
Article https://doi.org/10.1038/s41467-024-47349-7

Denovodiploidgenomeassemblyusing long
noisy reads

Fan Nie1,2,3,8, Peng Ni 1,2,4,8, Neng Huang1,2,4, Jun Zhang1,2,4, Zhenyu Wang5,
Chuanle Xiao 6 , Feng Luo 7 & Jianxin Wang 1,2,4

The high sequencing error rate has impeded the application of long noisy
reads for diploid genome assembly. Most existing assemblers failed to gen-
erate high-quality phased assemblies using long noisy reads. Here, we present
PECAT, a Phased Error Correction and Assembly Tool, for reconstructing
diploid genomes from long noisy reads. We design a haplotype-aware error
correction method that can retain heterozygote alleles while correcting
sequencing errors.We combine a corrected read SNP caller and a raw read SNP
caller to further improve the identification of inconsistent overlaps in the
string graph.We use a groupingmethod to assign reads to different haplotype
groups. PECAT efficiently assembles diploid genomes using Nanopore R9,
PacBio CLR or Nanopore R10 reads only. PECAT generates more contiguous
haplotype-specific contigs compared to other assemblers. Especially, PECAT
achieves nearly haplotype-resolved assembly on B. taurus (Bison×Simmental)
using Nanopore R9 reads and phase block NG50with 59.4/58.0Mb for HG002
using Nanopore R10 reads.

De novo genome assembly is a fundamental task in genomic
research1–3. Using long noisy reads from sequencing technologies,
such as complete long reads (CLR) sequencing of Pacific Biosciences
(PacBio) and Nanopore sequencing of Oxford Technologies (ONT),
many assemblers4–9 now can effectively reconstruct high-quality gen-
ome sequences for haploid or inbred species. However, a significant
fraction of genetic information of a diploid genome is lost in those
assemblies and most of them have lots of haplotype switch errors.
Because long noisy reads, such as PacBio CLR reads and Nanopore
reads, usually contain a 5–15% sequencing error10, it is difficult to dis-
tinguish heterozygotes from sequencing errors in long noisy reads11–15,
which prevents the diploid assemblers from generating long
haplotype-specific contigs. Recently, by combining long noisy reads
with additional highly accurate sequencing data, such as parental short
reads16–18, PacBio HiFi reads17,18, Hi-C reads19, Strand-seq data20, or

gamete cell data21, assemblers now can produce more contiguous
haplotype-specific contigs. However, the requirements for additional
sequencing data increase costs and limit their applications in
practice22,23. Meanwhile, it is easier to identify haplotype differences
using high accurate PacBio HiFi reads24 (< 1% error rate), which has
been widely used for haplotype resolved assemblies25–28. However, the
average lengths of HiFi reads (10–25 kb) are shorter than those of long
noisy reads. For example, the ultra-long reads of Nanopore are up to
1M in length andwith readN50 > 100kb29. Longer reads usually help to
assemble more contiguous contigs30. Therefore, it will be useful to
develop an assembler that can take advantage of long noisy reads to
generate more contiguous haplotype-specific contigs for diploid
genomes.

To achieve high-quality assemblies, error correction is usually a
useful step for genome assembling using long noisy reads. One

Received: 4 January 2024

Accepted: 25 March 2024

Check for updates

1School of Computer Science and Engineering, Central South University, Changsha 410083, China. 2Xiangjiang Laboratory, Changsha 410205, China.
3National Center for Applied Mathematics in Hunan and Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education,
Xiangtan University, Xiangtan, Hunan 411105, China. 4Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha 410083, China.
5Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangdong 510316, China. 6State Key Laboratory of Ophthalmology, Zhongshan
Ophthalmic Center, Sun Yat-sen University #7 Jinsui Road, Tianhe District, Guangzhou, China. 7School of Computing, Clemson University, Clemson, SC
29634-0974, USA. 8These authors contributed equally: Fan Nie, Peng Ni e-mail: xiaochuanle@126.com; luofeng@clemson.edu; jxwang@mail.csu.edu.cn

Nature Communications |         (2024) 15:2964 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-0801-7574
http://orcid.org/0000-0002-0801-7574
http://orcid.org/0000-0002-0801-7574
http://orcid.org/0000-0002-0801-7574
http://orcid.org/0000-0002-0801-7574
http://orcid.org/0000-0002-4680-0682
http://orcid.org/0000-0002-4680-0682
http://orcid.org/0000-0002-4680-0682
http://orcid.org/0000-0002-4680-0682
http://orcid.org/0000-0002-4680-0682
http://orcid.org/0000-0002-4813-2403
http://orcid.org/0000-0002-4813-2403
http://orcid.org/0000-0002-4813-2403
http://orcid.org/0000-0002-4813-2403
http://orcid.org/0000-0002-4813-2403
http://orcid.org/0000-0003-1516-0480
http://orcid.org/0000-0003-1516-0480
http://orcid.org/0000-0003-1516-0480
http://orcid.org/0000-0003-1516-0480
http://orcid.org/0000-0003-1516-0480
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47349-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47349-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47349-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47349-7&domain=pdf
mailto:xiaochuanle@126.com
mailto:luofeng@clemson.edu
mailto:jxwang@mail.csu.edu.cn


challenge for correct-then-assemble pipelines in assembling a diploid
genome using long noisy reads is how to retain heterozygotes during
error correction. If the sequencing error rate exceeds haplotype
divergence, current correct-then-assemble pipelines4–6,9 eliminate
heterozygotes as sequencing errors or mixed alleles of different hap-
lotypes in a read. Therefore, corrected reads don’t contain hetero-
zygote information for haplotype phasing. Assemblers, such as
FALCON-Unzip4, used raw reads instead of corrected reads in their
“unzip” phasing step, then mapped the raw reads to the corrected
reads for the later diploid assembly. This has led to assembly errors
due to the heterozygote errors in the corrected reads and mapping
errors between corrected reads and raw reads as the length of reads
and their SNP position changed after correction4. Furthermore, phas-
ing raw reads is more difficult due to their high error rate.

Another challenge is partitioning reads according to their haplo-
types in the phasing step. After error correction, there still are
sequencing errors left in corrected reads. The error profile of cor-
rected reads is also more complex than that of PacBio HiFi reads. Due
to the sequencing errors, a significant fraction of reads is difficult to be
phased to the correct haplotypes. This leads to inconsistent overlaps25

among reads,whose reads come fromdifferent haplotypes ordifferent
copies of the segmental duplication. The inconsistent overlaps can
cause haplotype switch errors or unresolved repeats. Accurately
phasing the reads, and then identifying and removing inconsistent
overlaps is important in overlap-graph-based diploid genome assem-
bly. Even if we assemble the genome using PacBio HiFi reads, there is
still need error correction step to improve the phasing accuracy25. The
higher error rate in corrected long noisy reads makes phasing and
identifying inconsistent overlaps more difficult. It is necessary to
design a more accurate and robust method to identify inconsistent
overlaps for long noisy read-based assemblers.

Furthermore, to construct two haplotypes of diploid genomes,
the assemblers often need higher coverage of sequencing data. How-
ever, with the increasing amount of sequencing data, the running time
of assembly increases nonlinearly. Therefore, assembling large diploid
genomes at an acceptable time is another challenge. Overlap-graph-
based assemblers have their unique advantages to assemble diploid
genomes since the overlaps can be reused in subsequent steps once
they are found. This helps to design an efficient multi-round assembly
strategy. The overlap-graph-based assemblers usually use seed (i.e., k-
mers, minimizers31) based methods to find candidate overlaps, then
perform local alignment to find the true overlaps. The local alignment
is the major computational bottleneck of overlap-graph-based
approaches. Although skipping local alignment can accelerate the
overlap-finding step32, it leads to lots of false-positive overlaps and
introduces errors in assembly graphs. String-graph-based33 approa-
ches, a type of overlap-graph-based approach, ignore the reads con-
tained by other reads and mark most edges in the graph as transitive
edges33 that don’t contribute to the construction of contigs. Then, it is
not necessary to perform local alignment on those read pairs. There-
fore, it is possible to design a fast string-graph-based diploid genome
assembler by minimizing the number of local alignments needed.

In this work, we present PECAT, a Phased Error Correction and
Assembly Tool, designed to reconstruct diploid genomes from long
noisy reads, including PacBio CLR reads and Nanopore reads. PECAT
follows the correct-then-assemble strategy, including a haplotype-
aware error correction module, which can retain heterozygote alleles
while correcting sequencing errors, and a two-round string graph-
based assembly module. To accelerate the assembling, PECAT only
performs local alignment when it is necessary instead of performing
local alignments on all candidate overlaps. PECAT outputs two sets of
contigs either in primary/alternate format (long contigs with the
mosaic of homologous haplotypes and short haplotype-specific con-
tigs) or in the dual assembly format27 (two sets of long contigs with the
mosaic of homologous haplotypes). PECAT can efficiently assemble

diploid genomes using Nanopore R9, PacBio CLR or more accurate
Nanopore R10 reads only and generate more contiguous haplotype-
specific contigs compared to other assemblers.

Result
Haplotype-aware error correction
Our error correction method (Fig. 1a and Supplementary Fig. 1) is
based on the partial-order alignment (POA) graph34 method. For the
template read to be corrected, a POA graph is built from the alignment
of supporting reads. Then, the path with the highest weight is found in
the POA graph to construct the consensus sequence for the template
read. However, if the sequencing error rate exceeds haplotype diver-
gence, current methods inevitably select supporting reads from dif-
ferent haplotypes. This causes either heterozygote alleles in the
template reads to be eliminated as sequencing errors or heterozygous
alleles from different haplotypes to be mixed in corrected reads.

To maintain the heterozygote alleles in the template read, we
need to select supporting reads from the same haplotype to correct it.
After analyzing the POA graph, we have found that the difference
between random sequencing errors and heterozygotes can be reflec-
ted in the POA graph. In the case of heterozygotes, there are two
dominant parallel branches in the POA graph. In the case of random
errors, there tends to be only one dominant branch (Supplementary
Fig. 1b). Based on this finding, we design a scoring algorithm to esti-
mate the likelihood that the supporting read and the template read are
from the same haplotype (Methods). For each position at which there
are two dominant parallel branches, if the supporting read and the
template read pass through the same dominant branch, the score is
increased by 1 and if the supporting read and the template read pass
through the different dominant branches, the score is decreased by 1
(Supplementary Fig. 1c). A higher score means that the template read
and the supporting read are more likely from the same haplotype. If
the supporting reads come from different haplotypes, the histogram
of scores of all supporting reads should show two peaks (Supple-
mentary Fig. 1d). Then, we select the high-scoring supporting reads,
which are very likely to be in the same haplotype as the template read,
to correct the template read. To further increase the likelihood of
selecting supporting reads in the same haplotype, we assign different
weights to the reads according to their score. The higher the score of a
read, the larger its weight is assigned (Methods). Then, we remove
unselected reads in the POA graph by assigning their weights to 0.
Finally, we use a dynamic programming approach to find the path with
the highestweight in the POAgraph and concatenated the nodes in the
path, and generate the consensus sequence (Methods).

We evaluate the performance of the selection method on seven
diploid datasets of S. cerevisiae (SK1×Y12),A. thaliana (Col-0×Cvi-0),D.
melanogaster (ISO1×A4), B. taurus (Angus×Brahman), A. thaliana (Col-
0×C24), B. taurus (Bison×Simmental) and HG002 (Nanopore R9), all
with reads classified by the trio-binning algorithm16 (Methods). As
shown in Supplementary Table 1, without the selectionmethod, 36.7%,
31.5%, 41.1%, 28.1%, 33.8%, 37.2% and 27.4% of supporting reads are
inconsistent reads, respectively, which are from the haplotype differ-
ent from the one of template read. Meanwhile, there are only 2.8%,
3.5% 4.9%, 3.6%, 4.3%, 2.9%, and 4.2% inconsistent reads in selected
supporting reads, respectively. After further re-weighting the scores,
the percentages of inconsistent reads are reduced to 2.1%, 3.1%, 4.0%,
3.1%, 3.5%, 2.3%, and 3.4%, respectively.

Since most of the selected supporting reads are from the same
haplotype of the template read, most heterozygote alleles in the
template read are correctly retained in our error correction method.
We compare our method with other methods including Canu5,
MECAT26, and NECAT9 on simulated PacBio CLR data and Nanopore
data (Fig. 2a, Supplementary Table 2, and Supplementary Note 1). The
overall accuracies of corrected reads are similar, which exceeds 99%.
However, the accuracies of SNP alleles in corrected reads are less than
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80% for Canu and less than 60% for MECAT and NECAT, which are far
worse than those of raw reads and reads corrected by PECAT. When
the heterozygosity rate of simulated reads is greater than or equal to
0.0005, the accuracy of SNP alleles in reads corrected by PECAT is
greater than 99%, which exceeds that of raw reads (96% or 98%).
However, when the heterozygosity rate of simulated reads is equal to
0.0001, the accuracy of SNP alleles in reads corrected by PECAT is
reduced to 92% ~ 94%, which is less than that of raw reads (96% ~ 98%).
Therefore, for high heterozygosity genome regions (>= 0.0005), our
haplotype-aware error correction can preserve the SNPs well.

However, for low heterozygosity genome regions (< 0.0005), we need
to combinewith othermethods to improve the accuracy of SNP calling
(Methods).

Fast string graph-based assembler
After error correction, PECAT implements two rounds of string graph-
based assembly. In each round of assembly, we first construct the
overlaps between the corrected reads using the seed-based alignment
method (minimap235), which allows us to build the overlaps quickly.
However, seed-based alignment can bring low-quality overlaps with
low identity or with long overhangs. Those low-quality overlaps could
introduce errors during assembling. Performing local alignment on
overlaps to identify low-quality ones becomes the major computa-
tional cost. To speed up the assembling, PECAT only performs local
alignments when it is necessary during the construction of the string
graph. (Methods). First, to reduce overhangs of overlaps, we use diff
algorithm36 to extend the candidate overlaps to the ends of the reads.
Here, we only perform local alignment on overhangs instead of on the
whole overlap. We remove the overlaps if their overhangs are still long
(minð100,0:01 � lÞ for PacBio reads and min ð300,0:03 � lÞ for Nano-
pore reads, where l is length of the read). On the diploid datasets of S.
cerevisiae (SK1×Y12), A. thaliana (Col-0×Cvi-0), D. melanogaster
(ISO1×A4), B. taurus (Angus×Brahman), A. thaliana (Col-0×C24), B.
taurus (Bison × Simmental) and HG002, 5.3%, 10.3%, 82.2%, 12.8%,
20.0%, 59.4% and 56.3% of candidate overlaps with long overhangs
have been considered as low quality and removed, respectively (Sup-
plementary Table 3). Then, we further filter out the overlaps whose
reads are contained in other reads or with low coverage. Only 0.15%,
0.18%, 0.86%, 0.86%, 0.03%, 1.23%, and 0.15% of overlaps remained on
the above seven diploid datasets (Supplementary Table 3). We then
construct a directed string graph from the remaining overlaps.We find
the transitive edges using Myers’ algorithm33 and mark them as inac-
tive edges, which are not used for constructing contigs. On the above
diploid datasets, only 25.1%, 16.7%, 16.3%, 18.5%, 20.7%, 15.4%, and
23.6% of edges are active (Supplementary Table 3).

To remove low-quality edges in the string graph, we calculate the
identity of the overlaps (the active edges) in the string graph using
local alignments. Since most edges have been marked as inactive, we
only need to perform local alignments for a small portion of overlaps.
On the above diploid datasets, 2.1%, 12.2%, 9.5%, 2.2%, 13.2%, 1.8%, and
6.9% of active edges have been removed because their identities are
less than the threshold (Methods) (Supplementary Table 3). After the
above step, some paths in the graphs connected by low-quality edges
are broken. Those broken paths need to be connected using the
transitive edges that have been labeled as inactive edges. We then
select transitive edges with the longest alignment and their identity
greater than the threshold to connect the broken paths. On the above
diploid datasets, about 0.67%, 0.12%, 0.15%, 0.09%, 0.13%, 0.05%, and
0.16% of transitive edges have been reactivated (Supplementary
Table 3). Finally, we attempt to use the contained reads to connect the
broken paths, and about 0.30%, 0.39%, 0.17%, 0.11%, 0.77%, 0.13%, and
0.45% of new edges are added to the graph on the above diploid
datasets (Supplementary Table 3). In the first round of assembly
(Fig. 1b), PECATfinds linearpaths from this string graph and constructs
haplotype-collapsed contigs. In the second round of assembly (Fig. 1c),
PECAT identifies and removes inconsistent overlaps (next Section) in
the string graph, and then generates two sets of contigs in primary/
alternate format or dual assembly format. After generating contigs, we
use corrected reads (CLR data) or raw reads (Nanopore data) to polish
them to improve the quality (Methods).

Identification of inconsistent overlaps
The inconsistent overlaps connect reads from different haplotypes or
different copies of the segmental duplication in the overlap graph.
They cause haplotype switch errors or unresolved repeats

supporting reads

template read

corrected read

sequencing error

heterozygous alleles

a
unselected reads

haplotype-collapsed
contig

reads and overlaps

b

haplotype-collapsed
contig

primary/alternate 
format

reads and consistent
overlaps

c

SNP alleles

inconsistent overlaps

dual assembly 
format

or

Fig. 1 | Overviewof PECAT. aHaplotype-aware error correctionmethod. The reads
in different colors (in green or in yellow) are from different haplotypes. The reads
with a dark gray background color indicate that they are not selected. The sup-
porting reads that are more likely from the same haplotype are selected to correct
the template read. b The first round of assembly. PECAT finds overlaps between
reads. The dashed lines indicate there are overlaps between reads. Our string-
graph-based assembler is performed to construct haplotype-collapsed contigs. The
reads in green or in yellow are from heterozygosity regions. The same color indi-
cates that the reads come from the same haplotype. The reads in grey are from
homozygosity regions. c The second round of assembly. PECAT identifies incon-
sistent overlaps by calling and analyzing SNP alleles in reads. After removing
inconsistent overlaps from theoverlaps found in thefirst roundof assembly, PECAT
performs our string-graph-based assembler again to construct the contigs in the
primary/alternate format or the dual assembly format.
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(Supplementary Fig. 2). After identifying and filtering out inconsistent
overlaps, only the overlaps between reads from the same haplotype or
the same copies of the segmental duplication are left, and then the
assembler can naturally generate contigs of two haplotypes. Since our
corrected reads contain allele information, we may use the SNP allele
information to identify inconsistent overlaps. If the SNP alleles on a
pair of reads are different, these two reads should come fromdifferent

haplotypes and the overlaps between them should be inconsistent. At
the error correction step, we have scored the possibility that two raw
reads come from the same haplotype. However, the accuracy of the
previous scoring that is based on the alignments between two raw
reads cannot meet the requirements for identifying inconsistent
overlaps. Therefore, we developed a read-level SNP caller and a read
grouping method for identifying inconsistent overlaps.
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First, we map all corrected reads onto the haplotype-collapsed
contigs from the first round of assembly usingminimap235. We call the
heterozygous SNP sites based on the base frequency of the alignments
(Methods). Then, we set each read as a template read and collect a set
of reads that have the common SNP sites with it. We cluster the set of
reads according to the SNP alleles in reads. The reads from the same
haplotype are more likely to be clustered into the same subgroup. We
then verify and correct the SNP alleles in the template read using other
reads in the same subgroups. After identifying SNP alleles in each read,
we remove the inconsistent overlaps using the SNP information from
the candidate overlaps found in the first round of assembly. Then, we
construct the string graph again. For high heterozygosity genome
regions (>= 0.0005), this inconsistent overlap identification approach
works well due to the high accuracy of SNPs in corrected reads.
However, for low heterozygosity genome regions (< 0.0005), the SNP
caller using corrected reads only can not achieve high performance in
inconsistent overlap identification as the accuracy of SNPs is
decreased dramatically in corrected reads for those genome regions.
Therefore, we combine raw reads to identify and filter inconsistent
overlaps.Wefirst use corrected reads to identify inconsistent overlaps.
Then, we call SNPs using raw reads and identify inconsistent overlaps
again (Methods). For Nanopore reads, we have used Clair315 to call
heterozygous SNP sites. For PacBioCLR reads, wedo not have a tool to
call SNPs from raw reads now.

We evaluate the performance of the inconsistent overlaps iden-
tification method using the haplotype reads classified by the trio-
binning algorithm16. As shown in Supplementary Table 4, compared
with the first round of assemblies, the percentages of inconsistent
overlaps in simplified graphs of the second round of assemblies of
diploid datasets S. cerevisiae (SK1×Y12), A. thaliana (Col-0×Cvi-0), D.
melanogaster (ISO1×A4), B. taurus (Angus×Brahman), A. thaliana (Col-
0×C24), B. taurus (Bison × Simmental) and HG002 decrease sharply.
Thepercentages of inconsistent overlaps have decreased from36.98%,
16.00%, 15.94%, 36.55%, 16.62%, 18.08%, and 37.45% in the first roundof
assemblies to 0.32%, 0.57%, 0.90%, 0.63%, 0.79%, 0.03%, and 1.09% in
the second round of assemblies, respectively. For the three Nanopore
datasets, we compare the performance of themethod using corrected
reads, raw reads, and both (Supplementary Table 4). Using both raw
and corrected reads, we get lower percentages of inconsistent over-
laps in simplified graphs of the second round of assemblies of all three
Nanopore datasets. The high performance of the inconsistent overlap
identificationmethod ensures that PECAT can generate the haplotype-
specific contigs effectively. After filtering inconsistent overlaps, col-
lapsed regions in the first round of assembly are separated in the
second round of assembly. The sizes of alternate contigs are close to
their corresponding reference genome in the second round of
assembly (Supplementary Table 5).

Moreover, our inconsistent overlap identification method can
also help solve nearly identical repeats without knowing the number of
their copies. The clustering step can automatically separate nearly
identical repeats if there are SNPs that can divide the repeats. After
filtering out the inconsistent overlaps at the repeats, PECAT can solve
the repeat to generate contiguous contigs in the second round of
assembly. As a result, PECAT achieves more contiguous assemblies in
the second round of assembly on most of our diploid datasets

(Supplementary Table 5). As shown in Supplementary Figs. 3 and 4,
PECAT perfectly solves repeats in the NCTC9024 and NCTC9006
datasets and reconstructs two circle contigs, while other assemblers
obtain fragment results7,37.

Performance of PECAT error correction method
We evaluate the performance of the PECAT error correction method
using four PacBio diploid datasets: S. cerevisiae (SK1×Y12), A. thaliana
(Col-0×Cvi-0),D.melanogaster (ISO1×A4),B. taurus (Angus×Brahman),
and three Nanopore diploid datasets: A. thaliana (Col-0×C24), B.
taurus (Bison × Simmental), and HG002. We compare PECAT with the
error correction methods in the other four tools, including Canu5,
FALCON4, MECAT26, and NECAT9 (Fig. 2 b–e and Supplementary
Table 6). All methods have reported high accuracy (>98.6%). We also
evaluate the performance of PECAT andNECATon the difficult-to-map
regions38 and low-complexity regions of HG002 (Methods). On aver-
age, the accuracies of PECAT are 0.75% higher than those of NECAT,
and the accuracy of corrected reads on these regions is similar to those
onnormal regions (Fig. 2b and Supplementary Table 7).We then assess
the haplotype-specific k-mers completeness and consistency of cor-
rected reads (Methods). These two metrics can evaluate the ability to
retain consistent heterozygote alleles. The reads corrected by PECAT
have higher completeness and consistency in all datasets (Fig. 2c, d).
Especially, haplotype-specific k-mers consistencies of the reads cor-
rected by PECAT are greater than or equal to 99.4% on all datasets,
while haplotype-specific k-mers consistencies of the reads corrected
by other methods are all less than or equal to 94.8%. The haplotype-
specific k-mers completenesses of reads corrected by PECAT are also
higher than those of reads corrected by other methods, especially for
three Nanopore datasets. We plot the raw read and corrected reads
using haplotype-specific k-mers for the seven datasets. As shown in
Fig. 2e and Supplementary Figs. 5–10, PECAT effectively avoids mixing
heterozygous alleles from two haplotypes and its corrected reads tend
to contain only one type of haplotype-specific k-mer. In summary, the
reads corrected by PECAT contain more haplotype-specific k-mers
than those corrected by other methods.

Performance of PECAT assembler
We also assess the performance of the PECAT assembler using four
PacBio diploid datasets: S. cerevisiae (SK1×Y12), A. thaliana (Col-0×Cvi-
0), D. melanogaster (ISO1×A4), B. taurus (Angus×Brahman), and three
Nanopore diploid datasets: A. thaliana (Col-0×C24), B. taurus (Bison ×
Simmental) andHG002.We compare PECATwith four diploid genome
assembly pipelines: Canu5+purge_dups39, FALCON-Unzip4,
Flye7+HapDup14,40, and Shasta41 (Supplementary Note 2). We evaluate
assembled genomes with respect to the assembly size, contiguity
(contig NG50 and phase blockNG50), and qualities (BUSCO42, the base
quality using pomosix (https://github.com/nanoporetech/pomoxis)
and merqury43, ‘Intra-block switch error’ from merqury, and the ham-
ming error rate). (Methods).

For four PacBio CLR datasets, all pipelines output the contigs in
primary/alternate format. As shown in Table 1, the sizes of both pri-
mary and alternate contigs of all four assemblies are close to those of
their corresponding reference genome, except the alternate contigs of
S. cerevisiae (SK1×Y12) genome assembled by Canu+Purge_dups.

Fig. 2 | Performance comparison of error correction. a Accuracy of raw and
corrected reads and accuracy of SNP alleles in raw and corrected reads on the
simulateddatasets with different heterozygosity rates.bAccuracy of raw reads and
corrected reads by NECAT and PECAT in difficult-to-map regions and low-
complexity regions of HG002 reference genome. c, d Consistency, and com-
pleteness of raw reads and corrected reads by Canu, FALCON, MECAT2, NECAT,
and PECAT on the seven diploid datasets. Themetrics by Canu on B. taurus (PacBio
CLR and ONT) and HG002 (ONT) and the metrics by FALCON on B. taurus (PacBio

CLR) are excluded because they could not finish correcting in three weeks. Con-
sistency is defined as

P
maxðkp,kmÞ=

Pðkp + kmÞ, in which kp and km are the
number of paternal and maternal haplotype-specific k-mers in each read. Com-
pleteness is the percentage of parent-specific k-mers (occurrences ≥4) in the 40X
longest reads. eConsistency ofD.melanogaster (ISO1 ×A4) raw reads and corrected
reads by the different methods. Each point corresponds to a read. Its coordinate
gives the proportion of the parental specific k-mers in the read, where k is 18. All
40X longest reads are shown in each sub-figure.
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Compared to the other two pipelines, PECAT obtains the highest
NG50 with 0.8/0.8, 14.3/7.8, 24.5/11.9, and 72.4/2.8Mb and the high-
est ‘phase block NG50’ with 0.8/0.8, 12.1/7.4, 16.1/11.8, 4.5/2.4Mb for
all four assemblies. As shown in Supplementary Figs. 11–14, the
alternate contigs generated by all pipelines are haplotigs. Unlike the
other two pipelines, most primary contigs by PECAT are also haplo-
tigs except those of B. taurus (Angus×Brahman). These results are
consistent with the results of the ‘Hamming error’, where the ‘Ham-
ming error’ of primary contigs of B. taurus (Angus×Brahman) is
exceptionally high. All pipelines have similar ‘Quality’ and BUSCO
scores, except that Canu+Purge_dups has low BUSCO scores on
alternate contigs of S. cerevisiae.

For three Nanopore datasets, Canu+Purge_dups and Shasta
output the contigs in primary/alternate format, Flye+HapDup out-
puts the contigs in dual assembly format and PECAT can output both
formats. As shown in Table 2, the sizes of both two sets of contigs of
all three assemblies are close to their corresponding reference gen-
ome, except theA. thaliana (Col-0×C24) genomes assembledbyCanu
+Purge_dups. Compared to other pipelines, PECAT obtains higher
NG50 for three genomes. ThephaseblockNG50 reportedby PECAT is
at least 10 times higher than those reported by other pipelines for A.
thaliana (Col-0×C24) and B.taurus (Bison×Simmental). Especially,
PECAT reports the assembly with phase block NG50 of 79.6/86.1Mb
for B. taurus (Bison×Simmental), which exceeds the assembly with
phase block N50 of 68.5/70.6Mb reported by the trio-binning
method using additional parental reads44. Meanwhile, for HG002,
PECAT reports higher phase block NG50 than that reported by Flye
+HapDup, both are at least 25 times higher than that reported by
Shasta. PECAT reports smaller Intra-block switch error and Hamming
error on A. thaliana (Col-0×C24) and B. taurus (Bison×Simmental).
Most of the contigs reported by PECAT on A. thaliana (Col-0×C24)
and B. taurus (Bison × Simmental) are haplotigs (Fig. 3a and Supple-
mentary Fig. 15). For HG002, PECAT and Flye+HapDup report similar
Intra-block switch errors, and both aremuch less than those reported
by Shasta. Although PECAT and Flye+HapDup reported smaller
Hamming errors than that reported by Shasta, their reported Ham-
ming error rates are high, which may be because some low hetero-
zygosity regions of HG002 are not successfully phased. Moreover,
most contigs reported by Flye+HapDup and PECATonHG002 are not
haplotigs (Supplementary Figs. 16,17).

For the metrics ‘Quality’ and BUSCO score, Shasta reports the
lowest scores on all three Nanoporedatasets, while Flye+HapDup and
PECAT report similar scores on A. thaliana (Col-0×C24), B. taurus
(Bison×Simmental) and HG002, except that the BUSCO scores of the
alternate contigs/the haplotype 2 contigs reported by PECAT are
slightly lower than those reported by Flye+HapDup (91.0%/91.6% vs.
94.1%). The main reason for this difference is that PECAT places the
contigs of X and Y chromosomes in the primary contigs or the hap-
lotype 1 contigs while Flye+HapDup outputs two copies of contigs of
X and Y chromosomes to two sets of assemblies at the same time.We
remove the contigs of X andY chromosomes in the assemblies of Flye
+HapDup (dual) andPECAT (dual). TheBUSCOscores of the assembly
by Flye+HapDup (dual) are reduced from 94.2%/94.1% to 91.2%/91.1%,
while the BUSCO scores of the assembly by PECAT (dual) are reduced
from 94.6%/91.6% to 91.6%/91.5%, which are similar to those reported
by Flye+HapDup (dual).

We also compare theHG002genomeassembledusingNanopore
reads by PECAT with those using HiFi reads by Hifiasm25,27. The long
Nanopore reads can help the assemblers to obtain longer phased
blocks. PECAT reportsmuch longer NG50 andphase blockNG50 than
those reported by Hifiasm using HiFi reads only, even longer than
those reported by Hifiasm using both HiFi reads and Hi-C reads. The
Intra-block switch errors reported by PECAT are similar to those
reported by Hifiasm. On the other hand, the high-quality HiFi reads
allowHifiasm to report higher base qualities of assemblies with betterTa
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Fig. 3 | Performance comparison of assembly. a Haplotype-specific k-mer blob
plots of the B. taurus (Bison × Simmental) reference genomeand assemblies by Flye
+HapDup, Shasta, and PECAT. pri/alt or dual represents that the assembly is the
primary/alternate format or the dual assembly format. Each blob corresponds to a

contig. The coordinate of the blob gives the count of the parental specific k-mers in
the contig, where k is 21. Blob size is proportional to contig length. b Precisions and
recalls of small variants (SNP, INDEL) and structural variants (SV) in HG002
assemblies. c Genome fraction of the assemblies, which are evaluated by QUAST.

Article https://doi.org/10.1038/s41467-024-47349-7

Nature Communications |         (2024) 15:2964 8



‘Quality’ scores. Moreover, Hifiasm reports higher Hamming errors
when using HiFi reads only. However, with the help of Hi-C data,
Hifiasm reported amuchsmallerHamming error and almost all contigs
are haplotigs (Supplementary Figs. 16,17). We then evaluate the small
variants (SNP, INDEL) and the structural variants (SV) in HG002
assemblies against the GIAB benchmark (Methods). As shown in
Fig. 3b and Supplementary Table 8, the precisions and recalls of SNP
and SV of genomes assembled by Flye+HapDup and PECAT using
Nanopore reads are similar to those of genomes assembled by Hifiasm
using HiFi reads. However, the precisions and recalls of INDEL of
genomes assembled by Flye+HapDup and PECATusingNanopore read
is much less than those of genomes assembled by Hifiasm using HiFi
reads, which is consistent with the previous finding14.

In the second round of assembly of PECAT, it reassembles the
filtered string graph, which will help correct errors or collapsed
regions in the first round of assembly. As shown in Fig. 3c and Sup-
plementary Data 1, PECAT reports higher ‘Genome fraction’ values
than those reported by other pipelines. We then map the HG002
reference genome and HG002 assemblies to GRCh38. As an example
(Fig. 4), the region [130,005,418, 130,116,766] in chromosome 3
includes the gene EVA1CP6 and has a large INDEL with a length of
about 43,365 bpbetween theparental referencegenomes. Both PECAT
and Hifiasm reconstruct the INDEL in their assemblies, but Flye
+HapDup (dual) fails. This large INDEL cannot be preserved in the
haplotype-collapsed contigs in the first round of assembly and reads
from another haplotype may not be mapped onto the haplotype-
collapsed contigs. Therefore, it is difficult for the polish-based
assemblies, such as Flye+HapDup, to restore the INDEL in the second
roundof assembly, whichmay be the reason that Flye+Hapdup reports

lower Genome fraction scores than those reported by PECAT (Fig. 3c
and Supplementary Data 1) on three Nanopore datasets.

We further compare the computational resources required by
each pipeline (Supplementary Table 9, 10). Canu on B. taurus (Angu-
s×Brahman), B. taurus (Bison×Simmental), andHG002, FALCON-Unzip
on B. taurus (Angus×Brahman) are excluded for comparison since the
assemblies are not constructed within three weeks. PECAT is at least
8.7 times faster than traditional correct-then-assemble pipelines, such
as Canu+purge_dups and FALCON-Unzip. But it’s slower than
assemble-then-correct pipelines, such as Shasta and Flye+HapDup.
The peaks of memory usage and disk space usage of PECAT are also
recorded in Supplementary Table 10.

Performance on highly accurate long reads
With the development of sequencing technology, the accuracy of long
reads has greatly improved recently24,45. We evaluate the performance
of PECAT using Nanopore R10 sequencing (ultra-long), Nanopore R10
duplex sequencing and PacBio HiFi sequencing reads. The accuracy of
40X longest reads for those datasets is 98.25%, 99.67%, and 99.77%
(Supplementary Fig. 18 and Supplementary Table 11), respectively,
which are much higher than the accuracy of the Nanopore R9 (ultra-
long) dataset (94.97%). However, there are still less accurate reads in
those datasets and PECAT error correction can still improve the qua-
lities of those reads, except for a 0.1–0.2% decrease in the metric
“Completeness” (Supplementary Table 11). The Nanopore R10 (ultra-
long) dataset with higher accuracy and longer read length improves
the assemblies of all pipelines (Table 2). Comparedwith the assemblies
from the Nanopore R9 (ultra-long) dataset (Table 2), the assemblies
from the Nanopore R10 (ultra-long) dataset have higher QV when

Fig. 4 | Screenshot of HG002 reference, assembly and read alignment to
GRCh38. It shows the range of [130,005,418, 130,116,766] in chromosome 3. Small
INDELs in all alignments and mismatches in read alignments are not shown.
Paternal reference and maternal reference are HG002 paternal references. The

assemblies by Flye, Flye+HapDup, and PECAT are from Nanopore reads. The
assembly byHifiasm is fromHiFi reads. The assemblyby Flye ishaplotype-collapsed
contigs. The other assemblies are in the dual assembly format. The two sets of
contigs are labeled as haplotype 1 and haplotype 2.
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evaluated by pomoxis andmerqury. Especially, the assembly of PECAT
from the Nanopore R10 (ultra-long) dataset has the highest phase
block NG50 with 59.4/58.0Mb in primary/alternate format and with
63.8/59.2Mb in dual format, which is twice as much as those of
assembly of PECAT from Nanopore R9 (ultra-long) data. Furthermore,
the assemblies from the Nanopore R10 (ultra-long) dataset report one
magnitude smaller Hamming error and more contigs in this assembly
are haplotigs (Supplementary Figs. 19, 20). Similar to the Nanopore R9
(ultra-long) dataset, the assembly of PECAT from the Nanopore R10
(ultra-long) dataset outperforms those of Flye+HapDup and Shasta in
terms of NG50 and phase block NG50. Meanwhile, the assemblies for
the Nanopore R10 duplex and PacBio HiFi datasets (Supplementary
Table 12) have lessNG50andphase blockNG50 than those of assembly
from the Nanopore R9 (ultra-long) dataset (Table 2), although have
higher quality measures. Moreover, less amount of contigs of assem-
blies of Nanopore R10 duplex and PacBio HiFi reads are haplotigs
(Supplementary Figs. 21–24). This result indicated that the length of
reads is more important for obtaining contiguous haplotype-specific
contigs.

We then evaluate the small variants (SNP, INDEL) and the struc-
tural variants (SV) in those assemblies using Nanopore R10 sequencing
(ultra-long), Nanopore R10 duplex sequencing and PacBio HiFi
sequencing reads against the GIAB benchmark (Supplementary
Table 13–15 and Supplementary Figs. 25–27). The assemblers report
similar metrics. The precisions and recalls of SNP and SV of the
assemblies are similar to those of the assemblies using Nanopore R9
(ultra-long) reads (Fig. 3b and Supplementary Table 8). However, the
precisions and recalls of INDEL of genomes assembled fromNanopore
R10 (ultra-long) reads and Nanopore R10 duplex reads are much
greater than those of assemblies using R9 (ultra-long) reads, while still
less than those of assemblies using HiFi reads.

Discussion
Although long noisy reads, especially Nanopore reads, have the
advantage to generate high contiguity contigs, using them for diploid
genome assembly remains a challenge. Due to the high sequencing
error rate, directly phasing the raw reads and then assembling the
diploid genome can not obtain high-quality assembly46. Here, we first
develop a haplotype-aware error-correct method to keep most of the
heterozygote alleles while correcting sequencing errors. However,
even after error corrections, it is not able to accurately call SNPs by just
aligning corrected reads as the Hifiasm did for HiFi reads. PECAT then
first generates a haplotype-collapsed genome and calls SNPs by
aligning the corrected reads to the haplotype-collapsed genome.
Nevertheless, the accuracy of this SNP call is still low for low hetero-
zygosity rate regions. Therefore, we use Clair3 to call SNPs again for
Nanopore reads. Our experiments show that the SNPs called from raw
reads complemented the SNPs called by aligning corrected reads.
Combing both SNPs helps achieve the best performance.

Another advantage of our haplotype-aware error-corrected reads is
to allow reuse the overlaps built in the first round of assembly and just
simplify the overlaps by removing inconsistent ones before reassembling
the diploid genome. This strategy is like that used in Hifiasm. Compared
to methods that directly separate the collapsed contigs into two haplo-
types, such as Flye+HapDup, this strategy can correct errors or collapsed
regions in the first round of assembly, and then achieve better assembly.

Furthermore, PECAT does not simply phase the reads into two
copies, but uses the read grouping method to separate reads from
nearly identical repeats into multiple copies, which can help solve the
repeatswithmore than two copies.Meanwhile, in order to obtain high-
quality phased assembly, PECAT needs higher coverage of data. As
shown in Supplementary Table 16, the contiguity and qualities of the
assembly of HG002 using 37X Nanopore reads are less than those of
assembly using 59X Nanopore reads.

Although the new generation long reads from Nanopore and
PacBio have much higher accuracy, PECAT error correction can still
improve their quality. PECAT can also efficiently assemble those highly
accurate reads. It can leverage the advantages of read length and
accuracy to obtain better assemblies. Therefore, PECAT achieve the
phase block NG50 with 59.4/58.0Mb in primary/alternate format and
with 63.8/59.2Mb in dual format only using Nanopore R10 (ultra-long)
reads. However, our current error correction method may not be
effective enough to distinguish small errors from heterozygote alleles
in very low heterozygosity rate regions, even in highly accurate reads
(Nanopore duplex and PacBio HiFi reads). Compared with the read-
length advantage, PECAT does not fully take advantage of the high
accuracy of reads for being compatible with long noisy reads, there-
fore it achieves mediocre performance on Nanopore duplex and Pac-
Bio HiFi reads (Supplementary Table 12 and Supplementary
Figs. 21–24). We will resolve this issue in subsequent PECAT releases.
Overall, PECAT is an efficient assembly pipeline for diploid genomes.

Methods
Diploid datasets for benchmarking
We evaluate the performance of PECAT using seven diploid datasets
(Supplementary Note 1 and Supplementary Table 17): S. cerevisiae
(SK1×Y12), A. thaliana (Col-0×Cvi-0), D. melanogaster (ISO1×A4), B.
taurus (Angus×Brahman), A. thaliana (Col-0×C24), B. taurus (Bison×-
Simmental) andHG002. Thefirst four datasets are PacBioCLRdatasets
and the last three are Nanopore datasets (the last two are ultra-long
raw reads and the HG002 dataset is generated by Nanopore R9). The
heterozygosity rate of those species is 0.85%, 1.04%, 0.84%, 1.12%,
0.83%, 1.48%, and 0.34%, respectively (Supplementary Table 1 and
Supplementary Note 3). The accuracies of reads in those datasets are
87.80%, 88.24%, 89.58%, 86.25%, 92.33%, 89.12%, and 94.97%, respec-
tively. (Supplementary Table 6). In addition, we evaluate the perfor-
mance of PECA on more accurate datasets, i.e., other three HG002
datasets using Nanopore R10 sequencing (ultra-long), Nanopore R10
duplex sequencing and PacBio HiFi sequencing, separately. Their
accuracies are 98.25%, 99.67%, and 99.77% (Supplementary Table 11).
For each of the above data, PECAT and NECAT extract the longest 80X
raw reads or all reads, if the dataset is less than 80X, for error cor-
rection and assembly. Canu corrects the longest 100X raw reads for
assembly. Other tools use all raw reads for error correction or
assembly (Supplementary Note 2).

Haplotype-aware error correction
The PECAT error correction method is based on the partial-order
alignment (POA) graph method4,47. Instead of assigning the same
weight to each read for error correction, we select reads more likely
coming from the same haplotype or the same copy of the nearly
identical repeat and assign different weights to prevent heterozygotes
in reads from being eliminated as sequencing errors. First, we find
candidate overlaps between raw reads using minimap2 with para-
meters “-x ava-pb” for PacBio CLR reads and parameters “-x ava-ont”
for Nanopore reads. For each template read to be corrected, we collect
a group of supporting reads that have candidate overlaps with the
template read. Then, we perform pairwise alignment between the
template read and each supporting read using diff36 or edlib48 algo-
rithm and build a POA graph based on the alignments of the reads as
shown in Supplementary Fig. 1. Each node in the graph is labeled by a
triple value ðc,r,bÞ, corresponding a base pair in the alignment. c is the
location at the template read, r means the number of consecutive
insertions (if r = 0, there is amatch, a mismatch, or a deletion), and b is
the base on the supporting read or a deletion, which is one of
f0A0,0C0,0G0,0T 0,0�0g. Each edge in the graphmeans twobasepairs of their
nodes appearing continuously in the alignment. The support count of
each edge is defined as the number of alignments which pass the edge.
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For the convenience of analysis, we add a trivial alignment between
the template read and itself to the graph. According to our observa-
tions, for each location c, all paths in the graph must only pass one
of the nodes f c,0,bi

� �
,bi 2 0A0,0C0,0G0,0T 0,0�0� �g. If these nodes

have more than one in-edge with large support counts, there may
be heterozygotes rather than random sequencing errors (Supple-
mentary Fig. 1 b). Therefore, we compute the support count si for in-
edges of the nodes. We mark an in-edge as the important one if

si ≥
rl � S S≤ Sl

rh �Sh�rl �Sl
Sh�Sl

� S� Sl
� �

+ rl � Sl Sl<S≤ Sh
rh � S Sh<S

8<
: , where S=

P
si, and rl , rh,

Sl , and Sh are user-set parameters (the default values are 0.5, 0.2, 10,
and 200). We mark a location c as the important one if (1) there is no
homopolymer at location c, (2) there are two or more important in-
edges and a bubble structure which can be detected along the reverse
direction of the in-edges, (3) more than half of the reads through
the important in-edge pass the corresponding path in the bubble, (4)
there is not an INDEL variant between the sequences represented by
the paths in the bubble. Then, we calculate a score for each supporting
readbased onwhether the supporting read and the template read pass
the same important in-edges at important locations. We increase the
score by 1 if a supporting read passes the same important in-edge as
template read and decrease it by 1 if the supporting read and the
template read pass the different important in-edges (Supplementary
Fig. 1 c). For uniformity, the score is divided by the number of
important locations in the supporting read. As shown in Supplemen-
tary Fig. 1 d, the histogram of scores shows two or more peaks if the
supporting reads come from different haplotypes or different copies
of the segmental duplication.We select the readswhose scores fall into
the first peak for error correction. If there is only one peak, we select
half of the supporting reads with larger scores. We linearly map the
scores of selected reads to a range, which is ½0:4,0:8� by default, as the
final weights of supporting reads. The weight of each edge is the sum
of the weights of selected supporting reads that pass the edge.

Finally, we find the path in the POA graph to generate a consensus
for the template read. For each node v labeled by the triple value
ðc,r,bÞ, if it has N in-edges fðui,vÞji≤Ng, it gets the score
Sv = max

i ≤N
fSui

+W ui ,vð Þ � Pcg, where W ui ,vð Þ is the weight of the edge

ui,v
� �

. In the previous work47, Pc is the half of the coverage at the

location c in the template read. In our work, Pc = max 0:4r ,0:3
� �

*Wc

instead, whereWc is the sum of weight of the supporting reads which
pass the location c. The score of the nodes without any in-edge is
assigned to 0. We calculate the scores for all nodes by dynamic pro-
gramming in topological order and record the related edges which get
themaximum scores for the nodes. The node with the highest score is
selected and backtracking is done to obtain the path for consensus.
The consensus sequence for the template read is generated by con-
catenating the bases of the nodes in the path.

Read-level SNP caller and read grouping method for identifying
inconsistent overlaps
Calling heterozygous SNPs in haplotype-collapsed contigs and
SNP alleles in reads. We map corrected reads to the first round of
assembly usingminimap2withparameters “-xmap-pb -c -p0.5 -r 1000”
for PacBio CLR reads and parameters “-x map-ont -c -p 0.5 -r 1000” for
Nanopore reads. It performs base-level alignment and generates
CIGAR strings. We scan the CIGAR strings and call heterozygous SNPs
for each contig. We call a base site a heterozygous SNP site if it meets
the following two conditions. (1) Its coverage is in the range [10, 1000].
(2) The number of second-most common bases is greater or equal to

rl � c c≤ cl
rh �ch�rl �cl

ch�cl
� c� cl
� �

+ rl � cl cl<c ≤ ch
rh � c c≥ ch

8<
: , in which c is the site coverage

and rl , rh, cl , and ch are user-set parameters (default values are 0.4, 0.2,
10 and 100). After calling heterozygous SNPs, we call SNP alleles in
reads. We define a function HrðsÞ for each read r. For any SNP site s,
HrðsÞ is defined as 1 or 2 if the read r covers the site s and thebase of the
read r is equal to the first-most or second-most common base at site s.
Otherwise, HrðsÞ is defined as 0.

Verifying and correcting SNP alleles. To verify and correct SNP
alleles in a read, we need to find which reads are from the same hap-
lotype within its local region. For each read labeled as the template
read t, we assume that it covers a set of SNP sites S= s1,s2, . . . ,sN

� �
. We

collect the query reads that cover 3 common SNP sites with the tem-
plate read t. The template read and the query reads are put into a
group G. We cluster the reads in the group G according to the SNP
alleles in them. The reads in the same cluster can be considered from
the same haplotype. To facilitate the description of the method, here
we make some definitions. We define a centroid C = f vs,ns

� �js 2 Sg for
the group G at the SNP site set S. vs is defined to v+

s � v�s , where v+
s is

the number of the read set frjHr sð Þ= 1,r 2 G,s 2 Sg and v�s is the
number of the read set frjHr sð Þ=2,r 2 G,s 2 Sg. ni is defined to v+

s + v�s .
One read can be regarded as a group only including it. We define the
following three formulas to get verified SNP sites of the centroid C.

V> C,p0,p1

� �
= sjvs >0, vs

�� �� ≥ maxðp0 � ns ,p1Þ
� �

, ðvs,nsÞ 2 Cg
V< C,p0,p1

� �
= sjvs <0, vs

�� �� ≥ maxðp0 � ns ,p1Þ
� �

,ðvs,nsÞ 2 Cg
V≠ C,p0,p1

� �
=V> C,p0,p1

� �S
V< C,p0,p1

� �

The parameters p0 and p1 are used to control which sites are valid.
Next, we define the operations between two centroids.

A C1,C2,p0,p1

� �
=V≠ðC1,p0,p1Þ

T
V≠ðC2,p0,p1Þ

S C1,C2,p0,p1

� �
=V<ðC1,p0,p1Þ

T
V<ðC2,p0,p1Þ∪V>ðC1,p0,p1Þ

T
V>ðC2,p0,p1Þ

D C1,C2,p0,p1

� �
=V< C1,p0,p1

� �T
V> C2,p0,p1

� �
∪V> C1,p0,p1

� �T
V< C2,p0,p1

� �

A C1,C2,p0,p1

� �
is the set of common verified SNP sites of the

centroids C1 and C2. S C1,C2,p0,p1

� �
and D C1,C2,p0,p1

� �
are used to

describe the similarity and the distance of the centroids C1 and C2. A
read r can also be used as the parameter, which means the centroid
of frg.

For each template read t and related group G, we use a divide-
then-combine strategy to cluster reads (Supplementary Fig. 28). In the
dividing step, we use a modified bisecting k-means algorithm49 to
divide the group G into small ones with following steps

1. The centroidsC1 and C2 of the sets fr1g and r2
� �

are initially
selected, where reads r1 and r2 are a read pair in the group G with the
largest distance (r1,r2 = argr1 ,r22G max jDðr1,r2,0,0Þj).

2. We divide the group G into three subgroups, two subgroups
corresponding to the centroids and a separate subgroup containing
the reads far away from the centroids. For each read r, if it is far away

from the centroids, it meets the conditions:
A r,Ci ,0,0ð Þ
�� ��
V≠ðr,0,0Þj j <p2

or jDðr,Ci ,0,0Þj
jAðr,Ci ,0,0Þj >p3,i 2 f1,2g, where p2 and p3 are user-set parameters

(default values are 0.3 and 0.5), it is assigned to a separate subgroup.
Otherwise, it is assigned the nearest subgroup

i= argi2f1,2g min
D r,Ci ,0,0ð Þ
�� ��
A r,Ci ,0,0ð Þ
�� ��. The purpose of the separate subgroup is to

prevent the centroids from changing dramatically in each iteration.
3. We calculate the centroids for the first two subgroups and

repeat step 2 until the three subgroups don’t change.
After the group is divided into three subgroups, we repeat the

above steps to continue dividing the subgroups. If the subgroupG and
its centroid C meet the following conditions: Gj j≤ 3 orP

r2G D r,C,0,0ð Þj jP
r2G A r,C,0,0ð Þj j ≤p4 and

P
r2G D r,C,0,0ð Þ

�� ��≤p5, it is no longer divided

Article https://doi.org/10.1038/s41467-024-47349-7

Nature Communications |         (2024) 15:2964 11



into small subgroups. p4 and p5 are user-set parameters (the default
values are 0.02 and 4).

After dividing the groups, we get a set of subgroups SG. we
combine a pair of subgroups into a big one if the centroids are close to
each other. First, we create an empty list L and add the subgroup that
contains the template read to the list as the first element L1. Then, we
combine other subgroup g to L1, if it meets the conditions:
D g,L1,p6,p7

� �
<minðp8,A g,L1,p6,p7

� � � p9Þ and
D g,L1,p6,p7=2
� �

<A g,L1,p6,p7=2
� � � p9, where p6, p7, p8 and p9 are user-

set parameters (the default values are 0.66, 6, 4 and 0.2). The remaining
subgroups are put into another list L0 and sort the subgroups in
ascending order of distancewith L1 ( DðL1,L0i,p6,p7Þ

�� ��). For the subgroup i
in the list L0, we combine it to the subgroup j in list L, if it meets the
following conditions: (1) j = argmax S i,j,p6,0

� ��� ��,j 2 L; (2)
D i,j,p6,p7

� �
<maxðp8,A i,j,p6,p7

� � � p9Þ; (3) D i,j,p6,0
� �

<A i,j,p6,0
� � � p9.

Otherwise, the subgroup i is added to the end of the list L.
After combining the subgroups, we think the reads in the same

subgroup in the list L are from the samehaplotype or the same copy of
the repeat. The SNP alleles in the read canbe verified by the centroid of
its subgroup, which helps to find inconsistent overlaps more accu-
rately. In addition, since the group L1 contains the template read t, we
use the centroid of the group L1 to correct SNP alleles in the template
read t. Here, the read is correctedwhen it is treated as a template read.
After all reads are corrected, we run the verifying and correcting SNP
alleles step again to obtain more robust results. We run the step twice
by default.

Finding inconsistent overlaps. In the last round of verifying and
correcting SNP alleles, we identify inconsistent overlaps. After com-
bining steps, for each template read t, we obtain a subgroup list L and
the first subgroup L1 of L contains the template read t. We consider a
query read r and the template read t to be inconsistent if the query
read r and its subgroup Lr (r 2 Lr) meet the conditions:

jD Lr ,L1,p6,p7

� �j≥ maxðp8,jA Lr ,L1,p6,p7

� �j � p9Þ; ð1Þ

D r,L1,0,0
� �\

A Lr ,L1,p6,p7

� ���� ���≥ maxðp8,jA r,L1,0,0
� �

\
A Lr ,L1,p6,p7

� �j � p9Þ:
ð2Þ

The parameters p6, p7, p8 and p9 arementioned above.We record
the location and direction of the reads in the haplotype-collapsed
contigs. The overlaps between the inconsistent read pairs are identi-
fied as inconsistent overlaps if thedirections anddistances of the reads
in the overlaps do not conflict with those in the haplotype-collapsed
contigs (The difference between two distances should be less than
1000 by default.). The distance of the reads is defined as the distance
of the 3’ ends of the reads. We record the inconsistent overlap infor-
mation and SNP alleles in reads for subsequent steps.

Combining Nanopore raw reads to identify inconsistent overlaps.
For Nanopore datasets, we combine the corrected reads and raw reads
to identify inconsistent overlaps. We first identify inconsistent over-
laps using corrected reads with the strict threshold that the pair of
reads should contain 8 different SNP alleles. Then, we use raw reads to
identify inconsistent overlaps with the loose threshold that the pair of
reads shouldcontain 6different SNP alleles. Using raw reads to identify
inconsistent overlaps is similar to that using corrected reads. For
Nanopore reads, we use Clair315 to call heterozygous SNPs for each
contig. Since PECAT doesn’t change the names of the reads during
error correction, inconsistent overlaps between raw reads can be
regarded as inconsistent overlaps between corrected reads. Similar to
using corrected reads, we also check whether the directions and dis-
tances of the reads in the overlaps conflict with those in the haplotype-
collapsed contigs. We record the location of corrected reads in raw

reads during error correction. Therefore, we can calculate the distance
of corrected reads in the haplotype-collapsed contigs by linear map-
ping. The distance threshold is set to maxð2500,0:05*DcÞ by default,
where Dc is distance of corrected reads in the haplotype-collapsed
contigs.

Fast string-graph-based assembler
According to the characteristics of k-mer-based alignment and string
graphs, we propose a fast string-graph-based assembler to balance the
quality and speed of assembling. First, we use minimap2 with para-
meters “-X -g3000 -w30 -k19 -m100 -r500” to find candidate overlaps
between corrected reads. Minimap235 with those parameters invokes
the k-mer-based alignment. To reduce overhangs of overlaps, we
extend the alignment to the ends of the reads with the diff36 algorithm
and filter out overlaps still with long overhangs. Next, we remove the
overlaps whose reads are contained in other reads or with low cover-
age. A directed string graph is constructed using the remaining over-
laps. Myers’ algorithm33 is used to mark transitive edges as inactive
ones. We implement local alignment using the edlib48 algorithm to
calculate the identity of each active edge, which is defined as the
identity of its related overlap. Only a few edges need to calculate
identities formost of the edges aremarked as inactive ones. The edges
whose identities are less than the threshold are marked as low quality
and removed. The threshold is determined by the formula
ððm1 � 6*1:253*MAD1Þ+ 2*ðm2 � 6*1:4826*MAD2ÞÞ=3, wherem1 andm2

are themean and themedian of identity of all active edges in the string
graph and MAD1 and MAD2 are the mean absolute deviation and the
median absolute deviation of them. This step also breaks some paths
connected by low-quality edges in the graphs. To repair those paths,
we check dead-end nodeswhose outdegree or indegree are equal to 0.
We calculate the identities of their transitive edges and reactivate the
edge with the longest alignment and the identity greater than the
threshold. Considering that some breaks in paths are caused by reads
being contained by other reads from the different haplotype or the
different copy of the repeat, we extend the dead-end nodes with
contained reads to repair the breaks using the similar method. In this
way, an appropriate string graph is constructed. After performing
other simplifying processes, such as removing the ambiguous edges
(tips, bubbles, and spurious links) in the graph, we identify linear paths
from the graph and generate contigs.

Improvement of best overlap graph algorithm
Best overlap graph algorithm50 only retains the best out-edge and the
best in-edge of each node according to the overlap length. After
removing transitive edges using Myers’ algorithm33, PECAT performs
the best overlap graph algorithm to further simplify the string graph.
However, the original algorithm is not suitable for diploid assembly.
The SNP alleles in reads aremore important than the overlap length to
measure which edge is the best one. Although most inconsistent
overlaps are removed, there remain some undetected inconsistent
overlaps and the corresponding reads contain different SNP alleles.We
improve the algorithm and use the following steps to determine the
best edges. First, for the in-edges or out-edges of each node, we sort
the edges in descending order of the edge score si = ðn+

i �w� n�
i ,liÞ.

n+
i andn�

i are the numbersof two related reads containing the sameor
different SNP alleles, which are obtained in finding inconsistent over-
laps step.w is a user-defined parameter. Its default value is set to 0.5. li
is the overlap length. The first edge e0 is marked as a candidate best
edge. The other edges meeting the following conditions also are
marked as the candidate best edges: (1) Its related read is inconsistent
with the reads related to the candidate best edges. (2) Its score is
not too much less than the first edge e0, which means

s0 0½ � � si 0½ �< max C, si 0½ � � R1

� �
, si 0½ � ≥ 0

max C,� si 0½ � � R2

� �
, si 0½ �<0

�
, where C, R1 and R2 are
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user-defined parameters (the default values are 4, 2, and 0.66). Next, if
the edge is marked as a candidate best edge twice (in-edge and out-
edge), it is selected as the best edge. Then, if the node has no best in-
edge or best out-edge, its first in-edge or first out-edge is selected as
the best one. Finally, the edges selected as the best edges are retained
and the other edges are removed from the string graph.

Generating two sets of contigs
After simplifying the string graph, PECAT identifies three structures
from the string graph, as shown in Supplementary Fig. 29a. First, we
use FALCON-Unzip’s heuristic algorithm4 to identify bubble structures.
Generally, the paths in the bubble structure are from different haplo-
types. Then, we also identify alternate branches, which meet the fol-
lowing conditions: (1) There are only two branches. (2) The shorter
branch is linear and does not contain other branches. (3) More than
30% of reads in the shorter branch are inconsistent with the reads in
the other branch. We think the two branches that meet the conditions
are fromdifferent haplotypes.We identify the paths in the string graph
and do not break the paths if they encounter bubble structures or
alternate branches. This trick can increase the continuity of primary
contigs. The other paths in bubble structures or the alternate branches
output as alternate contigs. We also check each pair of arbitrary
independent contigs. If more than 30% of reads in the shorter contig
are inconsistent with the reads in another contig, the shorter contig is
labeled as an alternate contig. Another contig not labeled as an alter-
nate contig is outputted as a primary contig.

To generate a dual assembly, PECAT connects the paths in two
adjacent bubble structures. In the step of inconsistent overlap identi-
fication, we have called SNP alleles in each read. The information is
used to determine the pair of paths in adjacent bubble structures that
should be connected. As shown in Supplementary Fig. 29b, we build
two read groups I1 and I2 for in-edges in1 and in2 respectively. If the
reads only overlap with the reads in in-edges in1 or in2, they are
assigned to I1 or I2, respectively. If the reads overlap with the reads in
in-edges in1 and in2 at the same time, the reads are assigned to the
groupwhose centroid the reads are closer to. The concepts of centroid
and distance are defined in the previous section on verifying and
correcting SNP alleles. In the sameway,weget read groupsO1 orO2 for
out-edges out1 or out2. If the centroid of I1 or I2 does not have a
commonheterozygous site with the centroid ofO1 orO2, we randomly
connect the paths of bubble structures. Otherwise, we choose the
paths to minimize the distance between their corresponding read
group centroids.

Polishing two sets of contigs
After generating contigs in primary/alternate format or dual assembly
format, we use corrected reads or raw reads to polish them. We map
the reads to the contigs using minimap2. In previous steps, we record
which read pairs are inconsistent and which reads construct the con-
tigs. If the read is inconsistent with the reads used for constructing the
contig, the related alignments are removed. This trick helps to reduce
haplotype switch errors. After removing other low-quality alignments,
we run racon51 with default parameters to polish the contigs.

For the assemblies from the Nanopore sequences, we useMedaka
(https://github.com/nanoporetech/medaka) to further improve the
assembly quality. Its steps are similar to those polishing with racon.
The key step is to filter the inconsistent alignments between the reads
and the contigs according to the information of inconsistent overlap.

Evaluation
To evaluate the effectiveness of correction methods fairly, we extract
the 40X longest reads from corrected reads and then evaluate them.
We map the reads to the reference genome using minimap2 with
parameters “-c --eqx”. It generates CIGAR strings. We scan the CIGAR
strings to calculate the accuracy of each corrected data. To evaluate

the accuracy of the sequences in the difficult-to-map regions and low-
complexity regions in the HG002 reference genome, we map the
HG002 reference genome to GRCh38. The regions are located in the
HG002 reference genome according to GIAB v2.0 genome stratifica-
tion BED files and the alignment between the HG002 reference gen-
ome and GRCh38. Then, we calculate the accuracy of the sequences in
these regions separately. To evaluate the haplotype-specific k-mers
completeness, we calculate the percentage of parent-specific k-mers in
40X longest reads. Considering that there are 40X datasets, we only
count k-mers with equal to or more than 4 occurrences. To evaluate
the haplotype-specific k-mers consistency, we calculate the metric asP

maxðkp,kmÞ=
Pðkp + kmÞ, in which kp and km are the number of

paternal and maternal haplotype-specific k-mers in each read.
To evaluate the performance of selecting supporting reads and

the performance of finding inconsistent overlaps, we use Illumina
reads of parents to classify long reads with a trio-binning algorithm16.
We adjust the threshold to reduce false positives. The read is classified
as the paternal read if itmeets the condition:

kp

Kp
> km + maxð10,km �0:1Þ

Km
, where

kp and km are thenumbers of paternal andmaternal haplotype-specific
k-mers in the read, and Kp and Km are the numbers of all paternal and
maternal haplotype-specific k-mers. The read is classified as amaternal
read if it meets the condition: km

Km
>

kp + maxð10,kp �0:1Þ
Kp

. Otherwise, it is clas-
sified to the untagged reads. When one read of the pair of reads is a
maternal read and the other read is a paternal read or vice versa, we
think the pair of reads is inconsistent.

We use the k-mer-based assembly evaluation tool merqury43 to
evaluate the diploid assemblies generated by each pipeline and use
BUSCO42 to evaluate the gene completeness of assemblies. The ham-
ming error rate of the assemblies is calculated from the output of
merqury. Thedetails of theparametersused in this study aredescribed
in Supplementary Notes 4, 5. We use the reference-based evaluation
tool Pomoxis (https://github.com/nanoporetech/pomoxis) to evaluate
the base quality of diploid assemblies (Supplementary Note 6). The
genome fraction is evaluated by QUAST52 and its parameters are
described in Supplementary Note 7.

We obtain the small variants (SNP and INDEL) sets from HG002
assemblies against GRCh38 using dipcall53 and compare them against
the HG002 GIAB benchmark to evaluate their precisions, recalls, and
F1 scores using hap.py54. We called structural variant (SV) sets from
HG002 assemblies against GRCh37 using hapdiff (https://github.com/
KolmogorovLab/hapdiff) and compare them against the curated set of
SVs in the HG002 genome55 to evaluate their precisions, recalls, and
F1 scores using truvari56 (Supplementary Note 8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All described datasets are obtained from public websites, except for A.
thaliana (Col-0 × C24) which is generated using our in-house
sequencing. It is available from NGDC at PRJCA011723. S. cerevisiae
(SK × Y12), A. thaliana (Col-0 × Cvi-0), D. melanogaster (ISO1 × A4), B.
taurus (Angus × Brahman), and B. taurus (Bison×Simmental) are
available from NCBI at PRJEB7245, PRJNA314706, PRJNA558397,
PRJNA432857, and PRJNA677946. HG002 using Nanopore R9 sequen-
cing is available at Human Pangenome Reference Consortium (HPRC)
[https://s3-us-west-2.amazonaws.com/human-pangenomics/index.
html?prefix=T2T/scratch/HG002/sequencing/ont/]. HG002 using
Nanopore R10 sequencing is available at HPRC [https://s3-us-west-2.
amazonaws.com/human-pangenomics/index.html?prefix=
submissions/5b73fa0e-658a-4248-b2b8-cd16155bc157--UCSC_GIAB_
R1041_nanopore/HG002_R1041_UL/Guppy6/]. HG002 using Nanopore
R10 duplex sequencing is available at HPRC [https://s3-us-west-2.
amazonaws.com/human-pangenomics/index.html?prefix=
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submissions/0CB931D5-AE0C-4187-8BD8-B3A9C9BFDADE--UCSC_
HG002_R1041_Duplex_Dorado/Dorado_v0.1.1/stereo_duplex]. HG002
using PacBio HiFi sequencing is available from NCBI at PRJNA586863.
GIAB v2.0 genome stratification BED files are available at GIAB. HG002
GIAB benchmark is available at GIAB. The curated set of SVs in the
HG002 is available at GIAB. NCTC9006 and NCTC9024 are available
from ENA at PRJEB6403. The details of the datasets used in this study
are reported in Supplementary Note 1 and Supplementary Table 17. All
assemblies are available at Zenodo [https://doi.org/10.5281/zenodo.
10457427].

Code availability
All source codes for PECAT are available at GitHub [https://github.
com/lemene/PECAT] and Zenodo [https://doi.org/10.5281/zenodo.
10799833].

References
1. Nagarajan, N. & Pop, M. Sequence assembly demystified. Nat. Rev.

Genet. 14, 157–167 (2013).
2. Gagarinova, A. & Emili, A. Genome-scale genetic manipulation

methods for exploring bacterial molecular biology.Mol. Biosyst. 8,
1626 (2012).

3. International Human Genome Sequencing Consortium Finishing
the euchromatic sequence of the human genome. Nature 431,
931–945 (2004).

4. Chin, C.S. et al. Phased diploid genome assembly with single-
molecule real-time sequencing. Nat. Methods 13,
1050–1054 (2016).

5. Koren, S. et al. Canu: scalable and accurate long-read assembly via
adaptive k -mer weighting and repeat separation. Genome Res. 27,
722–736 (2017).

6. Xiao,C.-L. et al.MECAT: fastmapping,error correction, anddenovo
assembly for single-molecule sequencing reads. Nat. Methods 14,
1072–1074 (2017).

7. Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long,
error-prone reads using repeat graphs. Nat. Biotechnol. 37,
540–546 (2019).

8. Ruan, J. & Li, H. Fast and accurate long-read assemblywith wtdbg2.
Nat. Methods 17, 155–158 (2020).

9. Chen, Y. et al. Efficient assembly of nanopore reads via highly
accurate and intact error correction. Nat. Commun. 12, 60 (2021).

10. Weirather, J. L. et al. Comprehensive comparison of Pacific Bios-
ciences and Oxford Nanopore Technologies and their applications
to transcriptome analysis. F1000Research 6, 100 (2017).

11. Poplin, R. et al. A universal SNP and small-indel variant caller using
deep neural networks. Nat. Biotechnol. 36, 983–987 (2018).

12. Luo, R., Sedlazeck, F. J., Lam, T.W. & Schatz, M. C. A multi-task
convolutional deep neural network for variant calling in single
molecule sequencing. Nat. Commun. 10, 998 (2019).

13. Ahsan, M. U., Liu, Q., Fang, L. & Wang, K. NanoCaller for accurate
detection of SNPs and indels in difficult-to-map regions from long-
read sequencing by haplotype-aware deep neural networks. Gen-
ome Biol. 22, 261 (2021).

14. Shafin, K. et al. Haplotype-aware variant calling with PEPPER-
Margin-DeepVariant enables highaccuracy in nanopore long-reads.
Nat. Methods 18, 1322–1332 (2021).

15. Zheng, Z. et al. Symphonizing pileup and full-alignment for deep
learning-based long-read variant calling. Nat. Comput. Sci. 2,
797–803 (2022).

16. Koren, S. et al. De novo assembly of haplotype-resolved genomes
with trio binning. Nat. Biotechnol. 36, 1174–1182 (2018).

17. Jarvis, E. D. et al. Semi-automated assembly of high-quality diploid
human reference genomes. Nature 611, 519–531 (2022).

18. Rautiainen, M. et al. Telomere-to-telomere assembly of diploid
chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

19. Kronenberg, Z. N. et al. Extended haplotype-phasing of long-read
de novo genome assemblies using Hi-C. Nat. Commun. 12,
1935 (2021).

20. HumanGenomeStructural VariationConsortiumet al. Fully phased
human genome assembly without parental data using single-cell
strand sequencing and long reads. Nat. Biotechnol. 39,
302–308 (2021).

21. Campoy, J. A. et al. Gamete binning: chromosome-level and
haplotype-resolvedgenomeassembly enabled by high-throughput
single-cell sequencing of gamete genomes. Genome Biol. 21,
306 (2020).

22. Lin, D. et al. Digestion-ligation-only Hi-C is an efficient and cost-
effective method for chromosome conformation capture. Nat.
Genet. 50, 754–763 (2018).

23. Kim, H.S. et al. Chromosome-scale assembly comparison of the
Korean Reference Genome KOREF from PromethION and PacBio
with Hi-C mapping information. GigaScience 8, giz125 (2019).

24. Wenger, A. M. et al. Accurate circular consensus long-read
sequencing improves variant detection and assembly of a human
genome. Nat. Biotechnol. 37, 1155–1162 (2019).

25. Cheng,H., Concepcion,G. T., Feng,X., Zhang,H. &Li, H.Haplotype-
resolved de novo assembly using phased assembly graphs with
hifiasm. Nat. Methods 18, 170–175 (2021).

26. Nurk, S. et al. HiCanu: accurate assembly of segmental duplica-
tions, satellites, and allelic variants from high-fidelity long reads.
Genome Res. 30, 1291–1305 (2020).

27. Cheng, H. et al. Haplotype-resolved assembly of diploid genomes
without parental data. Nat. Biotechnol. 40, 1332–1335 (2022).

28. Bankevich, A., Bzikadze, A. V., Kolmogorov, M., Antipov, D. &
Pevzner, P. A. Multiplex de Bruijn graphs enable genome assembly
from long, high-fidelity reads. Nat. Biotechnol. 40,
1075–1081 (2022).

29. Jain, M. et al. Nanopore sequencing and assembly of a human
genomewith ultra-long reads.Nat. Biotechnol. 36, 338–345 (2018).

30. Frei, D. et al. Ultralong Oxford nanopore reads enable the devel-
opment of a reference-gradeperennial ryegrass genome assembly.
Genome Biol. Evol. 13, evab159 (2021).

31. Roberts, M., Hayes, W., Hunt, B. R., Mount, S. M. & Yorke, J. A.
Reducing storage requirements for biological sequence compar-
ison. Bioinformatics 20, 3363–3369 (2004).

32. Li, H.Minimapandminiasm: fastmappinganddenovoassembly for
noisy long sequences. Bioinformatics 32, 2103–2110 (2016).

33. Myers, E.W. The fragment assembly string graph.Bioinformatics 21,
ii79–ii85 (2005).

34. Lee, C., Grasso, C. & Sharlow, M. F. Multiple sequence alignment
using partial order graphs. Bioinformatics 18, 452–464 (2002).

35. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

36. Myers, E. W. AnO(ND) difference algorithm and its variations.
Algorithmica 1, 251–266 (1986).

37. Kamath, G. M., Shomorony, I., Xia, F., Courtade, T. A. & Tse, D. N.
HINGE: long-read assembly achieves optimal repeat resolution.
Genome Res. 27, 747–756 (2017).

38. Wagner, J. et al. Benchmarking challenging small variants with
linked and long reads. Cell Genom. 2, 100128 (2022).

39. Guan, D. et al. Identifying and removing haplotypic duplication in
primary genome assemblies. Bioinformatics 36, 2896–2898 (2020).

40. Kolmogorov, M. et al. Scalable nanopore sequencing of human
genomes provides a comprehensive view of haplotype-resolved
variation and methylation. Nat. Methods 20, 1483–1492 (2023).

41. Shafin, K. et al. Nanopore sequencing and the Shasta toolkit enable
efficient de novo assembly of eleven human genomes. Nat. Bio-
technol. 38, 1044–1053 (2020).

42. Manni, M., Berkeley,M. R., Seppey,M., Simão, F. A. & Zdobnov, E.M.
BUSCO update: novel and streamlined workflows along with

Article https://doi.org/10.1038/s41467-024-47349-7

Nature Communications |         (2024) 15:2964 14

https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=submissions/0CB931D5-AE0C-4187-8BD8-B3A9C9BFDADE-UCSC_HG002_R1041_Duplex_Dorado/Dorado_v0.1.1/stereo_duplex
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=submissions/0CB931D5-AE0C-4187-8BD8-B3A9C9BFDADE-UCSC_HG002_R1041_Duplex_Dorado/Dorado_v0.1.1/stereo_duplex
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA586863
https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome-stratifications/v2.0/GRCh38/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/AshkenazimTrio/HG002_NA24385_son/NISTv3.3.2/
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/
https://www.ebi.ac.uk/ena/browser/view/PRJEB6403
https://doi.org/10.5281/zenodo.10457427
https://doi.org/10.5281/zenodo.10457427
https://github.com/lemene/PECAT
https://github.com/lemene/PECAT
https://doi.org/10.5281/zenodo.10799833
https://doi.org/10.5281/zenodo.10799833


broader and deeper phylogenetic coverage for scoring of eukar-
yotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38,
4647–4654 (2021).

43. Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury:
reference-free quality, completeness, and phasing assessment for
genome assemblies. Genome Biol. 21, 245 (2020).

44. Oppenheimer, J. et al. A reference genome assembly of American
bison, Bison bison bison. J. Hered. 112, 10 (2021).

45. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore
sequencing technology, bioinformatics and applications. Nat. Bio-
technol. 39, 1348–1365 (2021).

46. Garg, S. et al. Chromosome-scale, haplotype-resolved assembly of
human genomes. Nat. Biotechnol. 39, 309–312 (2021).

47. Chin, C.S. et al. Nonhybrid, finished microbial genome assemblies
from long-read SMRT sequencing data. Nat. Methods 10,
563–569 (2013).

48. Šošić, M. & Šikić, M. Edlib: a C/C ++ library for fast, exact sequence
alignment using edit distance. Bioinformatics 33, 1394–1395 (2017).

49. Savaresi, S. M. & Boley, D. L. On the performance of bisecting
K-means and PDDP. in Proceedings of the 2001 SIAM International
Conference on Data Mining. 1–14 (2001).

50. Miller, J. R. et al. Aggressiveassemblyof pyrosequencing readswith
mates. Bioinformatics 24, 2818–2824 (2008).

51. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de
novogenomeassembly from longuncorrected reads.GenomeRes.
27, 737–746 (2017).

52. Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality
assessment tool for genome assemblies. Bioinformatics 29,
1072–1075 (2013).

53. Li, H. et al. A synthetic-diploid benchmark for accurate variant-
calling evaluation. Nat. Methods 15, 595–597 (2018).

54. The Global Alliance for Genomics and Health Benchmarking Team
et al. Best practices for benchmarking germline small-variant calls
in human genomes. Nat. Biotechnol. 37, 555–560 (2019).

55. Zook, J.M. et al. A robust benchmark for detection of germline large
deletions and insertions. Nat. Biotechnol. 38, 1347–1355 (2020).

56. English, A. C., Menon, V. K., Gibbs, R. A., Metcalf, G. A. & Sedlazeck,
F. J. Truvari: refined structural variant comparison preserves allelic
diversity. Genome Biol. 23, 271 (2022).

Acknowledgements
This work was supported in part by the National Key Research and
Development Program of China (No. 2021YFF1201200); the National
Natural Science Foundation of China under Grants (Nos. 62350004,
62332020); the Project of Xiangjiang Laboratory (No. 23XJ01011) to
Jianxin Wang. This work was also supported in part by the US National
Institute of Food and Agriculture (NIFA; Grant Number 2017-70016-
26051 and 2023-70029-41309) and the USNational Science Foundation
(NSF; Grant Number ABI-1759856, MRI-2018069, MTM2-2025541) to
Feng Luo. Thisworkwas also supported in part byGuangdong Basic and
Applied Basic Research Foundation (No. 2020B1515020057) to Chuanle

Xiao. We are grateful for resources from the High-Performance Com-
puting Center of Central South University.

Author contributions
J.X.W., F.L., and C.L.X. conceived and designed this project. F.N. and
J.X.W. conceived, designed, and implemented the consensus and
assembly algorithm. F.N. and P.N. integrated all the programs into the
PECAT pipeline and provided documentation. F.N., P.N., N.H., and J.Z.
analyzed the performance of algorithms developed in this study. C.L.X.
and Z.Y.W. provided the dataset A. thaliana (Col-0 × C24). J.X.W., F.L.,
and F.N. performed the theoretical analysis of the algorithms developed
in this study. J.X.W., F.L., and F.N. wrote the manuscript. Z.Y.W. wrote
about cultivating A. thaliana (Col-0 × C24) and extracting its DNA. All
authors have read and approved the final version of this manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47349-7.

Correspondence and requests for materials should be addressed to
Chuanle Xiao, Feng Luo or Jianxin Wang.

Peer review informationNature Communications thanks Kishwar Shafin
for his contribution to the peer review of this work. A peer review file is
available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47349-7

Nature Communications |         (2024) 15:2964 15

https://doi.org/10.1038/s41467-024-47349-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	De novo diploid genome assembly using long noisy�reads
	Result
	Haplotype-aware error correction
	Fast string graph-based assembler
	Identification of inconsistent overlaps
	Performance of PECAT error correction�method
	Performance of PECAT assembler
	Performance on highly accurate long�reads

	Discussion
	Methods
	Diploid datasets for benchmarking
	Haplotype-aware error correction
	Read-level SNP caller and read grouping method for identifying inconsistent overlaps
	Calling heterozygous SNPs in haplotype-collapsed contigs and SNP alleles in�reads
	Verifying and correcting SNP alleles
	Finding inconsistent overlaps
	Combining Nanopore raw reads to identify inconsistent overlaps
	Fast string-graph-based assembler
	Improvement of best overlap graph algorithm
	Generating two sets of contigs
	Polishing two sets of contigs
	Evaluation
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




