpore uses information from
unmodified k-mers as a prior for Gaussian distributions and variational
Bayesian inference to infer themean and variance of each distribution.
After fitting the data into clusters, Xpore labels clusters with values
closer to the expected unmodified signals as unmodified and then
performs a statistical test on the differential modification rates
between samples and assigns a p-value per site. We also tested Tombo
in sample comparison mode, which performs a statistical test com-
paring the signal values between two conditions; and Tombo in
alternativemode, which predicts a proportion ofm5Cmodificationper
transcriptomic (not individual read) site, although it does not provide
a score or a probability for the modification calls.

Controlled IVT mixtures for benchmarking. To create a controlled
and independent dataset to benchmark the accuracy in the prediction
of stoichiometry and transcript-site modification, we used the reads
from Jenjaroenpun, P. et al.26 corresponding to one sequencing
experiment per IVT, and which were not used in the previous tests to
generate mock WT and KO samples. The mock WT sample was gen-
erated by randomly sampling reads from themodified and unmodified
sets to createmultiple stoichiometrymixtures with 20, 40, 60, 80, and
100 percent. The mock KO sample was created by randomly sampling
reads from the unmodified pool of reads. We ran Epinano, Nano-
compore, Xpore, and CHEUI, using default parameters to predict RNA
modifications. Epinano, Nanocompore, and Xpore were run using the
generated WT and KO mock samples. CHEUI was run using only the
generated WT sample, as it does not require a KO/KD or control
sample. Predicted sites were considered at three levels of significance
or alpha values, i.e., predicted sites were considered significant if, after
correcting for multiple testing, the adjusted p-values were ≤ alpha,
where alpha =0.05, 0.01, 0.001.

Transcript-site predictions, i.e., the methylation state of a
position in the reference sequence, in the IVT-based mixtures were
classified as positive if they had a probability > 0.99 from CHEUI-
solo Model 2, and negative otherwise. Nanocompore, Xpore, Epi-
nano, and CHEUI were run using thresholds recommended by the
documentation for each tool. For Xpore, sites containing a kmer
(k = 9) centered in adenosine, in the evaluation of m6A, or a cyto-
sine, in the evaluation of m5C, that had a predicted p-value <0.05
were considered significant. For Nanocompore, the same selection
of kmers centered in adenosine or cytosines was done, and sites
with a p-value <0.05 were selected as positives. For Epinano, we
used Guppy version 3.0.3 and EpiNano-Error with the combined
errors Epinano_sumErr method to detect modifications, as recom-
mended in the Epinano documentation. We then used the linear
regression model and unm ormod from the linear model residuals z
score prediction column to classify sites as unmodified ormodified,
respectively.

To estimate the falsepositive rate for Epinano, Nanocompore, and
Xpore we evaluated the number of sites each tool predicted as mod-
ified when comparing two sets of reads with no modifications. For
CHEUI, we used only one of those datasets with no modifications. We
evaluated all sites with A or C, regardless of whether they had other As
or Cs nearby in the same kmer (k = 9) sequence context. In contrast, to
determine the true positive rate and stoichiometry, we only evaluated
k-mers (k = 9) containing one centered m6A and no additional As, or
one centered m5C and no additional Cs to avoid the influence of
having two or more modified nucleotides affecting the tested site,
since the IVTs were built with all nucleotides of one type either mod-
ified or not modified.

Stoichiometry benchmarking. Stoichiometries were calculated in the
following way. Given a modified site identified by CHEUI-solo Model 2
at an annotated transcript position in a given sample, the stoichio-
metry is calculated as the proportion of reads covering that site that
have the site identified as modified according to CHEUI-solo Model 1.
For the analyses presented, we used the probability by CHEUI-solo
Model 1 > 0.7 to tag a site as modified at the individual read level, and
<0.3 to tag the site as unmodified at the individual read level, dis-
carding calls with probability values in the range [0.3, 0.7]. Stoichio-
metry was only calculated in transcriptomic sites predicted as
positively modified by CHEUI, i.e., with a CHEUI-solo Model 2 prob-
ability of > 0.9999. For Xpore, we used the values of the column
mod_rate_WT-rep1, which we interpreted as the modification rate of
the mock WT sample. In the case of Nanocompore, we used the col-
umn cluster_counts that contains the number of WT and KO reads that
belong to the two clusters, one modified and the other unmodified.
Stoichiometrywas then calculated as the percentage ofmodified reads
in the WT sample, i.e., we divided the number of WT reads in the
modified cluster by the total number of WT reads. We also included
NanoRMSwith k-NN and k-means for the stoichiometry comparison. In
this case, since NanoRMS only predicts the stoichiometry on sites
predicted by another method and since Epinano predicted very few
sites in our test set, we applied NanoRMS to all tested sites (81 form6A
and 84 for m5C) to obtain a more unbiased assessment. The percen-
tage of modified reads per site was obtained from the NanoRMS out-
put tables, dividing the number of modified reads in the WT by the
total number ofWT reads. Finally, Tombo assesses every site and gives
a fraction ofmodified reads but does not specify the site asmodifiedor
not. Asmost of the sites had a fraction ofmodified reads above0, even
for the unmodified sample (75 out of 84 sites), we only considered
Tombo for the stoichiometry comparisons.

Testing m6A and m5C accuracy in read signals with other
modifications
For this test, we used the Nanopore signals for the IVT transcripts
from Jenjaroenpun, P. et al.26. Each dataset contained either unmodi-
fied signals, or signals for modified nucleotides with m6A,
m5C, 1-methyladenosine (m1A), hydroxy-methylcytosine (hm5C),
5-formylcytosine (5fC), 7-methylguanosine (m7G), pseudouridine
(Y), and Inosine (I) modifications. We considered all 9mers centered
at A or C in the IVT reads containing modifications other than m6A
(for A-centered 9mers) or m5C (for C-centered 9mers). Thus, the
modificationswereeither at the samecentral base (m1Aandm6A forA;
andm5C, 5fC, and hm5C for C) or in neighboring bases (Y,m7G, I, m1A,
m6A for C; or Y, m7G, I, m5C, 5fC, hm5C for A). We used CHEUI-solo
Model 1 to predict m6A in the middle A or m5C in the middle C for all
these read signals, to determine the influence of these other mod-
ifications on CHEUI’s ability to correctly separate A from m6A and C
from m5C.

CHEUI-solo for transcriptome-wide analyses
Reads from the three replicates for each condition WT HeLa, NSUN2-
KO HeLa, WT HEK293, and METTL3-KO HEK293 were aligned to the
Gencode v38 transcriptome (GRCh38) using minimap2 as described
above. CHEUI-solo (Model 1 andModel 2) was run on pooled replicates
from each condition, except when comparing replicates within the
same condition. In each case, CHEUI-solo Model 1 was run on all the
reads, whereas CHEUI-solo Model 2 was run only on transcriptomic
sites with the coverage of >20 reads. This produced a methylation
probability and estimated stoichiometry in all tested transcriptomic
sites. To establish a probability cutoff of significance for CHEUI-solo
Model 2, we calculated the probability distribution of modified sites
expectedby chance,without a biological signal. Todo so, in eachgiven
condition, we shuffled all read signals across all transcriptomic sites,
maintaining the same number of transcriptomic sites and the same
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coverage at each site.We then runCHEUI-soloModel 2 over these sites
with the new read signal distributions obtained after shuffling the
reads. For each tested probability cutoff, the proportion of candidate
transcriptomic sites selected as methylated from the shuffled config-
urationwas considered as anestimate of the false discovery rate (FDR).
Using this approach, we found that a probability cutoff of 0.9999 for
CHEUI-solo Model 2 would yield an FDR =0 for m6A, and an FDR =
0.000384 for m5C. We thus consider modified transcriptomic sites
the ones having a Model 2 probability equal to or >0.9999 for both
modifications. CHEUI-solo (Model 1 and 2)was also applied as above to
three replicates of DRS of in-vitro transcribedWTHeLa cells. Predicted
m6A or m5C sites with Model 2 probability > 0.9999 were considered
as false positives.

Comparison with other methods for m6A detection in HEK293
cell lines
Xpore, Nanocompore and CHEUI-diff were used to call differential
RNA modifications on all A sites, using 3 WT and 3 KO replicates for
HEK293. CHEUI-diff was run on sites that had > 20 reads in both
conditions, WT and KO. We used three distinct levels of significance:
0.05, 0.01, and 0.001. For Xpore and CHEUI-diff, FDR correction was
performed with Benjamini-Hochberg procedure. Since Nano-
compore already provides adjusted p-values, the threshold was
applied without FDR correction. To compare the transcriptomic sites
identified as m6A in WT, we selected those sites predicted by each
method to have increased stoichiometry in the WT. By default,
CHEUI-diff does not test sites where the difference in stoichiometry
between the two conditions is <0.1 in its absolute value. For Xpore,
we used the module xpore postprocessing to filter the output. To
calculate the potential number of m6A false positives we used each
tool to compare two replicates from the same KO condition with the
highest number of reads, METTL-KO replicates 2 and 3. The KO was
used instead of theWT samples tominimize the chances of including
variably modified m6A sites that may occur in WT samples. To
compare the nanopore-based predictions with m6A transcriptomic
sites with previous evidence we employed the union of m6ACE-seq
and miCLIP sites39,40.

CHEUI application to the signals derived fromRNAofNSUN2-KO
and WT HeLa cells
CHEUI-solo (Models 1 and 2) was run by pooling together three repli-
cate samples from each cell line,WT andNSUN2-KOHeLa. Information
about previously identifiedm5C sites inHeLa was collected from three
different bisulfite RNA sequencing (bsRNA-seq) experiments4,8,49 and
the union of these three sets was considered for subsequent com-
parisons. The probabilities of the modification calls derived from
CHEUI-solo Model 2 corresponding to sites with orthogonal evidence
were compared between WT and NSUN2-KO using a two-tailed
Mann–Whitney U-test.

The permutation analysis to test the enrichment of high prob-
ability calls in the candidate sites detected by bsRNA-seq was per-
formed in the followingway. First, we calculated howmany bsRNA-seq
candidate sites were tested by CHEUI-solo (total sites) and how many
of these were the high probability sites, defined as those havingModel
2 probability of > 0.99. Then, we randomly sampled the same number
of transcriptomic sites tested with CHEUI-solo Model 2 and counted
how many of these were high-probability sites. We repeated this pro-
cedure 1000 times and calculated an empirical p-value.

Sequence logoswerecomputedusingWebLogo (https://weblogo.
berkeley.edu/logo.cgi). To study the propensity of secondary struc-
ture formation around NSUN2-dependent and -independent m5C
sites, we used RNAfold 2.4.1862. We estimated base-pairing prob-
abilities in the region covering 90 nucleotides centered over the m5C
site (45 nt on either side). For each sequence, we calculated the
nucleotide positions that had pairwise interactions with other

nucleotides according to RNAfold. At each position, we then calcu-
lated the proportion of nucleotides with interactions with respect to
the total number of sequences. These proportions were plotted
separately for the WT and NSUN2-KO samples. The enrichment of
functions and processes associated with genes with modifications was
assessed using g:Profiler63.

Bisulfite RNA sequencing analysis
We performed RNA bisulfite treatment (bsRNA-seq) following the
protocol from Johnson et al.64. There were no deviations done for the
protocol except the fact that a GE50 spin column was used for the
removal of the excess of bisulfite reagent (sodium bisulfide and
hydroquinone) instead of a GE25. This protocol was applied to RNA
fully modified with m5C or non-modified obtained from in-vitro tran-
scripts (IVTs) m1, m2, m3, m4 (Suppl. Data S9) built from four non-
overlapping fragments from the mouse canonical pre-rRNA (~13 kb
long). Sequencing of the bisulfite-treated samples was performed with
Illumina. For the analysis of the Illumina reads from the bisulfite-
treated data we used meRanTK65, adjusting the parameters to make it
more permissive to m5C detection: the edit distance was changed
from the default 2 – 200, the number of Cs per Illumina read was
changed from the default 3–200, the minimummethylation ratio of a
single C needed for methylation was changed from the default 0.2–0,
and the minimum coverage at a given reference site above which
methylation call is performedwas changed from the default 20–0. The
same modified and non-modified RNA samples were used to perform
nanopore DRS.

CRISPR-Cas9 knockout (KO) of NSUN2 in HeLa cells
HeLa cell lines and culture. HeLa cells (human cervical cancer)
were obtained from ATCC (cat. no CCL-2) and confirmed via short
tandem repeat (STR) profiling with CellBank Australia. Cells were
grown in DMEM medium (Gibco) supplemented with 10% FBS and
1 × antibiotic-antimycotic solution (Sigma) and passaged when
70–90% confluent. HeLa cell cultures were tested to be negative
for mycoplasma contamination prior to their processing for gene
editing.

Guide sequence design. Two CRISPR (cr)RNAs were designed, target-
ing the 5′-proximal (exon 2 crRNA “AGGCUACCCCGAGAUCGUCA”) and
3′-proximal (exon 19 crRNA “AAUGAGAGUGCAGCCAGCAC”) regions of
thegene.Gene sequences fromEnsembl (Asia server)wereprocessedvia
CCTop66 to check for efficacy and predict potential off-target cleavage
effects. The two sequences with highest predicted efficacy and minimal
off-target effects were selected as crRNA and ordered as Alt-R CRISPR-
Cas9 crRNA from Integrated DNA Technologies (IDT).

Ribonuclear protein preparation. 2.5 µMof NSUN2 exon 2 crRNA was
combined with equimolar amounts of NSUN2 exon 19 crRNA and
annealed with 5 µM Alt-R CRISPR-Cas9 trans-activating CRISPR (tracr)
RNA, ATTO 550 (IDT) in 10 µl of 1 × IDT Duplex Buffer. The ribonuclear
protein (RNP) assembly reaction was then performed by combining
0.575 µM of the annealed crRNA:tracrRNA with 30.5 pmol of IDT Alt-R
S.p. Cas9 Nuclease V3 in 2.2 µl Neon Transfection System R resuspen-
sion buffer (Invitrogen) for 5min at 37 °C; the resultant mixture was
kept at room temperature until transfection.

Transfection. Electroporation was conducted using Neon Transfec-
tion System (Invitrogen) and following the manufacturer’s protocol,
with the followingmodifications. HeLa cells were resuspended inNeon
Transfection System R resuspension buffer (Invitrogen) to a con-
centration of 2.8 × 107 perml. For eachelectroporation reaction, 2 × 105

cells prepared as above were incubated with 1 × v/v RNP at 37 °C for
5min, before being electroporated at 1,005 volts, 35milliseconds, with
2 pulses. Two reactions were seeded per well of a 24-well plate. Cells
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were recovered in complete medium under standard incubation con-
ditions of 37 °C and 5% v/v CO2 for 24 to 36 h.

Single cell sorting. Cells were sorted for singlets and ATTO 550
positivity on a FACSAria II Cell Sorter (BD) hosted at the Flow Cyto-
metry Facility of the John Curtin School of Medical Research, the
Australian National University. Although all singlets were positive
when compared with negative controls, only cells with high-intensity
ATTO 550 ( > 1033 RFU) were sorted into 96-well plates for subsequent
culturing. Cells were maintained in complete media and expanded to
6-well plates for genomic DNA (gDNA) extraction upon reaching 70%
confluency.

Amplicon analysis. The gDNAwas extracted by incubating cell pellets
with 30 µl of in-house rapid lysis buffer (40 µg Proteinase K, 10mM
Tris-HCl pH 8.0, 1mM EDTA, 0.1% v/v Tween-20) at 56 °C for 1 h fol-
lowed by denaturation at 95 °C for 10min. Amplification of NSUN2
gene was conducted with standard protocols under 35 cycles in Mas-
tercycler Nexus (Eppendorf), using Q5 High-Fidelity DNA Polymerase
(New England BioLabs) and 5 µl of extracted gDNA. Amplicons were
purifiedwith ExoSAP-IT (Applied Biosystems) and sequenced on an AB
3730xl DNA Analyzer, by the ACRF Biomolecular Resource Facility
(BRF) from the John Curtin School of Medical Research, Australian
National University, following the manufacturer’s protocol (Applied
Biosystems 2002). Sequencing data was analyzed manually using
SnapGene software (from Insightful Science; available at https://www.
snapgene.com/) to confirm alteration of the target loci.

Protein analysis. Cells were grown in DMEM medium (Gibco) sup-
plemented with 10% FBS and 1 × antibiotic-antimycotic solution
(Sigma) and passaged when 70-100% confluent. Unmodified wild-type
(WT) and NSUN2 KO cells were scraped in 200–500μl of protein
extraction buffer (50mM Tris pH 7.5 at 25 °C, 5mM EDTA, 150mM
NaCl, 21.5mM MgCl2, 10% glycerol, 1% v/v Triton X-100, 1 × Complete
EDTA-free Protease Inhibitor Cocktail (Sigma)) and incubated for
10min on ice, then incubated for 30min at 4 °C on a rotator. The
mixture was centrifuged at 13,000g for 10min at 4 °C. The super-
natantwas transferred to a clean tube, andused immediately, or stored
at –80 °C. Total protein concentration was then estimated by taking a
Qubit measurement via Protein Assay Kit (Thermo Fisher Scientific)
following the manufacturer’s instructions. 30μg of total protein was
loaded on NuPage 4–12% w/v Bis-Tris Protein Gels (Invitrogen), and
proteins were electrophoretically separated using NuPAGE MES SDS
Running Buffer under conditions recommended by the manufacturer.
Separated proteins were transferred onto PVDFmembrane using iBlot
2 Transfer Stacks, PVDF, mini (Thermo Fisher Scientific, cat. no.
IB24002), following manufacturers’ instructions. The membrane was
blocked in Odyssey Blocking Buffer (LI-COR, cat. no. 927-40000) and
probedwith primary antibodies: anti-NSUN2 (1:1,000; Proteintech, cat.
no. 20854-1-AP), anti-ACTB (1:1,000; SantaCruz, cat. no. sc-47778
AF790). The membranes were then incubated with the anti-rabbit-IR-
Dye680 secondary antibody (1:10,000; LI-COR, cat. no. 925-68071) and
scanned using the Odyssey CLx Imaging System (LI-COR). The KO’s
effect was assessed by the specific intensity alteration of the fluor-
escent signal of the respective band with mobility corresponding to
that expected of NSUN2.

Extraction of polyadenylated RNA from HeLa cells. Three each
⌀10 cm plates with WT and NSUN2-KO HeLa cells at 80% confluency
were washed twice in ice-cold PBS and scraped in 500 µl of dena-
turing lysis and binding buffer (100mM Tris-HCl pH 7.4, 1 % w/v
lithium dodecyl sulfate (LiDS), 0.8M lithium chloride, 40mM EDTA
and 8mM DTT; LBB). The cell lysate was thoroughly pipetted with
200 µl tip until the sample viscosity was reduced, and pipetting was
seamless. 500 µl of oligo(dT)25 magnetic beads (New England

Biolabs) suspension was then used per replicate. The beads were
washed with 1 ml of LBB twice, each time collecting the beads on a
magnet and completely removing the supernatant. Upon washing,
the oligo(dT)25 beads were resuspended in the cell lysate and placed
in a rotator set for 20 rpm at 25 °C for 5min, followed by the same
rotation at 4 °C for 30min. The suspension was briefly spun down at
12,000 g, separated on a magnet, and the supernatant was dis-
carded. The beads were then resuspended with 1 ml of wash buffer
(20mM Tris-HCl pH 7.4, 0.2 % v/v Titron X-100, 0.4M lithium
chloride, 10mM EDTA and 8mM DTT; WB) and washed on a rotator
set for 20 rpm at 4 °C for 5min, using 3 rounds of washing. The
beads were collected on a magnetic rack and the supernatant was
discarded. The wash procedure was repeated three times. The elu-
tion was carried out stepwise. Washed bead pellet was first resus-
pended in 50 µl of the elution buffer (25mM HEPES-KOH, 0.1 mM
EDTA; HE). The suspensionwas heated at 60 °C for 5min to facilitate
the elution, and the eluate was collected upon placing the bead-
sample mixture on a magnetic rack, separating the beads, and
recovering the clean supernatant. The resultant pellet was next
resuspended in another 50 µl of HE buffer, and the process was
repeated.

The eluates from oligo(dT) bead extraction were combined and
further purified using AMPure XP SPRI beads (Beckman Coulter Life
Sciences) generally according to themanufacturer’s recommendations.
Briefly, the eluate sampleswere supplementedwith 1.2 × volumes of the
SPRI bead suspension in its standard (supplied) binding buffer, and the
resultant mixture incubated at room temperature for 5min with peri-
odic mixing. The SPRI beads were brought down by a brief 2000g spin
and separated from the solution on a magnetic rack. The supernatant
was removed, and the beads were resuspended in 1ml of 80% v/v
ethanol, 20% v/v deionized water mixture and further washed by tube
flipping. The bead and solution separation procedure were repeated.
The ethanol washing process was repeated one more time. Any
remaining liquidwas brought down by a brief spin and removed using a
pipette, and the beads were allowed to air-dry while in the magnetic
rack for 2min. The purified RNAwas then eluted in deionizedwater and
the RNA content was assessed using absorbance readout viaNanodrop
and fluorescence-based detection via Qbit RNA high sensitivity (HS)
assay kit (Thermo Fisher Scientific). RNA was then stored frozen at
–80 °C until downstream processes were required.

RNA DRS Library Preparation for HeLa samples. The library pre-
paration generally followed the manufacturer’s recommendations.
650-800ng of RNA from HeLa cells were used for each 2 × library
preparation within every replicate (with all recommended volumes
doubled-up) with direct RNA sequencing kit (SQK-RNA002) as sup-
plied by Oxford Nanopore Technology. The modifications were that
Superscript IV RNA Polymerase (Thermo Fisher Scientific) was used,
RNA Control Standard (RCS) was omitted, and RNasin Plus (Promega)
was included at 1 U/ µl in all reaction solutions until the SPRI purifica-
tion step after the reverse transcription reaction. The final adapter-
ligated sample was eluted in 40 µl.

Embryonic mouse brain development experiments
Brain tissue extraction. Mice (strain C57BL/6 J) were dissected on
embryonic day (E) E12, E15 and E18. All procedures were conducted in
accordance with the Australian National University Animal Experi-
mentation Ethics Committee (protocol number A2019/46). Pregnant
females were cervically dislocated, and (male and female) embryos
were extracted in cold sterile PBS. The frontal area of the cortex, i.e.,
the pallium, was then dissected with micro-knifes under a Zeiss STEMI
508 stereomicroscope and tissue samples were immediately placed in
a 1.5ml microcentrifuge tube (Eppendorf) containing 300 µl of dena-
turing lysis and binding buffer (100mM Tris-HCl pH 7.4 at 25 °C, 1 %
w/v lithiumdodecyl sulfate (LDS), 0.8M lithiumchloride, 40mMEDTA
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and 8mM DTT; LBB). Samples were immediately agitated by vigorous
pipetting until near-complete tissuedissolution,flash-frozenondry ice
and stored at – 80 °C until downstream processes were required.

Polyadenylated RNA extraction from the denatured brain devel-
opment samples. About 150mg of the original (wet weight without
denaturing buffer) of the cortex tissue was used per extraction. Upon
defrosting, the tissue/LBBmixture was thoroughly pipettedwith 200 µl
tip until the sample viscosity was reduced, and pipetting was seamless.
500 µl of oligo(dT)25 magnetic beads (New England Biolabs) suspen-
sion was used per replicate. The beads were washed with 1ml of LBB
twice, each time collecting the beads on a magnet and completely
removing the supernatant. Upon washing, the oligo(dT)25 beads were
resuspended in the tissue/LBB mixture and placed in a rotator set for
20 rpm at 25 °C for 5min, followed by the same rotation at 4 °C for
30min. The suspension was briefly spun down at 12,000g, separated
on a magnet, and the supernatant was discarded. The beads were then
resuspended with 1ml wash buffer (20mM Tris-HCl pH 7.4, 0.2 % v/v
Titron X-100, 0.4M lithium chloride, 10mMEDTA and 8mMDTT;WB)
andwashed on a rotator set for 20 rpm at 4 °C for 5min, 3 wash rounds
in total were performed. For each wash, the beads were collected on a
magnetic rack and the supernatant was discarded. The elution was
carried out stepwise. Washed bead pellet was first resuspended in 50 µl
of the elution buffer (25mM HEPES-KOH, 0.1mM EDTA; HE). The first
suspension was heated at 60 °C for 5min to facilitate the elution, and
the eluate was collected upon placing the bead-sample mixture on a
magnetic rack, separating the beads, and recovering the clean super-
natant. The resultant pellet was next resuspended in another 50 µl of
HE buffer, and the process was repeated. The eluates were then com-
bined and subjected to an additional solid-phase reversible immobili-
zation (SPRI) bead purification step as described in the Extraction of
polyadenylated mRNA from HeLa cells sub-section above and stored
frozen at –80 °C until downstream processes were required.

MinION flow cell priming and DRS
Nanopore sequencing was conducted on an Oxford Nanopore
MinION Mk1B using R9.4.1 flow cells for 24-72 h per run, depending
on the flowcell exhaustion rate. Tthe flow cells were left at 25 °C for
30min to reach ambient temperature. The flow cells were then
inserted into the MinION Mk1B and a quality check was performed
to ensure that the pore count was above manufacturer warranty
level (800 pores). Prior to the sample loading, the priming solution
(Flush Buffer mixed with Flush Tether) was degassed in a vacuum
chamber for 5min. A similar approach was repeated when loading
the RNA library. The run set up on the loaded libraries was per-
formed according to the recommended running options using
MinKNOW software (Version 4.3.25). The SQK-RNA002 sequencing
option was selected, and the bulk file output was switched fromOFF
to ON to export the complete data. For real-time assessment of the
quality of the run, the output FAST5 files were base called in-line
with sequencing using the MinKNOW-provided Guppy software.

RNA abundance analysis of the embryonic mouse brain tissue
development sequencing data
Basecalled reads were aligned to the mouse reference genome
(GRCm39) using minimap2 v2.1.0 (parameters: -ax splice -k14 -B3
-O3,10 --junc-bonus 1 --junc-bed). During alignment, splice junction
coordinates were provided to minimap2 in BED format using the junc-
bed flag to improve the accuracy of the spliced alignments.
Splice junction BED files were generated using minimap2 paftools.js
gff2bed function, using the the gene structure reference (Ensembl
2014mouseGTF). Primarygenomic alignmentswereassigned to genes
using Subread featureCounts v2.0.1 in stranded, long-read mode
(using parameters --primary -L -T 48 -s 1 --extraAttributes gene_biotype,

gene_name). DESeq2 v1.26.067 was used to obtain log-normalized gene
counts. PCA plots were generated from regularized log transformed
gene counts, using DESeq2’s plotPCA function.

Liftover of transcriptomic to genomic sites and calculation of
metatranscript coordinates
We used our R2Dtool68 (https://github.com/comprna/R2Dtool) to
perform positional annotation of the CHEUI Model 2 RNAmethylation
calls, and to transpose the methylation predictions from tran-
scriptomic to genomic coordinates. First, the R2Dtool script cheui_-
to_bed.sh was run with default parameters to convert the CHEUI
methylation calls to a bed-like format (i.e., tab-delimited, where col-
umn 1 represents the reference sequence, column 2 represents interval
start, and column 3 represents interval end). Next, the R2Dtool
R2_annotate command was used with default parameters and the
relevant GTF annotation (Ensembl v104 / GRCm39 GTF for mouse and
Gencode v38 /GRCh38 for human) toperformpositional annotationof
the bed-like CHEUI Model 2 methylation calls. Positional annotation
included metatranscript coordinates, and the distances from a given
site to the nearest upstream and downstream splice junctions anno-
tated (if applicable) in the same transcript where themodified site was
predicted. Finally, the R2Dtool R2_lift command was run with default
parameters to transpose the annotated methylation calls from tran-
scriptomic coordinates (i.e., position on a specific transcript) to
genomic coordinates (i.e., position on a specific chromosome).

RNA methylation metatranscript plots
The absolute distance (in nucleotides) and relative metagene position
(as a fractionof the overall UTRorCDS length) of eachmethylation site
with respect to the reference transcript isoform were calculated using
R2Dtool68. The relative meta-transcript coordinates were derived as
previously described69, placing the modifications along three equal-
sized segments of length L. Position 0 represents the transcript start
site (TSS), position L represents the CDS start, position 2 L represents
the CDS end, and position 3 L represents the polyadenylation site
(PAS). For our graphical representation, we used L = 40. Meta-
transcript plots showing the abundance of tested and significant
sites, alongside the proportion of significant sites per tested region,
were made using ggplot2 (https://ggplot2.tidyverse.org/).

Co-occurrence of modifications in transcripts and reads
To study the co-occurrence of modifications in annotated tran-
scripts, we considered all protein-coding transcripts (mRNAs) with
at least two tested sites, i.e., by default having 20 or more reads at
each site. For the co-occurrence of m6A and m5C, we partitioned
these mRNA transcripts into four sets according to whether they
contained two significant m6A and m5C sites, only one of the
modifications, or had no significant sites (even though both were
tested). Based on this partition, we performed a two-tailed Fisher’s
exact test to determine whether the association of m6A and m5C in
transcripts was higher than expected. To study the co-occurrence of
modifications in reads, we considered those transcripts with two
modified sites at a relative distance from 1 to 15 nt. We then calcu-
lated the co-occurrence as the proportion of reads with both
modifications, i.e., the number of reads that at both sites have the
same modification state divided by the total number of reads con-
sidered. To calculate the expected level of co-occurrence in the
same sample, we calculated the co-occurrence for 1000 pairs of
modified sites located in different transcripts. For this analysis, we
discarded any possible reads and sites of the ribosomal RNAs
(rRNAs) (only present in the mouse data). It is known that rRNAs are
hypermodified inmultiple positions. Considering our analysis of the
effects of othermodifications on the identification ofm6A andm5C,
we expect these to be affected by the other modifications.
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Statistics and reproducibility
All statistical analyses performed on the data are indicated in the
Methods section or figure captions. Replicates were used for the
experiments with cell lines and the mouse tissues. No statistical
methodwas used to predetermine sample size. The Investigators were
not blinded to allocation during experiments and outcome assess-
ment. Modifications occurring in ribosomal RNA (rRNA) were exclu-
ded from this study, as the ribosomal RNA is known to be
hypermodifiedwith a large variety ofmodifications that, as we show in
the manuscript, can affect the detection of m6A and m5C. As only
reads for one rRNA (18 S) in mouse were observed, this exclusion does
not impact the general results of our analyses. Randomization was
performed at the time of splitting the available in vitro transcribed
datasets into training, validation, and testing. This was performed only
once. Additional randomization of reads and positions was performed
once per dataset to estimate the false discovery rate. For the selection
of mouse samples, randomization was not performed. Randomization
was also performed when selecting mouse embryos for RNA sequen-
cing: male and female embryos were randomly selected for each
condition. Conditions were known and comparisons were performed
between conditions, so no further randomization was done. No other
covariates were used for the analyses of IVT, cell line, or mouse tissue
experiments.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this study are publicly available. The synthetic
sequence templates fromLiuet al.27 wereobtained from theNCBIGene
Expression Omnibus (GEO) database under the accession number
GSE124309. The nanopore read signals for the in-vitro transcribed
(IVT) RNAs obtained from these synthetic sequence templates with
m6A, m5C, or no modifications, were obtained from NCBI Sequence
Read Archive (SRA) under accessions PRJNA511582 and PRJNA563591.
Nanopore data for the synthetic transcripts from Jenjaroepun et al.26

was obtained from The Sequence Read Archive (SRA) accession
PRJNA497103. Nanopore data for HEK293 WT and METTL3-KO sam-
ples from Pratanwanich et al.21 was obtained from the European
Nucleotide Archive (ENA) under accession PRJEB40872. Data from the
m6ACE-seq experiments from Koh et al.40 was obtained from the NCBI
Gene ExpressionOmnibus (GEO) under accession number GSE124509.
Nanopore data for HeLa WT and HeLa NSUN2 KO and for the
embryonic mouse brain tissues produced in this work have been
deposited at NCBI GEO under accession GSE211762. Nanopore
sequencing and bisulfite RNA sequencing data for the IVT RNAs is
available at NCBI GEO under accession GSE253150. All source data files
for the main and Supplementary Figs. for this publication are publicly
available at figshare https://doi.org/10.6084/m9.figshare.25424857
[figshare.com/search?q=10.6084/m9.figshare.25424857]70. Source
data are provided with this paper.

Code availability
CHEUI is freely available from https://github.com/comprna/CHEUI
under an Academic Public License. A copy of the software version used
for this publication is available from Zenodo (https://doi.org/10.5281/
zenodo.7021308)71. R2Dtool (v1): https://github.com/comprna/
R2Dtool. Nanocompore (v1.0.0rc3-2): https://github.com/tleonardi/
nanocompore. Xpore (v0.5.4): https://github.com/GoekeLab/xpore.
Epinano (v0.1-2020-04-04): https://github.com/novoalab/EpiNano.
Tombo (v1.5): https://github.com/nanoporetech/tombo. NanoRMS
(Downloaded on the 2nd of July 2021): https://github.com/novoalab/
nanoRMS. Keras (v1.1.2): https://github.com/keras-team/keras. Ten-
sorflow (v2.4.1): https://github.com/tensorflow. Minimap2 (v2.1.0):

https://github.com/lh3/minimap2. Nanopolish (v0.13.2): https://
github.com/jts/nanopolish. RNAfold (v2.4.18): https://www.tbi.univie.
ac.at/RNA/.
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