
Article https://doi.org/10.1038/s41467-024-47371-9

Accurately clustering biological sequences in
linear time by relatedness sorting

Erik Wright 1,2

Clustering biological sequences into similar groups is an increasingly impor-
tant task as the number of available sequences continues to grow exponen-
tially. Search-based approaches to clustering scale super-linearly with the
number of input sequences, making it impractical to cluster very large sets of
sequences. Approaches to clustering sequences in linear time currently lack
the accuracy of super-linear approaches. Here, I set out to develop and char-
acterize a strategy for clustering with linear time complexity that retains the
accuracy of less scalable approaches. The resulting algorithm, named Clus-
terize, sorts sequences by relatedness to linearize the clustering problem.
Clusterize produces clusterswith accuracy rivalingpopular programs (CD-HIT,
MMseqs2, and UCLUST) but exhibits linear asymptotic scalability. Clusterize
generates higher accuracy and oftentimesmuch larger clusters than Linclust, a
fast linear time clustering algorithm. I demonstrate the utility of Clusterize by
accurately solving different clustering problems involving millions of nucleo-
tide or protein sequences.

There are a myriad of applications for clustering biological sequences
into groups based on their similarity1. For example, clustering is often
used to reduce redundancy among sequences, bin metagenomic or
transcriptomic sequencing reads, cluster protein sequences into
homologous groups, or define operational taxonomic units (OTUs)
among phylogenetic marker gene sequences2. This wide variety of
applications has resulted in a plethora of clustering algorithms and
similarity measures. Nevertheless, all modern clustering programs are
expected to scale to continually increasing numbers of sequences. It is
now common to have millions of sequences to cluster. This necessi-
tates algorithmic approaches that can maintain accuracy while scaling
in linear time with the number of input sequences.

Modest numbers of sequences can be clustered with exact hier-
archical algorithms that exhaustively calculate pairwise distances and
guarantee linkage (i.e., average, complete, or single) among all clus-
tered sequences3,4. Larger sets of sequences require inexact clustering
approaches that only establish linkage to one representative sequence
in each cluster. The objective of inexact clustering is deceptively sim-
ple: for each input sequence, check whether it is similar enough to any
of the existing cluster representatives and, if not, form a new cluster.
However, it is possible to see that this formulation of clustering has

quadratic time (i.e.,O(N2)) complexity in theworst case. Theworst case
occurs when most sequences are the only member of their cluster,
which is likely to happen when the input sequences are very diverse or
as the similarity threshold approaches 100%. There are many applica-
tions of clustering where the goal is to cluster at high similarity
thresholds, such as dereplication and finding nearly identical sequen-
ces across samples. Hence, a reduction in complexity is required in
order for clustering to scale to large numbers of input sequences,
ideally with negligible loss in accuracy.

Popular heuristic algorithms, including CD-HIT5, MMseqs26, and
UCLUST7, iteratively add sequences to a growing list of cluster repre-
sentatives if no hits are found in the existing set. Since the number of
cluster representatives (M) tends to be proportional to the number of
input sequences (N), these approaches often scale super-linearly (i.e.,
O(M*N)) even with the use of heuristics to accelerate distance
calculations6,8–10. A related strategy with similar scalability is to search
for each new cluster representative within the remaining (unassigned)
sequences11–13, thereby recruiting new sequences to each cluster.
Achieving quasi-linear (i.e., O(N*log(N))) scalability is possible with
methods that divide the input sequences into separate sets before
clustering14,15. Linear time (O(N)) clustering was achieved by Linclust

Received: 27 October 2022

Accepted: 28 March 2024

Check for updates

1Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA, USA. 2Center for Evolutionary Biology and Medicine, Pittsburgh, PA, USA.
e-mail: eswright@pitt.edu

Nature Communications | (2024) 15:3047 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1457-4019
http://orcid.org/0000-0002-1457-4019
http://orcid.org/0000-0002-1457-4019
http://orcid.org/0000-0002-1457-4019
http://orcid.org/0000-0002-1457-4019
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47371-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47371-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47371-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47371-9&domain=pdf
mailto:eswright@pitt.edu

using k-mer grouping prior to clustering, although Linclust was less
sensitive than super-linear time algorithms16.

Here, I set out to develop a new clustering algorithm with linear
time complexity thatmaintains the accuracy of less scalable clustering
approaches. Linear time scaling requires employing only linear time
algorithms, such as radix sorting. To achieve this goal, the algorithm
exploits the underlying relationships among sequences—i.e., the dis-
tance fromA to C and A to B reveals something about the approximate
distance between B and C. This allows the sequences to be sorted in a
manner analogous to the ordering of leaves along a phylogenetic tree.
Hence, after pre-sorting, nearby sequences are more likely to be clo-
sely related, and distant sequences canbe ignored. This new approach,
named Clusterize (i.e., a blend of cluster + linearize), is implemented
within the DECIPHER package17 for the R programming language18 and
available as part of the Bioconductor package repository19.

Results
Overview of the Clusterize algorithm
General-purpose clustering algorithms are expected to handle homo-
logous and non-homologous groups of input sequences with con-
siderable variability in group sizes (i.e., imbalance). In phase 1, the
Clusterize algorithm separates input sequences into partitions of
detectable homology by counting rare k-mers shared between
sequences. First, k-mers are randomly projected into a lower dimen-
sional space using hashing. The number of k-mers in each hash bin is
tabulated, and up to 50 (by default) k-mers corresponding to bins with
the lowest frequencies are selected from each sequence. The resulting
vector of rare k-mers is ordered in linear time using radix sorting,
which yields groups of sequences that share a rare k-mer. This process
is reflective of that used by Linclust, although it differs in the choice of
hash function. Next, Clusterize tabulates the number of rare k-mers
shared between a sequence and all others. Sequences sharing rare
k-mers are recorded starting from the rarest k-mer and continuing
until a user-specified limit (parameter A, by default 20,000) on the
number of sequences is reached.

The number of rare k-mers shared per sequence tends to be near
zero for unrelated sequences. To determine the background dis-
tribution, Clusterize fits a curve to the initial exponential decay in the
number of rare k-mers shared between sequences (Fig. 1A). This per-
mits related sequences to be identified because sequences are unlikely
to share many rare k-mers by chance. Sequences sharing a sufficient
number of rare k-mers are added to the same partition (Fig. 1B), and a
depth-first search is commenced to recruit other sequences to the
partition (Fig. 1C). Repeating this process results in disjoint sets of
sequences sharing a statistically significant number of rare k-mers with
at least one other sequence in the set (Fig. 1D). These partitions are
treated independently in phase 2 of the Clusterize algorithm.

The intuition underlying phase 2 is to pre-sort sequences within
partitions into an order that is similar to where they would be located
at the tips of a phylogenetic tree. That is, more similar sequences
would be closer to each other after ordering. A straightforward way to
arrange sequences in this manner is to imagine an unrooted phylo-
genetic tree with two leaves (Fig. 1E). A third leaf could be added at any
point along the edgebetween the twoexisting leaves (Fig. 1F). Knowing
thedistances (di) between the third sequence and theother two (d1 and
d2) helps todecidewhether the new leaf belongs closer to one leaf than
theother. If twonew leaves are bothmuch closer to oneof the leaves, it
is possible they are also close to each other (Fig. 1G). Ordering
sequences in this manner can be thought of as relatedness sorting
because more related sequences are closer together after sorting.

Choosing two leaves randomly and calculating their difference in
distance (d1 − d2) to each sequence results in a vector of relative dis-
tances (Fig. 1H). This vector (D1) is then projected onto the axis of
maximum variance shared with another relative distance vector (D2)
calculated from two other random leaves (Fig. 1I). Projecting in this

manner is equivalent to performing principle components analysis on
D1 and D2 to retain only the first principal component (D). Repeatedly
projecting new vectors onto D results in more related sequences
having more similar relative distances and, thus, moving closer toge-
ther in the ordering of D. Sorting the distance vector therefore pro-
vides an ordering similar to that of the leaves along a phylogenetic
tree. After several iterations, large gaps may appear in the relative
distance vector that can be used to split the partition into smaller
groups (Fig. 1J). Relatedness sorting is continued within each group
until the ordering of sequences stabilizes within a tolerance or a
maximum number of iterations (parameter B, by default 2,000) is
reached (Fig. 1K).

Given that no sequences are clustered in phases 1 or 2, the
objective ofphase 3 is to establish linkage to a cluster representative as
rapidly as possible. Each sequence only needs to be compared with a
fixed number of sequences around it in the sequence ordering,
resulting in a linear time clustering algorithm (Fig. 1L). If the sequence
ordering is sufficiently out of order then potential links can bemissed.
To remedy these cases, Clusterize compares each sequence with
sequences sharing themost rare k-mers, which are identified using the
same process as in phase 1. This rare k-mer approach is analogous to
that of Linclust except that sequences can be compared to multiple
sequences per rare k-mer group rather than only one sequence per
group. Calculation of k-mer similarity only needs to be performed on a
fixed number of representatives (parameter C, by default 2000) cor-
responding to the clusters previously assigned to sequences that are
nearby in the relatedness ordering or share rare k-mers. Clusterize
keeps track of which approach (i.e., relatedness sorting or rare k-mers)
results in the most clusters and proportionally draws more cluster
representatives for comparison from the more rewarding approach.

Each phase requires up to a user-specified number of compar-
isons that each take linear time. In the end, a limited subset (parameter
E, by default 200) of sequences with the highest k-mer similarity are
aligned to obtain their percent identities. Therefore, the complete
algorithm has time complexity O(A*N) +O(B*N) +O(C*N) +O(E*N) with
respect to N. When A, B, C, and E are bounding constants, the
asymptotic time complexity becomes O(N). The amount of memory
required scales similarly,O(N), because only a fixed number of vectors
of length N are required to store k-mers, distances, and orderings. As
shown in Supplementary Fig. 1, parameters A, B, C, and E were opti-
mized to minimize the number of clusters and time required using
sequences from the RNAcentral database20, whichwas chosen because
of its large number of diverse sequences. Phase 3 often dominates
clustering time and, accordingly, parameter C largely controls the
trade-off between speed and accuracy. In contrast, parameters B and E
typically have less effect because the algorithm converges prior to
reaching the limit.

Clusterize uses a non-standard definition of k-mer similarity
that offers some advantages. K-mer anchors are defined by the lar-
gest set of k-mers with consistent (i.e., collinear) ordering across a
pair of sequences (Fig. 1M). For example, if region 50 to 100 of one
sequence matches region 1 to 50 of a second sequence, then it is
possible to exclude a 5-mer match between positions 1 to 5 and 55 to
59 because these k-mers conflict with the ordering of the larger
matching region. K-mer similarity is then calculated as the number
of positions in anchors divided by the estimated number of over-
lapping positions between the sequences. An added advantage of
computing k-mer regions is that they can be used to constrain
pairwise alignment (Fig. 1N), such that sequences can be aligned in
sub-quadratic time (<O(L2))21. During pre-sorting (i.e., phase 2),
Clusterize also aligns a small number of randomly sampled sequence
pairs to determine the relationship between k-mer similarity and
alignment similarity. This allows a boundary to be drawn, wherein
sequences with too little k-mer similarity do not need to be aligned
during phase 3 (Fig. 1O).

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 2

Clusterize is comparable in accuracy to less scalable clustering
programs
Clustering approaches are often compared by the number of clusters
they generate at the same similarity threshold, although this compar-
ison fails to take into account different definitions of similarity and
linkage (e.g., average, complete, or single). Therefore, previous
benchmarks have relied on the taxonomy22 or ecology23 of input
sequences as proxies for biologically meaningful ground truth. The
central assumption being that similar sequences will more often come
from the same organism, sample, or habitat than dissimilar sequences.
Under this assumption, it is possible to quantify accuracy using nor-
malized mutual information (NMI), which measures the extent to
which clusters and group labels agree22. NMI ranges from 0 to 1 and
penalizes splitting or merging incorrectly24. A related measure, adjus-
tedmutual information (AMI), additionally accounts for the possibility
that observed and expected clusters could agree by random chance25.
A more biologically meaningful clustering will have a higher AMI and

NMI with the biological ground truth at the same number of output
clusters.

I sought to compare the accuracy of Clusterize with other clus-
tering programs on large sets of protein sequences. To this end, I used
411 sets of proteins with more than 20,000 (i.e., 20,030 to 108,570)
unique sequences matching families in TIGRFAM26, which is a set of
hidden Markov models for common prokaryotic genes. Each of these
sequence sets was clustered at multiple thresholds between 40 and
100% similarity. At high similarity thresholds, Clusterize identified
more clusters using rare k-mers, while at low similarity thresholds
more clusterswere identifiedwith relatedness sorting (Supplementary
Fig. 2). To measure accuracy, I calculated AMI and NMI using NCBI’s
class-, family-, and genus-level taxonomic assignment for each
sequence. Clusterize returned clusters with AMIs and NMIs similar to
MMseqs2 and UCLUST across the range of similarity thresholds
(Fig. 2). There was a gap in peak AMI and NMI between the top three
programs and Linclust or CD-HIT, and this gap was most pronounced

Fig. 1 | Illustration of the Clusterize algorithm. A In phase 1, the number of rare
k-mers per sequence shared with a focal sequence are tabulated. The initial expo-
nential fall-off in background frequency (dashed line) is used to identify related
sequences (green points). B Statistically significant relationships are merged into
the same partition. C This recruitment process is repeated for new sequences
added to the partition.D Disconnected sets are used to define partitions of related
sequences (shapes). E In phase 2, sequences within a partition are compared to two
randomly selected input sequences from the partition using an alignment-free
approximation of distance. F A sequence can be placed somewhere along the edge
between the two sequences. G Sequences tend to be closer to the first or second
random sequence, or sequences can be far from both (e.g., the blue dot). H The
relative distance is used to sort the sequences by relatedness. I New relative dis-
tance vectors are projected onto the axis of maximum variance, D. J Partitions are
split into separate groups when their rank order stabilizes locally. K Projection (P)

continues within each group until the rank order stabilizes or a bounding constant
number of iterations is reached (parameter B). L In phase 3, the final rank order is
used to determine which sequences to compare. Only a limited number of align-
ments (lines) are required per input sequence, including some sequences from
outside the partition that share rare k-mers. Sequences within a user-specified
similarity threshold are clustered (dashed circles). M To quickly approximate dis-
tance, K-mers are matched between sequences (thick horizontal lines) and chained
into the longest set of anchor regions by rejecting inconsistently ordered k-mers
(red). N Anchors (diagonal lines) are used to constrain the alignment space to the
regions between anchors (green), thereby accelerating the calculation of alignment
similarity. O During phase 2, a subset of sequence pairs are aligned to learn the
maximum (green curve) alignment similarity expected for a given k-mer similarity.
This allows sequences with low k-mer similarity to be ignored because they are
unlikely to meet the clustering similarity threshold.

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 3

at the class-level (Fig. 2). Given that Linclust is part of the MMseqs2-
software suite, and differs from MMseqs2 in the use of heuristics to
scale linearly, this result indicates Linclust’s heuristics decrease
accuracy.

Inexact algorithms typically establish linkage to a single repre-
sentative sequence per cluster but may employ different heuristics to
accelerate this process. Therefore, it is expected that randomly
selected pairs of sequences from each cluster are usually, but not
always, within the specified similarity threshold. To test this expecta-
tion, I calculated the fraction of up to 10,000 randomly selected pairs
of clustered sequences that obeyed each similarity threshold. Aver-
aged across the 411 TIGRFAM protein families, about 3 to 6% of
sequences belonging to the same cluster exceeded the similarity
threshold given to Clusterize (Fig. 2). A similar behavior was observed
for UCLUST, except at low similarity thresholds (<50%) where almost
no clustered sequences exceeded the similarity threshold. In contrast,
CD-HIT, Linclust, and MMseqs2 frequently did not obey the similarity
threshold, with about 10 − 18% of clustered sequences exceeding the
threshold at intermediate or low similarity thresholds. These results
imply that CD-HIT, Linclust, and MMseqs2 can form larger clusters
than Clusterize and UCLUST at the same similarity threshold, likely
reflecting a consequence of the heuristics employed by each program.
For example, MMseqs2 converts sequence identity into an alignment
score per residue for clustering, implying the percent identity of

clustered sequences is expected to deviate from the user-specified
similarity threshold.

I repeated this analysis on 3,001 TIGRFAM protein families with
fewer sequences (i.e., 2 to 20,352), for which it was feasible to perform
exact hierarchical clustering. For each sequence set, a multiple
sequence alignment was constructed with DECIPHER27 in order to
obtain a distance matrix for average-linkage and complete-linkage
clustering. The inexact clustering of smaller TIGRFAM protein families
closely reflected the results previously observed for larger families
(Supplementary Fig. 3). UCLUST and Clusterize were the top two
programs, followed byMMseqs2, Linclust, and CD-HIT. However, both
average-linkage and complete-linkage clustering outperformed all
inexactmethods in AMI and NMI across all rank levels (Supplementary
Fig. 3). Exact clustering also clustered the fewest sequences beyond
the similarity threshold, further confirming the superiority of exact
over inexact clustering. Collectively, clustering TIGRFAM protein
families revealed the merits of different clustering approaches, but
none of the TIGRFAMprotein families contained enough sequences to
estimate programs’ asymptotic behaviors.

Clusterize accurately clusters millions of SARS-CoV-2 genomes
in linear time
A common use of clustering programs is to reduce the size of very
large sets of nucleotide sequences, such as protein-coding gene or

Fig. 2 | Clusterize achieves high accuracy on 411 large TIGRFAM protein
families.AMI andNMIwith class-level, family-level, andgenus-level taxonomywere
used to estimate accuracy when clustering large (>20,000 sequences) protein
families. Each point represents average accuracy at a similarity threshold ranging
from 40% to 100% in 5% increments (left to right, respectively). Note the log-scaled
x-axis. Better accuracy for a rank-level appears as a higher peak. Differences among

programs become more pronounced at the class-level. Notably, CD-HIT and Lin-
clust returned lower accuracy clusters than the other programs at low similarity
thresholds. The average fraction of clustered sequences falling below the similarity
threshold is shown for up to 10,000 randomly selected sequence pairs per TIGR-
FAM protein family. CD-HIT, Linclust, and MMseqs2 clustered the most sequence
pairs that failed to meet the specified similarity threshold.

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 4

non-coding RNA sequences. To investigate the use of Clusterize
for this purpose, I downloaded all 13 million SARS-CoV-2
genomes available from the GISAID initiative28, and selected the
subset of 2 million unique genomes with no ambiguities (e.g., “N”)
and lengths between 29,000 and 30,000 nucleotides. Gradually
increasing numbers of sequences were clustered at 99.99%
similarity until a program failed or was projected to require more
than 48 hours to cluster the sequences. A very high similarity
threshold was required because SARS-CoV-2 genomes typically dif-
fer at only a few positions. Both Clusterize and Linclust displayed
approximately linear asymptotic scalability with the number of
input sequences, while CD-HIT-EST and MMseqs2 scaled super-
linearly (Fig. 3).

As more sequences are clustered, it is reasonable to assume the
number of clusters per sequence will decrease because there is addi-
tional redundancy among the sequences. A decreasing trend was
observed for all programs except UCLUST, which almost exclusively
created singleton (i.e., unclustered) clusters (Fig. 3). The fact that
UCLUST effectively did not cluster the sequences was unexpected and
suggests an issue with UCLUST’s parameters when clustering long
sequences. Surprisingly, the other programs generated very different
numbers of clusters from the same input sequences (Fig. 3). Linclust
and MMseqs2 produced a similar number of clusters per input
sequence regardless of the number of input sequences, suggesting
they failed to adequately cluster the sequences. CD-HIT-EST and
Clusterize created the fewest clusters and cluster sizes steadily

Fig. 3 | Comparing programs on highly varied clustering tasks. Complete or
nearly full-length (>29,000 nucleotides) SARS-CoV-2 genomes were clustered at
99.99% nucleotide similarity. Only Clusterize and Linclust clustered two million
genomes within the time limit. Inset numbers represent the order (x) of the scaling
polynomial (i.e., O(N x)) estimated from the largest four inputs on each curve to
approximate an algorithm’s asymptotic empirical time complexity. UCLUST
formed almost exclusively singleton clusterswith SARS-CoV-2 genomes, effectively
failing to cluster the sequences. A randomsample ofup to 10,000pairs of clustered
sequences was drawn from each program’s clusters to estimate the percentage of
clustered sequences below the specified similarity threshold. Programs with fewer

than 5000 clustered sequences at a given input size are not shown. An exact
algorithm, ESPRIT-Forest, was included when clustering up to 16 million 16S rRNA
sequences collected from healthy human subjects in the Human Microbiome
Project. Linclust was the fastest program but also returned the smallest clusters,
suggesting it failed to adequately cluster the sequences. CD-HIT-EST and ESPRIT-
Forest formed the fewest 16S clusters per sequence but also least obeyed the
specified similarity threshold. Linclust and MMseqs2 were the fastest programs on
the Metaclust benchmark composed of metagenome protein fragments. However,
Linclust andMMseqs2 producedmore clusters than Clusterize despite clustering a
similar fraction of sequences below the 50% similarity threshold.

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 5

increased with more input sequences. With 2 million input sequences,
only Clusterize and Linclust completed in the allotted time, producing
957,945 and 1,919,893 clusters, respectively. Taken together, these
results demonstrate the extended reach of Clusterize’s accuracy
because of its linear time complexity.

Several steps of the Clusterize algorithm are parallelized with
OpenMP, including integer encoding k-mers, matching k-mers across
sequences, and aligning the regions between k-mer anchors. To test
the efficiency of parallelization, I clustered a fixed number of
sequences with increasing numbers of processors. At maximum,
Clusterize achieved about a 10-fold speedup using 28 processors,
which was greater than the speedup achieved by CD-HIT-EST or Lin-
clust but less than MMseqs2 (Supplementary Fig. 4). UCLUST offered
almost no speedup using multiple processors, which was consistent
with the UCLUST documentation. Both Linclust and MMseqs2
returned clusters with different numbering when using multiple pro-
cessors, although the underlying clusters were the same. UCLUST
produced different clusters when using multiple processors (Supple-
mentary Fig. 4), but the results were repeatable with the same number
of processors. Hence, reproducibility with UCLUST necessitates spe-
cification of the number of threads. Clusterize, although a stochastic
algorithm, always returned the same results when the random number
seed was set, regardless of the number of processors (Supplemen-
tary Fig. 4).

Clustering millions of homologous microbiome sequences
across samples
The 16S ribosomal RNA (rRNA) gene is commonly used as a phyloge-
netic marker in microbiome studies and is sometimes analyzed in a
reference-independent manner by clustering into OTUs. Thresholds
for clustering typically range from 97% to 100% sequence similarity
depending on the length of sequences being clustered and desired
clustering granularity29,30. Clustering is particularly useful for com-
paring the compositions of microbiome samples collected from dif-
ferent habitats. To compare clustering programs for this purpose, I
downloaded the set of 24 million unique quality-trimmed reads origi-
nating from different body sites on healthy human subjects in the
Human Microbiome Project that were amplified with V3-V4 16S
primers31. Sequenceswere clustered at99% sequence identity to create
OTUs, whichwere then compared across body sites where the samples

were collected. I included an additional clustering program, ESPRIT-
Forest, that was designed specifically for exact hierarchical (average-
linkage) clustering of 16S OTUs with sub-quadratic (i.e., <O(N2)) time
complexity15.

Clusterize and Linclust displayed approximately linear time
asymptotic scaling, while the other programs had near-quadratic
scaling (Fig. 3). ESPRIT-Forest scaled subquadratically, but errored
unexpectedly before reaching the time limit. Linclust, MMseqs2, and
UCLUST all generated far more clusters per input sequence than
Clusterize, CD-HIT-EST, or ESPRIT-Forest, implying they failed to
cluster many sequences that could have been clustered. CD-HIT-EST
and ESPRIT-Forest created the fewest clusters but also had the
broadest clusters, with over 60%of clustered sequences failing tomeet
the specified similarity threshold (Fig. 3). In contrast, Clusterize and
UCLUST produced clusters with fewer than 30% of clustered sequen-
ces beyond the similarity threshold.

AlthoughMMseqs2 created about the same number of clusters as
Clusterize for the lowest input size (3,906 sequences), the two pro-
grams diverged markedly with larger input sizes (Fig. 3). Clusterize
produced 1,954,730 clusters at the largest input size, in sharp contrast
to Linclust’s 9,050,721 clusters. Also, with 16 million input sequences,
Clusterize assigned 9.2% of clustered sequences exclusively with
relatedness sorting and 27.9% exclusively with rare 13-mers. As shown
in Fig. 4, the correlation among sequences obtained from different
body sites was much clearer with Clusterize than Linclust due to the
relative rarity of singletons. This result depicts the practical implica-
tions ofhigher clustering accuracy for deriving biologicallymeaningful
results.

Clusterize was slower but more accurate than Linclust on
Metaclust
The authors of Linclust introduced the Metaclust benchmark, which
contains more than a billion protein fragments derived from metage-
nomic and metatranscriptomic datasets. I sought to compare each
program’s performance for the authors’ original goal of clustering
protein sequences to increase search accuracy and speed through very
large sequence sets. To this end, I downloaded the full set ofMetaclust
sequences, removed exact duplicates, and randomized their order
before clustering at a low (50%) similarity threshold. Both Clusterize
and CD-HIT created the fewest clusters per input sequence, although

Anterior nares
Buccal mucosa
Hard palate
Keratinized gingiva
L. Antecubital fossa
L. Retroauricular crease
Mid vagina
Palatine tonsils
Posterior fornix
R. Antecubital fossa
R. Retroauricular crease
Saliva
Stool
Subgingival plaque
Supragingival plaque
Throat
Tongue dorsum
Vaginal introitus

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Clusterize Linclust

In
tra

-s
ite

In
te

r-s
ite

Singletons

Fig. 4 | Biological interpretability of clustering 16 million microbiome reads.
Chord diagrams show the clustering of 16S rRNA sequences obtained from differ-
ent sites on the human body (sectors) as part of the Human Microbiome Project.
Each sequence is assigned connectivity (chords) in proportion to the number of
sequences from eachbody site present in its cluster, and connections are shaded in
proportion to the fraction of reads from each site. Clustered sequences belonging
to the same body site are shown in green, connections betweendifferent body sites

are shown inpurple, and singletons are shown asblack curves. Clusterize produced
far fewer singleton clusters than Linclust when clustering the same set of 16million
sequences at 99% similarity. The correlation in clustered sequences across body
sites is clearer in the Clusterize output. Body sites that are expected to have similar
microbial communities, such as different parts of the mouth, are more inter-
connected by Clusterize than Linclust.

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 6

CD-HIT clusteredmore sequences beyond the 50% similarity threshold
(Fig. 3). Clusterize, Linclust, and MMseqs2 had comparable rates of
clustering sequences outside of the similarity threshold, although
Clusterize generated fewer clusters. With 16 million input sequences,
Clusterize generated 6,285,025 clusters relative to MMseqs2’s
7,567,092 and Linclust’s 8,339,747 clusters, corresponding to
1,282,067 (20%) and 2,054,722 (33%) more clusters than Clusterize,
respectively. However, MMseqs2 and Linclust were the fastest pro-
grams, which allowed them to cluster far more sequences than the
other programs within the allotted time. These results further high-
light the speed versus accuracy trade-off when choosing a program for
a specific clustering application.

Reducing redundancy among tens-of-millions of diverse
sequences
Large sequence databases are frequently clustered to reduce the
number of sequences to a more manageable size for various applica-
tions. An example of this is UniRef 32, which provides clusters of Uni-
Prot sequences at three similarity thresholds (50, 90, and 100%).
Comparing programs for this purpose requires an extremely large and
diverse collection of sequences that are accurately annotated with
biologically meaningful groups. To this end, I downloaded all unique
protein (amino acid) and protein-coding (nucleotide) sequences
available from 44,831 randomly selected bacterial genomes from the
NCBI Reference Sequence Database (RefSeq). I reasoned that protein
functional classifications could beused tomeasure clustering accuracy
inmuch the samewayas taxonomy. Protein sequenceswere labeled by
their predicted function and hypothetical proteins were discarded.
These protein functional classifications were then transferred to the
protein-coding sequences to generate matched sets of 151,835,459
labeled protein and nucleotide sequences for benchmarking.

As shown in Fig. 5, programs were compared at protein similarity
thresholds of 50% and 100%, aswell as nucleotide similarity thresholds
of 80 and 100%. As expected, Clusterize and Linclust displayed
approximately linear asymptotic scaling in runtime, although Linclust
was 7- to 18-fold faster at clustering 32 million nucleotide sequences
and 19- to 71-fold faster at clustering 64 million protein sequences.
MMseqs2 also showed near linear runtime and was almost as fast as
Linclust for protein sequences. CD-HIT and UCLUST had super-linear
asymptotic scaling in runtime, whichmade them the slowest programs
in many cases. Consistent with the previous benchmarks, Linclust and
MMseqs2 clustered the most sequences below the specified similarity
threshold (Fig. 5). Given the use of only two similarity thresholds per
sequence set, I chose tomeasure accuracy with a previously published
approach based on the average consistency of labels among clustered
sequences33. Clusterize consistently returned clusters with higher
average label consistency than MMseqs2 or Linclust (Fig. 5).

Memory consumption imposes limitations beyond time con-
straints when clustering many sequences. To track peak memory
usage, I recorded themaximumamount ofmainmemory used by each
program. Both Clusterize and Linclust consumed memory propor-
tional to the number of input sequences, with Clusterize requiring
about 1.4-fold more memory for clustering 32 million nucleotide
sequences and 1.6-fold morememory for clustering 64million protein
sequences (Fig. 5). MMseqs2 reserved a large amount of memory for
small numbers of sequences but scaled similarly to Linclust for large
input sizes. The freely available (32 bit) version of UCLUST was limited
to 4 gigabytes of memory, which prevented UCLUST from clustering
some input sizes that the 64 bit version would likely have finished
before the time limit.

Discussion
The continually increasing availability of sequences demands scalable
clustering algorithms. To my knowledge, Clusterize is the first use of
relatedness sorting to linearize clustering. Furthermore, the

deployment of an ordered k-mer-based measure of similarity allows
Clusterize to employ anchored alignment that makes aligning long
sequences more scalable. Collectively, these features enable the
Clusterize algorithm to cluster millions of homologous or non-
homologous sequences with high accuracy. Clusterize was slower
than many programs for small sets of sequences but sometimes faster
for large numbers of sequences. Unexpectedly, the degree of inex-
actness varied markedly across programs and applications. While
Clusterize consistently conformed to expectations, other programs
sometimes failed to adequately cluster sequences or obey the user-
specified similarity threshold. This result suggests some heuristics are
substantial compromises for increased speed, and users may unwit-
tingly obtain sub-optimal results with some programs.

A user of clustering programs might be tempted to associate
speed with clustering quality, although the results of this study dispel
any such relationship. Linclust was the fastest program but often
produced smaller clusters with comparatively low accuracy. MMseqs2
and UCLUST were sometimes more accurate than Linclust, but their
super-linear timecomplexity in some casesmade clusteringmillions of
sequences less practical. Clusterize showed high accuracy and linear
scalability butwas consistently slower thanLinclust. For huge numbers
of non-homologous sequences (>100 million), MMseqs2 or Linclust
remain the most practical options for clustering in a reasonable
amount of time, although potentially at the expense of accuracy. In a
sense, there is no panacea, and users will need to weigh their priorities
when deciding which program to choose. Clusterize excels at high
accuracy clustering under its default settings and allows users to bal-
ance the runtime versus accuracy trade-off by adjusting parameters
(Supplementary Fig. 1). In contrast to Clusterize, Linclust’s accuracy is
limited by the number of k-mers per sequence, which was set to the
high value of 80 in this study to improve Linclust’s accuracy over its
default of 20 k-mers per sequence.

The scalability of clustering programs with non-linear time com-
plexity was dependent on the number and diversity of sequences, as
well as the similarity threshold. StrategieswithO(M*N) timecomplexity
aremost efficient when the similarity threshold decreases to the point
where the entire diversity of sequences fits within few clusters (i.e.,M
approaches 1). In the opposite regime, when there are many clusters,
strategies withO(N) time complexity become important as N becomes
large. Clusterize relies on two O(N) strategies, relatedness sorting and
rare k-mers, and outputs which strategy resulted in themost clustered
sequences at completion. With default settings, rare k-mers are typi-
cally the source of more clusters when the similarity threshold is high,
whereas relatedness sorting is typically the source of more clusters
when the similarity threshold is low (Supplementary Fig. 2). However,
there are many input sequence sets and similarity thresholds that
cause Clusterize to source clusters from a combination of both
strategies.

Clusterize’s use of rare k-mers differs considerably from that of
Linclust. By default, Clusterize compares each sequence against up to
2000 (i.e., parameterC) sequences sharing the greatest number of rare
k-mers. In contrast, Linclust compares each sequence to the longest
sequence sharing a rare k-mer. Nevertheless, both approaches perform
worse as the number of sequences sharing rare k-mers becomes very
large, such as when clustering many homologous sequences. This
happens to be the case where relatedness sorting performs especially
well, so Clusterize’s two linear time approaches are complementary
and allow it to tacklemany clustering scenarios. Clusterize is designed
to automatically detect which approach is working best and draw a
greater proportion of the 2000 (i.e., parameter C) sequences from the
better approach in phase 3. This enables Clusterize to rely on relat-
edness sorting when rare k-mers fail and vice versa.

It may initially appear surprising that relatedness sorting is
useful. By design, relatedness sorting projects similarity among
sequences into a single dimension, and distant sequences could be

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 7

Fig. 5 | Clustering up to 128 million protein-coding and protein sequences.
Functionally annotated protein-coding (nucleotide) and protein (amino acid)
sequences originating from 44,831 bacterial genomes were clustered at different
similarity thresholds. Inset numbers give the order (x) of the scaling polynomial
(i.e., O(Nx)) estimated from the largest four inputs on each curve. Linclust and
MMseqs2 were the fastest programs for the largest input sequence sets. Clusterize
required about 1.5-fold more memory than MMseqs2 and Linclust when clustering

32 million nucleotide or 64 million protein sequences. The free (32 bit) version of
UCLUST was limited to 4 GB of memory and therefore failed to complete some
input sets that it may have otherwise completed before the time limit. Linclust and
MMseqs2 clustered the most pairs of sequences under the specified similarity
threshold. Clusterize produced clusters with higher label consistency than
CD-HIT(-EST), Linclust, or MMseqs2. UCLUST returned clusters with the highest
label consistency, but also generated smaller clusters than the other programs.

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 8

projected near each other on a one-dimensional line. The effec-
tiveness of this approach becomes clearer when considering a
phylogenetic tree. All homologous sequences, no matter how dis-
tant, can be arranged along the tips of a tree and projected onto a
single line. Sometimes distant clades will be placed adjacent to each
other along the projection, but each sequence will generally be
adjacent to its most similar neighbors. The Clusterize algorithm
works by iteratively constructing this projection through related-
ness sorting without needing to construct the entire tree. Phase 1
globally partitions the sequences by homology, phase 2 conducts
relatedness sorting within each group, and phase 3 performs a local
similarity search for the nearest neighbor. This clustering strategy
could be applied to any set of related objects, although the focus of
this study was clustering biological sequences.

Gauging the accuracy of different clustering outputs at scale is
challenging. Simulations have been used to generate sequence sets
with a known ground truth34,35, but simulations necessitate many
assumptions. Here, I chose to stay consistent with recent clustering
benchmarks by using AMI and NMI with a taxonomic group (Fig. 2 and
Supplementary Fig. 3) as a measure of accuracy22,23. The strong signal
of vertical inheritance in gene trees36 makes taxonomy a reasonable
proxy for capturing biologically meaningful similarities within homo-
logous groups, which is often the objective of sequence clustering.
Similarly, functional annotations can be used to judge clustering
accuracy for non-homologous sequences, especially at low similarity
thresholds. An alternative approach is to compare with the results of
exact hierarchical clustering, which is known to result in biologically
meaningful clusters but is less scalable22,23,25,37. The results of exact
hierarchical clustering on the set of small TIGRFAM protein families
(Supplementary Fig. 3) show there is considerable room for improve-
ment beyond inexact methods that establish linkage to only a single
sequence per cluster.

Clustering is sometimes used to define homologous groups of
sequences, such as protein families. Inmy opinion, the task of defining
homologous groups is poorly suited to inexact clustering at fixed
identity thresholds for several reasons. First, homologous proteins
sometimes share very little sequence identity, which can result in a
failure to detect homology. Even using hidden Markov models for
sequence recruitment can result in homology search failures38. Sec-
ond, percent identity is a weak proxy for homology at low levels of
similarity, making defining a clustering threshold problematic39,40.
Better scoringmeasures have been developed for detecting homology
at low sequence identities41. Third, natural groups of sequences should
be expected to deviate from fixed thresholds, and flexible thresholds
are possibly more amenable to identifying natural group boundaries42.
A recent attempt wasmade to circumvent some of these limitations by
clustering protein structures instead of sequences43. Nevertheless,
similar protein folds could result from convergent evolution rather
than homology, and sequences remain essential for determining
shared ancestry44.

Notwithstanding these generic limitations of clustering, there are
several applications where inexact clustering is particularly useful,
some of which were used here to compare programs. In these situa-
tions, and others, clustering is an essential tool in the toolbox of
bioinformatics algorithms. Exponential growth in the number of
publicly available sequences, with a doubling time of approximately 3
years, will steadily increase the necessity of linear time clustering
algorithms. The Clusterize algorithm can cluster tens-of-millions of
sequences in reasonable amounts of time and does somore accurately
than Linclust, although Linclust was much faster for huge sequence
sets. Clusterize also returned results that consistently met expecta-
tions across a wide range of similarity thresholds, sequence lengths,
sequence diversities, and input sizes. Therefore, Clusterize provides a
dependable clustering algorithm that is intended to work well inmany
different user scenarios.

Methods
Measures of similarity between sequences
Clusterize permits several parameterizations of similarity. Most clus-
tering programs define similarity as the number of matching positions
divided by the length of the shortest sequence in each pair. By default,
Clusterize defines similarity as the number of matching positions
divided by the length of the overlapping region between pairs of
sequences, because this definition works well for partial-length
sequences. However, this definition is susceptible to deriving esti-
mates of similarity from very small overlapping regions, which is why a
coverage of at least 50% of positions is required by default. Clusterize
allows the user to control whether gaps (i.e., insertions or deletions)
are ignored, counted as mismatches or, by default, treated as a single
mismatch per run of consecutive gaps. The latter definition represents
an event-based model of distance, wherein a gapped region is con-
sidered a single event, analogous to a single substitution event. In
practice,most definitions of distance yield comparable accuracies (i.e.,
AMI and NMI) at the same number of clusters, although the same
number of clusters will be obtained at different similarity thresholds.

Since pairwise alignment is time-consuming, estimates of simi-
larity are initially based on k-mermatching between pairs of sequences
in phases 2 and 3. First, each sequence is converted into 32 bit integer
vectors representing every overlapping k-mer. Second, these integers
are ordered using radix sorting, and the k-mers’ original positions are
also stored as integers. These two integer vectors per sequence typi-
cally consume the majority of memory used by Clusterize. Third, the
sorted integer vectors are matched between two sequences, and a
vector is constructed mapping matching positions in one sequence to
the other. Fourth, contiguous blocks of matching positions are
recorded. Dynamic programming is used to determine the largest
collinear set of blocks shared between the two sequences, defined as
the maximum length set of matching k-mer regions (Fig. 1M). Fifth,
these anchor regions are used to compute k-mer similarity or accel-
erate pairwise alignment (Fig. 1N). Sequences between anchor regions
are aligned using the PFASUM50 substitution matrix45 for amino acids
or a scoring scheme of matches = 3, transitions = 0, and transver-
sions = −3 for nucleotides. Standard affinegappenalties are addedwith
gap opening = −10, gap extension = −2, and terminal gaps having zero
cost during alignment.

A corresponding definition of k-mer similarity is possible for each
user-defined parameterization of similarity but based on matching
regions rather than positions. That is, anchor regions are considered
matches, and unanchored regions are considered mismatches. The
differences in distance between neighboring anchors in both sequen-
ces is used to determine the minimum number of gaps required to
align the two sequences. Consistent with the default definition of
similarity, k-mer similarity is defined as the number ofmatches divided
by the number of overlapping positions plus the number of gapped
regions. In phase 2, at least 1000 randomly selected sequencepairs are
aligned to determine the relationship between k-mer similarity and
percent identity. A logistic regression model is fit to predict the
probability of percent identity meeting the user-specified similarity
threshold given the k-mer similarity. In phase 3, up to 200 (i.e., para-
meter E) cluster representatives with k-mer similarity sufficient to have
at least a 1% predicted probability (by default) ofmeeting the similarity
threshold are alignedwith each sequence. Cluster representativeswith
k-mer similarity already satisfying the similarity threshold do not need
to be aligned because k-mer similarity will always be less than or equal
to percent identity after alignment.

Selection of optimal k-mers and k-mer length
Multiple sets of integer encoded k-mers are used throughout the
Clusterize algorithm. In phase 1, amino acid k-mers are formed in a
reduced alphabet. A similar strategy to that used for Linclust was
employed to construct a 10-letter alphabet, except using the

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 9

PFASUM5045 substitution matrix rather than BLOSUM62, which resul-
ted in the merger of (A, S, T), (R, K, Q), (N, D, E), (I, V, L, M), and (F, Y).
While a reduced alphabet is used to identify related sequences and
partitions with rare k-mers, the standard (20 letter) amino acid
alphabet is used for computing k-mer similarity becausematches need
to be exact.

Twodifferent values of k-mer length (k) are computed: one foruse
with k-mer matching between sequences and the other for use with
rare k-mers. Thegoal of selecting k for k-mermatching is to ensure that
k-mer matches between two sequences happen infrequently by
chance,while usingonly a single valueof k across all sequences. Hence,
k is calculated such that one in every 100 k-mers is expected to be
found by chance in sequences at the 99th percentile of input sequence
lengths (w99) using an alphabet with a given number of letters (x):

k = dlogxð100 �w99Þe

The reasoning behind this formula for k was previously
described46. In contrast, k for rare k-mers is set such that atmost 10%of
the selected 20,000 (i.e., parameter A) sequences are expected to
share a rare k-mer due to chance. Each of N sequences contributes 50
(by default) rare k-mers, and the objective is to find k such that each
rare k-mer will be found by chance in less than 40 (i.e., 20,000/50 *
10%) sequences on average. Thus, k for rare k-mers is calculated as:

k = dlogxð50 � N=40Þe

The choice of which rare k-mers to select from each sequence is
critically important16. Ideally, rare k-mers should be repeatably selec-
ted such that (i) the same rare k-mers are chosen from similar
sequences, (ii) rare k-mers are not positionally co-located on the
sequence, and (iii) rare k-mers are relatively rare so that the same rare
k-mers aremore likely to be found inmore similar sequences. Hashing
functions meet these criteria as they allow for rare k-mers to be
repeatably identified across sequences16. I found that many different
hashing functions were sufficient, and decided to use a standard 32-bit
xorshift random number generator for this purpose47. The input inte-
ger encoded k-mer is used as a seed to produce a 32-bit random
number, and an integer remainder is output after integer division by
the size (s) of the output hash space (i.e., the modulo operation).
Optimal performance was found where the size of the hash space
equaled the square root of the number of possible distinct k-mers (i.e.,
s = xk=2) or the mean sequence length (i.e., mean of w), whichever was
greater. This choice of s is intended to prevent many k-mers in the
same sequence frombeing assigned to the same hash bin for very long
input sequences.

Thus, each k-mer is randomly projected into the hashing space,
and the frequency of each hash bin is tabulated. Up to 50 k-mers
corresponding to the least frequent hash bins are selected from each
sequence. This vector is ordered with radix sorting, yielding groups of
sequences sharing a rare k-mer inmuch the samemanner as described
for Linclust16. Three vectors of length 50*N are used to store the index
of each sequence in the k-mer group, the starting position of the k-mer
group, and the ending position of the k-mer group. In thismanner, it is
possible to efficiently find all sequences sharing a rare k-mer with a
particular sequence by looking up the sequences belonging to each of
its rare k-mer groups.

Phase 1: separating sequences into partitions with detectable
similarity
Prior to relatedness sorting it is necessary to first separate the input
into partitions containing sequences sharing detectable homology. To
this end, up to 20,000 (i.e., parameter A) sequences sharing a rare
k-mer are selected for a given sequence. This is accomplished by
sorting the sequence’s 50 rare k-mers by their respective group sizes,

and recording all sequences in each rare k-mer group starting from the
smallest group until up to 20,000 sequences are recorded.Often there
are fewer than 20,000 sequences from all 50 rare k-mer groups, but
this is not always the case and the maximum number of shared rare
k-mersmight be less than 50. The resulting 20,000or fewer sequences
are then tabulated for the number of times they are observed sharing a
rare k-mer with the given sequence. These counts are tabulated to
produce a vector of up to length 50 containing the number of
sequences sharing that many rare k-mers.

Unrelated sequences typically share very few rare k-mers, and
there is an initial exponential fall-off in the number of sequences
sharing more-and-more rare k-mers by chance (Fig. 1A). A line is fitted
to the initial fall-off in log-space, using points decreasing mono-
tonically from the first local maximum to minimum. This line
approximates the number of sequences in the input expected to share
some number of rare k-mers by chance. The point at which the line
goes below 1 is converted into a probability by subtracting from 1. For
example, if 0.05 sequences are estimated to share 11 rare k-mers, then
the probability of homology assigned to these sequences is 0.95.
Sequences are sorted from the highest to lowest probability of
homology (i.e., most to fewest shared rare k-mers), and the cumulative
product is applied to the probabilities as a form of multiple testing
correction. Any sequences with a remaining probability of at least 0.9
are deemed homologous to the given sequence. In practice, all
sequences sharing many rare k-mers (>20 of 50) are considered
homologous and those sharing very few (<10) are not.

It may seem counterintuitive that a sequence sharing 9 rare
k-mers would not be considered homologous, given that rare k-mers
are selected partly for their rarity. However, since the output hash
space (s) is relatively small and up to 50 k-mers are selected, it is
expected that some rare k-mers are far more frequent by chance than
others. The empirical determination of background frequencies is
necessary to avoid false positives that would merge non-homologous
sequences. Conversely, if all sequences are homologous then it is
possible to imagine a case where no k-mers are rare. The SARS-CoV-2
genomes are an example of this, as the sequences differ by only a few
positions (~ 3 on average) per thousand. Yet, even in this extremecase,
it is possible to identify sequences sharing an unusually high number
of rare k-mers. This is sufficient for connecting homologous sequen-
ces, which is the goal of the next step in phase 1.

Starting from the first sequence, a depth-first search is com-
menced to delineate disjoint sets of homologous sequences. That is,
any sequences deemed homologous to the first sequence are assigned
to a stack and the process is repeated from each of those sequences
until no unassigned sequences remain on the stack (Fig. 1B, C). All of
the sequences that were visited are assigned to the same partition and
share single-linkage homology. Once the stack is empty, the next
unassigned sequence becomes the first member of a new partition.
This process is repeated until every sequence is assigned a partition
(Fig. 1D), thereby visiting every sequence once for a linear time algo-
rithm. In practice, homologous input sequences result in relatively few
partitions (e.g., 1 partition) and non-homologous input sequences
result in many partitions.

Phase 2: pre-sorting sequences based on k-mer similarity in
linear time
The key innovation underlying the Clusterize algorithm is to pre-sort
sequences such that accurate clustering can be performed in linear
time. Pre-sorting is conducted within each partition until reaching an
iteration limit (i.e., parameter B) or the rank ordering of sequences
stabilizes. First, a sequence (j) is randomly selected from each partition
with a probability proportional to its average variability in rank order
(v) multiplied by its length (L): pj = vj � Lj . This formula encourages the
selectionof longer sequences that still havenot stably sorted. Then, the
k-mer distance (1 - k-mer similarity) is calculated between the sequence

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 10

and all others, resulting in a vector of distances (d1). Second, another
sequence is randomly selected with probability proportional to d1 and
inversely proportional to the non-overlapping difference in length
(Δov) with the first randomly selected sequence: pj =d1j=ðΔovj + 1Þ. This
prioritizes sequences that overlap completely with the first sequence
but are dissimilar. Again, the k-mer distance is calculated between the
second sequence and all others (d2). The relative difference between
these two vectors (d1 − d2) becomes the initial vector (D) upon which
the rank order of sequences is determined.

The process of generating new relative distance vectors (D) is
repeatedup to 2000 iterations (i.e., parameterB)within eachpartition.
I termed this process relatedness sorting because more similar
sequences become closer togetherwith additional iterations (i). Only a
single vector is kept after each iteration to limit the memory overhead
of phase 2. There aremultipleways inwhich to combineDi andDi-1 into
a new unified vector, D. I chose to project both vectors onto their axis
of maximum shared variance after centering both vectors to have a
mean of zero (Fig. 1I). This is equivalent to performing principal
component analysis on the two column matrix formed by combining
Di andDi-1 and retaining only the first principal component (asD). Each
vector is ordered with radix sorting to define the rank order of
sequences. Clusterize keeps track of the number of positions each
sequencemoves in the relatedness ordering (v) using an exponentially
weighted moving average with smoothing parameter α (0.05):
v=α � vi + 1� αð Þ � vi�1. Note that the vector v0 is initialized with
values of 2000 (i.e., parameterC) and values of v are capped at 2000 in
each iteration as an upper limit for practicality.

As relatedness sorting progresses, the rank ordering (v) typically
stabilizes, with some sequences stabilizing before others. When a
sequence’s rank order stabilizes below 1000 (i.e., parameter C/2), its
partition is split into separate groups at this sequence (Fig. 1J), as long
as eachnewgroupwouldcontain at least 2000 sequences.Relatedness
sorting is continued within each group until all of its sequences sta-
bilize in rank order below 1000 or the maximum number of iterations
(i.e., parameter B) is reached. In practice, most groups stabilize in rank
order before 2000 iterations and, thus, parameter B is not a limiting
factor. Rank order stability is defined as v ≤ 1000 because the
sequences are moving within 2000 positions on average (i.e., ±1000),
which is the number of sequences considered in phase 3 of the algo-
rithm (i.e., parameter C).

Phase 3: clustering sequences in linear time
No sequences were clustered in phases 1 or 2, but the sequences were
ordered by relatedness in preparation for clustering. Two linear time
strategies are used for clustering sequences: (1) The rare k-mer strat-
egy draws sequences for comparison in the exact samemanner as used
in phase 1, thereby prioritizing sequences sharing the greatest number
of rare k-mers; (2) The relatedness sorting strategy selects proximal
sequences from the final rank ordering of sequences determined in
phase 2. Up to 2000 (i.e., parameterC) total sequences are drawn from
the two strategies in proportion to the number of clustered sequences
arising from each strategy. That is, when a sequence is added to an
existing cluster, Clusterize determines whether the sequence was in
the set of sequences originating from rare k-mers and/or relatedness
sorting. The count of sequences drawn from each strategy is incre-
mented in accordance with the clustered sequence’s origin(s). In this
manner, the more lucrative strategy is emphasized when determining
where to draw the next 2000 candidate sequences.

K-mer similarity is calculated to the cluster representatives cor-
responding to all 2000 sequences, and any cluster representative
passing the similarity threshold is used for assignment. If none exists,
the sequence is aligned with up to 200 (i.e., parameter E) cluster
representatives having the highest k-mer similarities. If none of these
are within the similarity threshold, the sequence becomes a new
cluster representative. To avoid issues with partial-length sequences,

the sequences are visited in order of decreasing length so that the
cluster representative is always the longest sequence in its cluster.

Clustering benchmark and program comparison
Clusterize is implemented in the C and R programming languages18

within the DECIPHER package17 (v2.30.0) available from
Bioconductor19. Clusterize’s default parameters were used for all tests,
while specifying cutoff (1 - similarity threshold) and processors (number
of threads). Five other popular clustering programs were chosen for
comparison because they can scale to millions of sequences: CD-HIT/
CD-HIT-EST (v4.8.1)5, ESPRIT-Forest15, Linclust16 andMMseqs2 (Release
13-45111; SSE4.1)6, and UCLUST (USEARCH v11.0.667; 32 bit free
version)7. Parameters were set to align definitions of minimum
sequence coverage across programs and require at least 50% coverage
of the target sequence. CD-HIT/CD-HIT-EST required non-default
parameters “-M 0”, “-aS 0.5”, and “-n word-length”, where word-length
was decreased as needed from the default of 5 (proteins) or 10
(nucleotides) until the program would run without error. Linclust was
run using mmseqs command “easy-linclust” with non-default para-
meters “--cov-mode 1”, “-c 0.5” and “--kmer-per-seq 80” to match the
higher sensitivity variant of Linclust originally published (i.e., “-m 80”).
MMseqs2 was run using the command “easy-cluster”with “--cov-mode
1” and “-c 0.5”. UCLUST was run using the usearch command “-clus-
ter_fast” with the non-default parameter “-target_cov 0.5”. ESPRIT-
Forest was run by specifying a single similarity threshold for both the
lower (“-l”) and upper (“-u”) limit. All programs were configured to use
8 processors except when testing scalability with multiple processors.

All runtimes are reported in elapsed time (i.e., wall time). Memory
usage is reported as the peak resident set size. Asymptotic scalability
was calculated from the slope of a line fit to the highest fourmeasured
points of time versus input size in log-log space. Determination of the
fraction of sequences exceeding the similarity threshold was per-
formed by randomly sampling up to 10,000 pairs of clustered
sequences and calculating their similarity with DECIPHER17. Results are
only shown when there were at least 5000 clustered sequences. The
results shown in Fig. 4were contrastedwith chorddiagramscreatedby
the R package circlize48. AMI and NMI were calculated with the R
packagearicode (v1.0). Label consistencywas computed as the average
fraction (f) of each cluster that shared the cluster’smost frequent label,
weightedby the size (m) of the clusterminus one. In thisway, singleton
clusters (i.e., m = 1), which have 100% label consistency by definition,
have no influence on the average consistency. Given M total clusters,
average consistency can be formulated as:

Consistency=
XM

i = 1

f i � mi � 1
� �

=
XM

i = 1

mi � 1
� �

To compare programs for accuracy on homologous sequence
sets, I downloaded all proteins from the NCBI (Protein database)
matching hidden Markov models in TIGRFAM26. A total of 411 protein
families had at least 20,000 unique sequences with a labeled genus,
and 3001 had fewer than 20,000 unique sequences with a labeled
genus. AMI and NMI were computed with the subset of sequences
having a class, family, or genus label (typically > 99%). TIGRFAM
sequence sets are available from Zenodo (accession 10019584).
TIGRFAM tests were performed on Open Science Pool computers
matching the minimum specifications: 8 processors, 8 GB of memory,
and 10 GB of disk space. For long nucleotide sequences, I downloaded
all 13.2 million SARS-CoV-2 genomes available from GISAID (gisai-
d.org). This set was reduced to the 2 million distinct full-length
(29,000 - 30,000 nucleotides) genomes without ambiguities (e.g.,
“N”). For short nucleotide sequences, I downloaded the set of all
quality-trimmed merged paired-end V3-V4 reads collected from heal-
thy human subjects in the Human Microbiome Project. Reads were

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 11

labeled by their body site of origin, duplicate reads were removed, and
read order was randomized.

Tocompareprograms for accuracyonhomologous sequence sets, I
downloaded the complete Metaclust benchmark originally published
with Linclust16. I dereplicated and randomized the order of Metaclust
sequences for consistency with the previous benchmarks. To develop
another benchmark of non-homologous sequences, I used the set of all
bacterial genomes available from RefSeq (release 220). Proteins and
their corresponding protein coding sequences were downloaded for
each genome, labeled by their protein function predicted by PGAP49,
dereplicated, andhypothetical proteinswerediscarded. Sequences from
randomly selected genomes were appended until reaching the max-
imum file size of 50 GB allowed by the Zenodo repository at 44,831
genomes. The final sets of matched protein and nucleotide sequences
are available from Zenodo (accessions 10030000 and 10031801). For
easier reproducibility, all tested subsets were taken starting from the
first sequenceuntil reaching the intendednumber of sequences used for
benchmarking. Time and memory analyses were performed on a Dell
PowerEdge T650 workstation with two Intel Xeon processors (E5-2690
v4 2.6GHz) and 792 GB of memory running CentOS 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
New sequence sets used for benchmarking were deposited in the
Zenodo repository under accessions 10019584, 10030000, and
10031801. All 16S rRNA gene sequences used in this study are available
from the Human Microbiome Project Data Portal https://portal.
hmpdacc.org, SARS-CoV-2 sequences are available from GISAID, and
the Metaclust benchmark is available online https://metaclust.mmseqs.
org. GISAID requires an application to access sequence data. Data
generated in this study are included in the published article, its Sup-
plementary Information, and the Zenodo repositories listed above.

Code availability
Clusterize is part of the open source DECIPHER package for the R
programming language available from Bioconductor https://doi.org/
10.18129/B9.bioc.DECIPHER.

References
1. Li, W., Fu, L., Niu, B., Wu, S. & Wooley, J. Ultrafast clustering algo-

rithms for metagenomic sequence analysis. Brief. Bioinforma. 13,
656–668 (2012).

2. Zou Q, Lin G, Jiang X, Liu X. & Zeng X. Sequence clustering in
bioinformatics: an empirical study. Brief. Bioinform. 21, 1–10 (2018).

3. Cai, Y. & Sun, Y. ESPRIT-Tree: hierarchical clustering analysis of
millions of 16S rRNA pyrosequences in quasilinear computational
time. Nucleic Acids Res. 39, e95 (2011).

4. Blackshields, G., Sievers, F., Shi, W., Wilm, A. & Higgins, D. G.
Sequence embedding for fast construction of guide trees for mul-
tiple sequence alignment. Algorithms Mol. Biol. 5, 21 (2010).

5. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and com-
paring large sets of protein or nucleotide sequences.Bioinformatics
22, 1658–1659 (2006).

6. Hauser, M., Steinegger, M. & Soding, J. MMseqs software suite for
fast and deep clustering and searching of large protein sequence
sets. Bioinformatics 32, 1323–1330 (2016).

7. Edgar, R. C. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 26, 2460–2461 (2010).

8. Namiki Y, Ishida T. & Akiyama Y. Acceleration of sequence cluster-
ing using longest common subsequence filtering. BMC Bioinform.
14, 1–8 (2013).

9. Wei, D., Jiang, Q., Wei, Y. &Wang, S. A novel hierarchical clustering
algorithm for gene sequences. BMC Bioinforma. 13, 174 (2012).

10. Rasheed, Z., Rangwala, H. & Barbará, D. 16S rRNA metagenome
clustering and diversity estimation using locality sensitive hashing.
BMC Syst. Biol. 7, S11 (2013).

11. Mahe, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M.
Swarm: robust and fast clustering method for amplicon-based
studies. PeerJ 2, e593 (2014).

12. Li, W., Jaroszewski, L. & Godzik, A. Sequence clustering strategies
improve remote homology recognitions while reducing search
times. Protein Eng. 15, 643–649 (2002).

13. Ghodsi, M., Liu, B. & Pop, M. DNACLUST: accurate and efficient
clustering of phylogenetic marker genes. BMC Bioinforma. 12,
271 (2011).

14. Zheng, W. et al. A parallel computational framework for ultra-large-
scale sequence clustering analysis. Bioinformatics 35,
380–388 (2019).

15. Cai, Y. et al. ESPRIT-Forest: Parallel clustering of massive amplicon
sequence data in subquadratic time. PLoS Comput Biol. 13,
e1005518 (2017).

16. SteineggerM. & Soding J. Clustering huge protein sequence sets in
linear time. Nat. Commun. 9, 1–8 (2018).

17. Wright, E. S. Using DECIPHER v2.0 to Analyze Big Biological
Sequence Data in R. R. J. 8, 352–359 (2016).

18. R Core Team. R: A Language and Environment for Statistical Com-
puting. In. Vienna, Austria: R Foundation for Statistical Comput-
ing; 2023.

19. Huber, W. et al. Orchestrating high-throughput genomic analysis
with Bioconductor. Nat. Meth 12, 115–121 (2015).

20. RNAcentral Consortium RNAcentral 2021: secondary structure
integration, improved sequence search and new member data-
bases. Nucleic Acids Res 49, D212–D220 (2021).

21. Wright, E. S. RNAconTest: comparing tools for noncoding RNA
multiple sequence alignment based on structural consistency.RNA
26, 531–540 (2020).

22. Sun, Y. et al. A large-scale benchmark study of existing algorithms
for taxonomy-independent microbial community analysis. Brief.
Bioinforma. 13, 107–121 (2012).

23. Schmidt, T. S. B., Matias Rodrigues, J. F. & vonMering, C. Ecological
Consistency of SSU rRNA-Based Operational Taxonomic Units at a
Global Scale. PLoS Comput Biol. 10, e1003594 (2014).

24. Amelio, A. & Pizzuti, C. Correction for Closeness: Adjusting Nor-
malized Mutual Information Measure for Clustering Comparison.
Comput. Intell. 33, 579–601 (2017).

25. Schmidt, T. S., Matias Rodrigues, J. F. & von Mering, C. Limits to
robustness and reproducibility in the demarcation of operational
taxonomic units. Environ. Microbiol 17, 1689–1706 (2015).

26. Haft, D. H. et al. TIGRFAMs and Genome Properties in 2013. Nucleic
Acids Res 41, D387–D395 (2013).

27. Wright, E. S. DECIPHER: harnessing local sequence context to
improve proteinmultiple sequence alignment. BMCBioinforma. 16,
322 (2015).

28. Shu Y. & McCauley J. GISAID: Global initiative on sharing all influ-
enza data - from vision to reality. Euro. Surveill. 22, 30494 (2017).

29. Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal
RNA OTUs. Bioinformatics 34, 2371–2375 (2018).

30. Hassler, H. B. et al. Phylogenies of the 16S rRNA gene and its
hypervariable regions lack concordance with core genome phylo-
genies. Microbiome 10, 104 (2022).

31. Consortium, T. H. M. P. A framework for human microbiome
research. Nature 486, 215–221 (2012).

32. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H.
UniRef: comprehensive and non-redundant UniProt reference
clusters. Bioinformatics 23, 1282–1288 (2007).

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 12

https://doi.org/10.5281/zenodo.10019584
https://doi.org/10.5281/zenodo.10030000
https://doi.org/10.5281/zenodo.10031801
https://portal.hmpdacc.org
https://portal.hmpdacc.org
https://gisaid.org
https://metaclust.mmseqs.org
https://metaclust.mmseqs.org
https://doi.org/10.18129/B9.bioc.DECIPHER
https://doi.org/10.18129/B9.bioc.DECIPHER

33. Mirdita, M. et al. Uniclust databases of clustered and deeply
annotated protein sequences and alignments. Nucleic Acids Res
45, D170–D176 (2017).

34. James,B. T., Luczak, B. B.&Girgis,H. Z.MeShClust: an intelligent tool
for clustering DNA sequences. Nucleic Acids Res 46, e83 (2018).

35. Jiang L, Dong Y, Chen N. & Chen T. DACE: A Scalable DP-means
Algorithm for Clustering Extremely Large Sequence Data. Bioin-
formatics 33, 834–842 (2017).

36. Wright, E. S. & Baum, D. A. Exclusivity offers a sound yet practical
species criterion for bacteria despite abundant gene flow. BMC
Genom. 19, 724 (2018).

37. Roch, S. Toward Extracting All Phylogenetic Information from
Matrices of Evolutionary Distances. Science 327, 1376–1379 (2010).

38. Weisman, C. M., Murray, A. W. & Eddy, S. R. Many, but not all,
lineage-specific genes can be explained by homology detection
failure. Plos Biol. 18, e3000862 (2020).

39. Nguyen, N. P., Warnow, T., Pop, M. &White, B. A perspective on 16S
rRNA operational taxonomic unit clustering using sequence simi-
larity. NPJ Biofilms Microbio. 2, 16004 (2016).

40. Koeppel, A. F. & Wu, M. Surprisingly extensive mixed phylogenetic
and ecological signals among bacterial Operational Taxonomic
Units. Nucleic Acids Res. 41, 5175–5188 (2013).

41. Kelil, A., Wang, S., Brzezinski, R. & Fleury, A. CLUSS: clustering of
protein sequences based on a new similarity measure. BMC Bioin-
forma. 8, 286 (2007).

42. Chiu, J. K. H. & Ong, R. T. Clustering biological sequences with
dynamic sequence similarity threshold. BMC Bioinforma. 23,
108 (2022).

43. Barrio-Hernandez I, et al. Clustering predicted structures at the
scale of the known protein universe. Nature 622, 637–645 (2023).

44. Cheng, H. et al. ECOD: An Evolutionary Classification of Protein
Domains. PLoS Comput Biol. 10, e1003926 (2014).

45. Keul, F., Hess, M., Goesele, M. & Hamacher, K. PFASUM: a sub-
stitution matrix from Pfam structural alignments. BMC Bioinforma.
18, 293 (2017).

46. Cooley, N. P. & Wright, E. S. Accurate annotation of protein coding
sequences with IDTAXA. NAR Genom. Bioinform 3, lqab080 (2021).

47. Marsaglia, G. Xorshift RNGs. J. Stat. Softw. 8, 1–6 (2003).
48. Gu, Z., et al. circlize Implements and enhances circular visualization

in R. Bioinformatics 30, 2811–2812 (2014).
49. Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline.

Nucleic Acids Res 44, 6614–6624 (2016).

Acknowledgements
This study was funded by the NIAID at the NIH (grant number
1U01AI176418-01 to ESW). Computer resources for this study were

providedby theOpenScienceGrid. I acknowledge thedata contributors
to the GISAID initiative for generating the SARS-CoV-2 sequences used
in this study, and I am grateful to the Human Microbiome Project for
making their datasets accessible.

Author contributions
E.S.W. is the sole author.

Competing interests
The author declares no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47371-9.

Correspondence and requests for materials should be addressed to
Erik Wright.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47371-9

Nature Communications | (2024) 15:3047 13

https://doi.org/10.1038/s41467-024-47371-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Accurately clustering biological sequences in linear time by relatedness sorting
	Results
	Overview of the Clusterize algorithm
	Clusterize is comparable in accuracy to less scalable clustering programs
	Clusterize accurately clusters millions of SARS-CoV-2 genomes in linear�time
	Clustering millions of homologous microbiome sequences across samples
	Clusterize was slower but more accurate than Linclust on Metaclust
	Reducing redundancy among tens-of-millions of diverse sequences

	Discussion
	Methods
	Measures of similarity between sequences
	Selection of optimal k-mers and k-mer�length
	Phase 1: separating sequences into partitions with detectable similarity
	Phase 2: pre-sorting sequences based on k-mer similarity in linear�time
	Phase 3: clustering sequences in linear�time
	Clustering benchmark and program comparison
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

