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Dynamics of collective cooperation under
personalised strategy updates

Yao Meng 1, Sean P. Cornelius2, Yang-Yu Liu 3,4 & Aming Li 1,5

Collective cooperation is essential for many social and biological systems,
yet understanding how it evolves remains a challenge. Previous investigations
report that the ubiquitous heterogeneous individual connections hinder
cooperation by assuming individuals update strategies at identical rates.
Here we develop a general framework by allowing individuals to update stra-
tegies at personalised rates, and provide the precise mathematical condition
under which universal cooperation is favoured. Combining analytical and
numerical calculations on synthetic and empirical networks, we find that when
individuals’ update rates vary inversely with their number of connections,
heterogeneous connections actually outperform homogeneous ones in pro-
moting cooperation. This surprising property undercuts the conventional
wisdom that heterogeneous structure is generally antagonistic to cooperation
and, further helps develop an efficient algorithm OptUpRat to optimise col-
lective cooperation by designing individuals’ update rates in any population
structure. Our findings provide a unifying framework to understand the
interplay between structural heterogeneity, behavioural rhythms, and
cooperation.

Cooperative behaviour—in which individuals pay a cost to confer a
benefit to others—is widely and deeply embedded in human and ani-
mal societies alike, and has attracted great research interests in
studying the underlying mechanisms of favouring the emergence of
cooperation1–15. Under the prominent metaphor of the prisoner’s
dilemma16, without additional mechanisms including direct17,18 or
indirect reciprocity19–22, and punishment23,24, unstructured populations
—wherein everyone interacts with everyone else—are known to leave
no opportunity for the survival of cooperators25,26. Thus in recent
decades, researchers have been exploring evolutionary game dynam-
ics in structured populations, where who interacts with whom is
determined by a network or population structure, with links repre-
senting interactions between different individuals (nodes)4–6,27–30. The
central question is: which population structures promote cooperation,
and which hinder it?

In homogeneous networks—where all individuals basically
have similar numbers of neighbours—a well-known finding is
that cooperation is favoured if the ratio between the benefit (b)
provided by a cooperator and the associated cost paid (c)
exceeds the average number of neighbours 〈k〉, namely the simple
rule4b/c > 〈k〉. Similar results can be found in the more general
case: Allen et al. analytically calculated the critical benefit-to-cost
ratio C*, above which cooperation is promoted for an arbitrary
network topology5. Apart from confirming C* = 〈k〉 for homo-
geneous structures, this result informs a higher value of C* for
heterogeneous structures31, wherein different individuals may
have wildly different numbers of neighbours. Accordingly,
although heterogeneous structures like scale-free networks32 are
ubiquitous in real systems, they appear to hinder the emergence
of cooperation compared to homogeneous structures31.
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Despite remarkable advances in our understanding of the emer-
gence of cooperation, many studies have confined that individuals
update their strategy synchronously6,33–35—that all individuals update
at exactly the same time. However, perfect synchronism is absent from
the real world, and it has been shown that asynchronous updating—
individuals are allowed to update at different time—can significantly
alter the evolution of cooperation36–40. A typical asynchronous update
rule is the death-birth update, where only a single individual is selected
uniformly at random to die and their neighbours spread their strate-
gies by competing for the vacant position at each time step4,5. Alter-
natively, individuals may change their strategies by mimicking that of
their neighbours (imitation4, pairwise comparison12,41). All these
important canonical updating rules have been based on a key
assumption: that all individuals update their strategies at the
same rate.

In reality, humans behave in more sophisticated ways in decision-
making than simple identical updating. An empirical study on evolu-
tionary games uncovered that individuals are observed to have many
different possibilities for strategy updating in human behavioural
experiments42. Indeed, both cognitive processing speed and person-
ality traits can have an impact on the time of individual decision-
making. Previous empirical studies have found that individuals vary
significantly in cognitive processing speed43–45. For example, indivi-
duals with greater cognitive abilities have high information processing
speed and display a short reaction time. On the other hand, many
personality traits are also evidenced to correlate with the decision-
making speed46. Taken together, the previous assumption of identical
update rates for all individuals is too ideal to portray the update event
and heterogeneous individual interaction rhythms in realistic
scenarios47,48. This prompts us to askhow this dynamical heterogeneity
might interact with structural heterogeneity to alter the evolution of
cooperation.

Here we investigate evolutionary game dynamics under non-
identical rates of strategy updating. Specifically, we consider the sce-
nario where individuals are allowed to update their strategies at
diverse individual rates. We find that non-uniform rates of strategy
updating can have profound effects on the emergence of cooperation,
especially on heterogeneous structures, and reveal a significant
decrease in C* necessary to promote cooperation. Moreover, we
develop an efficient algorithmOptUpRat tominimise the threshold for
the emergence of cooperation by tuning the update rate of each
individual on any network.

Results
We consider evolutionary game dynamics on a structured population
of N players, whose interactions are represented by an undirected,
unweighted network. At any given time, the state of each node (player)
is characterised by a strategy of either cooperation (C) or defection (D)
(Fig. 1a). In each round of the game, every node i plays the game
pairwise with its immediate ki neighbours. Specifically, cooperators
pay a cost c to provide a benefit b to each of their neighbours,
while defectors pay nothing, and thus provide no benefit. In this
way, each node i gains an average payoff fi, corresponding to the
average benefits received (from neighbouring cooperators) minus
its cost.

Traditionally, individuals are assumed to update their strategies
following independent Poisson processes with identical rates. Here we
depart from this practice: allowing each individual i to update its
strategywith personalised rate λi (Fig. 1b).When an individual is chosen
for an update, it does so by copying the strategy of one of its neigh-
bours j, with probability proportional to the fitness of j, generally
defined as Fj = 1 + δfj, where δ >0 captures the intensity of selection4,5

(see Methods). For strong selection intensity, cooperation is dis-
favoured since the initial cooperator will not be able to survive
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Fig. 1 | Illustration of the evolutionary process with identical versus persona-
lised rates of strategy update. The interactions between four individuals are
depicted in the example network structure in a, where individuals play games with
their neighbours and gain the corresponding payoffs. The evolutionary process
starts from a population of full defectors (red), and a cooperator (blue) invades the
population via the top site. b The update event for each individual occurs as a
Poisson process. We indicate on the timeline when each individual is chosen to
update its strategy. The colour of the dot indicates the strategy after the update,

which may be unchanged. When individuals' update rates are identical, they will
have approximately the same number of strategy updates (numbers in orange, left
panel), while for non-identical update rates, individuals with higher rates will
update their strategies more often (right panel). The update rates for each indivi-
dual in the right panel are λ1 = 1, λ2 = 1.25, λ3 = 1.75 and λ4 = 2, respectively. The
change in the fraction of cooperation throughout the game is illustrated in c, and
the evolutionary process ends when the population reaches a state of either full
defection (left panel) or full cooperation (right panel).
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or spread its strategy. Thus, to systematically uncover the effects of
heterogeneous update rates on the fate of cooperators compared
to existing findings, here we focus on the canonical case of weak
selection.

To quantify the ability of cooperation to proliferate, we initialise
our simulations with a single cooperator placed uniformly at random
in a population among N − 1 defectors. The evolutionary game
endswhen a statewith either all cooperators or all defectors is reached
(Fig. 1c). We define the fixation probability of cooperation (ρC) as
the probability of reaching the state of full cooperation over many
realisations of this process.We can analogously define a probability ρD
of reaching a full-defection state starting from a single defector plan-
ted of N − 1 cooperators. Our interest in this study is the condition
under which cooperation is favoured to replace defection than
vice versa4,5,26, namely ρC > ρD. This condition is equivalent to ρC > 1/N
(Supplementary Note 1), namely that selection favours the emergence
of cooperation relative to the neutral drift (δ = 0), in which neither
cooperation nor defection is favoured (ρC = ρD = 1/N).

Evolutionary game dynamics on complex networks
First, we explore how the heterogeneous strategy updating affects the
fate of cooperators on four commonly-studied population structures:
lattice, small-world, Erdös-Rényi, and scale-free networks (Fig. 2).
Under the traditional scenario of identical update rates (λi = 1 for all i),
scale-free networks demand the largest critical benefit-to-cost ratio C*,
above which cooperation is favoured among all the four structures,
and the lattice structure the smallest (Fig. 2a), consistent with previous
findings4,5. But surprisingly, when a node’s update rate varies inversely
with its number of neighbours (λi = 1/ki), we find that this trend is
reversed (Fig. 2b). Here, the scale-free network becomes the most
amenable to cooperation, and lattice the least. Interestingly, we find
that heterogeneous update rates can even improve upon the canonical
threshold b/c > 〈k〉 (namely, C* = 〈k〉) for homogeneous populations4,
allowing cooperation to emerge even when b/c < 〈k〉 (namely, C* < 〈k〉).
Furthermore, we find that this pattern is strengthened when the
update rate is inversely proportional to higher powers of ki (Fig. 2d). In
contrast, when λi is positively related to ki, the ordering of C* over
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Fig. 2 | Effect of heterogeneous strategy update rates on the emergence of
cooperation.We show the fixation probability of cooperation (ρC) as a function of
the benefit-to-cost ratio (b/c) over different settings of the update rate (λi) of
individual i, namely identical (λi = 1 for every individual in a) and heterogeneous
(λi = 1/ki in b where ki is the number of neighbours of i, λi = ki in c) on lattice, Erdös-
Rényi65 (ER), small-world66 (SW) and scale-free32 (SF) networks, respectively. The
critical benefit-to-cost ratio C* above which the cooperation is favoured for each
network occurs when the corresponding curve intersects the horizontal line
representing the neutral-drift case (ρC = 1/N). C* for the scale-free case (purple) is
marked. We demonstrate that the trend of C* reverses when the update rate varies

inversely with ki in b, presenting the advantage of SF networks on favouring
cooperation. d The ordering of C* for the four networks considered holds with
λi = 1=k

γ
i (γ = 1, 2, 3, 4). Herewe also show thatSFnetworks are themost amenable to

cooperation at non-identical update rates compared with other networks.
e Simulation results on C* in a–d are in good agreement with our theoretical cal-
culations shown in equation (1). Numerical values of ρC are obtained from the
fraction of simulations in which the population reaches full cooperation out of 107

independent realisations on networks of 98 nodes for lattice and 100 for other
networkswith an average degree 〈k〉 = 6, and δ =0.01. Source data are provided as a
Source Data file.
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different structures matches the identical-rate case, but with the
inhibition of cooperation fixation by heterogeneous networks ampli-
fied (Fig. 2c). We show the robustness of our results over different
population sizes, average degrees and selection intensities in Supple-
mentary Figs. 1–3.

We further shed light on our numerical findings by deriving a
closed-form expression for the critical benefit-to-cost ratio C* as a
function of the network structure (see Methods)

C* =

P
i,jkip

ð2Þ
ij ηijP

i,jkip
ð3Þ
ij ηij �

P
i,jkipijηij

: ð1Þ

Here, ki =∑jeij defines the number of neighbours (degree) of individual
i, and eij= eji = 1 indicates that there is an edge between nodes i and j
(eij= eji =0 otherwise). The probability of a 1-step (n-step) randomwalk
from i to j is denoted by pij (p

ðnÞ
ij ), and ηij is the coalescence time49—the

expected time for two random walks starting from nodes i and j to
meet at a common node. As shown in Fig. 2e, all numerical results in
Fig. 2a-d are in good agreement with the theoretical prediction of
equation (1).

Role of network hubs
To intuitively understand why heterogeneous update rates can
improve the fixation of cooperation in heterogeneous networks, we
first consider how the evolutionary dynamics play out on a simple
double-star structure (Fig. 3). When the fixation of cooperation occurs
in this highly heterogeneous structure, it usually does so in four stages:
(I) occupation of one of the hubs; (II) formation of a stable cluster of
cooperators among that hub and its neighbours; (III) occupationof the
other hub; and finally (IV) spread to the remaining nodes. As such, the
ultimate triumph of cooperators can be thwarted if a hub imitates
defection from even one of its (many) neighbours before stages (II)
and (IV) are complete (Fig. 3c). There are ample opportunities for this
to occur under the traditional setting of identical update rates (λi = 1),
as illustrated in Fig. 3b. When λi = 1/ki however (Fig. 3a), hubs update
relatively infrequently. As such, once a hub becomes a cooperator, it is
effectively locked-in, giving time for its strategy to spread to the hub’s

neighbours. Note that this lock-in effect can facilitate the formation of
cooperative clusters to have higher payoffs to resist the invasion of
defectors, yet defectors receive a lower payoff after driving their
neighbours to defectors and further reduce their survival chances. By
the same logic, the preferential updating of hubs (λi = ki) usually leads
to the extinction of cooperation, as the formation of stable clusters of
cooperators and the spread of cooperation is even harder than the
traditional scenario of identical updating (Fig. 3c).

In Fig. 4, we illustrate the fundamental mechanism explaining
why infrequent updates of hubs can facilitate cooperation. If an
individual (grey node in Fig. 4a) decides to update its strategy, it
will imitate the strategy of its neighbours according to their
payoffs. The neighbouring cooperator obtains an average payoff
PC = bqC∣C(〈k〉 − 1)/〈k〉 − c and the neighbouring defector obtains
PD = bqC∣D(〈k〉 − 1)/〈k〉, where qC∣C (qC∣D) represents the conditional
probability to find a cooperative neighbour for a given coopera-
tor (defector). The contribution to the neighbouring cooperator
and defector from the updating individual is excluded since they
are equal. Thus the cooperator is favoured compared to the
defector to disperse its strategy if PC > PD, namely

bðqCjC � qCjDÞðhki � 1Þ=hki � c >0, ð2Þ

with Q = (qC∣C − qC∣D)(〈k〉 − 1) capturing the average number of coop-
erative neighbours that a cooperator hasmore than a defector. For the
canonical setting with identical update rates (λi = 1), we know Q = 1
according to pair approximation (Supplementary Note 2), namely a
cooperator has on average one more cooperative neighbour than a
defector (Fig. 4a). This leads to the conclusion that cooperation is
favoured when b/c > 〈k〉 (namely, C* = 〈k〉), which also degenerates to
the simple rule4 for homogeneous networks where ki = 〈k〉.

Next we show how heterogeneous update rate alters the local
dispersal of cooperation. When λi = 1/ki, we find that Q > 1 (Supple-
mentary Note 2), indicating that the number of cooperative neigh-
bours of a cooperator exceeds that of a defector by more than one
(Fig. 4b). This implies that the net payoff of cooperators relative to
defectors is further increased, giving cooperators more advantage in
competition and dispersal. Therefore, the critical ratio for λi = 1/ki is
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Fig. 3 | Illustration of the role of hubs in the evolution of cooperation on a
double-star structure. a The hubs, two centres of the double-star structure for
example, have low update rates when λi = 1/ki (ki is the number of connections for
eachnode),which facilitates the formationof local clusterof cooperation (bluedot,
Stage II) once it is occupied by a cooperator (Stage I). Likewise, once the left hub
spreads cooperation to the right hub (Stage III), the remaining nodes are quickly

driven to cooperators (Stage IV). bWhen the update rates are identical (λi = 1), the
hubs have many opportunities to change their strategy to defection before all
neighbours become cooperators (Stage IV), making the fixation of cooperation less
likely. c The hub switches its strategy quite frequently when λi = ki, which makes it
hard to form even the left C-cluster (Stage II), to say nothing of spreading coop-
eration to the right centre.
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smaller than the average degree 〈k〉 for a wide range of heterogeneous
networks (C* < 〈k〉). In contrast, when λi = ki, the hubs update frequently
and Q < 1 (Supplementary Note 2), indicating that on average, the
number of cooperative neighbours of a cooperator exceeds that of a
defector by less than one (Fig. 4c). This leads to a larger critical ratio
(C* > 〈k〉) for promoting cooperation compared to the scenario with
identical update rates shown in Fig. 4a.

We have numerically confirmed the above mechanism on larger
scale-free networks. Figure 4d–f show the state of the hub, and the
fractionof cooperators among thehub’s neighbours over the courseof
the game dynamics. For λi = 1/ki, we observe long-lasting periods of
cooperation on the hub (Fig. 4e), with infrequent strategy switches
from cooperation to defection, which results in the highest qC∣C for the
hub (Fig. 4g) and in turn the highest qC∣C − qC∣D over all nodes with
different degrees compared toother settings (Fig. 4h). In contrast, fast-
updating hubs (λi = ki) have the lowest average fraction of cooperators
among their neighbours (Fig. 4g), leading to a low fraction of coop-
erative neighbours for the cooperators relative to defectors over the
whole network (Fig. 4h). This confirms that degree-inverse update
rates promote cooperation on heterogeneous networks because a hub
with a low update rate is more conducive to driving its neighbours to
cooperation, which further enhances the local dispersal of coopera-
tion among nodes with different degrees.

Furthermore, we find that infrequent updates of hubs can also
bring long-termadvantages to individuals.We could even consider the
general evolutionary process with mutation, where a mutant appears
with probability uwhen the population reaches full cooperation or full
defection. Each individual accumulates long-term payoffs during a
long period of time. Even with a high mutation rate (u = 1), we show
that the inverse relationship between update rates and nodes’ degrees
results in a higher long-term payoff for individuals than identical rates
(λi = 1) (Fig. 5a). In contrast, frequent updates of hubs (λi = ki) lead to a
lower payoff than the identical settings (Fig. 5a). This result is also
robust over different mutation rates and selection intensities (Fig. 5b,
c). Moreover, when the mutation is rare, the population is almost
always in full cooperation or full defection, and the time spent in full
cooperation (defection) is proportional to ρC (ρD)

50. Therefore, the
settings of update rates which promote cooperation further lead to a
higher long-term average payoff, since individuals get b − c in full
cooperation but 0 in full defection.

Theoretical analyses
In addition to the role of hubs that we uncover for the three specific
update rate settings (λi = 1/ki, λi = 1, λi = ki), can we derive the general
rule for promoting cooperation that also applies to other distributions
of update rates? We next explore how different distributions of λi
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vidual (grey dot) selected for strategy update under different update rates λi. Since
behaviour dispersal occurs in the neighbourhood, the cooperator obtains on
average bQ/〈k〉 − cmorepayoff than thedefector (equation (2)), and the cooperator
is favoured when the above expression is positive. a For identical updating (λi = 1),
the cooperator has onemore cooperative neighbour than the defector, therefore it
receives b/〈k〉more benefit than the defector at a cost of c. bWhen λi = 1/ki, the net
benefit of the cooperator relative to thedefector exceedsb/〈k〉because the fraction
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fast strategy update of hubs (λi = ki) reduces the number of cooperative neighbours

of the cooperator, which exceeds that of the defector by less than one. This lowers
the benefit of the cooperator and reduces the chance to win the empty site. We
further compare the state of the hub (grey lines) and the fraction of cooperation
among its neighbours (blue lines) of a scale-free network with different settings of
update rates (d–f). Generally, the hub imitates one of its cooperative neighbours
and keeps cooperation for several rounds (light blue shaded region) before
switching to defection (light red shaded region) in d. Statistically, we count the
fraction of cooperators in the neighbourhood of a cooperative hub (qC∣C for the
hub) throughout evolutionary process in g, and qC∣C − qC∣D for nodes with different
degrees in h. Numerical calculations confirm the mechanism we present in a–c.
Here, we use the same network parameters as Fig. 2. Source data are provided as a
Source Data file.
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affectC* over five different synthetic networks: lattice, randomregular,
Erdös-Rényi, small-world, and scale-free. For a given network struc-
ture, we theoretically predict C* via equation (1) for uniform, normal,
exponential and power-law distributions of the update rate. We find
that the critical threshold of a typical homogeneous network—such as
a lattice or random regular network—is almost unaffected by the
choice of update rate distribution (Fig. 6a, Supplementary Fig. 4). In
contrast, heterogeneous structures are quite sensitive, with scale-free
networks presenting the most drastic variations in C* among the dif-
ferent update-rate distributions we consider. This malleability of C* in
heterogeneous networks suggests the possibility of deliberately tun-
ing the update rates to lower the barrier for the emergence of coop-
eration in a particular network. But to put this into practice, we must
first overcome a computational hurdle.

In order to calculate C* using equation (1), one needs to solve a
system of N(N − 1)/2 linear equations for the recurrence relations
between the ηij (equation (7) in Methods). Unfortunately, this requires
an overall complexity of OðN6Þ, rendering the problem intractable for
large networks. To circumvent this, we offer an efficient approxima-
tion C* as

C*≈
Nhki2ζ=hk2i � 1 +Δλð1Þ +Δeηn

Nhkiζ=hk2i � 1 +Δλð2Þ +Δeηd

: ð3Þ

This expression obviates the need to solve large systems of linear

equations and reduces the computational complexity to OðN3Þ. Here
〈k2〉 is the second moment of the degree distribution. We have

ζ =
P

i,j
kikjΛ

NK2ðλi + λj Þ
, where Λ =∑iλi defines the total rate of update events

andK =∑iki is the summationof all nodes’degrees. Finally,Δλð1Þ ,Δλð2Þ ,Δeηn

and Δeηd
are constants related to the heterogeneity of update rates and

coalescence times, the expressions for which are given in Methods.
When the update rates are identical, we have Δλð1Þ =Δλð2Þ =Δeηn

=Δeηd
=0,

and equation (3) recovers the previous results4,31.

Figure 6b compares the value of C* predicted by the approxima-
tion in equation (3) with that of numerical simulation on two empirical
social networks51,52. We see that our approximation is remarkably
accurate in both networks, regardless of the distribution of the update
rates. Moreover, equation (3) offers intuition behind our previous
observation that homogeneous structures are robust to different
update rates (Fig. 6a). The high symmetry present in these networks
means that heterogeneous update rates affect only a limited number

of nodes. For suchnetworks, we haveΔeηn
≈Δeηd

≈0,meaning thatC*→ 〈k〉

in the limit of large N. This coincides with the classical result4 (C* = 〈k〉)
regardless of the distribution of update rates.

A simple condition for the emergence of cooperation
Starting from equation (3) (see Methods), we have the critical benefit-
to-cost ratio for large heterogeneous networks

C*≈hki+
hki2hk2iΔeηð1Þ

hki3ζ + ðhki3 � hkihk2i � hk2iÞΔeηð1Þ , ð4Þ

where 〈k〉 is the average degree and Δeηð1Þ≈ η
K2

P
i<jðki � kjÞðλi � λjÞ

eij=ðλi + λjÞ. Note thatΔeηð1Þ<0when any pair of nodes i and j satisfies the

rule (ki − kj)(λi − λj) < 0. When the update rates are identical, we have
Δeηð1Þ =0 and hence C* ≈ 〈k〉 as expected. In contrast, C* is smaller (lar-

ger) than 〈k〉when Δeηð1Þ<0 (Δeηð1Þ>0) (Supplementary Note 3.3). Table 1

summarises the values of C* predicted by equation (4) for the combi-
nations of network structure/update-rate settings.

Taken together, we have theoretically motivated an efficient rule
of thumb for lowering the threshold for the emergence of cooperation
on large heterogeneous structures. Put simply, the order of any pair of
nodes’ update rates (for example, λi > λj) should be reversed from the
order of the nodes’ degrees (for example, ki < kj). That is, the one with
larger degree should have smaller update rates and vice versa, as is
demonstrated in Fig. 6c. In other words, the hubs in networks should
update infrequently compared to their neighbours with fewer con-
nections to promote the formation of cooperative clusters, which is
consistent with the underlying mechanisms shown in Figs. 3 and 4. A
simple but general realisation of this rule is λi = 1=k

γ
i ðγ >0Þ which we

study numerically in Fig. 2d for different values of γ. This rule can
achieve a lower critical ratio C* than identical update rates (γ =0) on
both synthetic heterogeneous (Fig. 2b) and empirical networks (γ = 1)
(Fig. 6b and Supplementary Table 1 and Supplementary Figs. 6 and 7).
Meanwhile, the contrary configuration of λi = k

γ
i leads to increases in C*

on heterogeneous networks (Figs. 2c and 6b and Supplementary
Figs. 8 and 9).

Moreover, we show that our conclusion can also be applied to
other social dilemmas (Supplementary Note 4). For the general two-
player game, a cooperator receives rewards R from mutual coopera-
tion, while defectors obtain punishment P from mutual defection. A
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data are provided as a Source Data file.
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defector attempting to exploit a cooperator obtains T and leaves S to
its opponent cooperator. We show that cooperation is favoured over
defection when R > P + (T − S)(C* − 1)/(C* + 1), where a lower threshold
for R can be achieved with a lower C*. Note that here C* is exactly the
critical threshold under the donation game. This indicates our con-
clusion applies to other social dilemmas, such as the general prisoner’s
dilemma (T >R > P > S)16, snowdrift game (T >R > S > P)3 and stag hunt
game (R > T ≥ P > S)53.

The optimal update rate on any network
As an engineering application of designing unmanned and autono-
mous systems, can we adopt the simple heuristic to favour collective
cooperation among agents? Specifically, canwe find the optimal set of
λi for a given networked system? To answer this question, we develop
OptUpRat, an optimisation algorithm, to search for a set of λi that
minimises C* (See Box 1, Supplementary Note 5 and Supplementary
Fig. 10). Our algorithm OptUpRat is based on RMSProp (root mean
square propagation), which is an optimisation algorithm designed for
training neural networks54. Note that the settings of the learning rate ϵ,
decay rate ρ and constant δopt parameters are the same as those in
RMSprop—the learning rate ϵ controls the step size of the iteration; ρ
controls the decay rate of the moving average; and δopt is a small
constant added to the denominator to prevent division by zero (see
the values of those parameters in Methods). To transform the con-
strained optimisation with λi >0 for each individual i into an uncon-
strained optimisation problem, we define λi = expðθiÞ to establish a

function mapping from θi to C*. Then the optimal update rate and the
correspondingC* can be obtained via iterative gradient descent, where
the gradient is computed by solving a system of N(N − 1)/2 linear
equations after taking the derivative with respect to θi on both sides of
equation (7) in Methods.

Consistent with our rule, Fig. 7a shows the scale-free network is
more flexible and attain a much smaller threshold at its optimal rate
than the lattice. Moreover, the update rates of higher-degree nodes
tend to decrease during the optimisation process, while those of
smaller-degree nodes increase (Fig. 7b and Supplementary Fig. 11).
Interestingly, we find that even on homogeneous structures such like
lattices, a policy of identical update rates is not the best choice for
promoting cooperation. Indeed, the final update rates deviate sig-
nificantly from the initial conditions (Fig. 7c and Supplementary
Fig. 12). Figure 7d shows that the optimal update rates for different
network structures are consistent with our rules shown in Fig. 6c—
namely that a node i’s update rate λi should vary inversely with its
degree ki.

Discussion
Our findings reconcile the past conflicting results on how hetero-
geneous networks affect the evolution of cooperation. Studies that
initialise evolutionary game dynamics with an equal number of coop-
erators and defectors have found that scale-free networks actually
outperform homogeneous networks in promoting the evolution of
cooperation, asmeasured by the average fraction of cooperators6. But
from the perspective of fixation probability, heterogeneous structures
impose a higher benefit-to-cost threshold for a single cooperator to
take over a population of defectors, at least when all update rates are
identical4,5,31. This predicts that heterogeneous network structures,
despite their ubiquity in physical and social systems, tend tohinder the
emergence of collective behaviour. By relaxing this assumption and
allowing nodes to update their strategies at non-identical rates, we
have shown that scale-free networks can in fact facilitate the fixationof
cooperation. As such, degree-heterogeneous networks orchestrated
by personalised update rates can be unambiguously conducive to
cooperation, provided they are doubly heterogeneous—that is, also
heterogeneous in update rate. Taken together, we argue that perso-
nalised interaction dynamics and network structure combine to shape
the collective dynamics.

From the perspective of microscopic mechanism, we unveil that
different update rules render the conflict results. Regarding the fre-
quency of cooperators, previous canonical framework and update rule

Table 1 | Critical benefit-to-cost ratio C* for the fixation of
cooperation under different update rates and network
structures

Network Strategy update rate (λi) Critical ratio (C*)

Homogeneous Identical (λi = 1) or
heterogeneous

≈ 〈k〉

Heterogeneous Identical (λi = 1) ≈ 〈k〉

Heterogeneous,
(ki − kj)(λi − λj) > 0

> 〈k〉

Heterogeneous,
(ki − kj)(λi − λj) < 0

< 〈k〉

For homogeneous networks, C* is always equal to the average degree 〈k〉, irrespective of iden-
tical and heterogeneous update rates (Fig. 6a for numerical calculations). While heterogeneous
networks can present quantitatively different values ofC* under different update rates (equation
(4)), being determined by the relationship between ki and kj, λi and λj of any pair of nodes i and j
(Fig. 2b and 2c and 6c). λi is the update rate for individual i with the number of neighbours ki.
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naturally lead to infrequent strategy switching (Supplementary
Note 6)6,33,34. This facilitates the formation of cooperative clusters and
leads to a high fraction of cooperators on heterogeneous networks.
Previous findings are consistent with the underlying microscopic
mechanism in our study, namely infrequent updates of hubs facilitate
the emergence of cooperation. Indeed, by applying the canonical

death-birth update with identical rates in the framework analysing the
frequency of cooperators6,33,34, we find that heterogeneous networks
impede the average frequency of cooperators compared to homo-
geneous scenarios (Supplementary Fig. 13).

Furthermore, we compare our results with experimental studies
on cooperation in heterogeneous networks. Consistent with our

BOX 1:

optimisation algorithm OptUpRat

Input: Adjacent matrix E of any network
Output: the optimal rate λi for each i and the corresponding critical ratio C*

1. Define θ= θ1,θ2,:::,θN
� �T, the update rate λi = exp(θi)

2. Initialise θ =0, learning rate ϵ = 1, decay rate ρ = 0.9, constant δopt = 10
−6, squared gradients r =0

3. ki  
P

jEði,jÞ,pij  Eði,jÞ=ki,p
ðnÞ
ij  

P
kp
ðn�1Þ
ik pkj for n = 2, 3 and any i, j

4. Compute ∂C*

∂ηjk
for all j, k according to equation (1)

5. while 1
N

P
ijΔθij>10�6

6. λi  expðθiÞ for all i
7. Compute ηij (i ≠ j) by solving the linear system in equation (7)
8. ηii←0 for all i

9. C*  
P

i,j
kip
ð2Þ
ij ηijP

i,j
kip
ð3Þ
ij ηij�

P
i,j
kipijηij

according to equation (1)

10. fori← 1 to N
11. Take the derivative with respect to λi on both sides of equation (7)

12. Compute ∂ηjk

∂λi
(j ≠ k) by solving the system of N(N − 1)/2 linear equations

13. ∂ηjj
∂λi
 0 for all j

14. ∂λi
∂θi
 expðθiÞ

15. ∂C*

∂θi
 P

j,k
∂C*

∂ηjk

∂ηjk
∂λi

∂λi
∂θi

16. end for

17. g ∂C*

∂θ1
, ∂C

*

∂θ2
,:::, ∂C

*

∂θN

� �T
18. r←ρr + (1 −ρ)g⊙g
19. θ θ� ϵffiffiffiffiffiffiffiffiffiffiffi

δopt + r
p � g

20. end while
21. returnλi,C*
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theoretical findings, there is an insightful experimental study also
reporting that heterogeneous networks do not promote cooperation
in prisoner’s dilemmas55. In this behavioural experiment, a player’s
decisions to cooperate or defect are relevant to the level of coopera-
tion in their neighbourhoods, which renders the network irrelevant.
Therefore, the main difference between this experimental finding and
our study lies in theupdate rules. Specifically, players aremore likely to
imitate the strategy from neighbours with higher payoffs in our the-
oretical framework. To further uncover thebehaviouraldynamics from
the perspective of fixation probability, a promising future application
involves the design of human behavioural experiments starting from a
single cooperator and ending with full cooperation or defection.
Comparing the individual behavioural mode in experiments from
these two perspectives will facilitate the understanding of the emer-
gence of cooperation in realistic scenarios.

A natural extension of our findings is exploring the scenario with
multiple strategies56–58. In this way, the diverse strategy update
rhythms may couple multiple strategies with complex dynamics. In
addition, our findings may contribute to the study of network forma-
tion, elucidating the factors influencing group formation, such as
individuals’ propensity to establish connections with those who share
similar rhythms. Specifically, discovering the scenarios wherein indi-
viduals with similar update rates are allowed to construct a groupmay
provide valuable information regarding the optimal network config-
uration in the context of heterogeneity.

One promising direction for future research lies in evolu-
tionary dynamics on temporal networks. Time-varying network
structure is a recurring theme in social systems, encoding not
only who interacts with whom but with when (and how often)
these interactions happen59. It was recently discovered that tem-
poral networks generally enhance the evolution of cooperation
relative to comparable static networks12, yet the practical
scenarios easily trigger the heterogeneous time rhythm of strat-
egy updating. In real temporal networks, a node’s degree may
vary drastically even over short time periods47,48,60. This—in tan-
dem with other temporal effects such as burstiness and multi-
frequency interactions47,61—may lead to more exotic evolutionary
dynamics. By regarding a temporal network as a sequence of
static snapshots, our theory might be adopted to further
tailor individuals’ update rates in temporal evolutionary game
dynamics.

Methods
Evolutionary process
In each round of the game, individuals interact with their neighbours
and accumulate the payoffs accordingly. The payoff matrix of the
game is given by

C D
C

D

b� c �c
b 0

� �
:

The state of network at any given time can be encoded by a binary
vector x∈ {0, 1}N, where xi = 1 denotes that the player i chooses strat-
egy C, otherwise xi =0 indicates strategy D. Using this representation
of the network state x, i’s average payoff is fi(x) = − cxi + b∑jpijxj, where
pij = eij/ki indicates the probability of a single step random walk from
i to j on the network. For a node iwith update rate λi, the probability to
be chosen for a strategy update is λi/Λ, where Λ =∑iλi defines the total
rate of update events. It follows that at the end of each round, the

probability for a player j to transmit its strategy to i is rjiðxÞ= λi
Λ

eijFj ðxÞP
l
eil F l ðxÞ

,

where Fj(x) = 1 + δfj(x) indicates the fitness of individual j. Note that the
fixation probability does not change when the rate of strategy updates

for each individual is identical since the normalised update rates are
the same.

Fixation probability
As shown in the Supplementary Note 1, the fixation probability of
cooperation is derived by a first-order expression as the neutral fixa-
tion probability (1/N) plus a correction term due to weak selection,
namely

ρC =
1
N

+ δ
d
dδ

				
δ =0

bΔðxÞ
 ��
u

+O δ2
� �

, ð5Þ

where bΔðxÞ denotes the reproductive-value-weighted frequency
change of cooperation, which is given by

bΔðxÞ= X
i

ki

λi
P

l
kl
λl

X
j

xj � xi

� �
rjiðxÞ: ð6Þ

Here φ
� �

u indicates the summation of the expectation of φ with φ(1)
=φ(0)=0 under neutral drift through time step t =0 to infinity, namely
hφðxÞi�u =

P1
t =0

P
x2f0,1gNP

�
u XðtÞ=x½ �φðxÞ, where P�u XðtÞ=x½ � indicates

the neutral probability of the system reaching state x at time step t
starting from the initial state with a single uniformly selected coop-
erator in population withN − 1 defectors. Combining equations (5) and
(6), the fixation probability can be expressed as

ρC =
1
N

+
δ

Λ
P

i
ki
λi

�c
X
i,j

kip
ð2Þ
ij ηij +b

X
i,j

kip
ð3Þ
ij ηij �

X
i,j

kipijηij

 !" #
+O δ2
� �

,

where ηij = bx � xixj

D E�
u
, and x̂ =

P
iπixi represents the reproductive-

value-weighted frequency of cooperators, whereπi is the reproductive
value62–64 uniquely solved by Supplementary equation (2), quantifying
the expected contribution of site i to the future gene pool under
neutral drift. Here ηij satisfies the recurrence relation of

ηij =
Λ

Nðλi + λj Þ +
P

k
λi

λi + λj
pikηkj +

P
k

λj
λi + λj

pjkηki, i≠j

0, i= j

(
: ð7Þ

By letting ρC > 1/N, we obtain C* shown in equation (1).

Calculation of the critical ratio C*

We first define ηðnÞ =
P

i,jkip
ðnÞ
ij ηij=K , where K =∑iki is the summation of

all nodes’ degrees, then equation (1) can be rewritten as

C* =
ηð2Þ

ηð3Þ � ηð1Þ
:

From the recurrence relation of ηij in equation (7), we further derive
the recurrence relation of η(n) with

ηðnÞ =
X
i,j

ki

K
pðnÞij

Λ

Nðλi + λjÞ
+ eηðn+ 1Þ �

X
i

ki

K
pðnÞii η+

ii , ð8Þ

where eηðn+ 1Þ =
P

i,j,l
ki
K pðnÞij

2λj
λi + λj

pjlηil and η+
ii =

Λ
2Nλi

+
P

lpilηil .

By defining the difference ΔeηðnÞ : = eηðnÞ � ηðnÞ and using the
recurrence relation of equation (8), we obtain the calculation of C*

shown in equation (3) with mean-field approximation, with Δeηn
= �

Δeηð2Þ + K2P
i
k2
i
Δeηð1Þ and Δeηd

= � Δeηð2Þ � Δeηð3Þ + KNP
i
k2
i
Δeηð1Þ for simplification,

where Δλð1Þ =
P

i
ki
2K 1� Λ

Nλi

� �
+
P

i,j
ki
2K pij 1� 2Λ

Nðλi + λj Þ

� �
and Δλð2Þ =

P
i,j

ki
2K

Article https://doi.org/10.1038/s41467-024-47380-8

Nature Communications |         (2024) 15:3125 9



ðpij +p
ð2Þ
ij Þð1� 2Λ

Nðλi + λj ÞÞ. According to Supplementary Note 3, we further

have Δeηð2Þ≈NΔeηð1Þ=hki and Δeηð3Þ≈NΔeηð1Þ=hki2 for large networks, and

hence C* shown in equation (4) follows immediately.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided as a Source Data file. Data of empirical net-
works analysed in Fig. 6b are publicly available and can be found in the
corresponding references51,52. Source data are provided with
this paper.

Code availability
The codes are written using MathWorks MATLAB R2021a and Python
3.8.5. All source codes related to the work can be found at69 https://
github.com/yaomeng1/PersonalizedStrategyUpdates.
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