
Article https://doi.org/10.1038/s41467-024-47541-9

Tumor phylogeography reveals block-
shaped spatial heterogeneity and the mode
of evolution in Hepatocellular Carcinoma

Xiaodong Liu 1,2,12, Ke Zhang3,12, Neslihan A. Kaya 4, Zhe Jia3, Dafei Wu1,
Tingting Chen1,5, Zhiyuan Liu 1,5, Sinan Zhu1,6, Axel M. Hillmer 7,
Torsten Wuestefeld 4,8, Jin Liu 6, Yun Shen Chan9, Zheng Hu 10,
Liang Ma 1,13 , Li Jiang3,13 & Weiwei Zhai 1,11,13

Solid tumors are complex ecosystems with heterogeneous 3D structures, but
the spatial intra-tumor heterogeneity (sITH) at the macroscopic (i.e., whole
tumor) level is under-explored. Using a phylogeographic approach, we
sequence genomes and transcriptomes from 235 spatially informed sectors
across 13 hepatocellular carcinomas (HCC), generating one of the largest
datasets for studying sITH. We find that tumor heterogeneity in HCC segre-
gates into spatially variegated blocks with large genotypic and phenotypic
differences. By dissecting the transcriptomic heterogeneity, we discover that
30%of patients had a “spatially competing distribution” (SCD), where different
spatial blocks have distinct transcriptomic subtypes co-existing within a
tumor, capturing the critical transition period in disease progression. Inter-
estingly, the tumor regions withmore advanced transcriptomic subtypes (e.g.,
higher cell cycle) often take clonal dominance with a wider geographic range,
rejecting neutral evolution for SCD patients. Extending the statistical tests for
detecting natural selection to many non-SCD patients reveal varying levels of
selective signal across different tumors, implying that many evolutionary
forces including natural selection and geographic isolation can influence the
overall pattern of sITH. Taken together, tumor phylogeography unravels a
dynamic landscape of sITH, pinpointing important evolutionary and clinical
consequences of spatial heterogeneity in cancer.

Tumors are complex ecosystems organized into heterogeneous three-
dimensional structures, how tumor and non-tumor cells distribute and
evolve spatially is a central question in tumor evolution and treatment
response1,2. Even though intratumor heterogeneity (ITH) has been
extensively characterized across many cancer types3,4, previous stu-
dies often surveyed generic ITH from the limited number of sectors
(e.g., n = 3–5) without in-depth exploration of spatial intra-tumor het-
erogeneity (sITH)5,6. Although spatial sampling has been employed to
address specific biological questions such as phenotypic differences
between central and peripheral regions7, microenvironmental spatial

heterogeneity8–10 as well as the evolutionary origin ofmetastasis7,11, the
overall landscape of sITH across cancer types are largely unknown. In
addition, previous work often surveyed the ITH at the genetic level,
understanding the joint evolution of genotypic and phenotypic ITH at
the macroscopic (i.e., whole tumor) level remains understudied.

Parallel to genomic surveys of ITH, many evolutionary models
including linear12, branched1,4,13, neutral14,15, and punctuated
evolution16–19 have been proposed for tumor evolution. However, none
of these models are explicit regarding the spatial organization of ITH.
Even though computationalmodelingof tumors as spatially expanding

Received: 4 August 2022

Accepted: 26 March 2024

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: maliang@ioz.ac.cn; jiangli1903@163.com; weiweizhai@ioz.ac.cn

Nature Communications |         (2024) 15:3169 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5372-9709
http://orcid.org/0000-0001-5372-9709
http://orcid.org/0000-0001-5372-9709
http://orcid.org/0000-0001-5372-9709
http://orcid.org/0000-0001-5372-9709
http://orcid.org/0000-0002-0213-3072
http://orcid.org/0000-0002-0213-3072
http://orcid.org/0000-0002-0213-3072
http://orcid.org/0000-0002-0213-3072
http://orcid.org/0000-0002-0213-3072
http://orcid.org/0009-0003-5450-3236
http://orcid.org/0009-0003-5450-3236
http://orcid.org/0009-0003-5450-3236
http://orcid.org/0009-0003-5450-3236
http://orcid.org/0009-0003-5450-3236
http://orcid.org/0000-0002-3381-7266
http://orcid.org/0000-0002-3381-7266
http://orcid.org/0000-0002-3381-7266
http://orcid.org/0000-0002-3381-7266
http://orcid.org/0000-0002-3381-7266
http://orcid.org/0000-0002-0639-6048
http://orcid.org/0000-0002-0639-6048
http://orcid.org/0000-0002-0639-6048
http://orcid.org/0000-0002-0639-6048
http://orcid.org/0000-0002-0639-6048
http://orcid.org/0000-0002-5707-2078
http://orcid.org/0000-0002-5707-2078
http://orcid.org/0000-0002-5707-2078
http://orcid.org/0000-0002-5707-2078
http://orcid.org/0000-0002-5707-2078
http://orcid.org/0000-0003-1552-0060
http://orcid.org/0000-0003-1552-0060
http://orcid.org/0000-0003-1552-0060
http://orcid.org/0000-0003-1552-0060
http://orcid.org/0000-0003-1552-0060
http://orcid.org/0000-0002-1428-8426
http://orcid.org/0000-0002-1428-8426
http://orcid.org/0000-0002-1428-8426
http://orcid.org/0000-0002-1428-8426
http://orcid.org/0000-0002-1428-8426
http://orcid.org/0000-0001-7938-0226
http://orcid.org/0000-0001-7938-0226
http://orcid.org/0000-0001-7938-0226
http://orcid.org/0000-0001-7938-0226
http://orcid.org/0000-0001-7938-0226
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47541-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47541-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47541-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47541-9&domain=pdf
mailto:maliang@ioz.ac.cn
mailto:jiangli1903@163.com
mailto:weiweizhai@ioz.ac.cn


populations has been extensively explored6,7,14,20–25, the gap between
theoretical modeling and empirical data is still quite large26. As shown
in recent computational simulations20,22, the mode of tumor evolution
can be heavily influenced by the spatial organization of tumor cells
(i.e., tissue architecture)20–22,27 varying across different tissue types24.
Characterizing sITH and studying themode of spatial tumor evolution
is pivotal for understanding the history of tumor evolution.

In thiswork, we employ a phylogeographic approach and sample
exomes and transcriptomes extensively from 235 sectors across 13
HCC patients, generating one of the largest datasets for studying
sITH. By integrating physical coordinates of tumor sectors with
genomic and transcriptomic information, we dissect spatial dis-
tributions of distinct subclones and depict their evolution at the
genotypic and phenotypic levels. We find that tumor heterogeneity
in HCC segregates into spatially variegated blocks with large geno-
typic and phenotypic differences. By dissecting the transcriptomic
heterogeneity, we discover that 30% of patients had a “spatially
competing distribution” (SCD), where different spatial blocks have
distinct transcriptomic subtypes co-existing within a tumor, captur-
ing the critical transition period in disease progression. Population
Genetic analysis unravel a strong signal of natural selection in SCD

patients suggesting the importance of adaptive evolution in driving
disease progression. Taken together, we unravel a dynamic land-
scape of sITH and pinpoint important evolutionary and clinical
consequences of spatial heterogeneity.

Results
A phylogeographic approach for surveying sITH
Thirteen patients who underwent surgical treatment for HCC were
recruited for this study. As a surgical cohort, most of these patients
have early-stage disease and are all hepatitis B positive (Supplementary
Data 1). Even though several multi-regional approaches have been
conducted for HCC (e.g., recently reviewed in Craig et al.28), the
number of sectors taken was often 3–5 and the sITH has not been
sufficiently explored. In order to systematically survey the sITH across
the whole tumor, we sampled multiple sectors from a central slice of
the tumor in a honeycomb manner, resulting in 5–30 sectors
(mean= 17) depending on the size of the tumor (Fig. 1a and Supple-
mentary Fig. 1). Adjacent normal liver tissues were also harvested as
the genomic control. In total, we have taken 222 tumor sectors and 13
normal samples, resulting in one of the largest datasets for studying
sITH in HCC and across cancer types7,21.

Fig. 1 | The cellular phylogeographic sampling and the IBD pattern. a The
workflow of the phylogeographical sampling protocol with SH06 as an example.
b The spatial locations of tumor sectors for SH06 (most left panel), the linear
relationship between the physical distance and genetic distance (middle left panel,
“Methods”), the linear relationship between the physical distance and tran-
scriptomic distance (middle right panel, “Methods”), the linear relationship
between genetic distance and transcriptomic distance (most right panel,

“Methods”). 95% confidence relationship is plotted as the shaded area in pink.
c The linear relationship between the physical distance and genetic distance across
all patients. d The linear relationship between the physical distance and tran-
scriptomic distance across all patients. e The linear relationship between genetic
distance and transcriptomic distance across all patients. Source data are provided
as a Source Data file.
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In order to survey the genotypic and phenotypic heterogeneity,
whole exome sequencing (WES, mean coverage of 98x) and RNA-seq
were carried out for all samples (“Methods”, Supplementary Data 2).
With somatic variants called across all the samples, we found that
CTNNB1, TP53, and chromosomal 1q amplifications are common
truncal events shared across sectors (Supplementary Fig. 2a, c).
Among all the patients, a wide range of tumor mutation burden (TMB)
was found (1.5–11.0 perMb) and tumors with high TMB tend to enrich
for mutational signatures such as aristolochic acid (AA) signature
(SBS22, Supplementary Fig. 2b). In general, these patients had a similar
overall genomic profile as several earlier studies including TCGA29 and
the PLANET cohort30 (e.g., Supplementary Fig. 2d and Supplemen-
tary Data 2).

Isolation-by-distance relationship across the genotypic and
phenotypic space
Multiple hypotheses have been raised regarding the spatial organi-
zation of tumor heterogeneity6,23. For example, in colorectal cancer
(CRC), previous studies found that subclones tend to be well orga-
nized in geographically distinct regions in pre-cancerous lesions.
However, this clear segregation will rapidly progress to a spatially
variegated distribution in carcinoma23, suggesting that spatialmixing
might be a hallmark of cancer. In order to survey the sITH, we mea-
sured genetic differentiation between multiple tumor populations
(sectors) based on the genetic distance which characterizes the
proportion of private mutations between two sectors (“Methods”).
When we correlated the genetic distances with the physical distances
of tumor sectors, a wide range of correlations were found across the
patients. For example, SH06 has very strong genetic differentiation
across sectors and shows a strong positive relationship between
genetic differentiation and the physical distance (Fig. 1b). In evolu-
tionary genetics, positive correlation between physical and genetic
distance is known as the isolation-by-distance (IBD) relationship31. In
addition to overall genetic differentiation, whenweperformed clonal
deconvolution of multiple tumor sectors and measured distances in
clonal composition between tumor sectors (“Methods”), we also
observed the IBD relationship consistently (Supplementary Figs.
3 and 4). Thus, the IBD relationship is robust acrossmultiple distance
metrics (Supplementary Note 1 and Supplementary Figs. 3 and 4).
Throughout the patient cohort, most patients show strong IBD pat-
tern among the sectors (Fig. 1c).

Parallel to the genetic differentiation, when we surveyed the
phenotypic (transcriptomic) differentiation based on the dissimilarity
across tumor sectors (“Methods”), strong IBD relationships were also
found across patients (Fig. 1b, d) and were robust to many con-
founding factors such as tumor purity and copy number alterations
(Supplementary Note 2 and Supplementary Figs. 5–7). Correlating the
genetic differentiation with the transcriptomic difference, we found
that large proportions of phenotypic variation can be explained by
genetic differences (Fig. 1b, e). This suggests that genetic changes,
even though vary greatly across tumors, can have a very strong impact
on the phenotypic evolution (Fig. 1e). Taken together, we observed an
IBD pattern where physically closer sectors are genotypically and
phenotypically more similar across all the tumors32,33.

Spatially variegated blocks in HCC
The IBD distribution provides an intuitive overview of sITH along one
dimension. However, the spatial distribution of sITH within solid
tumors is significantly under-explored. The phylogeographic sampling
provides a comprehensive means surveying the spatial heterogeneity
across the tumors. Focusing on the 10 patients with at least 10 sectors
(mean = 21 sectors per tumor), we found that even though IBD is con-
sistent across patients, many patients have a distorted linear relation-
ship. For example, two parallel linear relationships exist in patient SH05
andmany nearby samples have surprisingly high genetic differentiation

(top left corner of Fig. 2a). In evolutionary genetics, distorted IBD
relationship is often driven by uneven spatial distribution34. By calcu-
lating local Geary’s C, a spatial statistic that measures the local spatial
autocorrelation35, we found multiple regions within the tumor have a
much lower correlation between genetic information and spatial loca-
tion (Supplementary Fig. 8). By applying the phylogenetic analysis,
principal component analysis (PCA) as well as clonal deconvolution
analysis to patient SH05 (“Methods”, Supplementary Note 3 and Sup-
plementary Fig. 9), we indeed discovered two major clades of tumor
sectors clearly separating the samples into two groups (Fig. 2b, c).
Thus, the strong differentiation between subgroups within SH05 gen-
erates strong discontinuity in the IBD relationship.

In order to systematically explore the overall landscape of spatial
heterogeneity across the 10 patients, we clustered the tumor sectors
based on the phylogenetic distance between the samples (“Methods”).
To choose the optimal number of clusters and compare the spatial
segregation of samples between patients, we calculated the Calinski-
Harabasz (CH) Index which measures the ratio of genetic differences
(i.e., phylogenetic distance) between clusters vs within clusters
(“Methods”). Using the CH index, we found the optimal number of
clusters are often between two to three (e.g., SH05, Fig. 2e), even
though higher numbers of clusters are found for a few patients (e.g.,
SH03, Fig. 2f). Interestingly, when we inspected the geographic dis-
tribution of these clusters, samples from the same cluster often locate
in spatially continuous regions within the tumor, partitioning the
tumors into variegated blocks (Fig. 2e–g and Supplementary Fig. 3).
Thus, we referred “spatially distinct clusters” that partitioning the
tumor as “spatial blocks” of the cancer. Strikingly, the genetic differ-
entiation between blocks is often much higher than genetic differ-
entiation within blocks (Fig. 2d), and regions near the block boundary
tend to have low spatial correlation (Supplementary Fig. 8). Thus, the
heterogeneity within HCC is spatially variegated with regional homo-
geneitywithin blocks, but largedifferentiation betweenblocks. Parallel
to the natural world, this spatial distribution is very similar to our
planet where tectonic plates partition the surface of the earth into
discrete regions36. For example, two blocks exist in patient SH05 and a
central ridge of high regional genetic diversity (θR) was found at the
interfaceof twoblocks in SH05 (“Methods”, Fig. 2e and Supplementary
Fig. 10). Across the patients, the spatial blocks had a wide variety of
shapes (Fig. 2e–g and Supplementary Fig. 3). Taken together,we found
that HCC has block-shaped spatial heterogeneity across the tumors
(Fig. 2g and Supplementary Fig. 3).

Block-shaped phenotypic heterogeneity mirrors the genotypic
heterogeneity
As tumors often have block-shaped heterogeneity at the genetic level,
we wondered how the transcriptomic heterogeneity might co-evolve
spatially within a tumor. Using SH05 as an example, when we analyzed
the transcriptomic divergence (Fig. 2h), the phylogenetic relationship
(Fig. 2i) as well as the PCAmap (Fig. 2j), we found similar block-shaped
transcriptomic heterogeneity largely matching the corresponding
pattern at the genetic level. When we clustered the transcriptomic
profiles into optimal number of clusters, we observed similar spatial
blocks between the phenotypic and genotypic level, even though dif-
ferences do exist in several patients such as SH11 and SH13 (Supple-
mentary Fig. 3). Taken together, phenotypic heterogeneity largely
mirrors the genotypic heterogeneity with similar spatial pattern across
the tumors.

Virtual micro-dissection of bulk transcriptome identified four
HCC subtypes
The block-shaped spatial heterogeneity indicates non-gradual sITH in
HCC and the spatial heterogeneity is driven by the geographic dis-
tribution of multiple cell types including tumor, stroma, and immune
cells. In order to understand biological processes and cellular
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components driving the transcriptomic heterogeneity in HCC, we
employed a reference-free deconvolution method37 to deconvolute
the bulk transcriptome into subcomponents (known as
compartments)38. In order to capture as much transcriptomic hetero-
geneity as possible for HCC, we used the TCGA-LIHC cohort (n = 369)
as a reference set and identified three compartments positively cor-
relatedwith tumorpurity (i.e., phenotypes associatedwith tumor cells)
and one compartment negatively correlated with tumor purity
reflecting the microenvironmental changes (Supplementary Fig. 11).

Using functional enrichment analysis of factor genes associated with
each compartment38, we found that compartments positively corre-
lated with tumor purity are enriched for metabolism, cell cycle, Wnt
pathway respectively, while the compartment negatively correlated
with tumor purity is enriched for extra-cellular matrix (ECM) function
(Fig. 3a and Supplementary Fig. 11). Across the cohort, downregulated
metabolism and increased cell cycle are strongly associated with dis-
ease progression39 and patient survival in HCC (Fig. 3b–d and Sup-
plementary Fig. 11).
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Fig. 2 | Spatially variegated blocks in HCC. a Genetic distance vs the physical
distance relationship for SH05. Two linear relationships were found in SH05. 95%
confidence relationship is plotted as the shaded area in pink. b The maximum
parsimony tree of SH05 based on the genetic changes. c The PCA map of SH05
based on the genetic changes. d The CH index calculated for different clusters
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Source data are provided as a Source Data file.
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Combining all four compartments, we discovered four distinct
transcriptomic subtypes for HCC (Fig. 3e, “Methods”). The first group
is enriched for CTNNB1mutations and has strong activation of theWnt
pathway. Since this subgroup significantly overlaps with the CTNNB1
subtype from Chiang et al.40, we thus name this subgroup as the Wnt
subtype. Among the other three subgroups, one subtype had mole-
cular phenotypes closest to the normal with low levels of cell cycle,

high expression ofmetabolic pathways, and activated ECM. Aspatients
from this group are enriched for early-stage tumors with good survival
(Fig. 3f, g), we name it as the classic subtype. We also identified one
subtype with the most advanced phenotypes including high cycle cell
and decreased metabolic functions. Since patients in this subtype
significantly match the proliferation subtype from Chiang et al.40 and
are enriched for late-stage patients (Fig. 3e–g), we name it as the
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proliferation subtype. The other subtype has phenotypes in between
the classic and proliferation subtype andwas named as the hybrid (i.e.,
intermediate) subtype38. Across classic, hybrid, and proliferation sub-
types, we observed an increasingly higher proportion of late-stage
patients with worse survival (Fig. 3f, g).

In order to explore genomic changes differentiating these sub-
types, we systematically compare the tumor and non-tumor compo-
nents across subtypes. As the Wnt subtype is strongly associated with
CTNNB1 mutations and represents a unique subclass of tumors, we
focused on differences between the other three subtypes. When we
compare genetic changes in the tumor cells, we noticed that a strong
increase in genome instability between the classic and the other two
subtypes, accompanying the upregulation of cell cycle related path-
ways (Fig. 3h, p-value < 10−6). When we compared the non-tumor
components, in particular the immune cell composition (“Methods”),
the hybrid subtype has an immune-exclusive status (Fig. 3e, i and
Supplementary Fig. 12), while the proliferation subtype is immunolo-
gically exhausted with higher M0 macrophages and Tregs (Fig. 3j).
Taken together, a collection of genotypic and phenotypic changes is
associated with subtype differences in HCC (Supplementary Fig. 13).

Multiple transcriptomic subtypes spatially coexist within
a tumor
With the virtual microdissection approach, we have systematically
explored the transcriptomic heterogeneity between patients. Within
patient tumors, we discovered block-shaped spatial heterogeneity
with large phenotypic and genotypic differences between spatial
blocks. We wondered how this sITHwithin patients might be linked to
inter patient differences. By clustering all our samples with the TCGA
patients and assigning subtypes to the samples (Supplementary
Fig. 14), four patients (SH05, SH06, SH10, and SH12) were found to
havemixed transcriptomic subtypes within the same tumor. SH05 and
SH10 have mixtures of hybrid and proliferation subtypes (Fig. 4a–c),
while SH06 has a mixture of classic and proliferation subtypes
(Fig. 4d). The spatial partition of subtypes matches almost perfectly
with spatial blocks at the transcriptomic level (Fig. 4a, c, d and Sup-
plementary Fig. 3). When we performed differential expression analy-
sis between different spatial blocks within a tumor, we found that
transcriptomic differences within patients are highly concordant with
differences between transcriptomic subtypes at the inter-patient level
(Fig. 4b, e, i). Inspecting genetic differences between different spatial
blocks in the patients with mixed transcriptomic subtypes, we found
that putative oncogenic drivers are often associated with the spatial
blocks with more aggressive phenotypes. One particularly striking
observation is a significant increase in chromosomal copy number
alterations (CNA) in SH06 as the sectors evolved from the classic
subtype to the proliferation subtype (Fig. 4f, g), matching the differ-
ences in CNAs observed at the cohort level (Fig. 3h). Even though large
chromosomal changes have been repeatedly found driving punc-
tuated evolution in tumor initiation16–19, the observation here suggests
that large chromosomal changes might also be driving tumor pro-
gression seeDiscussion. The fourth patient (SH12) hadonlyfive sectors
and was not included in the 10 patients surveying sITH. A mixture of

theWnt and classic subtypes exist in SH12, correlatingwith a subclonal
CTNNB1 mutation (Fig. 4h, i).

The role of Darwinian selection in shaping the spatial
heterogeneity
The spatially co-existing transcriptomic subtypes in different geo-
graphic locations of the tumor is very similar to an era in ancient
Chinese history known as the Warring States (Fig. 5a)41. During the
Warring States period (475–221 BCE), seven different states coexisted
and competed with one another until the rise of the Qin dynasty which
unified China into the first empire. Thus, we name the spatial dis-
tribution as the spatially competing distribution (SCD). As tumors can
only startwith one transcriptomic subtype, the coexistence ofmultiple
subtypes primed a fundamental question: what are the evolutionary
forces driving the origin of the SCD? From the subtype comparison, we
observed that tumor cells with more aggressive subtypes often have
additional genetic changes (e.g., much higher genome instability,
Fig. 3h) and advanced phenotypes (e.g., higher cell cycle, Fig. 3e),
representing derived populations further evolved from the benign
subtype during the late stage of tumor progression. Thus, the spatially
competing distribution might represent a critical stage of disease
progression where phenotypically aggressive subtypes have emerged
and are in the process of replacing relatively benign groups (Fig. 5a).

One prediction from the neutral theory is that the size of a clone
depends on the timeof origin andwewould expect later-arising clones
to be in minor frequencies under neutrality42. However, we found the
size of the derived (i.e., aggressive) subtypes are often much larger
than the ancestral (i.e., benign) subtypes, contrasting the prediction
from the neutral evolution. For example, in patient SH05, the tumor
region with less aggressive phenotypes (i.e the hybrid subtype) is
much smaller (n = 5 sectors) than the area with the aggressive pheno-
type (i.e., the proliferation subtype, n = 25 sectors, Fig. 5a). Using the
classical imbalance index in phylogenetics known as the Sackin index
S, we also found significant evidence for clonal asymmetry for SH05
(p-value < 10−4, Fig. 5b). In all threepatients in the SCD,moreaggressive
transcriptomic subtypes always occupy larger proportions of the
tumors (i.e., clonal asymmetry, Fig. 5b), rejecting neutrality for these
patients. In order to understand the prevalence and significance of this
observation, when we extended the analysis to the PLANET cohort30,
we observed clonal asymmetry for all three additional patients in the
SC distribution where phenotypically derived clones are consistently
larger than ancestral clones (Fig. 5b).

Parallel to the clonal asymmetry at the phenotypic level, the other
evidence for ongoing positive selection at the genetic level was the
existence of subclones at intermediate frequencies. Using MOBSTER43,
we detected subclonal selection in all tumors with the SC distribution
(Fig. 5c, d and Supplementary Fig. 15), which suggests that Darwinian
selectioncanbe themajor evolutionary forcedriving tumor evolution in
the SCdistribution. Interestingly,whenweextended the same statistical
tests to the full cohort, we found varying levels of non-neutral evolution
across the cohort, suggesting that Darwinian selection together with
several other evolutionary forces (e.g., geographic isolation) can con-
tribute to the block-shaped spatial heterogeneity (see Discussions).

Fig. 3 | Virtual deconvolution identifies four HCC subtypes. a The GO enrich-
ment for factor genes from the metabolism compartment (adjusted p-value,
“Methods”).bClustering based on factor genes from themetabolism compartment
identified metabolically high and low subgroups. c The clinical stages of metabo-
lically high and low subgroups. The p-value was calculated using Fisher’s exact test.
d Survival plot for themetabolically high and low subgroups. eClustering based on
four compartments identified four distinctive subtypes known as Wnt, classical,
hybrid, and proliferation subtypes for the LIHC cohort. The literature known sub-
types as well as CTNNB1 mutations are marked below the patients. f The clinical
stage of the four transcriptomic subtypes. The p-value was calculated using chi-

squared test. g Survival plot for the four transcriptomic subtypes. h Boxplot of
Genome Instability Index (GII) distributions across four subtypes. The lower and
upper hinges represent the 25th and 75th percentiles, respectively. Whiskers
extend up to 1.5 * IQR (inter-quartile range) from the hinges. Violin outlines illus-
trate probability density, with width proportional to data density in that region.
i Boxplot of immune score distribution across four subtypes (the same boxplot
style as Fig. 3h). j Boxplot of immune cell differences between classic and pro-
liferation subtypes (the sameboxplot style as Fig. 3h). Sourcedata are provided as a
Source Data file.
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sITHcan significantly confoundpatient diagnosis and treatment
The extensive sITH raised an important question: how this spatial
heterogeneity might affect clinical practice. From the literature, we
curated a list of diagnostic and treatment-related biomarkers, includ-
ing a transcriptomic predictor for the micro-vascular invasion (MVI)
and immunotherapy biomarkers such as the GEP score (pan cancer)
and the inflammatory score (HCC) (Supplementary Data 3). By plotting
the variation of these biomarkers, we discovered extensive hetero-
geneity between and within patients (Fig. 6a and Supplementary
Fig. 16). Comparing the variance of these biomarkers across patients
(Fig. 6b), we found that a few patients such as SH06, SH08, and SH09
tend to have higher variance in these biomarkers. In general, the var-
iance of these biomarkers is rather heterogeneous across patients.

In addition to intra-tumor heterogeneity, when we look at the
distribution of these biomarkers across transcriptomic subtypes
(Fig. 6c), we found that some biomarkers correlate strongly with dis-
ease progression. For example, the MVI score has increasingly higher
values from the classic to the proliferation subtype. On the other hand,
theTIDE score had relatively similar values across subtypes, suggesting
that different biomarkers can have different trajectories with disease

progression. When we dissected the spatial distribution of these bio-
markers across patients, we found that some biomarkers had highly
concordant spatial distribution with spatial blocks (e.g., the GEP score,
Fig. 6d), while others have a heterogeneous spatial distribution irre-
spective of the spatial blocks (e.g., Cytolytic scores, Fig. 6e and Sup-
plementary Figs. 17 and 18). This suggests that spatial segregation of
biomarkers across the tumor might not always follow the overall sITH.
Taken together, sITH can significantly confound patient clinical diag-
nosis and treatment and a single biopsy is not enough for clinical
decisions (see Discussion).

Discussion
Using a phylogeographic approach and one of the largest datasets for
studying sITH7,21, we have systematically dissected the genotypic and
phenotypic spatial heterogeneity across a large number of tumor
sectors from 13 HCC patients. Contrary to the spatial mixing observed
in CRC, spatial heterogeneity in HCC mirrors the geography with an
isolation-by-distance pattern. The spatial heterogeneity in HCC is
organized into spatial blocks with large genotypic and phenotypic
divergence. Using a virtual dissection approach, we discovered a
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spatial distribution defined as the spatially competing distribution
where spatial blocks within a tumor have different transcriptomic
subtypes in 30% of patients. The spatially competing distribution
represents a critical transitional stage where multiple phenotypically
distinct subpopulations coexist and compete during disease progres-
sion. By integrating the spatial distribution and clonal composition, we
found that Darwinian selection is the driving force for disease pro-
gression in patients with SC distribution and can also contribute to the
block-shaped sITH. Taken together, we have generated one of the
largest datasets for studying macroscopic sITH and unraveled a
dynamic landscape of sITH.

The study of sITH provides several insights into tumor evolution.
First, limited sampling of sITH commonly practiced in the field might
lead to the “blind man and an elephant” bias. For example, we can
imagine different mode of tumor evolution can be inferred if we take
samples within (linear and neutral evolution) or between different
spatial blocks (branched and non-neural evolution). The extensive
spatial sampling provides a holistic overview of the whole tumor and
different modes of tumor evolution observed earlier might be con-
founded by sITH. Secondly, even though we found that natural selec-
tion is an important factor driving the spatial heterogeneity in the
patients with SC distribution, they are exceptional cases with both

large phenotypic and genotypic differences. It remains unknown what
are the evolutionary forces driving the collective pattern of spatial
heterogeneity including block-shaped heterogeneity and clonal
asymmetry. Even though varying levels of selective signal across the
patient cohort were detected, previous studies in evolutionary
genetics suggest that geographic isolation togetherwith a suite of non-
selective forces can also contribute to the spatial pattern44. Taken
together, this study pointed directions how we can dissect the evolu-
tionary forces driving the spatial heterogeneity and how we may for-
mulate more rigorous methods in detecting natural selection at both
genotypic and phenotypic levels (Supplementary Note 4).

The study of spatial heterogeneity also highlighted challenges
facing patient diagnosis and treatment. Even though truncal driver
mutations can be well represented by a single biopsy45, many of the
diagnostic and treatment biomarkers are phenotypic measurements
and often have extensive spatial variation. For example, the immune
microenvironment tends to have high diversity and does not always
follow the genetic diversity observed in tumor cells (Supplementary
Fig. 18). Moreover, when we compare the biomarker distribution
between the central and peripheral regions of the tumors, no sig-
nificant differences were found except the vascular invasion (Supple-
mentary Fig. 19). As we found earlier, ancestral clones can reside in
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different parts of the tumors and tumor growth can take a wide variety
of shapes which might yield complex spatial distribution without
systematic differences between inside and outside of the tumor. Thus,
how to design spatially guided approaches for patient diagnosis and
treatment can be a promising direction for the community.

Methods
Patient recruitment and spatial sampling
From the Ditan Hospital affiliated with Capital Medical University in
Beijing, we recruited 13 treatment naïve HCC patients with approval
from the Institutional Review Board (IRB) of the Ditan Hospital. Signed
informed consent was obtained from each patient before surgery.
After surgical operation, a single slice of tumor sample was harvested
from the center of the tumor and multiple tumor sectors (3mm or
5mm in diameter) were harvested across the 2-D space depending on
the size of the tumor (Fig. 1a). In total, 222 tumor sectors ranging from
5–30 regions per tumor (T) and 13 matched adjacent non-tumor liver
tissues (N) were harvested (Supplementary Fig. 1). The physical coor-
dinates of the tumor sectorswere subsequently extractedbasedon the
sampling image. Sex and/or gender were not considered in the study
design.

Genomic sequencing and variant calling
DNA and RNA were extracted from tissue samples using AllPrep DNA/
RNA Mini Kit(Qiagen). Exome libraries were constructed using the
Agilent SureSelect Human All Exon V6. RNA sequencing libraries were
generated using NEBNext® UltraTM RNA Library Prep Kit from Illu-
mina® (NEB, USA) following the manufacturer’s recommendations.
Both exome and RNA sequencing were conducted at Novogene Co.,
Ltd. with 150bp paired-end reads.

After quality control which includes trimming adapters and
removing low-quality reads, we mapped short reads to the hg19
reference genome using BWA MEM (v0.7.17)46. Duplicated reads were
subsequently marked using MarkDuplicates and base quality scores
were recalibrated using GATK4 (v4.1.3.0)47. Somatic variants were
called using Mutect248. Variants were further filtered using GATK Fil-
terMutectCalls with default parameters and were annotated with
Oncotator (v1.9.9.0)49. Somatic copy number variations as well as
tumor purity were inferred using Sequenza (v3.0.0)50. The genome
instability index (GII) is defined as the proportion of the genome with
abs(log2(CN/2)) > 0.2, where CN is the copy number of the focal
genomic region51.

Signature analysis
We used SigProfiler52 to perform signature analysis. We first used
SigProfilerMatrixGenerator53 (v1.2.1) to create amutationmatrix for all
types of mutations. We then applied SigProfilerExtractor (v1.1.4) to
extract de-novomutational signatures from themutational matrix and
further deconvolute de-novo signatures to the COSMIC sig-
natures (v3.2)52.

Curating putative driver events in HCC
A list of 62 driver genes for HCC was extracted from a recent inte-
grative analysis of HCC genomes54. Significantlymutated copy number
alterationswereextractedby reanalyzing theTCGA-LIHCdataset using
GISTIC2 (v2.0.23) algorithm55 (Supplementary Fig. 2a, d).

Transcriptomic analysis
The raw RNA sequencing reads were aligned to the reference genome
using STAR (v2.7.2b)56 and further quantified using RSEM (v1.3.1)57. We
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used DEseq2 (v1.30.1)58 to normalize expression levels of different
samples and performed differential expression analysis. Transcriptomic
distance between two samples was calculated as the (1-Spearman cor-
relation) between two samples using top most variable 3000 genes
(based on median absolute deviation, MAD). In order to explore the
influence of tumor purity on tumor spatial phenotypic heterogeneity,
we identified genes that were positively correlated with tumor purity in
our data as thosewith Spearman correlation coefficient greater than 0.5
and used this subset of genes to calculated the transcriptomic distance
(Supplementary Note 2). In order to explore the influence of copy
number variation on tumor phenotypic spatial heterogeneity, we con-
strained the gene list to genes with no copy number variation in all
sectors of a given patient and calculated transcriptomic distances based
on this subset of genes (Supplementary Note 2).

Phylogenetic, clonal deconvolutional, and population genetic
analysis of tumor samples
The phylogenetic and clonality analysis followed similar steps as our
previous work30. The genetic distance between two sectors was cal-
culated as theHammingdistancebetween the twomutation lists called
from two sectors.We used the Analysis of Phylogenetics and Evolution
(APE) from R to perform the phylogenetic analysis. We first tabulated
the presence and absence ofmutations across sectors for eachpatient,
maximum parsimony59 was employed to construct the phylogenetic
relationship. In addition to themaximumparsimony, Neighbor-joining
algorithm60 was also employed to construct the phylogenetic rela-
tionship based on the Hamming distance calculated using the pre-
sence and absence of mutations. We also used the 1-Spearman
correlation as the distance at the transcriptomic level to construct the
neighbor-joining tree at the transcriptomic (RNA) level.

Based on somatic variants and local copy number variations,
PyClone (v1.13.1)61 was employed to dissect the clonal composition of
multiple tumor samples, which infers the predicted number of clones,
clonal structure, mutation assignment, and mutation VAF distribution
in each clone. Before PyClone analysis, wehave performed these steps:
1) take a union of all the SNVs across all sectors for a given patient; 2)
extract the number of reference and alternative allele count at the SNV
positions for all sectors (based on Samtools mpileup). 3) We required
the SNVs to have a frequency >0.05 in at least one sector (to filter away
possible false positives). Clonality inference was performed based on
SNVs only as variant frequency estimation for indels are much less
accurate.

Similar to our previous study30, CITUP (v0.1.0)62 was used to
construct the optimal clonal phylogeny from the clonal composition
inferred from PyClone. We first filtered away clones with only one
mutation from the PyClone output and subsequently took the top 10
clones with the highest number of mutations30 (CITUP analysis with
too many clones can be computationally too intensive62). Clonal phy-
logenies were visualized using the ggplot2 package in R.

Alternative approaches correlating the genetic distance and
physical distance
In addition to correlating the genetic distance and physical distance,
we also explored alternative approaches. In particular, when we cor-
related the phylogenetic distance as well as the clonal distance with
physical distance,weobserved a consistent linear relationship (i.e., IBD
relationship, Supplementary Note 1). The phylogenetic distance was
extracted from the phylogenetic relationship. The clonal distance is
measured as the differences in the clonal composition and is calcu-
lated as the Euclidian distance between samples based on their clonal
composition. Tobemore precise, if there aren clones presented in two
samples with proportions (p1, p2…pn) and (q1, q2, q3…qn), we calcu-
lated the distance in the clonal composition between two samples

as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i pi � qi
� �2

q

.

Spatial correlation and the Geary’s C statistic
For each sector i, the local Geary’s C index Ci is calculated as the
following formula:

Ci =
2n2

ΣiΣjD
2
ij

X

j

wijD
2
ij , ð1Þ

where j represents another sector in the tumor, and n represents the
total number of sectors in the patient. wij denotes the spatial weight
between sector i and j. We employed the canonical form of wij by
taking the inverse of the physical distance between sector i and j. Dij

represents the genetic distance between sector i and j which we used
the Hamming distance between mutations found in sector i and j.

To test the significance of the observed value, we calculated the
empirical p-value of the observed local Geary’s C. We randomly per-
muted the sectors spatially and recalculated the Geary’s C and com-
puted the proportion of replicates where the permuted Cis are less
than the observed Ci. In case of neighborhood with strong spatial
autocorrelation, the local Geary’s C will be small because of smaller
values of Dij . On the contrary, regions with weak spatial autocorrela-
tion will have very large p-values because of large values of Dij in the
local neighborhood.

Spatial blocks and the spatial heterogeneity of the tumor
In order to explore the spatial distribution of ITH, we clustered the
genetic profiles of tumor sectors following these steps. 1) Based on the
parsimony tree, we cut the phylogenetic tree into all possible k clusters
for a given number of clusters k (k = 2−5). 2) In order to compare the
clusters within and between clusters, we computed a statistic Calinski-
Harabasz Index (CH-index)63,64. CH-index is commonly applied for
clustering evaluation63,64. It is calculated as the ratio of the inter-cluster
dispersion and the intra-cluster dispersion, where dispersion is mea-
sured by themean sum of distances. For a collection ofN samples that
are partitioned into K clusters, the sum of distances within and
between clusters can be calculated as:

SSwithin =
X

K

k = 1

X

nk

i = 1

X

nk

j = i+ 1

d i, jð Þ
nk

, ð2Þ

SSbetween =
X

N

i= 1

X

N

j = i+ 1

d i, jð Þ
N

� SSwithin, ð3Þ

where, nk is the number of samples in cluster k (k = 1,2, . . . ,K), and
dði, jÞ denotes the distance between pairwise samples i and j. The CH-
index is then calculated as:

CH =
SSbetween × ðN � KÞ
SSwithin × ðK � 1Þ : ð4Þ

We picked the optimal number of clusters according to the CH-index
(maximum value). In the clustering of the genetic pattern, we used the
phylogenetic distance as the distance metric. In the clustering of the
transcriptomic profile, we use the phylogenetic distance in the
transcriptomic tree as the distance metric.

In order to display the spatial heterogeneity across the 2-D space,
we calculated ITH values at grid points distributed along the 2-D space
(with a grid size of 2mm in distance). We defined the local region as a
circular area centered around the grid point and we have chosen the
diameter as themediandistance between all sectors of that tumor. The
regional diversity (i.e., θR) is defined as the average difference between
all pairs of samples in the circular area. For pairs of samples, the
genetic (DNA) distance is calculated as the proportion of branch
mutations (i.e., non-shared mutations) among all mutations found in
two samples. In order to explore how variation in sequencing depth
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might affect θR, we down-sampled the sequencing depth of all sectors
to the minimum sequencing depth across all the sectors for a given
patient. We found that the re-estimated θR values are highly similar to
the original values (Supplementary Fig. 10). In order to depict the
spatial variation in diversity, we generated a spatial heatmap with a
coloring hue proportional to the level of θR using the “stat_density_2d”
method from the R package ggplot2.

Virtual deconvolution and the transcriptomic subtypes of HCC
Raw expression counts for the TCGA LIHC cohort (n = 369) were
downloaded from the TCGA website and subsequently normalized
using Deseq258. We employed DECODER37 to identify subcomponents
(known as compartments) and infer compartment weights for each
sample using the non-negativematrix factorization (NMF)method.We
set 10,000 resampling to train the seeding matrix and DECODER
identified five different compartments.

To annotate the biological functions of each compartment, we
performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of the factor genes from each compartment
using the R package “ClusterProfiler”. We have chosen four compart-
ments with significant correlation to tumor purity as the base for
identifyingHCC subtypes. The fifth compartment hasno correlation to
tumor purity and factor genes associated with the fifth compartment
are not enriched for any biological function. For each compartment,
we chose the top 100 factor genes from each compartment and then
used the combined set of factor genes across all four compartments to
perform the consensus clustering using the ConsensusClusterPlus
from the R package. In the consensus clustering, we resampled 80%
samples and features (expression) and hierarchical clustering was
performed for each resampled dataset. We set the number of itera-
tions to be 500 and used 1- Spearman correlation distance as the dis-
tancemetric. The cumulative distribution function (CDF) curves of the
consensus matrix were used to determine the optimal number of
clusters. In order to assign transcriptomic subtypes to our patient
samples, we combined LIHC dataset with our cohort and reperformed
the clustering.

Annotating samples for known transcriptomic subtypes
To examine whether our clustering results are consistent with known
transcriptomic subtypes from the literature39,40,65,66, we downloaded
pathways associated with the transcriptomic subtypes curated in
MSigDB67 and applied GSVA analysis to each sample to compute a
pathway score for each sample. Samples were then assigned to the
subtype with the highest pathway score.

Immune score and immune cell proportion
Immune scores estimated by ESTIMATE68 were retrieved from ESTI-
MATE’s website at https://bioinformatics.mdanderson.org/estimate/.
Immune cell proportions were estimated using CIBERSORTx69. Con-
sensusTME (v0.0.1.9) was also used to infer the composition of the
tumormicroenvironment70.We calculated the immunological regional
diversity in a similar fashion as the genetic and transcriptomic level. In
particular, we used the dissimilarity distance (i.e., 1-Spearman corre-
lation) between samples based on the proportion of immune cells
estimated by CIBERSORTx.

Neutrality tests
In order to test for neutrality, we performed several statistical tests: 1)
To test for clonal asymmetry, we applied the Sackin test to test if the
tree shapes fit the null hypothesis of equal fitness (i.e., Yule process).
We used the “sackin”.test from “apTreeshape” (v1.5-0.1) to perform the
test71. 2) In order to test the existenceof the selected subclone,weused
MOBSTER (v0.1.1)43 to identify the selected subclone at intermediate
frequencies. In order to obtain a corrected variant allele frequency
(VAF) for MOBSTER, we first used Samtools mpileup to compute the

raw VAF for all the somatic variants across all tumor sectors of a given
patient. To adjust for tumor purity and local copy number, PyClone
was used to infer the Cancer Cell Fraction (CCF). Sites with corrected
VAF <0.01 were removed before the subclonal deconvolution using
MOBSTER.

Biomarkers for HCC
To explore spatial heterogeneity in diagnostic and treatment-related
biomarkers, we collected 8 biomarkers including TIDE72, GEP73 and
IMPRES74, Cytolytic75, Immune class76, inflammatory77, vascular
invasion78 and metastasis79 score. TIDE, GEP, and IMPRES score were
calculated using the original method. The other biomarkers were cal-
culated using GSVA based on their marker genes. In order to compare
the biomarker distribution between the central and peripheral regions
of the tumor, samples that are within r/2 from the central point of the
tumor were defined as the center of the tumor, where r is the radius of
the tumor.

Statistical analysis
Linear regression was performed based on the least-square method.
Multiple test correction is based on the Benjamini-Hochberg (BH)
approach. When testing differences in two categories (e.g., Figs. 3h–j
and 4g), the Wilcox test (two-sided test) is employed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of exome and RNA sequencing have been deposited in
the Genome Sequence Archive (GSA) hosted at the National Genomics
Data Center (HRA002112). The TCGA-LIHC dataset was obtained from
the Genomic Data Commons (GDC) data portal [https://portal.gdc.
cancer.gov/projects/TCGA-LIHC]. Source data are provided in
this paper.

Code availability
The scripts for analyzing the data and plotting the results are available
at GitHub hosted at https://github.com/LiuXiaodong1/HCC_SPH.
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