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Tracing genetic diversity captures the
molecular basis of misfolding disease

Pei Zhao1,6, Chao Wang 1,2,6 , Shuhong Sun1,3,4, Xi Wang1,5 &
William E. Balch 1

Genetic variation in human populations can result in the misfolding and
aggregation of proteins, giving rise to systemic and neurodegenerative dis-
eases that require management by proteostasis. Here, we define the role of
GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing
alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian
process regression-based machine learning to profile the spatial covariance
relationships that dictate protein folding arising from sequence variants in the
population. Covariance analysis suggests a role for the ATPase activity of
GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-
antitrypsin responsible for the correctionof liver aggregation and lung-disease
phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial
covariance profiling provides a standardmodel built on covariant principles to
evaluate the role of proteostasis components in guiding information flow from
genome to proteome in response to genetic variation, potentially allowing us
to intervene in the onset and progression of complex multi-system human
diseases.

Genome variation in the human population provides a vast
reservoir for the protein fold to explore and evolve conforma-
tional plasticity required for form and function in changing
complex biological environments- but also poses the risk for
protein misfolding and/or aggregation that could lead to human
genetic disease1,2. We now appreciate that many aspects of the
evolving protein sequence-to-function-to-structure relation-
ships are dynamically managed by a ubiquitous protein folding
system referred to as proteostasis3–6. Proteostasis is composed
of a collection of chaperone/co-chaperone components, traf-
ficking components, degradation machineries, and signaling
pathways such as the heat shock response (HSR) and unfolded
protein response (UPR) that manage the fold in response to
sequence variation and environmental stress across a lifespan7–9.

The potential role of proteostasis in disease management is just
beginning to be unraveled10–15.

To address the central problem of information flow from the
genome to the proteome in human biology in the context of the
complex folding dynamics impacted by heat shockprotein 90 (Hsp90)
family members16 that constitute a central ATP-dependent chaperone
system in the cell, we developed a Gaussian process (GP) regression-
based machine learning1,17–21 approach to learn the basal state of the
protein fold and its response to proteostasis management. GP can use
a sparse collection of variants across the worldwide population and
their associated phenotypes as a collective input to generate spatial
covariance (SCV) maps of the response of every residue in the protein
sequence and its residue–residue responses to environmental chan-
ges, including pharmacological intervention1,17–21. GP-SCV principled
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modeling captures as a collective the variant changes that report on
the evolutionary trajectory of the entire wild-type (WT) protein fold at
atomic resolution that impacts health and disease of the host in
response to the environment and natural selection1,17–21.

To mechanistically dissect Hsp90 function on a single residue
basis, we used a selective Hsp90 inhibitor PU-WS13 that specifically
reduces the ATPase activity of the endoplasmic reticulum (ER) Hsp90
paralog GRP94, serving as a chemical mimetic of the role of co-
chaperones that normally manage its ATPase cycle22–29. To trace the
SCV principled dynamic profile of GRP94 ATPase activity on human
variation, we examined its impact on the management of alpha-1-
antitrypsin deficiency (AATD). AATD is caused by genetic variation in
SERPINA1 gene that encodes AAT, a prominent member of the serine
protease inhibitor family30. AATD is an autosomal recessive inherited
disease and themost prominent risk factor for the aging-related onset
of chronic obstructive pulmonary disease (COPD) in response to
smoking and airborne pollutants30. AAT is synthesized and secreted
from hepatocytes for delivery to the lung at grams per day where it
binds human neutrophil elastase (NE) and prevents NE-induced
degradation of the extracellular matrix (ECM) in the lung30,31. Numer-
ous variants in the AAT protein can cause protein misfolding during
nascent synthesis in the ER, the first step of the secretory pathway32–34,
leading to aggregation with extended polymers that trigger liver dis-
ease phenotypes, such as fibrosis, cirrhosis and hepatocellular
carcinoma35–37. AAT aggregation in the liver results in reduced secre-
tion of functional AAT to the plasma, leading to a loss-of-function in
the lung manifested as the inflammatory diseases emphysema, bron-
chitis and COPD30,38. AAT augmentation therapy using human plasma-
derived purified AAT to re-supply the reduced level of AAT found in
circulation has no impact on progression of liver aggregation disease
and only modest impact on progression of lung disease39. The distinct
liver and lung pathologies pose unprecedented challenges to develop
therapeutics that preserve lung function while preventing polymer
formation32,40,41.

Herein, we utilize GP-SCV principled relationships to understand
the impact of GRP94 ATPase activity on human variation affecting the
level of intracellular or secreted AAT monomer and polymer pools, as
well as the secreted NE inhibitory activity, based on 76 AAT variants
found in the population that differentially contribute to disease onset
and progression32. Strikingly, we find that the inhibition of GRP94
ATPase activity improves AAT monomer secretion and its NE inhibi-
tory activity, while reducing both intracellular polymer load and
polymer secretion for most pathogenic AAT variants, including the
prominent Z-variant affecting 95% of the AATD population. GP-SCV
principled relationships reveal the impact of GPR94 ATPase activity to
(re)direct the N- to C-terminal cooperative folding of AAT to correct
AATD clinical phenotypes impacting both liver and lung disease. We
suggest that GP-SCV principled relationships provide a standard
computational framework to address information flow from the gen-
ome toproteome affecting protein fold conversionby a broad rangeof
proteostasis components affecting health and disease on a residue-by-
residue basis1,20,21,34, providing a precision approach to mitigate
disease.

Results
Assaying the diverse folding and functional features of AAT
variants
We recently showed that pharmacological activation of ATF6, a spe-
cific branch of the unfolded protein response (UPR) pathway that
regulates the proteostasis environment in the ER, can improve the
function of AAT variants while simultaneously reducing aggregation in
the ER34. Preliminary results suggested that ER chaperones GRP78 and
GRP94 are required for the restoration of function impacted by ATF6
activators34. As a paralog of the cytosolic Hsp90, GRP94 is a highly
abundant ATP-dependent chaperone found in the ER14,16,42–44. It has

previously been proposed to direct the misfolded AAT protein to ER
associated degradation (ERAD) pathway45–47. Like cytosolic Hsp90,
how GRP94 recognizes and manages folding in response to genetic
variation in the population, and how it could bemodulated tomanage
ER misfolding diseases in response to variation impacted by ~33% of
the protein load encoded by the human genome, remains unknown.

To probe the mechanism of how GRP94 manages the folding and
function of AAT, we used AAT variants in the human population that
harbor diverse folding conformations in the cell32,33 including themost
common Z-variant allele (E366K), leading to severe disease in 95% of
the AATD population41,48. The collection of AAT variants contains 44
pathologic variants associated with AATD liver and lung phenotypes
reported in the literature32,33,49 and those currently annotated in the
ClinVar database50. We include in addition 31 variants that are anno-
tated asbenign or of “uncertain significance” in theClinVardatabase as
controls50. A total of 75 AAT variants are missense variants except for
three variants that generate a truncated protein (Y62*, E281* and Null
Hong Kong (NHK)) that severely disrupt function (Fig. 1a). This col-
lectionof variants includes themost commonmissense variants inAAT
in terms of allele frequency (AF) that have been reported in the general
population (gnomAD database51) including M1 (V237A; 22% AF), M2
(R125H; 15.6% AF), M3 (E400D; 27% AF), S (E288V; 2.3% AF), Z (E366K;
1.1% AF) and others that have >0.1% AF. The residues impacted by the
variant collection are spread across the entire AAT sequence (Fig. 1a, b,
lower panel, brown balls), thus providing molecular fiduciary markers1

that enables us to probe the sequence-based folding and function
space defining the ensemble of AAT structures found in the extant
population in response to genetic variation.

To characterize the impact of a variant on the status of the AAT
protein fold responsible for its monomeric or polymeric states based
on its folding, stability and trafficking itinerary through the secretory
pathway (Fig. 1c), we utilize two conformation-specific antibodies, a
monomer-specific antibody 16f8 (Supplementary Fig. 1a) and a
polymer-specific antibody 2C152. These antibodies were used in
enzyme-linked immunosorbent assays (ELISA) (Supplementary
Fig. 1a, b) to measure the level of AAT monomer or polymer in intra-
cellular and extracellular environments (Fig. 1c) using high-throughput
formats (see “Methods”). Tomeasure the inhibitory activity of secreted
AAT variants to neutrophil elastase (NE), its natural substrate in the
lung, we used a sensitive fluorogenic NE substrate (Z-AAAA)2Rh11053

(Supplementary Fig. 1b) (see “Methods”). A high level of NE inhibitory
activity prevents the digestion of the fluorogenic NE substrate result-
ing in a low fluorescence signal (Supplementary Fig. 1c). Combined,
use of the conformation-specific ELISA and NE inhibitory activity
assays allows us to assess the different folding and functional states of
AAT variants across its biological itinerary from the ER in the liver to
secretion out of the cell for delivery to downstream tissues (Fig. 1c).

Defining the folding and functional properties of AAT variants
To generate a comprehensive understanding of the functional phe-
notypic properties of AAT in response to its physiologic secretion
itinerary in the liver (Fig. 1c), WT and 75 variants were transfected in a
hepatocyte-derived cell line Huh7.5 with endogenous AAT silenced by
CRISPR/Cas9 (Huh7.5null)54–56. We also transfected these variants in a
human bronchial epithelial lung cell line IB3 that has no detectable
endogenous AAT57 to capture epithelial pathways potentially con-
tributing to lung function. The level of intracellular or extracellular
AAT variants in either monomer or polymer form, and the NE inhibi-
tory activity of the extracellular (secreted) pool of AAT variants were
measured (Fig. 1d, Huh7.5null cells; Supplementary Fig. 2, IB3 cells). The
measured activity values for secreted monomer, intracellular polymer
and NE inhibitory activity are highly correlated between the liver cell
line Huh7.5 and the lung IB3 cell line (Supplementary Fig. 3a). These
results demonstrate that the basic folding and functional features of
AAT variants are conserved across different cellular environments.
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Furthermore, for each variant the intracellular level of monomer and
polymer conformations are highly correlated with extracellular
monomer and polymer (Supplementary Fig. 3b). These results
demonstrate that extracellular levels of monomer and polymer gen-
erally reflect the intracellular monomer and polymer, respectively.
Given the similarity of the conformational features associated with

each AAT variant between the intracellular and extracellular space, we
use the measured levels of intracellular polymer, secreted monomer
and the NE inhibitory activity from Huh7.5null cells henceforth to
understand how, on a residue-by-residue basis, the folding of AAT is
coupled to function to drive different disease states found in the AATD
population.
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We first compared AAT-WT to AAT-Z. As expected, AAT-Z shows
low monomer secretion (~37% of WT) and low NE inhibitory activity
(~36% of WT), while AAT-WT shows low intracellular polymer (~20%)
when compared with AAT-Z (Fig. 1d, red rectangle vs green rectangle).
These results are consistent with the severe liver and lung-disease
phenotypes for patients with homozygous Z triggered by the com-
bined gain of toxicity in the liver due to accumulation of AAT-Z
intracellular polymer and loss-of-function in the lung due to AAT-Z
deficiency30. In contrast, the S allele (E288V) shows a median level of
secreted monomer, intracellular polymer and NE inhibitory activity
(Fig. 1d, yellow rectangle vs green rectangle), consistent with the mild
disease phenotypes of patients with homozygous S allele. We found
that our cell-based measurements of secreted monomer levels are
significantly correlated with reported AAT serum levels from patients
with different variants, indicating the utility of our cell-based assay to
capture the clinical features of disease in the patient population
(Fig. 1e, f). Moreover, the secreted monomer levels strongly correlate
with their NE inhibitory activity (Fig. 1g, Pearson’s r =0.77,
P = 4.3 × 10−6), indicating that the monomer conformation wemeasure
corresponds to the functional form of AAT. In contrast, the intracel-
lular polymer levels of the variants are onlymoderately anti-correlated
with the extracellular NE inhibitory activity values (Fig. 1h, Pearson’s
r = −0.34). While variants with high intracellular polymer (Fig. 1h,
polymer ≥1 (levels equal or above of AAT-Z)) generally show extra-
cellular NE inhibitory activity lower than the mean of measured NE
inhibitory activity of all variants (~73% ofWT activity), variants with low
intracellular polymer (Fig. 1h, polymer <0.2) have very diverse NE
inhibitory activities ranging from ~26% of WT to 114% of WT (Fig. 1h),
suggesting a low polymerization propensity does not necessarily
confer high functional activity.

We categorize AAT variants into three classes based on their NE
inhibitory activity. We choose a 75% cutoff threshold for loss-of-
function given that of the 40 AAT variants that have been reported to
cause significant clinical disease phenotypes, 33 of them (>80%) have
NE inhibitory activity lower than 75%ofWTactivity and themeanof the
predicted NE inhibitory activity for all variants is around 73%. We
designate class I variants are loss-of-function defined as a NE inhibitory
activity <75% of WT AAT; class II contains the function-impaired var-
iants with NE inhibitory activity between 75% and 90%ofWTAAT; class
III variants showNE inhibitory activity comparable toWTAAT (>90%of
WT activity) (Table 1). For the variants that have lower NE inhibitory
than WT AAT, we further divide them into variants with high polymer
(>50% of AAT-Z polymer) and low polymer (<50% of AAT-Z polymer).
In the class I category comprising the function loss variants,more than
a half do not show high polymer, suggesting that polymerization is not
the major driving force for the functional deficiency of these variants.
These results suggest amore complicated set of relationships between
folding, stability and the functional properties of AAT variants

contribute to changes in the protein fold responsible for disease that
need to be managed by proteostasis in the AATD population.

GRP94ATPasemodulation rescues AATDphenotypes for AAT-Z
To test the potential role of GRP94 on the phenotypic diversity
imposed by AAT variants, we used PU-WS13 (Fig. 2a), a GRP94-specific
inhibitor that blocks the ATPase activity of GRP9422–24. The IC50 of PU-

Fig. 1 | Quantification of secreted monomer, intracellular polymer, and NE
inhibitory activity for AAT variants. a 75 AAT variants from the worldwide
population investigated in this study are distributed at different structural ele-
ments across the entire AAT polypeptide sequence. Eight α-helices (hA-hI) are
indicatedby gray blocks. Threeβ-sheets comprising s1-6A (sheetA), s1-6B (sheet B),
and s1-4C (sheet C) are highlighted by blue, orange, and green, respectively. The
reaction central loop (RCL) is illustrated by the pink block. Z (E366K) and S (E288V)
variants are labeled in red and yellow, respectively. bDistribution of the variants in
the 3D structure of AAT (PDB: 3NE467). The alpha carbon of the variant residues are
shown as brown balls. The gate, breach, shutter, and clasp regions141 are indicated.
β-sheets A, B, and C are highlighted. c WT AAT is synthesized in the endoplasmic
reticulum (ER) of hepatocytes and secreted as a monomer into circulation for
delivery to lung to perform its Neutrophil elastase (NE) inhibitory activity. AAT
variants such as Z (E366K) lead to intracellular polymerization that reduces AAT
secretion and function. We have developed high-throughput assays (indicated by
red squares) to measure the intracellular monomer and polymer, secreted

monomer and polymer, and NE inhibitory activity for each of the AAT variants.
d The levels of secreted monomer, intracellular polymer and NE inhibitory
activity for WT-AAT and 75 AAT variants transfected in Huh7.5null cells are shown
(see “Methods“). The secreted monomer and NE inhibitory activity are normal-
ized to WT values. The intracellular polymer is normalized to AAT-Z value.
e, f Correlation between measured secreted monomer levels and reported serum
AAT levels in AATD patients who are homozygous with the indicated variant
genotype (e), or from heterozygous patients who share the common Z allele (f).
g, h Correlation between the NE inhibitory activity of AAT variants and the
secreted monomer (g) or intracellular polymer levels (h). The Pearson’s r values
and the corresponding P values (one-way ANOVA) for the presented correlations
are indicated. 95% confidence intervals of the correlation are indicated by light
red region. Data is presented as means ± SD. Sample size n = 3 biologically inde-
pendent measurements for secreted monomer, NE inhibitory activity and intra-
cellular polymer of each variant. The sample size for the patients with reported
AAT serum levels for different genotypes was indicated in the Source Data file.

Table 1 | Classification of AAT variants based on the level of
NE inhibitory activity and intracellular polymer

Class I Class II Class III

Activity loss varianta Activity impaired variantb Full activity
variantc

High poly-
mer variantd

Low polymer
variante

High poly-
mer variantd

Low polymer
variante

R63C S6L P243S S60R WT

I74N Y62* T292I A84T S38F

F76del L65P P393T T109M H39N

S77F S71I G119V Q180E

A82D G91E G139S F222L

E99V T92I G172R V237A

I116N N107K K198E E303Q

V234E R125H Y211H A308S

G249R Q129P T273A G344R

D280V E175K K298N G344E

K283I E228K K334E V345F

L287P F232L D365N S354F

E288V(S) R247C A379D

H358D F251C M382R

A360P C256W E400D

A360T E281*

E366K(Z) D294N

K392E L300P

P393L 1027-
1028delTC

P393S K352E

M409T V357M

P415H K359E

P386S

E387K
*Stop codon.
aClass I variants with NE inhibitory activity <75% of WT.
bClass II variants with NE inhibitory activity between 75 and 90% of WT.
cClass III variants with NE inhibitory above 90% of WT.
dVariants with intracellular polymer above 50% of AAT-Z.
eVariants with intracellular polymer below 50% of AAT-Z.
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WS13 for GRP94 inhibition is 0.22 μM, while the IC50 of PU-WS13 for
inhibiting HSP90α, HSP90β, and TRAP1 are 27.3μM, 41.8μM, and
7.3μM, respectively23. We tested PU-WS13 in different doses in Huh7.5
cells (see below Supplementary Fig. 10a–e) revealing 1μM PU-WS13
treatment achieved the maximum correction for Z-AAT NE activity,
monomer secretion, and reducing polymer burden. In total, 1μM

PU-WS13 treatment should block most GRP94 ATPase activity while
avoiding potential off-target effect on other Hsp90 family members.

We first tested the effect of PU-WS13 on the NE inhibitory activity
using the fluorogenic NE substrate (Z-AAAA)2Rh11053 for wild-type
(WT) AAT (AAT-WT) and an additional 75 AAT variants transiently
transfected in a liver-derived Huh7.5 cell line in which AAT gene has
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been knocked-out (Huh7.5null)54,55. Intriguingly, we found that PU-WS13
treatment significantly increased the NE inhibitory activity for 37 of all
76 (~49%) tested variants (Fig. 2b). For the 37 variants with improved
NE inhibitory activity in response to PU-WS13 treatment, 30 (~81%) of
themhave less than 75% ofAAT-WTNE inhibitory activity in the vehicle
control state (Fig. 2b), indicating a potential key role for GRP94 in
managing the function of defective AAT variants.

As the NE inhibitory activity strongly correlates the monomer
secretion in the basal state in the absence of drug treatment, we tested
the impact of PU-WS13 on monomer secretion for 76 AAT variants
using the conformation-dependent ELISA assay. PU-WS13 treatment
significantly increases the monomer secretion for 40 of all 76 (~53%)
tested variants (Fig. 2c). For the 40 variants with improved monomer
secretion in response to PU-WS13 treatment, 38 (~95%) of them have
monomer secretion levels less than 75% WT in the vehicle basal state
(Fig. 2c). These results suggest thatGRP94 impacts the features of AAT
fold features that contribute to both its monomer secretion and NE
inhibitory activity, including the prominent AAT-Z and AAT-S alleles
contributing to clinical disease (Fig. 2b, c).

To validate the correction effect of PU-WS13 on the NE inhibitory
activity and monomer secretion of AAT variants (Fig. 2b, c) with an
endogenous promotor in a more physiological environment (Supple-
mentary Fig. 4a), we tested the impact of PU-WS13 in hepatic lineages
prepared from iPSCs derived from a homozygous AAT-ZZ patient
expressing AAT under its endogenous promoter (iHepZZ) (Fig. 2d–f
and Supplementary Fig. 4b, c). Compared to secretion levels observed
iHepZZ cells under the endogenous promoter (Supplementary
Fig. 4a), transient transfection of AAT-Z in our experimental cell
Huh7.5null cell line generates an ~1.2-fold increase of monomer secre-
tion and ~1.3-fold of polymer secretion (Supplementary Fig. 4a).
Treatment of iHepZZ cells by PU-WS13 at either 0.5 µM or 1 µM
substantially increases both the total secretion of AAT (Supplementary
Fig. 4b, c; 1.5-fold and 1.7-fold, respectively) and the NE inhibitory
activity (Fig. 2d, ~1.7-fold), suggesting that the functional improvement
by PU-WS13 treatment is applicable for AAT variants expressed
under the endogenous promotor found in the patient-derived cellular
environment. Notably, PU-WS13 increased NE inhibitory activity
of AAT-ZZ in iHepZZ cells (Fig. 2d) is a value close to that of AAT-MZ
individuals who are largely healthy38,58. Whereas we found that
the secretion of AAT-Z monomer is significantly improved (Fig. 2e),
the polymer secretion was decreased by PU-WS13 treatment
when measured by ELISA using polymer-specific antibody 2C1
(Fig. 2f)52. Consistent with these observations, native gel analysis of the
secreted AAT-Z from Huh7.5null cells shows that the monomer fraction
is increased while the polymer fraction is decreased by PU-WS13
treatment (Supplementary Fig. 4d–f). The improvement of total
secretion and NE inhibitory activity of AAT-Z, the increase of both
intracellular and secreted AAT-Z monomer pools, and the decrease of
both intracellular and secreted AAT-Z polymer by PU-WS13 treatment
are prevented by reducing of GRP94 expression using siRNA (Sup-
plementary Fig. 5), suggesting that the effect of PU-WS13 is specific
for GRP94. These results indicate that the inhibition of GRP94 ATPase
activity by PU-WS13 not only increases the level of AAT-Z secretion,
but also improves the quality of secreted AAT-Z by decreasing the
secretion of polymer, resulting in an improvement of NE inhibitory
activity.

Using SCV to define functional rescue across the AAT sequence
While many AAT variants are rescued by PU-WS13 when expressed in
Huh7.5null cells or iHepZZ cell, it is a variable response reflecting the
differential impact of each residue on AAT folding and function man-
aged by GRP94 (Fig. 2b, c). Compared to the basal state (Supplemen-
tary Fig. 6a; Pearson’s r =0.77, P = 4.3 × 1016), PU-WS13 treatment
significantly reduces the correlation between the level of secreted
monomer and NE inhibitory activity (Supplementary Fig. 6b, Pearson’s
r =0.59, P = 2.6 × 10−8). This result suggests GRP94 ATPase inhibition
by PU-WS13 can, surprisingly, differentially manage the relationship
between folding and functional properties of AAT on a global residue-
by-residue basis.

To begin to understand the mechanism by which GRP94 mod-
ulation corrects the AAT fold on a residue-by-residue basis at atomic
resolution, we applied our Gaussian process (GP)-spatial covariance
(SCV) (GP-SCV) principled machine learning approach through varia-
tion spatial profiling (VSP)1,17–21. GP-SCV principled relationships gen-
erated throughVSP isbasedon a statistical paradigmused tofindvalue
in complex physical landscapes (see “Methods”). VSP integrates sparse
genotype information found in the worldwide population to predict
the role of each amino acid residue contributing to a phenotype in the
context of all other residues in the polypeptide sequence with defined
uncertainty1,34. Given the impact of secreted monomer and NE inhibi-
tory activity on lung disease, we plotted the normalized residue posi-
tions for all the measured missense variants (Fig. 3a, x axis, full-length
polypeptide chain noted “1”) relative to their secretedmonomer levels
(Fig. 3a, y axis) to understand the impact of GRP94 on NE inhibitory
activity for the entire protein sequence (Fig. 3a, z axis, color scale) in
the absence (Fig. 3a, left panel) or presence of PU-WS13 (Fig. 3a,
right panel).

GP-SCV principled relationships first compute the separation
distances between any pairwise combinations of the input variants
based on their variant residue positions along the polypeptide
sequence and the y axis feature, in this case secreted monomer levels
(Fig. 3a, black lines). VSP subsequently generates the associated var-
iance with NE inhibitory activity for each pairwise comparison (see
“Methods”). These values aremodeled by a variogram to illustrate how
the NE inhibitory activity changes according to the differences of
monomer secretion in relationship to its position in the polypeptide
sequence (Fig. 3b). While we found a strong correlation between
monomer secretion and the NE inhibitory activity across the entire
polypeptide in the native basal state suggesting that a strong inte-
gration of folding and function features are required for secretion
(Fig. 3b and Supplementary Fig. 6c, black line), PU-WS13 treatment
dramatically shortened the distance range for covariance to 0.11 (i.e.,
covering ~46 residues) (Fig. 3b, blue line). These results suggest that
reduced GRP94 ATPase activity relaxes the stringency for many
sequence regions of the fold to allow a more diverse collection of
monomer-activity covarying relationships to be secreted from ER1,17,34.
Furthermore, the plateau value of the variogram representing the
global variance of NE inhibitory activity is reduced by PU-WS13 treat-
ment (Fig. 3b and Supplementary Fig. 6c), consistent with a general
restoration of NE inhibitory activity to WT level for most AAT var-
iants (Fig. 2b).

Variogrammodelingof SCV relationshipsbetweenknownvariants
provides a rigorous platform for GP to generate a multi-dimensional

Fig. 2 | GRP94ATPase inhibitor PU-WS13 rescues the NE inhibitory activity, and
monomer secretion of AAT variants. a The chemical structure of PU-WS13.
b, c The responses of AAT variants to PU-WS13 (1μM) in Huh7.5null cell for NE
inhibitory activity (b) and secreted monomer (c). The variants were ordered by
basal condition values from lowest value to highest value. WT, Z allele and S allele
are labeled and highlighted by arrows. Data are presented as mean ± SD, n = 3
biologically independent measurements. d–f Human iPSC-derived AAT-ZZ hepa-
tocytes (iHep AAT-ZZ) (iHepZZ) were treated in the presence or absence of PU-

WS13 at 0.5 µM and 1 µM for 24h. The NE inhibitory activity of secreted AAT-Z
proteins from iHepAAT-ZZcellwasmeasuredusingfluorogenic substrateofNE (d).
Secreted AAT-Z monomer was measured by ELISA using monomer-specific anti-
body 16F8 (e). The secretedpolymerwasmeasuredby ELISAusing polymer-specific
antibody 2C1 (f). Data are presented as mean± SD, n = 3 biologically independent
measurements. Student’s t test, two tailed. *P <0.05; **P <0.01; ***P <0.001;
N.S., P >0.05.
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‘phenotype landscape’ to map the GP-SCV principled relationships
relating AAT sequence position tomonomer secretion toNE inhibitory
activity for every residue in the AAT polypeptide chain where input x-
and y-coordinate values are used to predict the z-coordinate value for
all residues1 (Fig. 3c) (see “Methods”). As a probabilistic platform, GP-
SCV based analysis also generates an associated uncertainty (i.e., a GP-
based variance) for each prediction output based on variant input
(Fig. 3d). A two-component Gaussian mixture model is used to fit the
distribution of the associated uncertainty to separate the high-
confidence vs low-confidence predictions (Fig. 3d). The mean of the

distribution for the low uncertainty is illustrated in the landscape as
the outermost bold contour and values lower than the mean are illu-
strated by the inner contours using the standard deviation of the dis-
tribution (Fig. 3c). The regions with uncertainty below the mean
capture high-confidence predictions found in the phenotype land-
scape for every residue across the full sequence, generally encom-
passing 95% of all residues1,17–21 attesting to the strength of the
approach for assigning value across the entire landscape (Fig. 3c). The
variogram parameters required for phenotype landscape build can
also be modeled using a Bayesian approach59–62 to provide a

Fig. 3 | GP-based phenotype landscapes in response to GRP94 ATPase inhibi-
tion. a AAT variants are organized by their variant residue position (x axis) nor-
malizedby the full-lengthpolypeptide sequence, secretedmonomer (y axis) andNE
inhibitory activity (z axis, color scale) in the absence (left panel) or presence (right
panel) of PU-WS13. b All possible pairwise combinations of variants are analyzed
(illustrated as black lines in (a)). The relationships between the spatial variance of
NE inhibitory activity and the distance values defined by variant residue positions
and monomer secretion are modeled by molecular variograms in the absence
(black dots and line) or presence (blue dots and line) of PU-WS13 (left panel). Data
are presented as mean ± SEM, n of pairwise combinations based on biologically
independent measurements of variants is indicated in the Source Data file. The
correlation distance range and plateau value of each variogram are indicated.

c Phenotype landscapes generated by GP-based VSP approach linking secreted
monomer (y axis) and NE inhibitory activity (z axis, color scale) across the entire
AAT polypeptide residue positions (x axis) in the absence (left panel) or presence
(right panel) of PU-WS13. d A two-component Gaussian mixture model to separate
the low vs high GP-generated variance for each prediction in the absence or pre-
sence of PU-WS13. The density of the separated distributions for low variance
(magenta dash line) and high variance (pink dash line) are shown. The mixed dis-
tribution is illustrated as a black curve. The mean of the low variance distribution
(magenta line) and high variance distribution (pink line) are indicated. Themean of
the distribution of lowGP variance and the standarddeviation (SD) below themean
are illustrated as contours in the phenotype landscapes (c) to indicate high-
confidence predictions.
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comprehensive quantification of uncertainty in the modeling (Sup-
plementary Fig. 11). We found that the predictions and associated
uncertainties generated by a more extensive Bayesian approach were
similar to GP-SCV predictions using our best-fit variogram parameters
(Supplementary Fig. 11a, b; Pearson’s r =0.99 for prediction; Pearson’s
r =0.98 for uncertainty) (Supplementary Fig. 11), indicating the value
of a computationally tractable approach to address disease manage-
ment based on SCV principled relationships.

The phenotype landscape predicting the NE inhibitory activity in
the basal state (Fig. 3c, left panel, vehicle control) achieves significant
prediction accuracy based on the leave-one-out cross-validation
(Pearson’s r =0.75, P = 5 × 10−14). Furthermore, the correlations
between the predictions and experimental values are strong for the
phenotype landscape at residues 1–139 (Pearson’s r =0.78,
P = 1.7 × 10−5), 140–278 (Pearson’s r =0.7, P = 0.003) and 279–418
(Pearson’s r =0.73, P = 9 × 10−7), illustrating the high value of the plat-
form even for select regions distributed across the entire polypeptide
chain. Strikingly, PU-WS13 treatment dramatically changes the NE
inhibitory activity phenotype landscape, shifting large areas found in
the AAT basal state landscape with defective NE inhibitory activity
(Fig. 3c; left panel, red–orange–yellow) to normal activity (Fig. 3c, right
panel, green), though there remain regions in the AAT polypeptide
sequence that are insensitive to correction by PU-WS13 (Fig. 3c, right
panel, red–orange). In the basal state landscape, most of the variants
are well connected mechanistically with one another, triggering
functional deficiency through high-confidence SCV relationships as
illustrated by the broad contour lines (Fig. 3c, left panel, contours). PU-
WS13 treatment largely shrinks and isolates these high-confidence
regions (Fig. 3c, right panel, contours; Fig. 3d) and decreases the
prediction accuracy (Pearson’s r =0.45, P = 9 × 10−5), consistent with
the short spatial correlation range observed in the variogram in the
presence of PU-WS13 (Fig. 3b, blue line). These results suggest that
reduced GRP94 ATPase activity in response to PU-WS13 alters the
residue–residue SCV relationships leading to dysfunction in the AAT
basal state to a more flexible folding state resulting in an increase in
bothmonomer secretion and the NE inhibitory activity. Improving the
general plasticity of SCV relationships could be a commonmechanism
by which proteostasis handles mutational load to restore function, in
this case through the management of GRP94 ATPase activity that
modulates GRP94 cycling. These results suggest a very dynamic role
for GRP94 binding of client when transitioning the polypeptide chain
set-point from unfolded to more functional folded states. We next
mapped this conversion on a residue-by-residue basis by viewing each
residue as part of a collective of states reflected in their SCV relation-
ships to every residue in the polypeptide chain.

Phenotypic mapping GRP94 ATPase managed to function for
every residue in AAT sequence
The phenotype landscapes report a range of relationships between NE
inhibitory activity and secreted monomer for each residue in the AAT
sequence (Fig. 4a, a 3D visualization of Fig. 3c). Taking residue 366
where the AAT-Z variant is located as an example (Fig. 4a, gray slice),
we can plot the predicted relationships between NE inhibitory activity
and secreted monomer for this residue as a curve in the presence
(Fig. 4b, blue curve) or absence (Fig. 4b, black curve) of PU-WS13. The
error bars represent the standard deviation of each prediction gener-
ated by GP-based variance to indicate the prediction confidence, and
the high-confidence predictions defined by the Gaussian mixture
modeling (Fig. 3d) are highlighted by darker error bars (Fig. 4b). The
GP-based predictions in response to PU-WS13 on residue 366 (Fig. 4b,
blue curve) are strikingly different from the basal state (Fig. 4b, black
curve) in the range of monomer secretion from ~30% to ~60% of WT
(Fig. 4b, 0.3<x < 0.6), where the NE inhibitory activity is greatly
improved by PU-WS13 treatment, as shown by AAT-Z variant (Fig. 4b,
arrows). In contrast, GRP94 ATPase inhibition does not generate a

significant impact in the range of WT-like monomer secretion (Fig. 4b,
x >0.6), suggesting that GRP94 mainly manages the variants asso-
ciated with misfolding and defective trafficking.

To understand the contribution of each residue in the correction
of the pathogenic AAT fold by PU-WS13, we used inverse variance
weighting (IVW) to average the predicted NE inhibitory activity in the
context of monomer secretion across the entire landscape for each
residue21. IVW allows us to assign the likelihood of function for a given
residue position for the entire sequence that will be disrupted by
variants with diverse chemical properties21, emphasizing that it is the
probabilistic value of function derived from the collective of all var-
iants that can be used to generate the SCV maps that rigorously
address the role a given residue in the AATwild-type protein sequence
fold function. As expected, this function can be disrupted to different
degrees by the different chemical properties of a particular variant
residue found in the population impacting severity of disease. By using
the reciprocal of prediction uncertainty (i.e., GP-based variance) as
weight, IVW prioritizes the prediction with high confidence (i.e., low
uncertainty/GP-based variance) over the prediction with low con-
fidence (i.e., high uncertainty/GP-based variance) during the averaging
(Fig. 4b). Through GP analyses (Fig. 4a, b), the IVW averaged value
reports the most likely role of each residue contributing to the NE
inhibitory activity based on SCV relationships. We also applied IVW to
the phenotype landscape generated by Bayesian analysis, which yiel-
ded almost identical residue-based NE inhibitory activity for each
residue across the AAT polypeptide (Supplementary Fig. 11f, g; Pear-
son’s r =0.98), suggesting the robustness of this approach to esti-
mating the most likely contribution of each residue to the function.
The mean values for each residue are plotted as linear barcodes from
the N-terminal to C-terminal of AAT polypeptide chain reflecting the
NE inhibitory activity at the basal state (Fig. 4c, upper barcode (DMSO
vehicle)) and after the treatment of PU-WS13 (Fig. 4c, middle barcode),
as well as the delta (Δ) value between them (Fig. 4c, lower barcode). At
the basal state with the DMSO vehicle control (Fig. 4c, upper barcode),
the IVWbarcodemapdefines three sequence regions at the N-terminal
(N1), middle (M2) and carboxyl-terminal (C3) regions along the AAT
polypeptide that are clustered with variants disrupting the NE inhibi-
tory activity (Fig. 4c; labeled brackets, N1, M2, and C3) reflecting
potential hotspots for managing protein misfolding.

These unanticipated results based on our sequence analysis and
published structural efforts to date63–65 suggest that AAT has evolved
both short- and long-range cooperative interactions to manage NE
inhibitory activity that could be sensitive to proteostasismanagement.
Strikingly, all these regions are largely rescued by PU-WS13 treatment
(Fig. 4c). Specifically, hA-s6B-hB and hD in the N1 region, a region
around the S variant inM2andmostof C3 region, are highly rescuedby
PU-WS13 (Fig. 4c). These results suggest that GRP94, from a SCV per-
spective, can act at specific hotspots that involve different features of
the fold protein spanning the entire protein sequence, possibly driven
by regional fold energetics66, that as a collective globally respond to
not just variation in the population but to proteostasismanagement to
improve activity. We next explored how this conversion occurs.

GRP94 ATPase activity can manage long-range residue interac-
tions to correct AAT activity
To understand the structural mechanism(s) of correction by PU-WS13
treatment, we mapped the NE inhibitory activity predicted by GP
analysis for each residue to the AAT 3D structure (PDB:3NE4)67 to
generate a “functional-structure” before (Fig. 4d) or after PU-WS13
treatment (Fig. 4e), as well as the structure representing the delta (Δ)
value in response to PU-WS13 treatment (Fig. 4f). Interestingly, though
N1, M2, and C3 sequence regions that contribute the NE inhibitory
activity at the basal state are separated in the primary sequence of the
polypeptide (Fig. 4c, upper barcode), they interact with each other
through the β-sheet B (Fig. 4c, s6B strand for N1, s1-3B strand for M2
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and s4-5B strand for C3, red dotted circles; Fig. 4d). The integration of
each of the core SCV regions through β-sheet B indicates that the long-
range interactions are crucial to evolve the function-structure rela-
tionships defining the AAT architecture (Supplementary Fig. 6d–h).

PU-WS13 administration generates corrections on many residues
in the AAT structure to restore WT-like NE inhibitory activity to the
AAT fold (Fig. 4e vs Fig. 4d, red–orange–yellow to green). Intriguingly,
we discovered a core region that is highly responsive to PU-WS13

management, which encompasses residue interactions between hA-
s6B from region N1, hG from M2 and s5B from region C3 (Fig. 4f, g).
Notably, the highly responsive region to PU-WS13 treatment also
involves the interactions between the N-terminal β-strand s6B and
C-terminalβ-strand s5B that are critical for assembling β-sheet groupB
(Fig. 4g). These results reveal that the integrity of β-sheet group B is
critical for GRP94 managed NE inhibitory activity. These observations
are consistent with the view that GRP94, as a member of the Hsp90
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family, is generally involved in later stages of protein folding or in post-
translational folding14,15,68,69. Here, reduced ATPase activity may gen-
erate a more favorable kinetic/thermodynamic window for the
N-terminal to C-terminal cooperative folding events disrupted by
variants in the population, thereby significantly improving NE inhibi-
tory activity correction (Fig. 4f, g). These results provide a rationale for
the dynamic regulation of Hsp90 family members by co-
chaperones27–29 that could ensure coordination of folding with varia-
tion in sequence in the population to achieve an optimal folded state
for function. Interestingly, non-responding or negatively impacted
residues are clustered in the “bottom” of the AAT structure, compris-
ing hC, s1A-hF, and the loop following hI to the beginning of s5A
(Fig. 4c, lower barcode, Fig. 4f, h). These residue–residue relationships
could potentially manage post-ER features involved in NE inhibitory
activity. Overall, GP-principled SCV relationships provide a residue-by-
residue roadmap of how GRP94 ATPase inhibition can differentially
manage the AAT fold in response to variation to reshape/reinvent
sequence-to-function-to-structure relationships.

Residue-by-residue-based correction of AAT monomer
secretion
As GRP94 ATPase inhibition changes NE inhibitory activity and its
relationship to monomer secretion for a number of variants, we wan-
ted to understand the residue–residue basis for the correction of
monomer secretion. For this purpose, we usedNE inhibitory activity as
the input y axis feature to predict as output the role of each residue in
monomer secretion as the z axis feature of the phenotype landscape
(Supplementary Fig. 7). PU-WS13 treatment reduced both the corre-
lation range and the plateau value in the variogram modeling and
decreased the leave-one-out cross-validation (from Pearson’s r =0.65,
P = 5 × 10−10 to Pearson’s r =0.32, P = 0.007) (Supplementary Fig. 7b–d).
These results are consistent with the interpretation that PU-WS13
treatment decreases the more rigid coupling between NE inhibitory
activity and monomer secretion for AAT variants compared to the
basal state without PU-WS13 treatment (Supplementary Fig. 6a, b).

To generate a residue-by-residue description of monomer secre-
tion response to PU-WS13 treatment, we averaged the monomer
secretion phenotype landscapes for each residue (Supplementary
Fig. 7d) using IVW to generate residue-based monomer secretion
barcodes (Fig. 5a). These mean values were mapped onto the AAT
structure (Fig. 5b–f).Weobserved an increaseofmonomer secretion in
the core cluster we identified above as a high response cluster for
improving NE inhibitory activity (Figs. 4g and 5e). This core region
comprises the interactions between hA-s6B (N1), hG (M2) and s5B (C3),
suggesting that the high response of NE inhibitory activity in this
region to PU-WS13 treatment (Fig. 4g) is at least partially due to the
improvement of monomer secretion (Fig. 5e). However, the improve-
ment of monomer secretion is much weaker (Fig. 5e) when compared
to the NE inhibitory activity response (Fig. 4g), suggesting that there
are additional effects generated by PU-WS13 treatment that increases
the NE inhibitory activity independent of the level of monomer
secretion. Indeed, we found that the top responding residues and
structural regions for monomer secretion enhancement by PU-WS31

treatment (Fig. 5a, lower barcode; Fig. 5d) are in different sequence
positions compared to those rescuing NE inhibitory activity (Fig. 4c,
lower barcode; Fig. 4f). For example, the highly responsive region s2A-
hE-s1A leading to improved monomer secretion (Fig. 5a, lower bar-
code; Fig. 5d, f) does not result in a reciprocal improvement of NE
inhibitory activity (Fig. 4c, lower barcode; Fig. 4f). These results further
suggest thatGRP94ATPase inhibition increases the toleranceof the ER
for AAT folding in a manner that can differentially impact the mono-
mer secretion and the NE inhibitory activity on a residue-by-residue
basis. We next explored the impact of these changes on intracellular
polymer accumulation- the hallmark of liver disease32,70–72.

Managing the N-terminal to C-terminal covariance folding of
AAT to reduce polymer load
Given that the AAT-ZZ variant results in both intracellular and secreted
polymer pools that can be corrected by PU-WS13 treatment (Fig. 2f and
Supplementary Figs. 4d–f and 5f, h), we wanted to understand the
molecular basis for these events across the entire AAT sequence.
Therefore, we measured both the intracellular (Fig. 6a) and secreted
polymer (Supplementary Fig. 8a) for all AAT variants in the absence or
presence of PU-WS13 using an ELISA assay based on the polymer-
specific antibody 2C1 (see ref. 52). Among all measured 76 variants, 27
of themhave intracellularpolymer level at levels that are at least 50%of
the severe intracellular AAT-Z polymer pool (Fig. 6a). In all, 13 of the 27
variants with high intracellular polymer (~48%) showed significant
reduction in the intracellular polymer pool in the presence of PU-WS13
(Fig. 6a). Similarly, among all measured 76 variants, 20 of them have
secreted polymer above 50% of the secreted AAT-Z polymer level
(Supplementary Fig. 8a). PU-WS13 treatment significantly reduced the
secreted polymer for 11 of the 20 variants with high secreted polymer
(~55%) (Supplementary Fig. 8a). These results suggest thatPU-WS13 has
a broad impact on the AAT fold to decrease the polymer pools for
around a half of the polymerogenic AAT variants, a metric highly
relevant to monitoring liver disease in the patient population32,70–72.

Consistent with the clinical observations that serumpolymer level
can be used as a biomarker for liver disease71,72, themeasured secreted
polymer is strongly correlated with intracellular polymer for all the
variants in both vehicle DMSO control (Supplementary Fig. 8b, left
panel; Pearson’s r =0.92, P = 4.3 × 10−31) and PU-WS13 treatment con-
dition (Supplementary Fig. 8b, right panel; Pearson’s r =0.85,
P = 2 × 10−22). This result indicates that the reduction of secreted
polymer for AAT variants by PU-WS13 treatment is likely due to the
reduced level of the intracellular polymer as suggested before73–75.

To generate a residue-by-residue response map to PU-WS13
treatment for the intracellular polymer triggering liver disease, we
built phenotype landscapes using secreted polymer as the
y-coordinate to predict the intracellular polymer (z-coordinate) for
every residue comprising the AAT polypeptide sequence (Supple-
mentary Fig. 8c–f). We then used IVW to generate the residue-based
barcodes (Fig. 6b) and related functional structureof AAT (Fig. 6c–f) to
annotate the impact of PU-WS13 on intracellular AAT polymer
pools. We also mapped the response of intracellular polymer pools to
PU-WS13 to the more native AAT-Z polymer structure recently

Fig. 4 | Residue-by-residue responses of NE inhibitory activity to PU-WS13. a To
project a 3D view of the phenotype landscapes, the predicted NE inhibitory activity
is shown on the z axis of the landscape in the absence (left panel) and presence
(right panel) of PU-WS13. The predicted values for residue 366where AAT-Z variant
is located are highlighted by gray slices. b The data highlighted by the gray slice in
(a) for residue 366 is plotted in the absence (black line), and thepresence (blue line)
of PU-WS13 is presented as mean ± SD. The dark-gray or dark-blue error bars indi-
cate the high-confidence predictions defined by the two-component Gaussian
mixture modeling (Fig. 3d). These high-confidence values are used in the inverse
variance weighting (IVW) (see “Methods”) to compute themost likely NE inhibitory
activity for each residue. This procedure is performed for each residue comprising

the AAT polypeptide sequence. c The IVW computed values for each residue are
plotted fromN-terminal to C-terminal to report residue-basedNE inhibitory activity
barcode in the absence (upper barcode) or presence (middle barcode) of PU-WS13.
The delta (Δ) values between them are presented as the lower barcode. The regions
harboring residues that are <75% WT NE inhibitory activity under basal conditions
are labeled as N1, M2 and C3. The secondary structure elements of the AAT
sequence are indicated in the bottom panel. d–h Mapping the residue-based NE
inhibitory activity in the absence (d) and presence (e) of PU-WS13, and their delta
(Δ) values (f) to AAT 3D structures (PDB:3NE4). The structural region highly
responsive to PU-WS13 is zoomed in (g), while the non-responsive structural region
is zoomed in (h).
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obtained using protein isolated from a ZZ-homozygous patient liver
that revealed a “C-terminal polymerization” cryo-EM model63,64. In
the ‘C-terminal polymerization’model, not only the RCL inserts as s4A
in β-sheet A by “loop-sheet” insertionmechanism but also s4B and s5B
insert into the β-sheet B of another molecule63,64 (Fig. 6g-i). At the AAT
basal state (Fig. 6c, g), the GP-based covariance prediction for polymer
assembly is consistent with the C-terminal polymerization model
(Fig. 6g) that highlights the critical role of assembly of β-sheet B in the
polymer formation triggered by variation in the AATD population
(Fig. 6c, g).

Strikingly, the residue interactions between s6B from the N1
region and s5B from the C3 region are clearly the highly responsive
regions to PU-WS13 leading to significant polymer reduction (Fig. 6b,
lower barcode; 6e, f, i). In contrast, the polymerogenic residues found
in s5A that are critical for the “loop-sheet” insertion polymerization
mechanism do not or only weakly respond to PU-WS13 (Fig. 6e, i).
These results reveal that GRP94 ATPase inhibition by PU-WS13

primarily manages the N-terminal to C-terminal cooperative folding
driving β-sheet B assembly to reduce the polymer accumulation in the
liver-derived cells63,64. Thus, by profiling the residue-by-residue
response to GRP94 ATPase inhibition using GP-principled SCV rela-
tionships, we have uncovered an unanticipated mechanism used by
the GRP94 chaperone to manage the polymerization state of AAT fold
triggering aggregation disease.

Tracing the global management of function on a residue-by-
residue basis by GRP94 ATPase activity
To generate a global view of how inhibition of GRP94 ATPase activity
can differentially manage each residue of AAT fold for polymer accu-
mulation in the ER, monomer secretion, and NE inhibitory activity in
the hepatocyte in response to human variation, we overlaid the
residue-based Δ value for each of these features in response to PU-
WS13 treatment (Fig. 7a, gray (monomer), magenta (NE activity), cyan
dots (intracellular polymer)). We observed a general improvement for

Fig. 5 | Residue-by-residue responses of monomer secretion to PU-WS13.
a Residue-based monomer secretion barcodes derived from the phenotype land-
scapes through IVW in the absence (upper barcode) or presence (middle barcode)
of PU-WS13. The delta (Δ) values between themare presented as the lower barcode.
b–f Mapping the residue-based monomer secretion in the absence (b) and

presence (c) of PU-WS13, and their delta (Δ) values (d) to AAT 3D structure. The
region that is highly corrected on NE inhibitory activity illustrated in Fig. 4e is
zoomed in for comparison to the PU-WS13 impact on monomer secretion (e). The
top responding structure region for monomer secretion is zoomed in (f).
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Fig. 6 | Residue-by-residue responses of intracellular polymer to PU-WS13.
a The responses of AAT variants to PU-WS13 in Huh7.5null cell for intracellular
polymer. Data are presented as mean ± SD, n = 3 biologically independent mea-
surements. b Residue-based intracellular polymer barcodes derived from the
phenotype landscapes through IVW in the absence (upper barcode) or presence
(middle barcode) of PU-WS13. The delta (Δ) values between them are presented as

the lower barcode. c–f Mapping the residue-based intracellular polymer in the
absence (c) and presence (d) of PU-WS13, and their delta (Δ) values (e) to AAT
monomer structure. The highly responding region to PU-WS13 for the intracellular
polymer is zoomed in (f). g–i Mapping the residue-based intracellular polymer in
the absence (g) and presence (h) of PU-WS13, and their delta (Δ) values (i) to AAT
polymer structure (PDB: 3T1P).
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all the three features on the N-terminal half of the N1 region encom-
passing hA-s6B-hB and the C3 region housing the s4B-s5B strands,
suggesting overall a critical role of GRP94 managed N-terminal to
C-terminal cooperative folding events to assemble β-sheet B to pre-
vent polymer accumulation, leading to enhanced monomer secretion
and NE inhibitory activity through manipulation of its ATPase activity
(Fig. 7a). Interestingly, we also observed sequence regions that show

improvement of monomer secretion and NE inhibitory activity
without the correction of intracellular AAT polymer. For example,
there is no change in the intracellular polymer pool for the sequence
region spanning the C-terminal half of the N1 region to the beginning
of the M2 region (Fig. 7a), residues that do not contribute to polymer
formation in the basal state but instead contribute to monomer
secretion and NE inhibitory activity. Notably, PU-WS13 treatment

Fig. 7 | Differential responses of different phenotypes for each residue of AAT
to GRP94 ATPase inhibition. a Overlay of the delta value between the DMSO
vehicle and PU-WS13 treatment for the residue-based NE inhibitory activity
(magenta), monomer secretion (gray), and intracellular polymer level (cyan).
Positive delta values indicated as improvement ofNE inhibitory activity, an increase
of monomer secretion and decrease of intracellular polymer. N1, M2, and C3
sequence regions, which are in rich of variants leading to defective NE inhibitory

activity at basal state, are labeled.bResidue-by-residue activity tomonomer ratio in
response to PU-WS13. TheNE inhibitory activity and secretedmonomer ratio values
are computed from both vehicle and PU-WS13 states for each residue. The delta
value of the activity-to-monomer ratio in response to PU-WS13 for each residue is
plotted. c,dMapping the delta (Δ) of activity tomonomer ratio on AATmonomeric
structure (c) and the complex structure of AAT-elastase (PDB: 2D26) (d).
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does generate a general and large improvement in both monomer
secretion and NE inhibitory activity for selective sequence fragments
in this region (Fig. 7a). These results further emphasize that the rescue
of export from ER and restoration of activity by reduced GRP94
ATPase activity canbe separated from its impact on polymer. A second
example of the stabilizing activity of GRP94 in response PU-WS13
is found in the C-terminal half of M2 region (Fig. 7a). This region
contains hG-hH where the AAT “S allele” is located (Fig. 7a). PU-WS13
treatment only weakly impacts its lower intracellular polymer
pool when compared to the Z-variant pool, but does increase both
monomer secretion and NE inhibitory activity (Fig. 7a). These results
further emphasize that GRP94 ATPase inhibition by PU-WS13 can dif-
ferentially manage the fold properties for specific residue regions to
improve monomer secretion and NE inhibitory function in a manner
that can be either dependent or independent on the AAT polymer
status.

To better quantitate these residue-specific differential responses,
we calculated the delta (Δ) of the ratio between the NE inhibitory
activity and secreted AAT monomer (referred to hereafter simply as
“activity-to-monomer ratio”) for each residue in response to PU-WS13
treatment (Fig. 7b) and mapped these values onto AAT monomer
structure (Fig. 7c), or the AAT-NE complex structure (PDB: 2D26)76

(Fig. 7d). Interestingly, we found that the M2 region shows a general
increase of the activity-to-monomer ratio (Fig. 7b–d).M2 includes s4C-
s3C that comprises the previously suggested “gate” area77,78, and s1B-
s3B-s3B-hG-hH that forms “latch” interactions with the “gate”77, both of
which have been suggested to regulate the loop-sheet mechanism
required for extracellular AAT function77–79. Furthermore, s5A-RCL in
C3 region that forms the loop-sheet insertion as s5A-s4A in the func-
tional cycle of AATwithNE (Fig. 7d) also showsan increased activity-to-
monomer ratio (Fig. 7b–d). These results suggest that for the region
associated with the loop-sheet insertion mechanism, GRP94 ATPase
inhibition potentially generates a more flexible AAT fold to improve
themonomer ‘specific activity’ in its reactionwithNE. In contrast to the
improvement of the activity-to-monomer ratio, there are residues that
show reduced responses (Fig. 7b–d). Interestingly, they are mostly
clustered at the binding interface between AAT and NE (Fig. 7d, red
residues), suggesting that the increased extracellular AAT monomer
pool generated in response to PU-WS13 for these residues reflects a
disrupted interaction with NE.

In summary, GP-principled SCV relationships generated in the
absence or presence of PU-WS13 reveals at a residue-by-residue level
an unanticipated pliable state of the protein fold and its sequence-to-
function-to-structure relationships responsive to GRP94 ATPase
activity—providing a plausible mechanistic view of Hsp90 family
ATPase activity in shaping the protein fold in response to variation in
the population.

Discussion
To evolve protein form and function requiring dynamic and meta-
stable structural changes, a general computational framework is nee-
ded for understanding the balance in sequence-to-function-to-
structure relationships dictating the genome to proteome transfor-
mation. A key feature in managing protein folding and function in
response to human variation and the environment is proteostasis. In
the case of AATD, past efforts focused on developing small molecules
or peptides that block the aggregation of AAT-Z by interferingwith the
loop-sheet insertion mechanism responsible for NE inhibitory
activity40,80–84. While preventing polymer formation in the liver, they
were of limited utility for lung disease in AATD given that the loop-
sheet insertion is essential for AAT function. Another strategy to
reduce AAT-Z polymer load in the ER was to activate the autophagy
pathway to remove polymer burden85–87, an approach that does not
address the critical loss-of-function in the lung responsible for the vast
majority of pathologies observed in the clinic.

By profiling the genetic and phenotypic diversity associated with
AATD through GP-SCV principled relationships in response to the
ATPase inhibitor PU-WS13, we uncovered unexpected and precision
residue–residue coupled relationships that simultaneously correct the
defects in polymer formation, monomer folding, secretion, and NE
inhibitory activity of most pathogenic AAT variants. This detailed
phenotypic information cannot be captured in a conservation score
derived from sequence alignment across different species (Supple-
mentary Fig. 9), suggesting that GP-SCV principled relationships cap-
ture complex evolutionary information driving function revealed by
the natural process of genetic diversity in the human population.
Whereas past studies have focused on chemical kinetic stabilization of
the fold to prevent diseases of misfolding, including transthyretin88,89

and immunoglobulin light chain amyloidosis90, Gaucher’s91,92 and cys-
tic fibrosis21,93, GP-SCV provides a fresh approach to understand more
completely the complex features of cooperative folding and fold
architecture to develop insights into challenging sequence-to-func-
tion-to-structure relationships that could prevent misfolding while
maintaining activity.

The improvement inNE inhibitory activity in response to PU-WS13
is largely correlated with improved monomer secretion along with
decreasing both intracellular and secreted polymer for most AAT
variants, including AAT-Z variant, shifting the folding balance from
disease to a healthier state of the fold (Fig. 8). Specifically, a reduction
of GRP94 ATPase activity revealed its role in managing the N-terminal
(s6B) to C-terminal (s5B) cooperative folding of AAT essential to
assemble β-sheet B contributing to NE inhibitory activity. This con-
clusion is supported by the ‘C-terminal polymerization’ model based
on the cryo-EM structure study of AAT-Z polymer from patient liver63,
which indicates an important role of the assembly or disassembly of β-
sheet B in polymerization of AAT variants leading to aggregation in the
ER63. Furthermore, the interaction region between s6B and s5B is dis-
tant to the reaction loop (RCL), therefore, unlike the loop-sheet
mechanism, managing s6B-s5B interactions would not be expected to
impact the extracellular NE inhibitory activity, and may even increase
the monomer-specific activity as suggested by PU-WS13 treatment on
AAT-Z and other variants (Fig. 8).

It is interesting that at a concentration of 1 µMPU-WS13 used in all
the assays (Supplementary Fig. 10a–e), we did not observe up-
regulation of BiP94 (Supplementary Fig. 10f). This is in contrast to
siGRP94 which up-regulates the level of BiP in macrophages95. These
results suggest that GRP94 in the PU-WS13 bound form may be
required for the rescue effect, for example, to facilitate the release of
AAT variant to ERGIC-53 for secretion (Supplementary Fig. 10g, h).
Moreover, whereas inhibition of GRP94 through PU-WS13 has been
shown to reduce the stability of HER2 in a tumor-specific manner
where siGRP94 mimics the effect of PU-WS13 to destabilize HER224, in
this study we found that whereas PU-WS13 rescues the folding,
secretion, and function of AAT-Z, silencing through siGRP94 does not
rescue AAT-Z defects. Thus, SCV relationships capture residue-specific
features of GRP94 ATPase function affecting its role in promoting
uniquely AAT-Z stability and function. These results suggest that the
correction effects we observed are part of a larger programmable
system in which GRP94 ATPase activity (and potentially other
factors95) may be normally reprogrammed by co-chaperones to
achieve optimal function in response to variation and the environment
as has been observed for theHsp70 family of chaperone/co-chaperone
relationships89,90,96–99.

The residue-by-residue responses to GRP94 ATPase inhibition is
different from that we recently found for ATF6 activators that more
globally control the differential activities ofmultiple Hsp70 andHsp90
chaperones and their respective co-chaperones in the ER in response
to misfolding stress and the environment34. For example, in terms of
NE inhibitory activity, s6B-s5B interactions onlymoderately respond to
ATF6 activators34. In contrast, the “gate” area that is strongly impacted
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by ATF6 activators34 is only moderately responsive to GRP94 ATPase
inhibitor. These observations highlight the fact that different pro-
teostasis components manage different parts of the protein fold to
allow for what we refer to as “functional conversion”—not unlike the
PrPc/PrPs transitions leading to prion disease100,101. These results raise
the possibility that conversion is a common principle in biology34.
Moreover, whereas Hsp90 family members are generally thought to
clamp the clients between the pocket created by the dimer interface in
cryo-EM snapshots102,103, the differing SCV relationships we have now
defined for every residue using GP logistics raises the possibility of a
potential sequence scanning role for Hsp90 family members for
management of the fold trajectory in real time.

We now suggest that understanding GP-SCV principled relation-
ships provides a framework for making use of a naturally occurring
programmable system in which the Hsp90 ATPase activity is con-
stantly managed by co-chaperones in response to the
environment16,27–29,69 to achieve optimal function for fitness through
variation (see below). As GRP94 has been shown to be involved in the
ERAD of AAT variants45–47, a process that is controlled by ER manno-
sidase I (ERManI/Man1b1)104–109, particularly in infants of AATD patient
population108, it is likely that GRP94 establishes a variable level of
stringencywehave referred to as a plasticity set-point1,20 that is defined
by the activity of the resident co-chaperone regulators in each cell
type, and in response to the environment and aging (Fig. 8). Our SCV
relationships indicate that GRP94 ATPase inhibition can release this
SCV based set-point stringency to allow the secretion of AAT variants
with improved monomer-activity relationships- even leading to
improved specific activity for some variants despite the presence of
the variant residue in the secreted monomer34. These results suggest
that GP-SCV principled management strategies impacting the balance
between folding for function and targeting to degradation, including
autophagy pathways85–87, will be of high value for diseasemanagement
in the context of a covariant understanding delineating the probabil-
istic uncertainty inherent in human biology impact by the sequence
features contributing to the clinical functional outcomes impacting
health along the coupled liver–lung axis.

Our results support the view that the role of proteostasis is but
one part of an integrated “quality system (QS)”20 that is responsive to
genetics, development, aging, and the environment to continually

reshape sequence-to-function-to-structure relationships driving pro-
tein fold dynamics contributing to health and disease1,17,20,34,110 that is
not captured in static structures21,34. As it is well established by the
pioneering efforts of Lindquist andothers68,111–127 thatHsp90 serves as a
capacitor for natural selection and evolution, SCV principled rela-
tionships now suggest that Hsp90’s role in capacitance management
of variation occurs on a residue-by-residue basis- but as a collective.
The response of Hsp90 family members to ATPase inhibitors suggests
their role in cellular QS20 is acutely tuned by the use of different co-
chaperone partners to facilitate fitness6,14,15,44,128. Understanding the
residue-based conversion of the protein fold and function1,17–21,32,34

through anSCVprincipled standardmodel129 couldprovide a common
framework from a machine learning perspective to assess the role of
each of the over 2500 proteostasis components in themanagement of
information flow from the genome to the functional proteome130,131.
Knowledge of how information flow ismanaged by proteostasis from a
covariance principled standard model could be used to implement
precision interventions in a broad range of inherited and somatic
human diseases including neurodegeneration4,5,9,10,132,133 and
cancer43,134–136 where management of variation is key to restoration of
healthspan (Fig. 8).

Methods
Reagents
DMEM, LHC-8 medium, F-12 medium, fetal bovine serum (FBS),
penicillin–streptomycin (P/S), and geneticin (G418) were purchased
from Invitrogen Life Technologies Corporation (Carlsbad, CA).
FuGENE6 Transfection Reagent Kit was purchased from Promega
(Madison, WI). Plasmid DNA purification kit was purchased from
QIAGEN Inc. (Valencia, CA). PU-WS13 was initially provided by Dr.
Gabriela Chiosis (Memorial Sloan Kettering Cancer Center, NY), and
then purchased from Cayman Chemical (Ann Arbor, MI). PU-WS13 was
stocked at 10mM in DMSO and stored at −20 °C. The goat anti-human
AAT polyclonal antibody 80A was purchase from ICL Inc (Anaheim,
CA) (Cat # GCYT-80A, 1:1000 dilution); The mice anti-human mono-
meric AAT antibody 16f8 were generated in-house (1:2000 dilution);
The mice anti-human polymeric AAT antibody 2C1 and other anti-
bodies used in the study were purchased fromHycult biotech (Wayne,
PA) (Cat # HM2289, 1:1000 dilution). The ERGIC-53 antibody (Cat #

Fig. 8 | GRP94 manages the N- to C-terminal cooperative folding of AAT to
shape the balance between AAT aggregationmonomer secretion for function.
The delta (Δ) phenotype structures of NE inhibitory activity (Fig. 4f), monomer
secretion (Fig. 5d) and intracellular polymer (Fig. 6i) are presented to illustrate the
residue-by-residue responses of AAT (Fig. 7a) to GRP94 ATPase inhibitor PU-WS13.
Blue residues indicate the responsive regions for improved AAT activity, increased
monomer secretion and reduced polymer accumulation. The highly corrected

regions for all the phenotypes by GRP94 ATPase inhibition involve long-range
interactions between s6B from N1 region and s4B-s5B from C3 region that are
highlighted by arrows. Modulation of GRP94 chaperone/co-chaperone system by
ATPase inhibition through PU-WS13 treatment improves the SCV integrity of β-
sheet B for AAT variants to rebalance AAT aggregation with function to reduce the
intracellular polymer accumulation and increase the monomer secretion and
extracellular NE inhibitory activity.
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13364-1-AP, 1:20,000 dilution) and 6x-His Tag Monoclonal Antibody
(HIS.H8) (Cat # 50-173-6447, 1:5000 dilution) were purchase from
Proteintech Inc. GRP78(BiP) antibody (Cat # ab108615, 1:2000 dilu-
tion), GRP94 antibody (Cat # ab238126, 1:1000 dilution) and GAPDH
antibody (Cat # ab8245, 1:5000 dilution) were purchased from Abcam
(Waltham, MA). Secondary antibody Goat anti-Mouse HRP antibody
(Cat # 32230; 1:5000 dilution), Goat anti-Rabbit HRP antibody (Cat#
32260, 1:5000 dilution) and Mouse anti-Goat HRP antibody
(Cat#31400, 1:10,000dilution)were all purchased fromThermoFisher
Science (Waltham, MA). GRP94 siRNA was purchased from Thermo
Fisher Scientific (ID:119656).Humanneutrophil elastasewaspurchased
from Innovative Research (Novi, MI). NE fluorescence assay substrate
2Rh110 (Z-Ala-Ala-Ala-Ala)was purchased fromCaymanChemical (Ann
Arbor, MI). All other chemicals were purchased from Sigma Chemical
(St. Louis, MO).

Cell culture
IB3 cells stably transfected with AAT-Z, which were provided by T.
Flotte, University of Massachusetts Medical School, Worcester,
MA, were cultured in LHC-8 medium containing 10% (v/v) fetal
bovine serum (FBS) and 100 µg/ml penicillin–streptomycin (P/S).
Huh7.5 AAT knockout (KO) cells (Huh7.5null), which were provided
byMark Brantly, University of Florida College of Medicine, Gainesville,
FL., and Huh7 cells with His-tagged AAT-Z stably expressed (provided
by T. Flotte, University of Massachusetts Medical School, Worcester,
MA), were cultured in the DMEM/F-12medium containing 10% FBS and
primocin (100 µg/ml). Patient AAT-ZZ hiPSC cells were purchased
from DefiniGEN (Cambridge, UK). Directed differentiation of hiPSC
into hepatic lineage was carried out following the protocol provided
by DefiniGEN.

AAT variant DNA constructs
AAT variant DNA constructs were in pcDNA3.1 (+) plasmid vector
generated by Quintara Biosciences (Cambridge, MA). All plasmid
sequences were validated by Genewiz, Inc (San Diego, CA)).

AAT-specific conformation (monomer or polymer) ELISA assays
Huh7.5 AATnull cells were cultured in 96-well plates with the density
2 × 104/well and transfected with AAT variant plasmids at 0.2 µg/well.
After 24-h transfection and another 24-h PU-WS13 treatment,
cells were washed with PBS and incubated with 100 µl/well FBS-free
culture medium. After 3-h incubation, FBS-free culture medium was
collected, and cell lysateswere harvested. In total, 20 µl mediumor cell
lysates fromeachwell were added into the capture antibody (goat anti-
human AAT polyclonal antibody 80A) pre-coated and pre-blocked
(with BSA) 96-well plate for ELISA assay. After overnight incubation at
4 °C, the medium or cells lysate were washed away by PBST.
Conformation-specific antibody 16f8 or 2C1 (mouse anti-human) was
added into plate and incubated for 2 h. After washing the conforma-
tion antibody by PBST, secondary HRP-conjugated goat anti-mouse
antibody was incubated in the plate for 2 h. After washing the sec-
ondary antibody, TMB reagent was added into each well for 10min
reaction and then stopped by 2M H2SO4. Plates were read by BioTek
Synergy H1 Hybrid Reader (Santa Clara, CA) at 454nm for absorbance.
The reading values were normalized by total protein levels of eachwell
sample (measured by Bradford assay). Monomer levels of AAT variant
were normalized by WT monomers. Polymer levels of AAT variant
were normalized by AAT-Z polymers. Commercial purchased AAT
proteins were subject to serial dilution and prepared for ELISA
standardized curve.

AAT-NE inhibitory activity assay
Cell culture medium was collected as described above. In all, 20 µl
culturemediumwas added into the captureantibody (goat anti-human
AAT polyclonal antibody 80A) pre-coated and pre-block (with BSA)

plate for overnight incubation. Medium was washed away and then
the plate was incubated with Human Neutrophil Elastase 5 ng/well
for 2 h at 37 °C. Overall, 25 pmol/well Neutrophil Elastase
substrate 2RH110 was added into the plate and incubated for another
1.5 h. The plate was read at BioTek Synergy H1 Hybrid Reader (Santa
Clara, CA) for excitation 485nm and emission at 525 nm. The reading
values were normalized by total protein levels for each sample. The
anti-elastase activity of AAT variant was normalized by WT-AAT
activity.

Immunoblotting
Plasmids of AAT variants were transiently transfected in Huh7.5 AAT
knockout cells. After 24-h transfection and another 24-h PU-WS13
treatment, cells were washed by PBS and then switched to FBS-free
culture medium for 3-h incubation. Culture medium was harvested.
Cellswerewashed twicewith 1× PBS and then lysedwith 50 µl/well of 1×
cell lysis buffer (50mM Tris-HCl, 150mM NaCl, 1% (v/v), Triton X-100,
and protease inhibitors at 2mg/ml) on ice for 30min. Samples
were collected and then centrifuged at 20,817×g at 4 °C for 20min.
The supernatant was collected. The protein concentration levels of
culture medium and cell lysate were determined by the Bradford
assay (Bio-Rad, Hercules, CA). Culture medium samples or cell lysate
samples were resuspended in 1× SDS sample buffer containing
β-mercaptoethanol and incubated at 95 °C for 5min. Samples con-
taining 20 µg of total protein were separated on a 10% (v/v) SDS-PAGE,
transferred to nitrocellulose, and immunoblotted with goat anti-
human AAT antibody (80A). Detection was performed using
chemiluminescence and the appropriate horseradish peroxidase-
conjugated secondary antibodies. GAPDH was used in general as
loading control.

siRNA-mediated silencing
IB3 cells stably transfected by AAT-Z were plated in 12-well tissue cul-
ture dishes and grown to 60% confluency. Silencing of GRP94 was
performed by transfecting with RNAiMax (Invitrogen) and a final
concentration of 50nM siRNA (Ambion; siRNA targeting HSP90B1
gene) into cells according to themanufacturer’s protocol (Invitrogen).
After 48 h of RNA transfected, PU-WS13 was added into the culture
medium. AAT proteins were harvested as described above and sub-
jected into immunoblotting analysis.

Immunoprecipitation assay
Huh7 cells, which stably expressed the His-tagged AAT-Z, were seeded
and cultured in 12-well plates (with cell population density 1.2 × 105/
well) for 24-h and then treated with PU-WS13 at different concentra-
tions for another 24 h. Cell lysates were collected as described above
and diluted in the equilibration buffer. Samples with equal amount
total proteins and equal volumes were incubated with HisPur™Ni-NTA
Magnetic Beads from Invitrogen (Carlsbad, CA) for 1 h in an end-over-
end rotator. Magnetic beads were incubated and vortexed with wash
buffer to remove the unbound proteins in the supernatant. Elution
buffer was added and incubatedwithmagnetic beads for 15min on the
rotator. His-tagged Z-AAT proteins in the supernatant were removed
and used for immunoblot analysis.

Variation spatial profiling (VSP) to build phenotype landscape
The VSP analysis1,17,21,34 was performed using the gstat package
(V2.0)137,138 in R. VSP is based on a geostatistical prediction technique,
Kriging139, which is widely used to model the spatial dependency as a
Gaussian process to interpolate the unmeasured value to construct the
phenotype landscape for AAT.

Briefly, AAT variants were positioned by their sequence positions
in the polypeptide chain on the “x” axis coordinate and their impact on
a phenotype on the “y” axis coordinate to the impact on another
phenotype on the ‘z’ axis coordinate.OrdinaryKriging139 was applied to
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model z(x, y) as:

zðx,yÞ =μðx,yÞ +W ðx,yÞ + ϵðx,yÞ ð1Þ

Where μðx,yÞ is a constant local mean. W ðx,yÞ is the spatially correlated
stochastic part of variation. ϵðx,yÞ is a white noise that captures mea-
surement error and microscale variation. The spatial structure of the
data can be examined by variogram analysis. Suppose the ith obser-
vation at coordinates (xi) and (yi) in a dataset consists of a value zðxi ,yiÞ.
And jth observation at coordinates (xj) and (yj) in adataset consists of a
value zðxj ,yj Þ. They are separated by a vector h.

The distance dðhÞ between the ith and jth observations is calculated
by:

dðhÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xjÞ2 + ðyi � yjÞ2
q

ð2Þ

The γ(h)-variance for a given distance dðhÞ is defined by:

γ hð Þ= 1
2
ðzðxi ,yiÞ � zðxj ,yj ÞÞ

2 ð3Þ

where γ(h)-variance is the semivariance (the degree of dissimilarity) of
the z value between the two observations, which is also the whole
variance of z value for oneobservation at the given separation distance
h, referred to as spatial variance here. The distance (h) and spatial
variance (γ(h)) for all the data pairs are generated by the Eqs. (2) and
(3). Then, the average values of spatial variance for each distance
interval are calculated to plot the averaged spatial variance versus
distance. The fitting of variogramswere determined using GS+ Version
10 (Gamma Design Software) by both minimizing the residual sum of
squares (RSS) andmaximizing the leave-one-out cross-validation result
(see below). The variogram enables us to compute the spatial
covariance (SCV) matrices for any possible separation vector. The
SCV at a distance (h) is calculated by C(h)= C(0) − γ(h), where C(0) is
the covariance at zero distance representing the global variance of the
data points under consideration (the plateau of the variogram). The
approach aims to generate the prediction that has minimized
estimation error (error variance) which is generated according to the
expression:

σ2
u = E zu

* � zu
� �2
h i

=
X

n

i= 1

X

n

j = 1

ωiωjCi,j � 2
X

n

i = 1

ωiCi,u +Cu,u ð4Þ

where zu
* is the predictionvaluewhile zu is the true but unknownvalue,

Ci,j and Ci,u are SCV between data points i and j, and data points i and u,
respectively, and Cu,u is the SCV within location u. ωi is the weight for
data point i. The SCV is obtained from the above molecular variogram
analysis and the weight (ωi) solved from Eq. (4) is used for following
prediction. To ensure an unbiased result, the sum of weight is set as
one:

X

n

i = 1

ωi = 1 ð5Þ

Equations (4) and (5) not only solved the set of weights associated
with input observations, but also provide the minimized “molecular
variance” at location u which can be expressed as:

σ2
u =Cu,u �

X

n

i= 1

ωiCi,u +μ

 !

ð6Þ

where Cu,u is the SCVwithin location u,ωi is the weight for data point i,
and Ci,u are SCV between data points i and u. μ is the Lagrange Para-
meter that is used to convert the constrainedminimization problem in
Eq. (6) into an unconstrained one. The resulting minimized molecular

variance assessing the prediction uncertainty presents the confidence
level of the prediction. With the solved weights, we can calculate the
prediction of all unknown values to generate the complete fitness
landscape by the equation:

zu
* =
X

n

i= 1

ωizi ð7Þ

where zu
* is the prediction value for the unknowndata point u,ωi is the

weight for the known data point, and zi is the measured value for data
point i. Leave-one-out cross-validation (LOOCV) is used to validate the
computational model because of small sample size modeling140. In the
LOOCV, we remove each data point, one at a time and use the rest of
the data points to predict the missing value. We repeat the prediction
for all data points and compare the prediction results to themeasured
value to generate the Pearson’s r value and its associated P value
(ANOVA test performed in Originpro version 2020b (OriginLab)).

Defining the high-confidence prediction using probabilistic
clustering
Each prediction on the phenotype landscape is associated with a GP-
generated variance to indicate the prediction confidence. To separate
the high-confidence vs low-confidence predictions in the GP-
generated phenotype landscape, we fit a Gaussian mixture model
with two components over the GP-generated variance by using the
mclust package (V.5.4.10) in R. Gaussian mixture model is a probabil-
istic clustering tool that not only separates the predictions with low
variance vs high variance, but also outputs the probability distribu-
tions for them.Weuse themeanof thedistribution for the lowvariance
as a cutoff and define the predictions with a lower variance than the
mean of the distribution as high-confidence prediction. Themean and
the standard deviation of the distribution for the low variance (i.e.,
high confidence) are illustrated as contours in the phenotype
landscape.

Inverse varianceweighting (IVW) to build the residue-by-residue
phenotype barcode
Phenotype landscapes built based on a sparse collection of input
variantsmap the full range of values describing function (based on the
y- and z axismetrics) for the entire polypeptide sequence on a residue-
by-residue basis (x axis). To get an averaged value of predicted phe-
notype for each residue, we use the reciprocal of GP-generated var-
iance for the high-confidence predictions as weights to aggregate the
phenotype values by using the following equation:

ẑ =

P

i
zi
σ2
i

P

i
1
σ2
i

ð7Þ

where ẑ is theweightedmean value for each residue, zi is the predicted
phenotype value at z axis for every value on the y axis, σ2

i is the GP-
generated variance for each prediction. We repeat this process for all
the residues. The IVW averaged mean values for all the residues then
aremapped as barcodes ormappedonAAT structures (PDB:3NE467 for
AAT monomer, PDB:2D2676 for the AAT-elastase complex and
PDB:3T1P64 for polymer). All the atomic resolution structure presenta-
tions were produced with the software of PyMOL.

As Ordinary Kriging used in the above process does not quantify
the uncertainty in the model parameters, we also used Bayesian Kri-
ging to take account for the error introduced by the estimation of the
variogram model. Specifically, we used the bayesGeostatExtact()
function in the spBayes package59–62. We found that the phenotype
landscape predictions generated by Ordinary Kriging were highly
correlated with those generated by Bayesian Kriging (Supplementary
Fig. 11a, Pearson’s r =0.99). The uncertainty values assessed by
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BayesianKriging are generally larger than those generated byOrdinary
Kriging (Supplementary Fig. 11b), but they are also highly correlated
(Supplementary Fig. 11b, Pearson’s r =0.98). The resulting landscapes
between Ordinary Kriging and Bayesian Kriging are almost identical
(Supplementary Fig. 11c, d), with minor differences observed for the
uncertainty (Supplementary Fig. 11c, d, contour lines, Supplementary
Fig. 11e). After the IVW, the weighted average function value for each
residue is again highly correlated (Supplementary Fig. 11f, Pearson’s
r =0.98), which generates almost identical functional structures
(Supplementary Fig. 11g). As Bayesian Kriging is much more compu-
tationally expensive than Ordinary Kriging, we used Ordinary Kriging
in this study, but these results suggest that more advanced techniques
can be applied to VSP to understand the sequence-to-function-to-
structure relationships.

Statistical analyses
Experimental data showed as the mean ± SD from three or more
than three independent experiments. The differences between
two independent groups were analyzed using Student’s t test. A P
value < 0.05 was considered statistically significant. The P value
of the Pearson’s r value is performed using ANOVA test. The null
hypothesis for the P value of the Pearson correlation is that the
correlation coefficient is not significantly different from 0. The P
value represents the probability that the correlation occurred by
chance. We used P < 0.05 to reject the null hypothesis and con-
clude there is a significant Pearson correlation. To compare the
Pearson’s correlation coefficients, we used Fisher
Z-transformation to convert the Pearson’s correlation coefficients
into approximate normally distributed variables. We then con-
ducted a hypothesis test with a null hypothesis where the trans-
formed coefficients are equal. We used P < 0.05 to reject the null
hypothesis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source datasets for each figure are provided in the Source Data file.
Due to large data size, source data for Figs. 3c, d and 4a and Supple-
mentary Figs. 7c, d, 8e, f, and 11 are included in the Mendeley Data
(https://doi.org/10.17632/nt59rwz6r6.1). PDB files used in this study
include 3NE4, 2D26 and 3T1P. Source data are provided with
this paper.

Code availability
The input data, R-code scripts, and output files for the GP-based ana-
lysis have been deposited in the public Mendeley database with
https://doi.org/10.17632/nt59rwz6r6.1. The files are under CC BY 4.0
license.
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