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AnnoSpat annotates cell types andquantifies
cellular arrangements from spatial
proteomics

Aanchal Mongia1,2, Fatema Tuz Zohora3,4, Noah G. Burget1,2, Yeqiao Zhou1,2,
Diane C. Saunders 5, Yue J. Wang 6, Marcela Brissova5, Alvin C. Powers5,7,8,
Klaus H. Kaestner 2,6,9, Golnaz Vahedi 2,6,9, Ali Naji9,10,
Gregory W. Schwartz 3,4,11 & Robert B. Faryabi 1,2

Cellular composition and anatomical organization influence normal and
aberrant organ functions. Emerging spatial single-cell proteomic assays such
as Image Mass Cytometry (IMC) and Co-Detection by Indexing (CODEX) have
facilitated the study of cellular composition and organization by enabling
high-throughput measurement of cells and their localization directly in intact
tissues. However, annotation of cell types and quantification of their relative
localization in tissues remain challenging. To address these unmet needs for
atlas-scale datasets likeHuman Pancreas Analysis Program (HPAP), wedevelop
AnnoSpat (Annotator and Spatial Pattern Finder) that uses neural network and
point process algorithms to automatically identify cell types and quantify cell-
cell proximity relationships. Our study of data from IMC andCODEX shows the
higher performance of AnnoSpat in rapid and accurate annotation of cell types
compared to alternative approaches. Moreover, the application of AnnoSpat
to type 1 diabetic, non-diabetic autoantibody-positive, and non-diabetic organ
donor cohorts recapitulates known islet pathobiology and shows differential
dynamics of pancreatic polypeptide (PP) cell abundance and CD8+ T cells
infiltration in islets during type 1 diabetes progression.

Tissues consist of diverse cell types whose functions are influenced by
communication and interaction with surrounding cells. In addition to
cell intrinsic aberrations, dysfunction in the cellularmicroenvironment
impacts organ function and contributes to pathology of complex
diseases, such as type 1 diabetes (T1D). The emergence of spatially
resolved single-cell proteomic assays such as Image Mass Cytometry

(IMC) and Co-Detection by Indexing (CODEX) has allowed high-
throughput measurement of cellular composition and localization
within intact tissues and advanced understanding of intricate cell–cell
interactions. However, the unique characteristics of spatial proteomic
assays, coupled with their ability to measure millions of cells, have
created a need for efficient and automated computational tools that
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enable identification of cell types and quantification of their spatial
colocalization.

Despite the scarcity of algorithms for cell-type annotation from
IMC and CODEX data, several approaches have been proposed to
predict cell types from single-cell RNA sequencing (scRNA-seq) data1.
Many of thesemethods, such as scmap andGarnett, employ clustering
to group together transcriptionally similar cells and then map each
cluster to reference cell types from a priori annotated datasets using
representative cells from each group2,3. These methods rely on accu-
rate clustering and reference data annotation, which was previously
characterized based on manual assessment of differential expression
of selected marker genes. Another category of scRNA-seq cell-type
annotators utilizes supervised machine learning models, including
support vector machines (SVM)4, neural networks5, and random
forests6,7. A third category includes similarity-based methods like
TooManyPeaks8, which annotate cell types based on bulk measure-
ment of purified reference cell populations. The training of supervised
machine learning- and similarity-basedmethods necessitates large sets
of purified or expert-annotated cell populations, which are lacking for
IMC and CODEX in situ proteomic assays.

The unique characteristics of IMC and CODEX data further limit
the applicability of existing cell-type annotation methods developed
for scRNA-seq. While scRNA-seq experiments provide expression data
for thousands of genes for cell-type prediction, IMC and CODEX
measure the expressionof tens of proteins.Moreover, IMCandCODEX
readouts consist of continuous intensities that cannot be readily used
with most scRNA-seq cell-type annotators like Garnett, which only
accept scRNA-seq count data. To address these limitations, Astir was
recently proposed as a dedicated method for cell-type annotation
from IMC data9. This method employs deep recognition neural net-
works to infer cell types based on known marker proteins. Bench-
marking studies of Astir suggest that supervised- and marker-based
cell-type annotation methods tend to outperform other approaches9.

Cell-type annotation is an initial step in the analysis of spatial
proteomic IMC and CODEX data. To fully leverage the capabilities of
in situ single-cell assays and explore the tissue microenvironment,
methods areneeded toquantitatively assess the spatial organizationof
cells within regions of interest. Existing approaches includemeasuring
cell density over distances7, employing Bayesianmodels for estimating
cell types across locations10, and utilizing Ripley statistics11. However,
these algorithms can only assess the distribution of a single cell type
within a regionof interest (ROI), as seen inRipley’sK function statistics,
and cannot examine the proximity of multiple cell types.

In this work, we introduce AnnoSpat (Annotator and Spatial Pat-
tern Finder): a comprehensive tool that addresses the unmet need for
rapid, scalable, and automated annotation of cell types and quantifi-
cation of their spatial relationships in atlas-scale IMC and CODEX
datasets. AnnoSpat integrates semi-supervised and supervised learn-
ing methods to enable automated cell-type annotation from IMC and
CODEX data in the absence of manually labeled cells for training.
AnnoSpat is also equipped with new point process-based algorithms,
which allow the quantification of spatial relationships among multiple
cell types.

We evaluate the accuracy and efficiency of AnnoSpat by con-
ducting benchmark tests to assess its capability to identify various cell
types within pancreatic tissues. In addition to our benchmarking ana-
lyses with IMC and CODEX data, we assess the concordance between
expert andAnnoSpat cell-type labeling inpancreata fromT1D and non-
diabetic donors. Pancreas is the site of T1D pathogenesis in which the
host immune system mounts a response to insulin-secreting pan-
creatic beta cells. To further evaluate AnnoSpat’s ability to recapitulate
known changes in the pancreatic microenvironment during T1D pro-
gression, we analyze pancreata from (AAb+) donors – individuals with
autoantibodies toward pancreatic islet proteins in their blood but no
clinical diagnosis of T1D. Together, our comprehensive analysis of

1,170,000 cells from 143 slides of 19Human PancreasAnalysis Program
(HPAP) donors reveals the effectiveness of AnnoSpat in reliably iden-
tifying cell types and quantifying their expected spatial organization in
complex tissues. AnnoSpat and its individual components are available
through https://github.com/faryabiLab/AnnoSpat.

Results
AnnoSpat identifies cell types and quantifies their relative
localization
Topredict the identity of individual cells andquantify their localization
within tissues, we developed AnnoSpat for automated analysis of
spatially aware single-cell proteomic data (Fig. 1). AnnoSpat provides
an end-to-end solution for analysis of IMC and CODEX data (Fig. 1a) by
implementing two distinct but complementary functionalities: Anno-
tator (Fig. 1b) and Spatial Pattern Finder (Fig. 1c).

To address the unmet need for annotating individual IMC- or
CODEX-measured cells, the Annotator module of AnnoSpat learns a
cell-type predictor from the matrix of raw protein expression levels
and a list of a priori cell-typemarker proteins. To overcome the lack of
manually annotated training data, AnnoSpat implements a two-step
learning process (Fig. 1b). First, AnnoSpat deploys a constrained
K-means semi-supervised clustering (SSC) algorithm to create training
data from a subset of cells in the dataset. Using this automatically
generated training data, AnnoSpat then trains a classifier that will be
used to predict the identity of additional cells. The number of clusters
is set to the number of expected cell types within the tissue of interest
along with an optional Unknown group that could account for cell
types omitted from the marker protein list (Maker Protein file). To
enhance the accuracy of K-means clustering, AnnoSpat initializes each
cluster with cells that were annotated with high confidence based on
the distinct expression of marker proteins (see “Methods”). This cru-
cial step provides semi-supervision to the clustering algorithm, guid-
ing AnnoSpat in grouping a subset of cells with similar protein
expression levels into cell-type-labeled training cells. Taking this
automatically labeled data, AnnoSpat then trains an extreme learning
machine (ELM) classifier. ELM is a feed-forward neural network with
non-iterative single-step learning, which does not require tuning and
backpropagation, and provides generalization performance and
orders of magnitude faster learning compared to SVM and multi-layer
perceptron12 (see “Methods”). Together, the two-step learning algo-
rithm equips AnnoSpat with an efficient and accurate cell annotation
mechanism.

To facilitate the study of tissue microenvironment, we equip-
ped AnnoSpat with the Spatial Pattern Finder module, which takes
as input the Annotator-predicted cell types and their physical
coordinates on the tissue ROI and quantifies cellular localization
patterns (Fig. 1c). The Spatial Pattern Finder algorithm applies point
process theory to summarize cell relationships across a range of
distances, from local neighborhoods to remote cells. Briefly,
AnnoSpat compares cell pairs based on their cell type to any ran-
domly chosen cells at a given distance apart. This process returns a
mark cross-correlation function, a measure of cell-type aggregation
at different distances (see “Methods”). The application of the mark
cross-correlation function across ROIs allows for systematic quan-
tification and comparison of inter-cell-type proximity in different
conditions (Fig. 1c). In addition to AnnoSpat software, we imple-
mented Spatial Pattern Finder within the TooManyCells single-cell
analysis suite13. This implementation includes the generation of
interactive proximity plots that may be filtered by protein expres-
sion to fine-tune cell-type annotation. These interactive features
also assist with the exploration of spatial cell relationships.
AnnoSpat’s Annotator and Spatial Pattern Finder functionalities
together provide a solution for rapid and accurate annotation of
millions of cells to study tissue microenvironment and cellular
organization.
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Fig. 1 | Overviewof IMC or CODEXdata analysis withAnnoSpat (Annotator and
Spatial Pattern Finder). a From left to right: a tissue’s region of interest (ROI) (e.g.,
from the pancreas) is measured using a spatial single-cell proteomics assay such as
IMC or CODEX, reporting position and protein expression levels of individual cells
in situ, which depend on cell segmentation and channel intensity quantification
(see “Methods”). b To overcome lack of manually annotated training data,
AnnoSpat’s Annotator module learns a cell-type predictor by first processing pro-
tein expression data with a semi-supervised clustering algorithm, which creates a

training dataset from a subset of cells in the overall dataset (e.g., 50% inmatrixA).
Using this automatically generated training data, AnnoSpat then trains and applies
an extreme learning machine classifier to label the remaining cells (e.g., 50% in
matrixB). c AnnoSpat’s Spatial Pattern Finder component interprets cell locations
as point processes to quantify relationships between cell types using distance-
dependent (r) mark cross-correlation function (k(r)). Mark cross-correlation func-
tions across ROIs are systematically summarized using different features of them
such as the distance where the function is maximal.
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Comparison between AnnoSpat and supervised methods
through cell-type identification in IMC-measured pancreatic
tissues
To assess AnnoSpat’s Annotator performance, we used IMC experi-
ments measuring 33 proteins (Supplementary Data 1, 2), which can
ideally distinguish up to 16 different cell types in pancreata from T1D
and non-diabetic HPAP donors. To this end, we compared the ability of
AnnoSpat, our SSC, SCINA, AUCell, and Astir to identify endocrine cell
types. We considered these methods for comparative analysis since,
similar to AnnoSpat, they automate cell-type annotation and do not
need training data. Astir uses a probabilistic Bayesian framework and is
specifically developed for cell-type annotation from proteomics data
and so is the most comparable to AnnoSpat9. SSC is a variant of
AnnoSpat with its classifier replaced by centroids from the SSC step in
Fig. 1b (see “Methods”). SCINA14 and AUCell15 use expectation-
maximization and gene expression ranking for cell-type annotation
from scRNA-seq count data, respectively. We used default or sug-
gested filters and parameters for all algorithms except AUCell, where
size-factor normalization was disabled due to differences between the
characteristics of discrete scRNA-seq count and continuous IMC data.
AnnoSpat and SSC both used the Maker Protein file in Supplementary
Data 3 as input.

In the absence of true cell identity labels, we first examined the
extent of protein expression homogeneity in cell types predicted by
these supervised cell-type labelingmethods. To this end, we calculated
the Silhouette Index (SI) on ten sets of 50,000 randomly selected cells
(Fig. 2a–c, row 1; Supplementary Data 4–6). SI assesses how a cell’s
protein expression differs from other cells assigned the same label
versus those assigned other labels. SI quantifies the extent of protein
expression homogeneity in cells with a given label but not the cor-
rectness of their labels. AUCell-labeled alpha cells in samples fromT1D
donors, where alpha cells are abundant, had slightly higher mean SI
than AnnoSpat. In contrast, AUCell had the lowest SI for beta-labeled
cells in samples fromT1Ddonors, where immunological destruction of
beta cells results in low beta-cell abundance (Fig. 2a, row 1), suggesting
additional challenges when detecting rare cells from IMC data. Simi-
larly, most methods underperformed in detecting the epsilon cells as
reported by our SI analysis, which is also a rare endocrine cell type in
islets (Fig. 2a–c, row 1). SCINA- and AUCell-annotated pancreatic
polypeptide (PP) cells were more homogenous than their respective
labeled delta cells. AnnoSpat- and SSC-labeled delta cells in the control
samples were more homogenous compared to other algorithms
(Fig. 2b, row 1). SCINA, designed for scRNA-seq count data, under-
performed in T1D, Control, and T1D plus control (Combined) cohorts
(Fig. 2a–c, row 1), underscoring the need for cell-type calling algo-
rithms specifically designed for spatial proteomics data that is funda-
mentally different from scRNA-seq count data. Importantly, Astir,
which is developed for cell-type detection from IMC data, showed
lower performance in identifying homogenous group of cells formany
cell types in both control and T1D samples (Fig. 2a–c, row 1). In sum-
mary, our SI analysis revealed that cell-type annotation methods have
cell-type and disease-state-dependent capability in identifying cells
with homogenous protein expression profiles.

To complement SI analysis and further benchmark the correct-
ness of cell-type annotation algorithms without true cell-type labels,
we inspected protein expression profiles of endocrine-labeled cells in
T1D, Control, and Combined cohorts (Fig. 2a–c, rows 2–6; Supple-
mentary Fig. 1 a–c, rows 1–5). Like any other antibody-based assay, IMC
data quality highly depends on the sensitivity and specificity of anti-
bodies used in the assay. Compared to other cell types, alpha, beta, PP,
delta, and epsilon cells were particularly suitable for comparative
benchmarking analysis due to the higher specificity of their antibodies
in the HPAP IMC assay. We used a variant of term frequency-inverse
document frequency (TF-IDF) normalization to reduce the effect of

non-specific antibodies such as anti-CD99 and anti-beta actin on data
visualization (Fig. S4e–g; Supplementary Fig. 2a–c and “Methods”).

Inspection of protein expression profiles of cells annotated as
alpha, beta, PP, delta, and epsilon from IMC of T1D and non-diabetic
donors (Fig. 2a–c, rows 2–6; Supplementary Fig. 1a–c, rows 1–5)
showed the higher performance of AnnoSpat compared to SCINA and
Astir. SCINA- and Astir- but not AnnoSpat-predicted beta cells from
T1D samples, where beta cells are rare, showed high levels of immune
cell-restricted proteins CD57 and HLA-ABC (Fig. 2a–c, rows 2, 5, and 6;
Supplementary Fig. 1a–c, rows 1, 4, and 5). Comparing the result of cell-
type prediction in T1D and Combined cohorts showed that additional
samples improved the performance of AnnoSpat more so than Astir.
Notably, Astir equally failed to detect epsilon cells in T1D, Control, and
Combined cohorts (Fig. 2a–c, row 5; Supplementary Fig. 1a–c, row 4).
CD11b, amarker of dendritic cells, was the highest expressedprotein in
the Astir-predicted delta cells (Fig. 2a–c, row 5; Supplementary
Fig. 1a–c, row 4). Furthermore, Astir-predicted alpha cells expressed
high levels of somatostatin, a canonicalmarker of delta cells (Fig. 2a–c,
row 5; Supplementary Fig. 1a–c, row4). Similar to Astir, SCINA failed to
detect delta cells in samples from non-diabetic donors (Fig. 2a–c, row
6; Supplementary Fig. 1a–c, row 5). Moreover, SCINA-annotated PP
cells were less homogeneous compared to the AnnoSpat-labeled cells
(Fig. 2a–c, rows 2 and 6; Supplementary Fig. 1a–c, rows 1 and 5).
Together, this data complemented our homogeneity benchmarking
(Fig. 2a–c, row 1) and showed higher or comparable performance of
AnnoSpat compared to other supervised cell-type annotation
algorithms.

In addition to endocrine cells, AnnoSpat effectively detected
other cell types thathadhigh-quality antibodies inHPAP IMCassay and
are commonly present in the pancreatic tissue (Supplementary Figs.
2c–h and 4e–g). For instance, AnnoSpat, SSC, and AUCell but not Astir,
and SCINA clearly identified CD8+ T cells that had a specific antibody
(Supplementary Figs. 2c–g and 4e–g). Conversely, the detection of
helper and memory T cells was less accurate due to their less specific
antibodies (Supplementary Figs. 2c–g and 4e–g). To further evaluate
the impact of HPAP IMC panel’s non-specific antibodies on the per-
formance of cell-type annotation, we quantified protein expression
heterogeneity with the SI metric and inspected protein expression
profiles of cells annotated as CD8+ T and regulatory T cells. SI analysis
and protein expression profiles concordantly showed that AnnoSpat
and SSC outperform other algorithms in identifying CD8+ T cells
(Supplementary Figs. 2c–g and 4h), which had a specific antibody in
the HPAP IMC assay (Supplementary Fig. 4e–g). SI analysis also sug-
gested that Astir and AnnoSpat equally outperformed other cell-type
annotators in annotating regulatory T cells (Supplementary Fig. 4h).
However, close examination of protein expression profiles revealed
that Astir-labeled and AnnoSpat-labeled regulatory T cells had high
levels of beta-actin and pS6 expressions, respectively (Supplementary
Fig. 2c, f). Together, this analysis shows that the specificity of anti-
bodies used in spatial proteomic assay impacts the ability of algo-
rithms to accurately annotate cell types, as expected, and hence
should be accounted for in the design of benchmarking experiments
and during cell-type annotation.

Comparison between AnnoSpat and unsupervised methods
through cell-type identification in IMC-measured pancreatic
tissues
Besides supervised cell-type predictors, we compared AnnoSpat with
K-means, Seurat16, PhenoGraph17, and FlowSOM18 clustering-based cell-
type annotators due to their popularity in scRNA-seq and CyTOF data
analysis (Fig. 1a–c, row 7; Supplementary Fig. 1a–c, rows 3, 4, and 6–9).

FlowSOM failed to effectively separate the cells in Combined,
Control, and T1D cohorts leaving 1,151,979, 793,571, and 363,961 cells
in a single cluster, respectively. For instance, FlowSOW labeled only
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84, 259, and 2109 cells as alpha cells in Combined, Control, and T1D
cohorts, respectively, which is not biologically plausible.

SI analysis showed that Seurat, one of the most popular scRNA-
seq analysis tools, had the worst performance among the clustering-
based cell-type annotators in identifying homogenous group of
endocrine-labeled cells (Supplementary Fig. 3, row 1; Supplementary

Data 4–6), underscoring differences between single-cell proteomics
and transcriptomics data.

While both PhenoGraph and Seurat are based on Louvain
clustering, they showed distinct SI values in clustering IMC data
(Supplementary Fig. 3, row 1; Supplementary Data 4–6), potentially
due to differences in normalization and/or Louvain algorithm
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implementation. Notably, PhenoGraph, which is designed for CyTOF
data, resulted in higher SI values compared to Seurat. Nonetheless,
AnnoSpat’s labeling resulted in mean SI values at least 0.1 higher than
those of PhenoGraph in 5 out of 15 (cell type, cohort) comparisons
between the two methods. PhenoGraph’s mean SI values were only
close to those from AnnoSpat in T1D and Control epsilon-labeled cells
(Supplementary Fig. 3, row 1; Supplementary Data 4–6). In the absence
of true cell-type labels, we again looked at the protein expression
profiles of these cells to discern the accuracy of cell-type labeling
(Supplementary
Fig. 3, row 3). While AnnoSpat-labeled epsilon cells clearly expressed
ghrelin, the canonical marker of epsilon cells, CD11b (a canonical
marker of myeloid cells) was the only distinctly expressed protein in
the PhenoGraph-labeled epsilon cells (Fig. 2a, b; Supplementary Fig.
3a, b, row 1). However, the cells grouped and labeled as epsilon by
PhenoGraphdidnot distinctly express ghrelin, the canonicalmarker of
epsiloncells, hence, this groupof PhenoGraph-labeled epsiloncells are
indeed not biologically defined epsilon cells.

Similar to PhenoGraph, K-means analysis revealed that mean SI
values were lower or close to those of AnnoSpat for all the endocrine-
labeled cells in the Control cohort, except the K-means-labeled epsilon
cells (Fig. 1; Supplementary Fig. 3, row 1, and SupplementaryData 4–6).
Similar to PhenoGraph results, CD11b, not ghrelin, was the only dis-
tinctly expressed protein in the K-means-labeled epsilon cells (Sup-
plementary Fig. 1, row 3), suggesting incorrect cell-type annotation by
K-means despite higher SI. This analysis further supports the inability
of K-means and Louvain-based clustering methods to correctly seg-
regate rare populations in IMC data, an observation that was reported
for scRNA-seq and scATAC-seq data8,13. AnnoSpat attempts to over-
come this issue by implementing a procedure that initializes cluster
centroids based on representatives of each cell type (see “Methods”).
Examination of cell identities based on biological knowledge further
showed that similar to AnnoSpatmost supervisedmethods included in
our analysis outperformed K-means-based cell-type prediction. For
instance, somatostatin and PPY were highly expressed in AnnoSpat-,
SSC-, SCINA-, andAUCell-labeled, but not inK-means-labeled delta and
PP cells, respectively (Fig. 2a–c, row 7 versus other rows; Supplemen-
tary Fig. 1a–c, row 6 versus rows 1–5). Similarly, the unsupervised
K-means clustering approach failed to accurately label alpha cells in
T1D, Control, and Combined cohorts. Instead of high levels of gluca-
gon, K-means clustering-labeled alpha cells showed high levels of
CD11b, CD14, and granzyme B in T1D, Control, and Combined cohorts,
respectively (Fig. 2a–c, row 7; Supplementary Fig. 1a–c, row 6). K-
means, PhenoGraph, and Seurat also did not effectively label a subset
of non-endocrine cells with high-quality antibodies in the HPAP IMC
assay. For instance, in contrast to AnnoSpat, K-means-, PhenoGraph-,
and Seurat-labeled CD8+ T cells were not true CD8+ T cells, because
theydid not distinctly express CD8 (Supplementary Figs. 2c and4b–d).
Together, our AnnoSpat comparative analysis with K-means, Seurat,
PhenoGraph, and FlowSOM shows that while these unsupervised
methods can produce comparable or more homogeneous groups of
cells, they fail to segregate the cells based on their true lineage
potentially due to stochastic initialization and/or IMC assay resolution,
noise, and artifacts.

Impact of initialization on AnnoSpat performance
To assess the generalizability of AnnoSpat-trained model, we eval-
uated the impact of AnnoSpat’s initialization on cell-type annotation.
To this end, we performed two experiments examining how the
exclusion or inclusion of cell types in the initialization step affects
AnnoSpat’s performance. First, we removedNK andmyeloid cells from
the Marker Protein file (Supplementary Data 3) and predicted the
identity of cells in the Combined cohort. Second, we added myeloid
cells back to the AnnoSpat’s Marker Protein file and repeated the cell-
type annotation. The first analysis showed that the removal of these
two cell types from AnnoSpat’s initialization has a marginal impact on
its performance in detecting cell types with specific antibodies (Sup-
plementary Fig. 5a): cells annotated as alpha, beta, delta, PP, epsilon,
acinar, and ductal still expressed high levels of respective marker
proteins (glucagon, C-peptide, somatostatin, PPY, ghrelin, pS6, and
CA2) in the absence of NK and myeloid cells from AnnoSpat’s initi-
alization. Sankey plots further corroborated this analysis and showed
that removal of myeloid and NK from AnnoSpat’s initialization had a
marginal impact on predicted cell labels with specific antibodies and
resulted in relabeling of almost all the myeloid and NK cells as
Unknown (Supplementary Fig. 5c). The second analysis showed that
inclusion of a cell type to AnnoSpat’s initialization also had a limited
impact on its performance (Supplementary Fig. 5b, d). We observed
that the inclusion ofmyeloidmarkers toAnnoSpat’sMarker Proteinfile
relabeled some of the Unknown cells asmyeloid, which had high levels
of CD68 expression as is expected from a correct cell-type prediction.

To further evaluate the impact of AnnoSpat’s initialization on
performance, we examined how changes in cluster centroid initializa-
tion by qhigh impact protein expression profiles of annotated cell types
(Supplementary Fig. 6a–j). In line with recommended default para-
meters (see “Methods”), the impact of qhigh on performance depended
on cell-type abundance and antibody specificity. This analysis showed
that a more relaxed qhigh (i.e., lower values) decreased the accuracy of
cell-type prediction for both abundant and rare cell types,with a greater
impact on rare cell populations (Supplementary Fig. 6c, d, h–j). For
instance, using a more relaxed qhigh led to markedly lower levels of
C-peptide and ghrelin in cells predicted as beta and epsilon in the
Combined cohort, respectively. In contrast, a more stringent qhigh (i.e.,
higher values) had a marginal impact on performance, especially for
abundant cell types, evenwithmoderate antibody specificity, like acinar
cells (Supplementary Fig. 6a–c, f–h). Together, this analysis clarifieshow
expected cell population abundance could guide AnnoSpat initializa-
tion by showing that too relaxed and stringent qhigh values could impact
cell-type accuracy by potentially including non-representative cells and
measurement artifacts in a training dataset, respectively.

AnnoSpat can accurately predict cell types in new IMC samples
We further assessed the generalizability of AnnoSpat-trainedmodel by
predicting the identification of cells in completely independent
experiments. To this end, we used the AnnoSpat-trained model to
annotate cells in two newROIs from themost recent HPAP donors that
were not part of the original cohort listed in Supplementary Data 2.
This analysis clearly demonstrated the ability of AnnoSpat to accu-
rately predict cell types with specific antibodies in the HPAP IMC assay

Fig. 2 | Comparative analysis of AnnoSpat cell-type annotation from IMC data.
a From top to bottom: bar plots with error bars showing average and standard
deviation Silhouette Index (SI), heatmaps showing normalized average expression
of all the 33 HPAP IMC-measured proteins for cells annotated as alpha, beta, delta,
epsilon, and PP by AnnoSpat, AUCell, our semi-supervised clustering (SSC), Astir,
SCINA, and K-means from T1D pancreas IMC data (n = 374,397 measured cells).
b Similar to (a) from non-diabetic (control) pancreas IMC data (n = 795,604 mea-
sured cells). c Similar to (a) from combined T1D and control pancreas IMC data
(n = 1,170,001 measured cells).m = 20 sets of n = 50,000 randomly selected cells

are used for evaluation using SI in each bar plot in the top panel of a–c. d Bar plots
showing the fraction of n = 374,397, n = 795,604, and n = 1,170,001 IMC-measured
cells form T1D, control, and combined T1D and control pancreata, respectively,
annotated by AnnoSpat, SSC, Astir, SCINA, and AUCell. e Bar plots with error bars
showing the mean and standard deviation of run-time for the listed algorithms to
annotate cells as in (d). Each algorithm was run 15 times on amachine with Ubuntu
20.04, 1.05TB Memory, Intel Xeon Gold CPU 6230R@ 2.1GHz, 2 physical pro-
cessors 52 cores, and 104 threads. Processed IMC data used in all the figures are
provided as a Source Data file.
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(Supplementary Fig. 7a). Inspection of protein expression profiles of
AnnoSpat-annotated alpha, beta, delta, PP, epsilon, and CD8+ T cells in
these two new ROIs showed high levels of glucagon, C-peptide,
somatostatin, PPY, ghrelin, and CD8 expressions, respectively.

AnnoSpat rapidly annotates large fractions of cells in IMC
samples
In addition to accuracy, we compared the completeness and run-time
of cell-type annotation. By using ELM, AnnoSpat annotated more than
90% of 1.1million cells (Fig. 2d; Supplementary Data 7) in <2min, a run-
time only 3 times longer than our SSCmethod and notably faster than
all other supervised algorithms (Fig. 2e; SupplementaryData 8). Due to
manual and laborious procedure, cell annotation with unsupervised
methods is in the order of days and not minutes; hence, they were
excluded from the execution time benchmarking. Although SSC and
AnnoSpat mostly exhibited comparable performance, close examina-
tion of data highlighted the additional benefit of AnnoSpat (Fig. 2a–c,
rows 2, 4; Supplementary Figs. 1a–c, rows 1, 3, and 2c, e). For instance,
SSC- but not AnnoSpat-annotated delta cells expressed high levels of
CD14, a protein expressed inmacrophages and not delta cells (Fig. 2b,
c, rows 2, 4; Supplementary Fig. 1b, c, rows 1, 3). Notably, Astir failed to
label nearly 50% of the cells (Fig. 2d; Supplementary Data 7) while took
40 times longer (Fig. 2e; Supplementary Data 8). Due to its bi-modal
distribution model, SCINA assigned a label to almost all the cells in a
reasonable time (Fig. 2d, e; Supplementary Data 7, 8) at the expense of
diminished accuracy (Fig. 2a–c, rows 2, 6; Supplementary Fig. 1a–c,
rows 1, 5). Conversely, AUCell exhibited comparable performance to
AnnoSpat (Fig. 2a–c, rows 2, 3; Supplementary Fig. 1a–c, rows 1, 2), but
it failed to annotate most cells included in the benchmarking analysis
(Fig. 2d), potentially leading to information loss. Close examination of
the data revealed that AUCell more accurately labeled cell types with a
larger number of marker proteins such as ductal cells (Supplementary
Fig. 8a, b; Supplementary Data 3), which is in line with AUCell’s main
focus on scRNA-seq which measures thousands of transcripts but not
spatial proteomics technologies which measure tens of proteins.

AnnoSpat accurately identifies cell types from CODEX data
We further extended our comparative studies to CODEX measure-
ments of 24 proteins in 220,155 cells from 30 islets in a non-diabetic
donor (Supplementary Data 9, 10). Similar to IMC results (Fig. 2;
Supplementary Fig. 1), qualitative and quantitative studies showed
higher performance of AnnoSpat in predicting endocrine cell types
with specific antibodies from HPAP CODEX data compared to other
supervised algorithms (Supplementary Fig. 9; Supplementary Data 11).
SI analysis suggested that AnnoSpat, AUCell, and SCINA were com-
parable in identifying homogenous cell groups (Supplementary
Fig. 9b; Supplementary Data 11). Yet, a close examination of cell
labeling revealed that in contrast to AnnoSpat, SCINA-annotated beta
cells expressed high levels of somatostatin, a canonicalmarker of delta
cells (Supplementary Fig. 9c, f). While AnnoSpat identified a pure delta
cell population, SCINA-annotated delta cells lacked high levels of
canonical marker SST. AUCell-annotated delta cells expressed high
levels of CD206, ARG1, and CD4, canonical markers of macrophages
and helper T cells, respectively (Supplementary Fig. 9c, g). In contrast
to IMC analysis, AnnoSpat consistently outperformed SSC in predict-
ing abundant endocrine cells fromCODEXdata. For instance, ghrelin, a
canonical marker of epsilon cells, was highly expressed in SSC-labeled
delta cells (Supplementary Fig. 9c, d), supporting the advantage of
ELM usage in AnnoSpat. Similar to benchmarking with IMC data
(Fig. 2), AnnoSpat outperformed Astir in predicting endocrine cells
from CODEX data (Supplementary Fig. 9c, e). Besides beta cells, Astir
failed to annotate other major endocrine cell populations (Supple-
mentary Fig. 9e). Close examination of data further showed high levels
of non-beta-cell-associated proteins in Astir-labeled beta cells (Sup-
plementary Fig. 9b, e). Notably, we observed high levels of canonical

marker proteins in the nucleus and/or cytoplasm of AnnoSpat-labeled
cells from high-resolution CODEX data, further supporting the accu-
racy of AnnoSpat in cell-type annotation (Supplementary Fig. 9h).
Together, these comparative analyses indicated the advantageof using
AnnoSpat for accurate, comprehensive, and rapid cell-type annotation
from IMC and CODEX spatial proteomic measurements.

AnnoSpat improves accuracy of cell-type identification in
expert-annotated pancreata
To further demonstrate AnnoSpat’s ability in accurate cell-type anno-
tation, we compared AnnoSpat- and expert-annotated endocrine cell
composition in pancreata of non-diabetic and T1D donors19 (Fig. 3;
Supplementary Data 12). Using Kullback–Leibler (KL) divergence as a
measure of difference, we observed concordance in AnnoSpat- and
expert-annotated endocrine cell composition in 13 out of 15 (87%)
examined IMC samples (Fig. 3a, b; Supplementary Data 13). Notably,
AnnoSpat revealed expert cell-type mislabeling in the two discordant
samples (Fig. 3g–j). Compared to expert annotation, AnnoSpat identi-
fied markedly higher percentages of PP cells in “HPAP002, Head”
(Fig. 3a, b). Close examination of staining from “HPAP002, Head” con-
firmed the accuracyofAnnoSpat’s cell-typeannotation andshowedhigh
expression of the canonical PP-cell marker protein PPY in AnnoSpat-
annotated cells (Fig. 3g, h).While AnnoSpat identified a high percentage
of alpha cells in the body region of HPAP006 pancreas, expert annota-
tion indicated a low percentage of alpha and a high percentage of delta
cells (Fig. 3a, b). In linewith AnnoSpat cell-type annotation, we observed
ahigher percentageof cellswith elevated levels of glucagon (a canonical
marker of alpha cells) in HPAP006 pancreas body staining (Fig. 3i, j).

Conducting a similar comparative analysis with SSC, Astir, SCINA,
and AUCell showed that AnnoSpat outperforms other algorithms in
detecting samples with expert cell-type mislabeling (Fig. 3a–f; Sup-
plementary Data 13). KL divergence showed that SSC and SCINA failed
to detect expert cell-type mislabeling in “HPAP002, Head”. In addition
to “HPAP006, Head” that was correctly flagged, Astir-based analysis
incorrectly denoted expert cell-type mislabeling in “HPAP014, Body”
and “HPAP015, Tail”, which was due to Astir’s failure to detect PP and
epsilon cells in the ROIs from these two donors. AUCell had the lowest
accuracy and incorrectly flagged discordance in 14 out of 15 (93%) IMC
samples included in the analysis.

Given the single-cell resolution of IMC data, we next used various
visualization methods to compare the AnnoSpat-assigned cell types
with canonical marker protein expression levels in individual endo-
crine cells. Uniform manifold approximation and projection (UMAP)
plots of AnnoSpat cell label and endocrine marker protein expression
clearly visualized specificity of glucagon, C-peptide, somatostatin,
ghrelin, and PPY expression in cells labeled as alpha, beta, delta,
epsilon, and PP cells, respectively (Supplementary Fig. 8c). A similar
analysis using TooManyCells, which visualizes cell–cell protein
expression relationships as a tree13, further confirmed our UMAP ana-
lysis and demonstrated a high association between AnnoSpat-
predicted endocrine cell types and expression of their canonical
marker proteins at cell clusters (Fig. 4a).

Finally, we used the locational information from the spatial pro-
teomic data to directly compare AnnoSpat annotations and marker
protein intensities of endocrine cells in situ. This analysis revealed a
stark concordance between the position of cells predicted as alpha,
beta, delta, epsilon, and PP with the intensity of glucagon, C-peptide,
somatostatin, ghrelin, and PPY expression, respectively, on randomly
selected IMC and CODEX slides (Fig. 4b, c; Supplementary Fig. 9i, j).
This single-cell resolution analysis complemented benchmarking
against expert-annotated samples and demonstrated that AnnoSpat
exhibited better concordance with expert annotation. Additionally, a
thorough examination of IMC data indicated that mislabeling can
occur in manual expert annotation, an issue that an accurate auto-
mated cell-type annotator could help alleviate.
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AnnoSpat’s IMC analysis shows an increase in PP-cell count
during T1D progression
Linking expression of canonical protein markers with the predicated
cell types demonstrated AnnoSpat’s ability to automatically and
accurately identify various cell types within the heterogeneous pan-
creas tissue, the site of T1D pathogenesis (Figs. 2, 3; Supplementary
Figs. 1, 2, and 7). To further evaluate AnnoSpat’s functionality, we next

examined whether it could correctly detect known progressive chan-
ges in the pancreata during T1D progression. Thus, we compared IMC
data from four non-diabetic (control) and four T1D donors with eight
donors with autoantibodies toward islet proteins (AAbs) but without
T1D medical history (AAb+) (Supplementary Data 2).

Control, AAb+, and T1D donors demonstrated distinct total nor-
malized protein expression patterns in cell types annotated by
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Fig. 3 | Comparison of expert and automated endocrine cell-type annotation.
a–f Percentage of expert-annotated (a), AnnoSpat-annotated (b), SSC-annotated
(c), Astir-annotated (d), SCINA-annotated (e), and AUCell-annotated (f) endocrine
cell types from the IMC of different pancreas regions of donors studied in ref. 19.
g–j Representative IMC images from donors with discordant expert and AnnoSpat

cell-type annotation in panels (a) and (b) are overlaid with AnnoSpat-predicted cell
types (g, i) or endocrine canonical marker protein channels (h, j). C-peptide, glu-
cagon, somatostatin, PPY, and ghrelin marking beta, alpha, delta, PP, and epsilon
cells, respectively.
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AnnoSpat (Fig. 5a). Comparison of cell-type composition revealed
marked decreases in beta-cell counts in T1D donors (Fig. 5b), as
expected20,21. This analysis further indicated a notable increase in the
number of cells labeled as PP in T1D donors (Fig. 5b).

In contrast to beta cells, the role of PP cells in T1D etiology is less
understood. Furthermore, there are conflicting reports regarding
changes in the PP-cell count during T1D development22–27. We thus
compared the number of PP cells identified within the pancreata from
control, AAb+, andT1Ddonors. This analysis showed amarked increase
in the number of PP cells in T1D pancreata (Fig. 5c), as reported19,24.

To further scrutinize this observation, we examined the location
of individual AnnoSpat-annotated endocrine cells (Fig. 5d) on the
TooManyCells tree of non-diabetic control and T1D pancreatic cells
(Fig. 5e). This single-cell resolution analysis further showed that

AnnoSpat-annotated PP cells were disproportionately located at T1D
pancreas heads (Fig. 5e, f), with the exception of HPAP020. Given AAb+

donors also did not show elevated PP-cell counts (Fig. 5c), we tested
whether disease progression correlates with changes in PP-cell num-
bers. PP-cell counts were comparable in control and T1D donors with
<5 years of T1D, and were markedly lower than donors with a pro-
longed T1D (Fig. 5g; Supplementary Fig. 10). Notably, fewer PP cells
were found in theheadofHPAP020pancreas, a 14-year-olddonorwho,
with missed T1D diagnosis, passed away within days of T1D onset
(Fig. 5g; Supplementary Fig. 10). To further substantiate this observa-
tion, we closely examined data from Damond et al.28. This dataset
confirmed our observation and showed enrichment of PP cells in the
only donor with long-duration of T1D and an available head section
sample in this cohort (nPOD case 6264). Together, these data showed
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Fig. 4 | Comparison of protein expression levels and AnnoSpat annotations
across pancreatic endocrine cell types. a From left to right, top to bottom:
TooManyCells tree overlaid by AnnoSpat-predicted cell types, and expression
levels of C-peptide, glucagon, somatostatin, pancreatic polypeptide protein (PPY),

and ghrelin marking beta, alpha, delta, PP, and epsilon cells, respectively in
n = 65,643 cells acrossm = 141 slides of 16 pancreas donors. b, c Six representative
IMC images from m = 141 slides of 16 donors overlaid by AnnoSpat-predicted cell
types (b) or endocrine canonical marker protein channels (c).
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the ability of AnnoSpat to identify rare PP cells, and further suggest
changes in the PP-cell count during T1D progression in our cohort,
which could be absolute or relative, respectively, due to PP-cell
hyperplasia or PP-cell poor region atrophy impacting tissue sampling.

In addition to tissue level analysis (Fig. 5), IMCdata canbe used for
single-cell resolution study of protein expression changes in T1D. To
this end, we sought to identify the proliferating cell populations within

pancreatic tissue using Ki67 as a protein marker. Average normalized
protein levels showed high Ki67 expression in various immune popu-
lations (Fig. 6a and “Methods”). To identify the proliferating cell types
and their disease status, we used the TooManyCell tree to identify
individual Ki67+ cells (Fig. 6b). This analysis revealed that myeloid and
regulatory T cells comprised most of the Ki67+ cells (Fig. 6c). Exam-
ination of highly proliferating cells’ positions further revealed that
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Fig. 5 | PP-cell count increases in the pancreas head during T1D progression.
a Heatmap showing total normalized protein expression for each pancreas region
across non-diabetic control, T1D, and AAb+ donors. Normalized protein expression
for each cell type is calculated by scaling for ROI count per donor pancreas region
(3/ROI count) of min–max and TF-IDF normalized expression levels. b Bar plots
showing the percentage of each AnnoSpat-annotated cell type across pancreata of
control, T1D, and AAb+ donors. c Plots showing PP-cell counts in pancreata from
control (n = 38), T1D (n = 46), and AAb+ (n = 49) donors. P value: two-sided t-test
with Bonferroni correction. d, e TooManyCells tree overlaid with AnnoSpat-

predicted cell types (d), as well as disease status and pancreas region (e). TooMa-
nyCells default parameters (quartile normalization and filter threshold of channel
intensity <250 and marker protein intensity <1) were used. f Pie chart showing
fraction of PP cells from different pancreas regions across control, T1D, and AAb+

cohorts. g Box-and-whisker plots quantifying PP-cell counts in control (n = 38) and
T1D donors stratified by disease duration (T1D recent n = 11, T1D 5 yrs n = 16, T1D 7
yrs n = 19 ROIs). P value: two-sided t-test with Bonferroni correction. Box-and-
whisker plots: center line, median; box limits, upper (75th) and lower (25th) per-
centiles; whiskers, 1.5 ⋅ interquartile range; points, outliers.
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Fig. 6 |Myeloid and regulatory T cells are hyper-proliferative in T1Dpancreata.
a Heatmap showing normalized average expression of all the 33 HPAP IMC-
measured proteins across AnnoSpat-annotated cell types. Dash-lined box marking
Ki67 column. b TooManyCells sub-tree colored by Ki67 expression. c Bar plots

showing cell-type count of n = 190 cells within the TooManyCells sub-tree in (b).
d Pie chart showing fraction of Ki67+ cells from different regions of pancreata of
control, T1D, and AAb+ donors (p value: two-sided chi-square test).
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these cells were disproportionately located in the tail region of AAb+

and T1D pancreata (Fig. 6d). Although the role of these highly pro-
liferating immune cells in T1Dpatients awaits further investigation, this
analysis demonstrated the ability of AnnoSpat to simultaneously
stratifymultiple cell types enabling detailedmolecular phenotyping to
identify changes in the immune milieu of complex diseases such
as T1D.

AnnoSpat captures known spatial relationship between CD8+ T
and islets from IMC data
Having identified the composition of endocrine cells in control, AAb+,
and T1D samples, we sought to confirm that AnnoSpat correctly
recapitulates known spatial relationships among cell types in pan-
creata from healthy and T1D donors. To quantify cell proximity, we
usedAnnoSpat’s “Spatial Pattern Finder” functionality, which identifies
spatial patterns of cells by reporting cross-correlation functions
derived from point process theory. In essence, AnnoSpat treats each
cell as a point in space, with the cell type represented as a discrete
feature mark. In this space, AnnoSpat measures the expected number
of cells per unit area. It then compares this number, which is its null
model, to the expected number of cells for a given cell-type pairing to
determine whether these cell types tend to aggregate over a range of
distances (Fig. 1c and “Methods”). To compare mark cross-correlation
functions across different ROIs, we proposed multiple measures for
summarizing mark cross-correlation functions into single values. One
measure is thedistance at themaximumcorrelationvalue for eachROI.

To verify the use of mark cross-correlation functions in IMC data,
we initially employed AnnoSpat’s Spatial Pattern Finder to compare
the aggregation of endocrine cell into isletswith their aggregationwith
acinar cells in the ROIs of the control donors. As expected, endocrine
cells exhibited a higher degree of aggregation with each other (Fig. 7a,
median 2.26 distance at maximum correlation value) than with acinar
cells (Fig. 7b, median 149). These spatial relationships were visually
confirmed by examining samples at the median values, where endo-
crine cells tended to aggregate with each other and were positioned
more randomly with respect to acinar cells (Fig. 7c, d). Using an
alternative measure to summarize the mark cross-correlation func-
tions, we observed similar spatial patterns, thereby confirming the
validity of both measures in comparing cell–cell proximity patterns
(Supplementary Fig. 11a–d and “Methods”).

To further examine the utility of AnnoSpat’s Spatial Pattern Finder
in studying T1D pathogenesis, we next quantified the spatial relation-
ship between CD8+ T cells and islets. In particular, we focused on
quantifying the aggregation of islets with CD8+ T cells, as CD8+ T cells
were stained with a more specific antibody in the HPAP IMC panel.
Given that the destruction of insulin-producing beta cells by cytotoxic
CD8+ T cells contributes to T1D pathogenesis20,21, we tested the
hypothesis that AnnoSpat can accurately recapitulate differential
levels of cytotoxic CD8+ T cell infiltration in islets during T1D pro-
gression. Applyingmark cross-correlation functions to all ROIs for four
cohorts – control, AAb+, recent T1D (<1 year), and prolonged T1D (≥1
year) – revealed two distinct patterns of spatial relationships between
islets and CD8+ T cells: AAb+ with recent T1D and control with pro-
longed T1D (Fig. 7e–i). Non-diabetic control donors, as expected29,30,
had relatively low levels ofCD8+ T cell infiltration in islets (median 146).
Similarly, we observed low levels of CD8+ T cell infiltration in islets of
prolonged T1D (median 181), as reported29,30. In contrast, both AAb+

(median 81.1) and recent T1D (median 55.7) had markedly higher
aggregation of CD8+ T cells within islets relative to both control and
prolonged T1D groups (Kruskal–Wallis p = 5.68e−3) (Fig. 7e–i), reca-
pitulating the expected dynamics of CD8+ T cells aggregation with
islets during the natural history of T1D29–32. Furthermore, AAb+ and
recent T1D tissues showed similar levels of CD8+ T cells aggregation
with islets (p =0.244), demonstrating AnnoSpat’s ability to detect
similar levels of CD8+ T cells infiltration in the early stages of T1D from

IMC data, both with and without clinical diagnosis (Fig. 7e–i). These
differential spatial relationships were confirmed using our alternative
mark cross-correlation summarization measure (Supplementary
Fig. 11e–i). Visual inspection of IMC images supported these quanti-
tative observations (Supplementary Fig. 11j–m), further demonstrating
AnnoSpat’s ability to recapitulate known changes during T1D pro-
gression by accurately quantifying the increase of CD8+ T cell infiltra-
tion in islets in early onset but not prolonged T1D.

To demonstrate the advantage of using AnnoSpat for quantifying
inter-cell-type spatial relationships, we compared AnnoSpat with
HistoCAT33, which features a similar function to measure cell aggrega-
tion. To this end, we repeated the analysis presented in (Fig. 7a–e) with
HistoCAT and quantified aggregation of endocrine cells with acinar and
CD8+ T cells (Fig. 7j–n). In summary, HistoCAT assesses the grouping
between cell typeAandcell typeBby countinghowmany cells of typeA
have neighbors of type B and then dividing that count by the total
number of cells of type Awith at least one neighbor of type B. To repeat
the analysis in (Fig. 7a–e) using HistoCAT, we substituted the distance-
dependent mark cross-correlation function (k(r)) with HistoCAT’s
interaction counts (ct) (Fig. 7j–n). HistoCAT and AnnoSpat produced
similar spatial relationship results for islets and acinar cells (Fig. 7a, b, j,
k), but there were significant differences in the patterns of spatial
relationships between CD8+ T cells and islets when quantified by His-
toCAT and AnnoSpat (Fig. 7e, n). While AnnoSpat’s median mark cross-
correlation function significantly differed between control, AAb+, and
recent T1D donors, HistoCAT’s median interaction counts remained
consistent across the three disease conditions (Kruskal–Wallis p =0.17).
This suggests thatHistoCATcannotdistinguish the expected changes in
the aggregation of CD8+ T cells with islets during T1D progression.
Notably, HistoCAT analysis failed to discern a significant difference
between the levels of CD8+ T cell infiltration within islets in control and
recent T1D samples (p>0.05). The marked difference between the
spatial analysis outcomes of AnnoSpat and HistoCAT could be attrib-
uted to their divergent approaches in quantifying inter-cell-type
proximity. HistoCAT uses a fixed neighborhood definition involving
the three nearest neighboring cells. By contrast, AnnoSpat considers a
range of distances. Together, these spatial aggregation analyses in T1D
and healthy donors demonstrate the utility of AnnoSpat in quantifying
inter-cell-type proximity relationships.

Discussion
Spatial profiling of cells in their native tissue environments has enabled
comprehensive exploration of cellular organization in tissues. The
generation of atlas-scale spatial proteomic datasets has underscored
the necessity for automated cell-type annotationmethods and tools to
quantify cell–cell spatial relationships. However, current methods for
cell-type annotation in spatial proteomic analysis often rely on manual
labeling, which hinders scalability, or exhibit low accuracy, as
demonstrated in our comparative studies. To address this unmet need
and to overcome these limitations, we developed AnnoSpat, a solution
for the rapid and accurate prediction of individual cell types and
quantification of their proximity relationships within spatial proteomic
data. Specially, AnnoSpat is tailored tomeet the demands of atlas-scale
datasets likeHPAP,which involve the continuous collectionof samples.
In contrast to popular unsupervised approaches, AnnoSpat can har-
ness its trainablemodel to facilitate near-online prediction of cell types
in new IMC or CODEX experiments, reducing the need for reanalysis
the entire dataset. Using both quantitative and qualitative bench-
marking, we demonstrated that AnnoSpat can rapidly and accurately
predict the identity of millions of cells in complex human pancreata
profiled with IMC and CODEX assays. Our comparative studies further
showed that AnnoSpat can predict lineages of large fraction of cells
with high accuracy, while other existing cell annotation algorithms
failed to do so. AnnoSpat accuracy is further exemplified by identifying
endocrine cell populations mislabeled by expert annotation.
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Utilizing AnnoSpat’s unique capabilities, we accurately recapi-
tulated known changes in the pancreas microenvironment during
the natural history of T1D. AnnoSpat efficiently detected the
depletion of beta cells with minimal manual intervention in a
dataset of over a million cells. Furthermore, our analysis supported
the possibility of changes in the number of PP cells within the
pancreas’s head region in patients with prolonged T1D. We also
observed an enrichment of proliferating immune cells within the tail

region of pancreata from AAb+ and T1D donors. By employing
AnnoSpat’s spatial relationship quantification functionality, we
faithfully replicated the dynamics of CD8+ T cells infiltration within
islets during T1D progression. Specifically, AnnoSpat but not His-
toCAT successfully detected the expected differential aggregation
of CD8+ cells in islets when recently diagnosed and AAb+ donors
were compared with non-diabetic donors and those with
prolonged T1D.
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The complexity of pancreatic tissue and the heterogeneity of T1D
pathology30–32,34 underscore the need for algorithms that can enable
high-throughput, high-resolution, in situ examination of pancreatic
tissue fromorgandonorswith T1D. Recent studies show that insulitis is
more frequent shortly after diagnosis. Although the frequency of
insulitis (the percentage of islets displaying insulitis) inversely corre-
lates with the duration of T1D, insulitis, and insulin-positive islets can
still be found in the pancreata of patients with T1D several years after
diagnosis29–31,34. These studies further revealed that insulitic lesions can
be found in insulin-negative islets, albeit at a much lower frequency
compared to insulin-positive islets30,31. A recent study of islets from
T1D organ donors also found a limited correlation between insulitis
frequency and disease duration30. Although the relationship between
insulitis, microvasculature reorganization, and blood flow changes
during T1D progression is not fully understood35, it is well established
that infiltrating immune cells reach the islets through blood, lymphatic
vessels, and extracellular matrix spaces, and are influenced by islet
microendothelium29,35. Here, we demonstrated AnnoSpat’s ability to
faithfully replicate the dynamics of CD8+ T cell aggregation with islets
during the natural history of T1D. This example demonstrates the
potential utility of AnnoSpat in facilitating future characterizations of
T1D heterogeneity and complexity. We postulate that AnnoSpat and
other algorithmic advances will pave the way for the integration of
spatial proteomics data with readouts from histopathological and
microscopic assays. This integration can expand our holistic under-
standing of T1D pathobiology and facilitate the discovery of links
between alterations in islet microvasculature, capillary morphology,
endothelium, and immune infiltration with islet dysfunction.

AnnoSpat is a general tool for spatial single-cell proteomic data
analysis that has the potential to be applied to various tissue types and
disease conditions. However, the performance of AnnoSpat, as well as
other automated cell-type annotation algorithms, may be affected by
the specificity and sensitivity of IMC and CODEX antibodies, such as
those used for PPY and CD4 in the HPAP CODEX and IMC assays,
respectively. To improve usability across different domains, AnnoSpat
iswell documented and canbe easily installed as a standaloneprogram
through pip at https://github.com/faryabiLab/AnnoSpat. Additionally,
we made Annospat’s spatial pattern quantification functionality avail-
able as part of the TooManyCells’ suite, which can be found at https://
github.com/GregorySchwartz/too-many-cells.

Methods
IMC and CODEX data
No new data have been generated in this study. IMC data were
obtained from formalin-fixed paraffin-embedded pancreatic tissues
collected by the HPAP as described previously19. CODEX data were
obtained from the same source. Both IMC and CODEX datasets ana-
lyzed in this study have been deposited in PANC-DB https://hpap.
pmacs.upenn.edu/, data portal developedby the Faryabi Lab forHPAP,
and is publicly accessible without any restriction. Relevant clinical data
are available both through PANC-DB (https://hpap.pmacs.upenn.edu/)

and Supplementary Data 1–13. In IMC, cell segmentation of all images
was performed with the Vis software package (Visiopharm). All image
channels were pre-processed with a 3 × 3-pixel median filter. After-
ward, cells were segmented by applying a polynomial local linear
parameter-based blob filter to the Iridium-193 DNA channel of each
image to select objects representing individual nuclei. Identified
nuclear objects were restricted to those >10μm36. The detected
objectsweredilatedup to sevenpixels to approximate cell boundaries.
For all proteins, the average pixel intensity of the channel per cell was
exported from Visiopharm and used for AnnoSpat’s input. Cell loca-
tions on each ROI were also exported for AnnoSpat’s input.

AnnoSpat overview
AnnoSpat is a tool to annotate single cells from their proteomic pro-
files and measure spatial cellular relationships using their in situ
coordinates within the ROI. AnnoSpat takes as input a single-cell raw
proteomic data with associated spatial information as well as a Marker
Protein file listing potentially both positive and negative protein sig-
natures associated with desired cell types. The format of the Marker
Protein file can be found in Supplementary Data 3, 10.

AnnoSpat first normalizes the protein channel intensity data to
reduce the effect of outliers and varied protein intensity scales (“Meth-
ods: Data processing”). AnnoSpat then randomly splits the normalized
data into two partitions (training and testing sets). Cells from 50% of all
ROIs are placed in the training set, while the remaining are used as the
testing set. If theROIs’disease condition/status is available, AnnoSpat can
stratify the ROI split by disease status to ensure that an equal percentage
of each disease status is included in each of the training and test sets.

AnnoSpat can use the cell-type labels and cellular coordinates to
quantify spatial relationships between each pair of cell types (“Methods:
AnnoSpat’s Spatial Pattern Finder”). Briefly, AnnoSpats use point pro-
cess theory to quantify relationships (aggregation or repulsion)
between any two cell types across a range of distances. This information
is summarized with a variety of different metrics including the distance
at the maximum correlation, the distance at which the correlation first
becomes positive or negative, and more in order to quantify proximity
relationships across ROIs. Interactive plots of each cell location with
observed feature (protein expression) distributions are also outputted
to facilitate data exploration (e.g., see Fig. 7; Supplementary Fig. 11).

AnnoSpat implements constrained K-means semi-supervised
clustering37 to identify groups of cells in the training set that are similar
in proteomic space. AnnoSpat’s constrained K-means clustering is
initialized by “initial cluster centroids”, providing cell-type aware
clustering (“Methods: Generation of initial cluster centroids”). The
number of clusters is deterministic and is equal to K + 1, where K
denotes the number of expected cell types in the sample. The addi-
tional (K + 1)th cluster accounts for other cell types in the experiment
that are not specified in the Marker Protein file, including Unknown
ones. The output of constrained K-means produces the cells that are
predicted to be related and thus are used by AnnoSpat as a training set
to learn the label of the remaining cells by training an ELM classifier12

Fig. 7 | The extent of CD8+ T cell infiltration in islets changes during T1D pro-
gression. a, b Distribution and box-and-whisker plots of distance r at the k(r)
maximum for endocrine cells with respect to themselves (a) or acinar cells (b)
(n = 48 ROIs). c, d Scatter plots showing cell locations within ROIs at the median of
(a) and (b) distributions at (c) and (d), respectively. Endocrine cells aggregatemore
with themselves than acinar cells. e Distribution and box-and-whisker plots of the
distance at the maximal point in the mark cross-correlation functions across con-
trol, AAb+, recent T1D, and prolonged T1D showing that greater aggregation of
islets with CD8+ T cells in AAb+ (n = 49) and recent T1D (n = 11) compared to control
(n = 48) and prolonged T1D (n = 35) ROIs (Kruskal–Wallis Control versus T1DM ≥ 1:
p = 5.68e−3, AAb+ versus T1DM< 1: p =0.244). f–i Scatter plots showing cell loca-
tions within ROIs at the median of each cohort in (e). From lowest to highest
aggregation: prolonged T1D (f), control (g), AAb+ (h), and recent T1D (i).

j, k Distribution and box-and-whisker plots of HistoCAT interaction counts (ct) for
endocrine cells with respect to themselves (j) or acinar cells (k) (n = 48 ROIs).
Higher count indicates increased aggregation. l, m Scatter plots showing cell
locations within ROIs at the median of (j) and (k) distributions at (l) and (m),
respectively. Endocrine cells aggregate more with themselves than acinar cells.
n Neighborhood analysis of CD8+ T cells and islet cells using HistoCAT cannot
differentiate between control and T1D. The distribution and box-and-whisker plots
cts across control (n = 48), AAb+ (n = 49), recent T1D (n = 11), and prolonged T1D
(n = 35) donot showhigher aggregationof isletswithCD8+ T inAAb+ and recentT1D
compared to control and prolonged T1D (Kruskal–Wallis p =0.17). Cells in scatter
plots are colored by AnnoSpat-predicted cell types. Box-and-whisker plots: center
line, median; box limits, upper (75th) and lower (25th) percentiles; whiskers,
1.5 ⋅ interquartile range; points, outliers.
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(“Methods: Training extreme learningmachine classifier”). The trained
model is saved to label cells from other data sources, eliminating the
need for re-clustering or re-training whenever new data are available.

AnnoSpat data processing
To reduce the effect of outliers, AnnoSpatfirst calculatesDatamatrixD
by log transforming cell-by-protein channel intensity (expression)
after the addition of pseudo-count 1. Specifically, dc×p = ec×p + 1, where
ec×p is the expression of protein p channel in cell c. Then, AnnoSpat
unit normalizes the log-transformed intensity matrix to scale each cell
vector to unit length. This projects each cell to a unit sphere in the
proteomic space. We denote the normalized proteomic matrix by X
obtained from scaling each row di of D as follows:

xi =
di

jjdjj , where jjdijj=
XP
j = 1

jjdj jj2
 !1=2

, ð1Þ

where ∣∣di∣∣denotes the l2 or Euclidean normof i th cell. P is the number
of measured proteins.

This step accounts for variable expression across proteins and
correlates the Euclidean distances (used for clustering) between cell
vectors and cosine distances in the proteomic space. Compared to
Euclidean distance, the angle between the cell vectors in proteomic
space better reflects cell–cell similarities/differences38.

Generation of initial cluster centroids
As opposed to traditional K-means where the initial cluster centroids
are randomly selected, AnnoSpat implements constrained K-means
that follow a more cell-type aware approach37. Initial cluster centroids
are obtained from representatives of each cluster (cell type here).
AnnoSpat calculates initial cluster centroids by taking the mean of
representative cells Rk for each cluster k = 1, …, K + 1. The number of
clusters is one more than the number of cell types K; an extra
(Unknown) cluster accounts for cell types not included in the Marker
Protein file.

AnnoSpat obtains the cluster representations R1, R2, …, RK by:
1. Obtaining positive and negative markers M+ and M− from the

Marker Protein file.
2. Calculating the score Mc for cth cell type by multiplying the pro-

tein intensities corresponding to positive markers and the com-
pliment of protein intensities corresponding to negative markers
as follows:

Mc =
Y
i2M +

Xi �
Y
j2M�

ðmaxðXjÞ � XjÞ, c= 1, . . . ,K : ð2Þ

3. Selecting cell representatives R1, R2,…, RK of cell types c = 1,…, K
in the Marker Protein file such that they have

Mc >Mc,high and Mc <Mc,max, where ð3Þ

Mc,high = percentile (Mc, qhigh) and Mc,max = percentile (Mc, qmax).
The value qhigh is adaptive and can be optionally chosen based on

prior knowledge of the number of cells from the cell type present in
the data (defaulting to the 95th percentile). Here, qhigh was set to
99 ≤ qhigh ≤ 99.9 and 99.5 ≤ qhigh ≤ 99.99 for various cell types in the
analysis of pancreas IMC and CODEX data, respectively. Mc,high is the
score cut-off to pick cluster representative cells as the ones having a
very high score Mc corresponding to the cth cell type. The threshold
qmax is set to 100 or a value slightly less than that to make sure that
assay artifacts are not included in the initial cluster centroid calcula-
tion. Here, qmax was set to 99.999 and 100 for the analysis of pancreas
IMC and CODEX data, respectively.

M+ and M− cannot be defined for the Unknown cluster, since
multiple cell types could be captured in this cluster. Hence, after cal-
culation of Mc for cell types c = 1, …, K with specified markers, the
intersection of all cells with lowMc value for all cell types c = 1,…, K are
identified. The intuition here is that cell types whose markers are not
specified in the Marker Protein file (i.e., Unknown cells) should not be
representatives of any cell type c = 1,…, K, and thusMc score should be
low for the Unknown cells with respect to all the cell types c = 1, …, K
with known markers.

In other words:
1. For each cell type c = 1, …, K,
(a) Calculate Mc (using M+ and M− of cell types defined in the

Marker Protein file)
(b) Obtain the cells with Mc <Mc,low where

Mc,low =percentileðMc,qlowÞ: ð4Þ

The threshold qlow defines the cut-off to choose cells with expression
<Mc,low in cell types c.

This will pick cells Uc that belong to cell type c with a very low
probability.
2. The Unknown class is identified by taking the intersection of U1,

…, UK sets. These cells are least likely to represent any of the cell
types defined in the Marker Protein file.

AnnoSpat performs the above procedure to assign cluster repre-
sentative cells in decreasing order of cell-type abundance (repre-
sentative of more abundant cell types are selected first). Cell-type
abundance acts as a proxy for the expected number of cells for each
cell type and is obtained by summing cell intensities of the scale-
normalized canonical protein markers.

Once the cell representatives R1, R2, …, RK+1 have been assigned,
AnnoSpat computes initial centroids xk for cluster k = 1, …, K + 1 by
taking the average across the representative cells Rk as follows:

xkj =
1

jRk j
X
xi2Rk

xij , for j = 1, . . . ,P ð5Þ

where xij represents the intensity of the jth protein in ith cell.

Cell labeling with semi-supervised clustering
AnnoSpat takes the cell representatives Rk’s and initial cluster cen-
troids xk ’s and iteratively runs a constrained K-means algorithmon the
cells from 50% of the ROIs included in the training set as shown in
Algorithm 1. Li denotes the cluster label assigned to the ith cell and Ck

denotes the set of cells in cluster k. The assigned cell labels are the
predicted cell types of training data for the AnnoSpat’s Annotator.

Algorithm 1. Constrained K-means
Initialize K, n
Input: normalized data X, initial centroids {x1, . . . ,xK + 1} and cell

representatives {R1, R2, …, RK+1}
For iter = 1, 2, …, n

Cluster assignment:
When xi∈Rk, Li = k
Otherwise, Li = argmink jjxi � xk jj2

Centroid computation:
xk =

1
jCk j

P
xi2Ck

xi

End for
Return: Labels L, centroids x

Training extreme learning machine classifier
AnnoSpat uses the cell-type labels L predicted by its semi-supervised
clustering algorithm as training labels YTR to then learn an ELM
classifier12. The classifier predicts the label of remaining cells in new

Article https://doi.org/10.1038/s41467-024-47334-0

Nature Communications |         (2024) 15:3744 15



ROIs not included in the training data. We implemented ELM in
AnnoSpat because it is a single-layer feed-forward neural network
classifier anddoes not need tobe iteratively tunedviabackpropagation.
This would enable AnnoSpat to learn accurate cell-type prediction
models markedly faster than gradient-based learning techniques.

Comparative analysis during the design of AnnoSpat confirmed
earlier studies12 and showed that, while ELM and SVM provide com-
parable accuracy in annotating ~1,170,000 cells in our IMC dataset
(Fig. 2c, h), ELM was ~2 times faster than SVM (73.9 versus 159.9 s).
These characteristics make it a more suitable classifier for near-online
annotation of atlas-scale datasets, including HPAP.

AnnoSpat’s ELM is implemented as follows:
1. Assign input layer weights WI and bias bI randomly from normal

distributions:

WI ∼Nð0,IÞ ð6Þ

bI ∼ ½Nð0,1Þ� ð7Þ

2. Compute hidden layer output H:

H =ϕðWI � XTR +bI Þ ð8Þ

Here, ϕ denotes the activation function used at the hidden layer, and
XTR is the normalized protein intensity of the training set.
3. Compute the output layer weights WO

WO =Hy � YTR ð9Þ

HereH† is theMoore–Penrose inverse of hidden layer outputmatrixH.
The training labels YTR are transformed into a one-hot encoded format
to avoid ordinal relationship interpretability between cell types by
the model.

Once the output weights are learned, the types (labels) of new
cellsYTS canbepredicted fromtheir normalizedprotein expressionXTS
by the learned weights in ELM:

YTS =ϕðWI � XTS + bI Þ �WO ð10Þ

To demonstrate AnnoSpat’s generalizability, we additionally used the
trained AnnoSpat model to annotate cells in two additional ROIs from
HPAP organ donors that were not part of the original 143 slides of 19
donors and examined the accuracy of cell-type annotation.

Cell-type prediction with unsupervised clustering algorithms
To predict cell types with unsupervised clustering, we used K-means,
Seurat16, FlowSOM18, and PhenoGraph17 clustering followed by differ-
ential protein expression analysis between cells in each cluster versus
cells in all other clusters.

K-means clustering was implemented using scikit-learn
library with default parameters. Similar to AnnoSpat, the number of
clusters for K-means clustering n_clusters was set to 17.

CreateSeuratObject function from Seurat R package was used
to process the protein expression table. NormalizeData and Sca-
leData functions were then used to for data normalized and scaled.
RunPCA functionwas used toperformprincipal component analysis on
the normalized counts. Given the number of cell types that could be
detected by the HPAP IMC panel, we used FindNeighbors function
with dims= 1:30, and FindClusters functionwith resolution equal to
0.3 (T1D), 0.2 (Control), and 0.2 (Combined), which resulted in 17, 19,
and 22 clusters in T1D, Control, and Combined cohorts, respectively.

To cluster cells with FlowSOM, first, read.flowSet function from
openCyto R package was used to convert CSV files of raw protein

expression values to FCS objects (note: this function is not exposed in
the package’s API). Then, FlowSOM, BuildSOM, and BuiltMST func-
tions from FlowSOM R package were used to construct a self-
organizing map (SOM) and minimum spanning tree (MST). Given the
number of cell types that couldbe detected by theHPAP IMCpanel, we
finally used metaClustering_consensus function with k equal to 17
to perform meta-clustering on MST.

Phenograph expects normalized expression values. Hence, Nor-
malizeData function from Seurat R package was used to normalize
raw expression values. pandas.read_csv method from Pandas data-
frame was used to input normalized protein expression CSV files.
Given thenumber of cell types that could bedetectedby theHPAP IMC
panel, we used phenograph.cluster function with k equal to 1000
(T1D), 500 (Control), and 1000 (Combined), which resulted in 21, 23,
and 37 clusters in T1D, Control, and Combined cohorts, respectively.

The out of each clustering method was used for a series of one-
versus-all-others differential protein expression analyses. We used
Mann–Whitney U test to determine the significance of differences in
protein expression levels for cells in each cluster versus cells in all
other clusters. The log2 fold change (FC) of each cluster’s mean
expression of a given protein was used as a further measure of the
difference between cell clusters. The final measure of significance for
each cluster was calculated as �log10ðp� valueÞ× log2FC. To assign
cell-type labels, the most deferentially expressed protein for each
cluster was queried against the Marker Protein file in Supplementary
Data 3 for cell-type assignment. For all clustering algorithms, the order
of cell-type label assignment was the same as the order of columns in
Supplementary Data 3.

Comparison of algorithm-annotated and expert-annotated
cell types
Endocrine composition of expert-annotated cell types in different
sections ofpancreata fromfiveHPAPdonorswasobtained from ref. 19.
Wang et al. borrowed approaches commonly used in flow cytometry
data analysis to manually annotate the cells in each individual ROI19. In
summary, the cells were annotated by a combination of manual gating
and thresholding based on Gaussianmixturemodels thatwere used to
separately identify positive and negative cutoffs for each individual
protein channel in each ROI, followed by so-called Boolean rules.
These rules start assigning the cells to alpha, beta, delta, PP, and
epsilon, followed by other cell types with available markers in HPAP
IMC assay, in that order, based on “Positive” and “Exclusion” markers
as listed in ref. 19. For each (donor, section), we used minimum KL
divergence to determine distance between the Wang et al. reported
endocrine cell-type distribution and AnnoSpat-, SSC-, Astir-, SCINA-, or
AUCell-annotated endocrine cell-type distribution. Two endocrine
cell-type distributions were called discordant if their minimum KL
divergence was >0.4.

Data processing for visualization
Data for heatmaps in Fig. 2, as well as Supplementary Figs. 2c–g, 3,
4a–c, 5a, b, 6a–e, and 7 have been normalized to penalize the
expression of non-specific proteins using an analog variant of TF-IDF
normalization after min–max scaling of protein expression. The spe-
cificity of a protein can be quantified as an inverse function of the
number of cell types in which it is expressed (its abundance across
various cell types). Hence, the normalized value of protein pi is
obtained by multiplying each value by the logarithm of ratio of total
protein abundance ptotal in the data and the abundance of that protein
across all cell types psum. If p is the expression of protein pi in cell cj,
then the normalized value is calculated by:

pTF,IDF
i,j =p � log ptotal

psum

� �
: ð11Þ
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In min–max normalization, min and max values are the 0.01th and
99.99th percentile expressions, respectively.

AnnoSpat’s Spatial Pattern Finder: quantification of cell proxi-
mity pattern
In order to quantify the relationships between cell types in the T1D
pancreas, we interpreted the cell locations and cell-type labels as a
marked point pattern. A point pattern provides the locations of
observations; here, cell locations are represented as Cartesian coor-
dinates. Each cell can have additional features known as marks; here,
each cell’s mark is the predicted cell type. By realizing the marked
point pattern as a randommarked point process, we can quantify cell-
type spatial relationships. A point process is a random set of points,
where the number of points and their locations are both random.
Using point process theory, we can understand the relationship
between cell types not as a single index, but rather as many values
resulting in the formulation of a given function of distance r.

The standardmodel of a point process≩ assumes that the process
extends all space, but the observed region is bounded by a windowW.
Then we can define the data as an unordered set39

ψ=ψ1, . . . ,ψn,ψi 2 W ,n>0, ð12Þ

the point pattern of Ψ.
Now we can define our ROI within the context of marks. Consider

themarkedpoint pattern as anunordered set of cells observedwithin a
window W with marks in M,

γ = ðψ1,m1Þ, . . . ,ðψn,mnÞ,ψi 2 W ,mi 2 M, ð13Þ

whereψi is the location andmi is themark of cell i, respectively39.Marks
may be continuous real numbers, such as cell size, or discrete, such as
cell type. Our objective is to quantify the dependence between the
marks of two cells of distance r apart in the marked point process Γ.
This dependence, known as the mark correlation function kf(r), is
informally defined as39,40

kf ðrÞ=
Ei,j½f ðMi,MjÞ�
E½f ðM,M 0Þ� , ð14Þ

where Mi, Mj are marks of two cells separated by distance r, M,M 0 are
independent realizations of the marginal distribution of marks, and E
is the intensity of a point process, or the average density of points (the
expected number of points per unit area), and where Ei,j is the con-
ditional expectation that there exist cells at locations i and j separated
by distance r. While f is any function that returns a non-negative real
value, we commonly use f(m1, m2) =m1m2 for continuous marks and
f ðm1,m2Þ=1ðm1,m2Þ= 1 where m1 =m2 and = 0 for everything else for
discrete (categorical) marks39. Then, kf(r) = 1 suggests a lack of
correlation such that under random mark labeling, kf(r) ≡ 1. The
interpretation of greater than or less than 1 would be determined by
the chosen function f, but throughout this study, we interpret >1 as
correlated and <1 as anti-correlated. This mark correlation function,
however, assumes that cell type would be a single mark and does not
specify the relationship between, for instance, CD8+ T cells and
islet cells.

To understand the relationship between any two cell types, we
expand the mark correlation function kf (r) to define the mark cross-
correlation function, kmm(r). Here, instead of mi∈M as a single mark,
wedefinemia 2 M as the value ofmarka in cell i from the rowvector of
marks mi attached to cell i. Instead of a single mark for cell type, we
convert the mark into a mark row vector mi for cell i containing c
entries, where each index 0 < j ≤ c represents an indicator value for cell
type a. In short, mia = 1 indicates that the cell i is of cell type a.

Using this expanded mark vector, we can define the mark cross-
correlation function39 as

kmmðrÞ=
Ei,j ½f ðMiaMjbÞ�
E½f ðMa,MbÞ�

, ð15Þ

where Mia and Mjb are the marks a and b attached to cells i and j,
respectively, while Ma and Mb are independent random values drawn
from all cells at mark indices a and b, respectively. Here, f is defined as
with the mark correlation function. Using categorical marks for cell
types, we then interpret kmm (r) > 1 as correlated, <1 as anti-correlated,
and = 1 as random. We carried out all mark cross-correlation analyses
using the spatstat R package39.

The output of eachmark cross-correlation function on an ROI is a
series of correlation values as a function of distance r. To compare
across several ROIs, we summarized each curve by either the r at the
maximum kmm (r) (maxr kmmðrÞ) (Fig. 7) or the log-transformed ratio of
themaximum kmm (r) to the r at themaximum kmm (r) (log maxr kmmðrÞ

argmaxr kmmðrÞ)
(Supplementary Fig. 11). The former value decreases with increasing
aggregation (the highest correlation is with cells with smaller r) while
the latter increases with increasing aggregation. To compare dis-
tributions, we used Kruskal–Wallis one-way analysis of variance for
multiple hypotheses followed by pairwise Mann–Whitney U tests.

Statistics and reproducibility
Statistical tests used in data analysis are listed in figure legends and/or
relevant sections in “Methods”. No statistical method was used to
predetermine the sample size. No data were excluded from the ana-
lyses. The experiments were not randomized.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
No new data have been generated in this study. The IMC and CODEX
datasets analyzed in this study have been deposited in PANC-DB
https://hpap.pmacs.upenn.edu/, the data portal of Human Pancreas
Analysis Program (HPAP) consortium (RRID: SCR_016202) developed
by the Faryabi Lab, and is publicly accessible without any restriction.
Relevant clinical data are available both through PANC-DB (https://
hpap.pmacs.upenn.edu/) and Supplementary Data 2. Processed IMC
data are provided as a Source Data file.

Code availability
AnnoSpat is available at https://github.com/faryabiLab/AnnoSpat.
Spatial Pattern Finder is also available as part of the TooManyCells
suite located at https://github.com/faryabib/too-many-cells.
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