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Early detection of emerging viral variants
through analysis of community structure of
coordinated substitution networks

Fatemeh Mohebbi 1,2, Alex Zelikovsky1, Serghei Mangul 2,3,
Gerardo Chowell4 & Pavel Skums 1,5

The emergence of viral variants with altered phenotypes is a public health
challenge underscoring the need for advanced evolutionary forecasting
methods. Given extensive epistatic interactions within viral genomes and
known viral evolutionary history, efficient genomic surveillance necessitates
early detection of emerging viral haplotypes rather than commonly targeted
single mutations. Haplotype inference, however, is a significantly more chal-
lenging problem precluding the use of traditional approaches. Here, using
SARS-CoV-2 evolutionary dynamics as a case study, we show that emerging
haplotypeswith altered transmissibility can be linked to dense communities in
coordinated substitution networks, which become discernible significantly
earlier than the haplotypes becomeprevalent. From these insights, we develop
a computational framework for inference of viral variants and validate it by
successful early detection of known SARS-CoV-2 strains. Our methodology
offers greater scalability than phylogenetic lineage tracing and can be applied
to any rapidly evolving pathogen with adequate genomic surveillance data.

Understanding the predictability of evolution and the relative impact
of random and deterministic factors in evolutionary processes is a
fundamental problem in life sciences. This problem gains an applied
significance in the context of viruses and other pathogens, as even a
modest degree of predictability of pathogen evolution can enhance
our ability to forecast and, therein, control the spread of infectious
diseases1–4.

The most evident example of the importance of this problem is
the case of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). The successive waves of COVID-19 are driven by the emerging
genomic variants of interest (VOIs) or variants of concern (VOCs) that
have been associated with altered phenotypic features, including
transmissibility5,6, antibody resistance, and immune escape7–9. Each
genomic variant is defined as a phylogenetic lineage characterizedby a
specific combination of single amino acid variants (SAVs) and/or indels

acquired over the course of SARS-CoV-2 evolution. For instance,
lineages B.1.1.7 (alpha variant by WHO classification) and B.1.617.2
(delta variant) are defined by distinct families of 7 SAVs in the S gene
decoding the spike protein, many of which have been linked to
enhanced fitness compared to preceding SARS-CoV-2 lineages6,10–13.

Genomic epidemiology has been crucial for monitoring the
emergence and spread of SARS-CoV-2 variants since the start of the
COVID-19 pandemic. SARS-CoV-2 genomes sampled around the globe
and produced using high-throughput sequencing technologies have
been analyzed by a plethora of phylogenetic, phylodynamic, and epi-
demiological models14 to detect spreading lineages and measure their
reproductive numbers and other epidemiological characteristics.
However, these methods, powerful and valuable as they are, are pri-
marily applied retrospectively. In other words, they allow to detect
growing lineages and measure their fitness only when these lineages

Received: 28 September 2023

Accepted: 20 March 2024

Check for updates

1Department of Computer Science, Georgia State University, Atlanta, GA, USA. 2Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of
Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA. 3Department of Quantitative and Computational Biology,
USC Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA. 4School of Public Health, Georgia State
University, Atlanta, GA, USA. 5School of Computing, College of Engineering, University of Connecticut, Storrs, CT, USA. e-mail: pavel.skums@uconn.edu

Nature Communications |         (2024) 15:2838 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-1395-1051
http://orcid.org/0000-0003-1395-1051
http://orcid.org/0000-0003-1395-1051
http://orcid.org/0000-0003-1395-1051
http://orcid.org/0000-0003-1395-1051
http://orcid.org/0000-0003-4770-3443
http://orcid.org/0000-0003-4770-3443
http://orcid.org/0000-0003-4770-3443
http://orcid.org/0000-0003-4770-3443
http://orcid.org/0000-0003-4770-3443
http://orcid.org/0000-0003-4007-5624
http://orcid.org/0000-0003-4007-5624
http://orcid.org/0000-0003-4007-5624
http://orcid.org/0000-0003-4007-5624
http://orcid.org/0000-0003-4007-5624
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47304-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47304-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47304-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47304-6&domain=pdf
mailto:pavel.skums@uconn.edu


are already sufficiently prevalent. Moreover, existing phylogenetic and
phylodynamic approaches are computationally expensive. They must
use subsampling, simplifying assumptions, and heuristic algorithms
without performance guarantees to handle the vast amounts of avail-
able genomic data (e.g., more than 14 million sequences in the GISAID
database15 at the time of submission of this paper). These considera-
tions can impact their power, accuracy, and reliability.

In contrast to retroactive detection, the task of early detection or
forecasting involves the proactive identification of SARS-CoV-2 geno-
mic variants that have the potential to become prevalent in the future.
This problem is more challenging as it is intertwined with the funda-
mental question of whether viral evolution can be predicted or whe-
ther one can replay the tapeof life for theglobal SARS-CoV-2evolution,
using the metaphor of ref. 16. For viruses, the possibility of evolu-
tionary predictions remains a topic of debate17. Nevertheless, studies
attempting to address the SARS-CoV-2 evolutionary forecasting pro-
blem have emerged3,4,18–21. Most of these studies have focused on the
emergence of individualmutations, with somemethods assuming that
mutations accumulate independently or that the effects of their
interactions can be averaged out over their genomic backgrounds3,21.

Meanwhile, a number of studies have highlighted the significance
of epistasis, i.e., the non-additive phenotypic effects of combinations
of mutations, for SARS-CoV-24,22–27. Using various methodologies,
including phylogenetic analysis23,26, direct coupling analysis4, and
in vitro bindingmeasurements24,27, these studies suggest the existence
of an epistatic network that includes many genomic sites in the
receptor-binding domain of the spike protein that is associated with
increased binding affinity to angiotensin-converting enzyme 2 (ACE2)
receptor9,28,29. Epistasis is closely linked to the complex structures of
viral fitness landscapes4,22,27,30, which determine the evolutionary tra-
jectories of SARS-CoV-2 lineages and contribute to the high non-
linearity of its evolution, making forecasting challenging. The emer-
gence of new variants of concern, such as the lineage B.1.1.529 (Omi-
cron variant), is an example of such nonlinear phenomena27. Its rapid
emergence does not align with the gradual mutation accumulation
hypothesis and is still a topic of debate, with hypothesized origins
including immune-suppressed hosts and reverse zoonosis27,31–33.

Given the role of epistasis, it can be argued that selection often
acts on combinations of mutations, or haplotypes, rather than on
individual mutations. Therefore, effective forecasting should focus on
viral haplotypes instead of solely on SAVs. However, predicting hap-
lotypes is a significantly more challenging problem than predicting
individual SAVs—in particular, simply due to the exponential increase
in the number of possible haplotypes with genome length. This com-
plexity precludes the use of traditional approaches utilized in most
mutation-based studies, where a feature vector of epidemiological,
evolutionary, and/or physicochemical parameters is calculated for
each SAV, and a statistical or machine learning model is trained to
predict SAV phenotypic effects. As a result, even studies that account
for epistatic effects usually focus on assessing the phenotypic effects
of individual mutations4.

This paper focuses on predicting haplotypes of SARS-CoV-2 using
a novel approach based on analyzing dense communities of the
coordinated substitution networks of the spike protein, which reflects
potential positive epistatic interactions25,26,34. We demonstrate that
emerging haplotypes with altered phenotypes can be accurately pre-
dicted by leveraging these communities and introduce HELEN (Her-
alding Emerging Lineages in Epistatic Networks)—a variant
reconstruction framework that integrates graph theory, statistical
inference, and population genetics methods. HELEN was validated by
accurately identifying knownSARS-CoV-2VOCsandVOIsup tomonths
before they reached high prevalences and were designated by the
WHO. Importantly, themajority of predictions were derived from data
collected independently from different countries, further supporting
their credibility. These results demonstrate that network density is a

more precise, sensitive, and scalable measure than lineage frequency,
allowing for reliable early detection or prediction of potential variants
of concern before they become prevalent. Furthermore, the compu-
tational complexity of our method depends on genome length rather
than the number of sequences, making it significantly faster than tra-
ditional phylogenetic methods for VOC detection and enabling it to
handle millions of currently available SARS-CoV-2 genomes.

Our approach to the early detection of viral haplotypes utilizes a
certainmethodological similaritywith the problemof inferenceof rare
viral haplotypes from noisy sequencing data, particularly when pro-
duced by long-read sequencing technologies like Oxford Nanopore
and PacBio. This problem has gained significant attention in recent
years, with several new tools appearing each year35–38. Some of these
tools accurately infer rare haplotypes with frequencies comparable to
the sequencing noise level. In particular, several tools developed by
the authors of this paper achieve such results by identifying and
clustering statistically linked groups of SNV alleles36,39,40. Although this
approach is not directly transferable to haplotype prediction, it pro-
vided a foundation for this study.

Results
Data
Genomic data and associated metadata analyzed in this study were
obtained from GISAID15. This dataset includes 3,284,740 individual
genome sequences available on GISAID up to April 26, 2022. We
directly downloaded all available sequences and associated metadata
fromGISAID on April 26, 2022, accessible via https://doi.org/10.55876/
gis8.230407vq. Our focus was on analyzing amino acid genomic var-
iants of the SARS-CoV-2 spike protein, which is used for identifying
variants of concern (VOC) Alpha (B.1.1.7), Beta (B.1.351), Gamma
(B.1.1.28.1), Delta (B.1.617.2), Omicron (B.1.1.529.1) and variants of
interest (VOI) Lambda (C.37), Mu (B.1.621), Theta (P.3), Eta (B.1.525),
Kappa (B.1.617.1) by standard genomic surveillance tools adopted by
WHO41. We extracted the spike protein alignment from the whole
genome multiple sequence alignment, replacing ambiguous char-
acters with gaps, and focused solely on SAVs while ignoring long
indels. In order to better validate the predictive power of our
approach, especially with respect to the Omicron lineage, we analyzed
only sequences sampled before December 31, 2021, ~1 month after the
designation of Omicron as a Variant of Concern by WHO. For defining
VOCs and VOIs, we used the notations and lists of SAVs established by
WHO42: a variant defined by SAVs at k fixed genomic positions was
associated with a k-haplotype with minor alleles (with respect to the
standard Wuhan-Hu-1 (NC_045512.2) reference) at that positions. Var-
iants epsilon (B.1.427), iota (B.1.526) and zeta (P.2), defined by 3–4 SAV,
were excluded due to their short lengths.

Some analyzed sequences were labeled as under investigation by
GISAID. In particular, these include someVOC/VOI sequences sampled
earlier than the initial cases of these strains officially documented by
WHO. In addition, we discovered some early-sampled sequences not
marked as under investigation by GISAID. Consequently, our analysis
was conducted on three distinct datasets:
(i) Complete set: Incorporates all sequences.
(ii) First truncated set: Excludes sequences labeled as under

investigation.
(iii) Second truncated set: Excludes both sequences flagged as under

investigation andearly-sampled sequences thatwere notflagged.

The detection of linked pairs of SAVs and dense communities in
coordinated substitution networks is affected by the number of
sequences. Thus we focused on data from countries with the largest
sample sizes, while maintaining geographic diversity. To do this, we
selected two countries per continent (excluding Oceania) with the
largest numbers of spike amino acid sequences sampled over the
considered timeperiod: the United KingdomandGermany for Europe,
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USA andCanada for North America, Brazil and Peru for South America,
South Africa and Kenya for Africa, and Japan and India for Asia. In
addition, we included Australia to represent Oceania and 5 extra
countries with the largest samples, namely France, Denmark, Sweden,
Spain, and Italy. Sequences from the selected countries were identified
using GISAID metadata and analyzed separately. Thus, a total of 656
test cases (16 countries × 41 time points) have been considered. Figure
1a shows the analyzed sample sizes, which were not distributed uni-
formly, with the USA and United Kingdom accounting for approxi-
mately 66% of all sequences.

The structure of S-gene-coordinated substitution networks
We utilized the method outlined in “Inference of coordinated sub-
stitutionnetworks” to construct coordinated substitutionnetworks for
16 countries at 41 uniformly distributed time points between May 1,
2020, and December 31, 2021 (with a 14-day difference between con-
secutive points). Initially, we evaluated the basic properties of these
networks. We found that the majority of networks contained a single
“giant" component (i.e., the connected component containing a sig-
nificant fraction of graph vertices) that could include up to 75% of the
vertices. Other connected components were significantly smaller
(P < 10−100, Kolmogorov–Smirnov test) andmade up an average of 0.3%
of the network size (Fig. 1b). Most of these smaller components con-
sisted of isolated vertices.

Coordinated substitution networks of the S-gene tend to gradu-
ally evolve toward becoming scale-free, with a right-skewed power-law
degree distribution. This type of network structure is often a result of a
preferential attachment process, where a new vertex joining the net-
workhas a higher probability of connecting to an existing vertexwith a
higher degree. Indeed, to determine the best distribution fit for the

observed degree distribution of the networks, we fitted negative
binomial, beta negative binomial, Poisson, Yule–Simon, Generalized
Pareto, and Pareto distributions, and compared their goodness of fit
using the Bayesian Information Criteria. We found that the
Yule–Simon, generalized Pareto and Pareto distributions, all describ-
ing a power-law, provided the best fit for ~55%, ~20%, and ~12% of
networks, respectively. In addition, in all countries, the Yule–Simon
distribution eventually became the best fit for the latest networks, i.e.,
for all networks sampled after a specific date t * (with the median date
being December 27, 2020).

Finally, SAV links found by our approach generally agree with the
links reported in other studies. In particular, the test (3) applied to the
USA dataset recognized 82% of pairs listed in ref. 23 and 79% of non-
trivial pairs from ref. 26 (without considering clusters of consecutive
SAVs also reported in ref. 26). It should be noted that prior studies
identified much fewer linked pairs of SAVs than HELEN.

The aforementioned observations indicate that the networks
inferred in this study have a sufficiently rich community structure43

that can be analyzed and utilized to evaluate and forecast the SARS-
CoV-2 evolutionary dynamics.

Dense communities as indicators of variant emergence
Weanalyzed communitieswithin coordinated substitutionnetworks in
search for evidence in support of the following hypotheses:

(H1) known VOCs/VOIs emerge as dense communities in coordi-
nated substitution networks;
(H2) conversely, dense communities within coordinated substitu-
tion networks correspond to haplotypes with altered phenotypes;
(H3) such communities can be detected before the corresponding
lineages achieve significant frequencies.

Fig. 1 | Data and coordinated substitution networks. a Numbers of analyzed
spike amino acid sequences per country. b Relative sizes of the largest and second
largest connected components of coordinated substitution networks over time.
Solid and dashed lines depict median and maximum/minimum values over 16
countries at each time point, respectively. c An example of a giant component of a

coordinated substitution network obtained using the complete dataset for the USA
on January 11, 2021. The vertices highlighted in green correspond to SAVs of the
Omicron variant (lineage B.1.1.529.1). Most of these SAVs form a dense community,
visualizing the key idea of the study.
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The theoretical framework for hypotheses (H1)–(H3) is estab-
lished in “Model-based rationale of the proposed approach”. However,
the primary objective of this research is to verify these hypotheses on
using empirical data. To accomplish this, we employed a dual-faceted
approach. First, we performed a retrospective statistical analysis of
densities of known VOCs and VOIs in coordinated substitution net-
works. Second, we evaluated the ability to accurately infer haplotypes
with altered transmissibilities, both known and unknown, from col-
lections of candidate dense communities. Our assessment covered
several factors:

• Precision and recall of VOC/VOI detection, both on an individual
country basis and jointly.

• Promptness of detection measured using so-called forecasting
depth. This quantitative measure is defined as the time gap
between the first variant call and the occurrence of a specific
epidemiological benchmark event b. In this study, we used two
benchmark events: (a) the variant’s designation by WHO (b = des)
and (b) the moment its prevalence reaches 1% or, if that does not
occur, when the prevalence peaks (b = prev, the similar bench-
mark was used in ref. 3). The value of FDb(h) can be positive or
negative, thus indicating early or late prediction, respectively.

• Cumulative frequencies and prevalences of viral variant at earliest
times of detection.

It is worth noting that the presence of a viral variant as a dense
community does not necessarily indicate its circulation at that time. In
the context of this study’smodel, this fact shouldbe rather interpreted
as an indication that the corresponding SAVs are linked densely
enough to suggest the variant’s viability. In particular, detecting the
variant as a dense community in a particular country at an early time
point does not necessarily mean that the variant originated there. As
demonstrated below, while there are instanceswhere this is true,more
often the variants are detected earlier in countries with larger sample
sizes that provide greater statistical power for inferring coordinated
substitutions.

VOCs/VOIs as communities in coordinated substitution
networks
To validate hypotheses (H1) and (H3), we estimated density-based P
values of known VOCs and VOIs for each country and each time point
using the algorithm described in “Estimation of density-based P values
of viral haplotypes”. The algorithm produces uniform samples of
connected communities of each epistatic network, and compares their
densities with those of the VOCs/VOIs to calculate P values. As a result,
for each country and each VOC/VOI we obtained a time series of P
values. The series were adjusted by calculating FDR and applying the
Benjamini–Hochberg procedure44. The resulting time series of adjus-
ted P values for the complete and truncated datasets are illustrated in
Fig. 2a and Supplementary Figs. 2–31.

Our analysis of time series data showed that a significant pro-
portion of cases exhibited variant expansion either succeeding or
concurrent with a decrease in density-based P values. To quantify this
relationship, we employed sample cross-correlation45 to measure the
connection between P values and variant prevalences throughout the
growth period of the variant. We considered a range of positive and
negative lags for the prevalence series in relation to P value series and
identified the optimal lag l * with the maximum absolute cross-
correlation.

In what follows, we describe the results for the first truncated
dataset; the results for the complete and second truncateddatasets are
in general comparable and can be found in the Supplementary
Tables 1 and 2. In 74% of all test cases, we detected a non-negative
optimal lag and a medium-to-strong statistically significant negative
correlation between P values and lagged prevalences (mean ρ: −0.74,

95% CI for ρ: [−0.97, −0.36]; mean l *: 20.5, 95% CI for l *: [0, 168] (in
days), Supplementary Fig. 1). Focusing solely on VOCs, we observed
this effect in 84% of cases (mean ρ: −0.72, 95% CI for ρ: [−0.95, −0.36];
mean l *: 30.9, 95% CI for l *: [0, 168] (in days)).

We defined a variant as significantly dense when its adjusted P
value falls below 0.05 and at least 80% of its SAVs belong to the net-
work’s giant component (the 80% threshold was selected to allow for a
single AA mismatch for shortest VOCs/VOIs). For the first truncated
dataset, 64%of VOCs/VOIs, analyzed separately for different countries,
became significantly dense at some moment of time. This percentage
increased to 93% when only considering VOCs. Moreover, the variants
were identified as significantly dense at low cumulative frequencies
(median value μ = 4 ⋅ 10−4, Fig. 2d) and low prevalences
(μ = 8 ⋅ 10−4, Fig. 2e).

We assessed forecasting depths, FDprev and FDdes, with respect to
times when the variants reached significant density. In general, VOCs/
VOIs that achieved significant density tended to do so early. In parti-
cular, such variants were identified before reaching 1% prevalence in
57% of cases and before WHO designation times in 52% of cases. For
early calls (i.e., given that FDprev > 0 or FDdes > 0), the median forecast-
ing depths were 60 and 48 days, respectively. It should be noted that
forecasting depths for truncated datasets are lower, going from
median FDprev = 68 and FDprev = 66 for the complete dataset to median
FDprev = 60 and FDprev = 35 for the second truncated dataset (Supple-
mentary Table 3).

In genomic surveillance, decisions are typicallymadebasedon the
multitude of signals from several countries. In this context, it is
important to note that all variants of concern (VOCs) and variants of
interest (VOIs) have positive forecasting depths FDprev and FDdes in at
least one country (Fig. 2). For instance, the Omicron variant (lineage
B.1.1.529.1) becomes significantly dense before its designation time
and before reaching 1% prevalence in 9 countries, with forecasting
depths ranging from4 to 319days for FDdes and 15 to 345 days for FDprev.
The Delta variant (B.1.617.2) serves as another example of multiple
early predictions, as it becomes significantly dense before its desig-
nation in 13 countries (FDdes∈ [15, 300] and before reaching 1% pre-
valence—in 10 countries (FDprev∈ [30, 300]).

Sample size seems to significantly impact the haplotype detec-
tion. A positive correlation exists between the number of significantly
dense VOCs/VOIs and the number of sequences per country (ρ =0.59,
P =0.017). In particular, in the United States, which has the highest
number of sequences, all ten variants reached significant density.

Inference of viral variants as dense network communities
In our analysis, we used f-score as a metric for comparison of inferred
dense communities and known viral variants. In our context, it is
defined as follows:

Rt,i =
jCt \ Vij
jVij

, Pt,i =
jCt \ Vij
jCt j

, Ft,i = 2
Rt,i � Pt,i

Rt,i +Pt,i
, ð1Þ

where Rt,i, Pt,i, and Ft,i are the recall, precision and f-score for the SAVs
of the variant Vi found within the dense community Ct at the time t. In
what follows, we used a 80% f-score threshold to declare a variant
detection as a dense community of a coordinated substitution
network.

The most straightforward way to partially assess the validity of
hypotheses (H2) and (H3) is to retrieve the densest subnetworks of
coordinated substitution networks and compare them to known viral
variants. This task is made easier by the fact that finding the densest
subgraphs, based on our density definition, is a polynomially solvable
problem (see “Inference of viral haplotypes”). The examination of the
densest subnetworks indeed lends support to the hypotheses. In par-
ticular, in all three datasets every VOC emerged in at least one country
as a dense community before its official designation (Fig. 3 and
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Fig. 3 | Comparison of densest subnetworks from coordinated substitution
networks (aggregated over 16 countries) with VOCs, first truncated dataset.
Similar visuals for other datasets and individual countries can be found in Sup-
plementary Figs. 34–36. Each bar in the plot represents a specific VOC. For every

time point, the bars display the densest subgraphs of different countries that are
most similar to that VOC, with the height of the bars indicating the corresponding f-
scores. Dashed lines highlight the moments when the WHO designated the VOCs.

Fig. 2 | Density-based Benjamini–Hochberg-adjusted P values of VOCs/VOIs
(first truncated dataset). a P values (blue) and prevalences (red) of 8 VOCs and
VOIs in the USA coordinated substitution networks (refer to Supplementary
Figs. 2–31 for all VOCs/VOIs across all countries). Black, green, and magenta lines
represent the times of VOC designation, achieving 1% prevalence, and becoming
significantlydense, respectively.b, c Forecastingdepths (y axis) in relation to the 1%
prevalence time and WHO designation time for each analyzed VOC/VOI across

different countries. d, e Cumulative frequencies and prevalences for VOCs/VOIs
across various countries at the times when they become significantly dense (in a
logarithmic scale). Dashed lines at the bottom of the plot indicate that the variants
reached significant density at frequencies/prevalences of 0. For similar summaries
for the complete and second truncated datasets, see Supplementary
Figs. 32 and 33.
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Supplementary Figs. 37 and 38). All VOCs were also detected before
reaching the 1% prevalence, except for the Beta variant, that was
detected as soon as it reached the 1% mark. The detailed results of the
densest subnetwork analysis are reported in the Supplement.

However, amore advanced algorithmic approach is essential for a
comprehensive early detection framework, as well as for stronger
hypotheses confirmation. Indeed, generally, only a single densest
subnetwork can be constructed per time point, even though multiple
haplotypes with altered phenotypes might coexist at each specific
moment. As a result, for example, no VOI was detected as a densest
subnetwork. In addition,weobserved that, as coordinated substitution
networks become denser over time, the densest subnetworks expand
and may ultimately encompass several haplotypes, leading to
decreased variant inference accuracy.

To overcome these problems, we developed HELEN—a more
complex algorithm for inferring viral haplotypes as dense network
communities (“Inference of viral haplotypes”). Briefly, HELEN gen-
erates a pool of distinct dense subnetworks of varied sizes, partitions
them into clusters, and assembles a haplotype from each cluster using
graph-theoretical techniques. For every assembled haplotype, the
algorithm also returns its support defined as the percentage of candi-
date subnetworks corresponding to that haplotype.

Sensitivity outcomes for the proposed algorithm are illustrated in
Fig. 4, Supplementary Figs. 44 and 45 and Table 1. The numbers below
are summary statistics ranges for three analyzed datasets.

The recall of known VOCs/VOIs can be assessed in two ways:
• When countries are assessed individually, the summary statistics
can be reported as an aggregated recall R= 1

nm

Pn
i = 1

Pm
j = 1 χ i,j .

Here, n is the number of countries, m is the number of viral var-
iants, and χij is a binary indicator, set to 1 if variant j is identified in
country i. Under this approach, HELEN exhibits an aggregated
recall rate between 50 and 53% for three datasets. This is rea-
sonable, especially given the varying prevalence of VOIs across
countries. Moreover, focusing solely on VOCs, the aggregated
recall increases to 90–93%. These numbers represent a 2- to 2.5-
fold improvement over the densest subgraph-based method.

• From a genomic surveillance standpoint, it is also meaningful to
assess recall based on the combined signal from all countries.
Under this approach, HELEN detected 8–9 out of 10 examined
variants in at least one country, failing to detect the Theta variant
in all datasets and the Mu variant in the complete dataset. It is
worth mentioning that for the latter case, communities with as
high as 0.75 identity were detected several times, narrowly miss-
ing our pre-defined threshold. All VOCswere found in 12–16 of the
16 analyzed countries, whereas detected VOIs ranged from being
present in 1–6 countries.

A significant proportion of these detections occurred early. Spe-
cifically, 44–47% of the earliest VOCs/VOIs detections happened
before they reached a 1% prevalence and 40–45% were first detected
before their WHO designation. Upon first detection, the median var-
iant frequency lay between 3.37 ⋅ 10−4 and 3.99 ⋅ 10−4, while the median
variant prevalence ranged from 1.21 ⋅ 10−3 and 1.61 ⋅ 10−3. Again, these
values signify three- to fourfold improvement over the densest
subgraph-based method with respect to the frequency, and 11–15-fold
improvement with respect to the prevalence.

In terms of forecasting depths, 7–9 of the 10 variants exhibited
non-negative values of FDprev, and 8–9 out of 10 had non-negative
FDdes values in at least one country. However, the forecasting depths
vary among the three datasets. Themedian depth FDprev is 60 days for
the complete dataset, which is higher than the 45 days for the trun-
cated datasets. Likewise, FDdes is 67 days for the complete dataset,
decreasing to 56 for the first truncated dataset and 36 days for the
second. Such variation is expected given the definitions of the
datasets.

Regarding specific variants, all VOCs were detected early in all
datasets. The maximum forecasting depths differ noticeably among
datasets, but they are generally reasonably high. For the complete
dataset, the maximum FDprev values span from 120 days (for Beta) to
360 days (for Delta). In contrast, for the second truncated dataset,
these values range from 30 days (Omicron) to 285 days (Delta). Simi-
larly, themaximum FDdes values range from 111 days (Beta) to 360 days
(Delta) in the complete dataset, and from4days (Omicron) to 285 days
(Delta) in the second truncated dataset (see Fig. 4 and Supplementary
Figs. 44 and 45).

The VOIs, while generally showing more decent forecasting
depths, had early identifications for Lambda, Mu, Eta, and Kappa var-
iants. These were detected between 5 and 124 days before their WHO
designation and 0–75 days before they reached a 1% prevalence, as
seen in Fig. 4 and Supplementary Figs. 44 and 45. Notably, some
forecasting depths actually increased for the truncated datasets. Tak-
ing the Eta variant as an example, the maximum FDprev rose from
30 days (in the complete dataset) to 60 days (in the second truncated
dataset). Similarly, the maximum FDdes shifted from 5 days to 35 days.
This phenomenon, together with the detection of theMu variants only
in truncated datasets, can be associated with the opposite effect
observed for the VOCs: without the dense communities related to
VOCs at certain times, the algorithm could detect VOI-associated
communities earlier.

Similar to the case with significantly dense subgraphs, sample
sizes and geographic diversity influence variant detection. A medium-
to-strong positive correlation was observed between the number of
sequences per country and the number of variants with positive
forecasting depths (Table 1). Some of the earliest forecasts, although
not all, were made in the countries of origin for specific variants:
notably, Beta, Gamma, and Lambda variants were detected in South
Africa, Brazil, and Peru (Supplementary Figs. 41–43). On the other
hand, failure to detect Theta variant can be attributed to the fact that
80% of theta cases were observed in the Philippines, a country not
included in our analysis due to the smaller sample size. Haplotype size
does not significantly affect the accuracy of detection, as the correla-
tion between VOC/VOI numbers of SAVs and average f-values at
detection was not statistically significant (ρ = 0.17, P = 0.65).

To assess the precision of HELEN, it is important to consider that
the true positive network communities identified by the algorithm
might not only correspond to known VOCs/VOIs but also to variants
exhibiting increased transmissibility that failed to become VOC/VOI
due to factors such as genetic drift or containment through public
health measures before achieving a high global prevalence. Conse-
quently, we classify a haplotype v identified byHELENat a specific time
as spreading, if v is a known VOC/VOI or if the prevalence of variants
highly similar to v has increased or will increase by a factor of 10 in the
past or future. Note that a similar fold-based criterionwas employed to
define spreading mutations in ref. 3. A variant v0 is considered highly
similar to v if it contains at least 80% of v’s SAVs; this definition
encompasses variants genetically close to v and their descendants.

We measure precision using the matching similarity metric,
denoted asAI→S. Thismetric evaluates the agreement between inferred
haplotypes (I) and spreading haplotypes (S) by taking into account
haplotype support as a proxy for haplotype call confidence and mea-
suring the extent to which inferred haplotypes, weighted by their
support (σi: i∈ I), are matched by their nearest spreading haplotypes.
Formally, the matching similarity is the average f-score for inferred
haplotypes in relation to their closest spreading haplotypes:

AI!S =
X
i2I

σi max
s2S

f i,s ð2Þ

A similar measure, in the reverse form of a matching error, was used,
e.g., in ref. 36.
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Fig. 4 |Analysisof inferredhaplotypes. aSummaryof comparisonbetweenVOCs/
VOIs and inferred haplotypes (first truncated dataset, the results for other datasets
are depicted on Supplementary Figs. 44 and 45). Each bar plot depicts the com-
parison results for a particular VOC/VOI; at each time point, bars correspond to
inferred haplotypes from different countries closest to that VOC, and the bar
heights are equal to the respective f-scores. Colored dashed linesmark times when
the VOCs were designated byWHO. b, c Forecasting depths (y axis) with respect to
the 1% prevalence time and WHO designation time for each analyzed VOCs/VOIs

over different countries. d, e Cumulative frequencies and prevalences of VOCs/
VOIs over different countries atfirst variant call times (in logarithmic scale). Dashed
lines at the bottom of the plot signify that the corresponding variants were
detected at cumulative frequencies or prevalences 0. f Precision of haplotype
inference. Blue box plot depicts summary statistics of matching similarity of n = 16
countries over T = 21 time points. The bottom and top of each box are the 25th and
75th percentiles, whiskers represent minimum andmaximum values, white dot is a
median. Red plot depicts the dynamics of median matching similarity over time.
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The summary statistics for matching similarity at each time point
across different countries is summarized by Fig. 4 and Supplementary
Figs. 44 and 45. The general trend is the precision growth over time
during the first year of the pandemic followed by the relatively steady
state during the second year. For example, for the first truncated
dataset (Fig. 4f) HELEN initially achieved a medianmatching similarity
above 80% in August, 2020, and stayed above 85% from December
2020. Initially, therewas a considerable variation inmatching accuracy
among countries, but it noticeably declined by early 2021. These
observations can be associated with the density dynamics of coordi-
nated substitution networks in different countries, whereas the pre-
cision increases as more epistatically linked SAVs are identified.

Finally, we compared the accuracy results of HELEN with those
based on findings of ref. 26, that similarly identified clusters of con-
cordantly evolving spike protein sites in coordinated substitution
networks using an alternative approach. The comparison focused on
data aggregated up to September 7, 2021, tomatch the dataset used in
ref. 26. As above, to measure recall, we estimated VOC/VOI f-scores in
relation to the closest inferred clusters, while for precision we, con-
versely, calculated f-scores of inferred clusters in relation to the
nearest VOCs/VOIs. As ref. 26 does not report a confidencemeasure to
calculate the summary statistics akin to matching similarity, we
focused on HELEN clusters with over 1% support. The comparison
demonstrates that HELEN achieves higher recall and precision (Sup-
plementary Fig. 47).

Running time and scalability
The computational methods employed in this study are reasonably
efficient and scale to millions of sequences. For instance, for the US
dataset analyzed at the time point t = 37, which consists of ~1.66 ⋅ 106

sequences, constructing the coordinated substitution network took
~1 h, estimating the P values of 10 VOCs/VOIs took ~1.8 h, and inferring
viral haplotypes took ~38.6 h. HELEN is developed using Matlab
R2023a and Gurobi 10.0.3 and all the computations were carried out
on a workstation equipped with a 3GHz Intel Xeon E5 CPU and
64GB of RAM.

Discussion
This study explores the hypothesis that viral variants with higher
transmissibility can be associated with dense communities in coordi-
nated substitution networks. Specifically, we investigated this idea in
the context of SARS-CoV-2 spike protein genomic variants and found
strong support for it. Our results indicate that network density can
serve as a dependable indicator for the timely detection or prediction

of emerging SARS-CoV-2 variants. As a result, we proposed an accu-
rate, interpretable, and scalable method that can anticipate emerging
SARS-CoV-2 haplotypes several months in advance, leading to early
detection and improved forecasting.

These results were obtained using a synthetic approach that
combines methods from statistics, combinatorial optimization, and
population genetics. Firstly, we employed a sensitive statistical test
that relies on a quasispecies population genetics model to identify
linked pairs of SAVs that are jointly observed more often than expec-
ted if the corresponding 2-haplotype is inviable. This method allowed
us to construct coordinated substitution networks with rich commu-
nity structures, providing a foundation for meaningful network-based
inference. Secondly, we validated our hypothesis by estimating net-
work density-based P values of SARS-CoV-2 haplotypes. This allowed
us to identify haplotypes with low P values as potential variants of
concern and demonstrate that known VOCs achieve low P values sig-
nificantly earlier than they reach frequencies high enough to be
detected using conventional methods. Lastly, we utilized these find-
ings to design an algorithm for the early detection of viral variants that
identifies dense communities of SAV alleles and combines them into
haplotypes. We demonstrate the efficacy of this algorithm by retro-
spectively identifying known VOCs and VOIs with high accuracy up to
several months before they reached high prevalence and were desig-
nated by the WHO.

Compared to traditional phylogenetic lineage tracing, the pro-
posed methodology offers several advantages. In particular, it can
detect viral variants as dense communities at very low frequencies or
even when actual variant sequences are not sampled—the latter is
possible when there are sufficiently many well-covered variant’s SAV
pairs. This feature is naturally inherited from our priormethods36,39 for
reconstructing intra-host viral populations fromnoisyNGSdata,which
have demonstrated the ability to accurately detect viral haplotypes
with frequencies as low as the level of sequencing noise. In addition,
the computational complexity of most intensive steps of network-
based methods is a function of the genome length rather than the
sequence number. For SARS-CoV-2 data, the number of available
sequences in GISAID is up to 4 orders of magnitude larger than the
number of amino acid positions in the SARS-CoV-2 s-gene (~1.5 ⋅ 107

sequences versus 1.27 ⋅ 103 amino acid positions). This feature makes
the proposed algorithms considerably more scalable than phyloge-
netic methods.

It is important to note that there are limitations to this study, as
the comprehensive forecasting of viral evolution is inherently an
intractable problem. While the proposed methods have shown

Table 1 | Summary statistics for VOC/VOI recall by HELEN

Complete 1st truncated 2nd truncated

VOCs/VOIs identified in at least one country 8/10 9/10 9/10

Number of countries where VOCs (VOIs) were detected 13–15 (1–4) 13–16 (2–5) 13–16 (2–6)

Aggregated recall for VOCs/VOIs (VOCs only). 50% (90%) 53% (90%) 55% (93%)

Percentage of earliest VOCs/VOIs detections with FDprev ≥0 45% 47% 44%

Percentage of earliest VOCs/VOIs detections with FDdes ≥0 45% 42% 40%

Median cumulative frequency at first detection 3.99 ⋅ 10−4 3.37 ⋅ 10−4 3.77 ⋅ 10−4

Median prevalence at first detection 1.48 ⋅ 10−3 1.21 ⋅ 10−3 1.61 ⋅ 10−3

VOCs/VOIs (VOCs) with FDprev ≥0 in at least one country 7/10 (5/5) 9/10 (5/5) 9/10 (5/5)

VOCs/VOIs (VOCs) with FDdes ≥0 in at least one country 8/10 (5/5) 9/10 (5/5) 9/10 (5/5)

Median FDprev for early calls, days 60 45 45

Median FDdes for early calls, days 67 56 36

Linear correlation and P value (two-sided Student’s t test) for the number of sequences per country and the number
of variants with FDdes > 0

0.33 (0.21) 0.54 (0.031) 0.38 (0.15)

Linear correlation and P value (two-sided Student’s t test) for the number of sequences per country and the number
of variants with FDprev > 0

0.72 (0.0016) 0.70 (0.0025) 0.73 (0.0013)
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promising early detection results, caution should be exercised when
interpreting them. First of all, our findings by no means suggest that
viral evolution is a deterministic process that can be predicted using
mechanistic models. Instead, they demonstrate how to identify
potential evolutionary trajectories among exponentially many possi-
bilities. These trajectories can guide further investigation and prior-
itization of functional screening. Nonetheless, the number of these
trajectories could be substantial. For instance, in the idealized model
presented in “Model-based rationale of the proposed approach”, the
number of predictable high-fitness variants corresponds to the num-
ber of maximal cliques within an epistatic network. Although this is
typicallymuchsmaller than the overall number ofpotential genotypes,
in the worst case it may still be exponential46.

Moreover, the GISAID data used in our study encompasses
sequences obtained under different conditions by a variety of
laboratories worldwide. Consequently, despite GISAID efforts to
maintain consistent quality control, theremay still be variations in the
reliability of the sequences and their associatedmetadata. Specifically,
there are concerns that the complete datasetmight be less trustworthy
than its truncated counterparts, potentially containing mislabelled or
contaminated data. Nonetheless, we opted to analyze this dataset to
ensure thoroughness and to highlight the sensitivity of the proposed
methodology, irregardless of data specifics. It is imperative, however,
to approach the forecasting depths of this dataset with a degree of
skepticism. Primarily, our results serve as a testament to the metho-
dology’s capacity to detect rare genotypes with altered phenotypes in
a genomic sample, irrespective of the provenance of these genotypes.
Exploration of the origins of SARS-CoV-2 VOCs and VOIs is beyond the
scope of this study.

Next, the links between SAVs identified by HELEN represent
putative or potential positive epistatic interactions23, and their primary
purpose is to serve as features for our prediction model. These links
should be viewed as a statistical ensemble rather than individually,
with our findings suggesting that haplotypes with altered phenotypes
exhibit a significantly higher number of potential epistatic pairs com-
pared to background haplotypes. Consequently, research focused on
examining the biological mechanisms of specific SARS-CoV-2 epistatic
interactions should incorporate more comprehensive structural data.

The utilized coordinated substitution/epistasis model is another
limitation of this study as it only considers the interactions between
SAV pairs, thus reflecting pairwise or second-order epistasis. Although
combinations of mutations can have more complex fitness effects
involving higher orders of epistasis47, this model is justifiable for sev-
eral computational reasons. First, it is the minimal model that enables
the detection of multiple overlapping haplotypes, which is an
improvement over the mutation independence assumption used in
other studies3 that, in general, only allow ranking and prioritization of
mutations. Secondly, k-haplotypes with k ≥ 3 may not have sufficiently
high frequencies to be detected, thereby affecting the method’s pre-
dictive power. In contrast, pairs are always covered bymore sequences
and can be detected earlier. Lastly, accounting for higher-order com-
binations of mutations can increase the computational complexity of
the problem while the second-order model remains computationally
tractable.

Finally, our method is based solely on genomic data, and its
effectiveness could be enhanced by incorporating epidemiological
and structural biology data and models. In addition, our results high-
light the significance of robust and diverse sampling practices, as early
detections were predominantly made in countries with larger sample
sizes, and some variants were only detected early in their countries of
origin.

We believe that the methodology proposed in this study is not
limited to SARS-CoV-2 and can be extended to other pathogens. The
high sensitivity ofHELENpositions it as an effective tool for forecasting
emerging and detecting circulating strains of pandemic viruses,

including HIV, Hepatitis C, and Influenza. This capability is particularly
valuable in the context of seasonal vaccine development, where
accurate and timely forecasts can play a crucial role in the selection of
strains for vaccine formulation.

Methods
The major goal of this study is to develop and validate a methodology
that, given viral sequences sampled at several time points, infers
potentially emerging viral haplotypes by analyzing dense communities
of coordinated substitution networks. To achieve it, this section is
organized as follows. First, we provide a theoretical justification of the
proposed approach by considering an idealized model of an evolving
population with given fitness landscape and epistatic network
(“Model-based rationale of the proposed approach”). As epistatic
networks are not directly observable, “Inference of coordinated sub-
stitution networks” outlines the methodology to infer them from
sequencing data. “Estimation of density-based P values of viral haplo-
types” describes our approach to validate the statistical significance of
associations between known VOCs/VOIs and dense communities in
inferred epistatic networks. Finally, “Inference of viral haplotypes”
presents the algorithmic framework to de novo infer emerging viral
variants.

Model-based rationale of the proposed approach
The major idea of this study is to predict emerging viral variants as
dense communities in epistatic networks. This idea can be partially
substantiated by the following simple combinatorial population
genetics model assuming that the basic mutational mechanism con-
sists of random point mutations.

Consider a population of haploid genotypes P = fg1, . . . ,gngwith a
fixed length L and two potential allelic states 0 and 1 at each locus,
where 0 stands for the reference allele and 1 stands for an alternative
allele. Each genotype is thus represented as a binary sequence, and all
possible 2L genotypes form a sequence space represented as L-
dimensional hypercube H48, i.e., a graph whose vertices are
0 − 1 sequences of length L, and two vertices are adjacent whenever
they differ in a single coordinate.

Each genotype gi is assigned the fitness fi – a real number that
serves as a quantitative measure of its reproductive capacity49,50. The
function mapping genotypes into the set of their fitness values is
referred to as a fitness landscape49.

In our model, the genotypes are subject to negative epistasis51,52.
Following refs. 50, 53, it is defined as the statistical effect where the
combined effect of mutations at two specific loci leads to a lower
fitness than if these mutations occurred independently, i.e.,
f11 < f10 + f01 − f00, where fij, i, j =0, 1 are expected fitnesses of genotypes
with allelic states (i, j) at the loci. Similarly, positive epistasis occurs
when the combined effect of multiple mutations results in a higher
than expected fitness, i.e., f11 > f10 + f01 − f0050,53. In our case, negative
epistasis is assumed to render the corresponding genomes non-viable
or evolutionary non-competitive (f11 ≤0). Epistatic interactions can be
representedby the coordinated substitution networkG (Fig. 5a), where
vertices correspond to loci, and two vertices are adjacent when a
2-haplotype (1, 1) at the respective loci is viable (i.e., the loci are not
under negative epistasis).

Epistasis has been proposed to constrain the selective accessi-
bility of genomic variants and restrict potential evolutionary trajec-
tories of a population51,54. This effect can be described in graph-
theoretical terms as follows. Viable genotypes (i.e., genotypes with
positive fitness values) constitute a subgraph of the hypercube H,
referred to as the viable space. In the model under consideration, a
genotype is deemed viable if all its alternative alleles are pairwise
adjacent in the network G i.e., create a clique within G (Fig. 5b). As a
result, each maximal by inclusion clique C of G (i.e., a clique that is not
contained in another clique) generates a complete sub-hypercube
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HðCÞ in the viable space; this sub-hypercube is a projection of geno-
type vectors onto the subspace formed by loci from C. Thus, decom-
posing the epistatic network into maximal cliques yields a partition of
the viable space into sub-hypercubes. This partition defines a set of
restricted evolutionary trajectories that the population could poten-
tially explore.

More specifically, within each sub-hypercube HðCÞ, only additive
and positive epistatic fitness effects can be present. Therefore, evo-
lutionary trajectories within HðCÞ will eventually accumulate all
mutations in C and converge to the genotype gC with the maximum
fitness within HðCÞ that contains all alternative alleles of the clique C
(Fig. 5c). Overall, the proposed model indicates that any evolutionary
trajectory within the entire viable space will ultimately converge to a
genotype determined by one of the maximal cliques in the epistatic
network.

In practical settings, epistatic networks are not directly obser-
vable. Therefore, in accordancewith23,26,34, we approximate themusing
coordinated substitution networks, which are statistically inferred
fromgenomicdata. Since the inferrednetworksmaynot encompass all
true links, we consider dense subgraphs rather than cliques.

Inference of coordinated substitution networks
Consider a population consisting of N haploid genotypes of length L
whose observed abundances change over time points t = 1,…, T. For a
pair of distinct loci u, v∈ {1,…, L} we consider 4 possible 2-haplotypes
(i, j)∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, where 0 and 1 are reference and
alternative alleles in u and v respectively. Let also Ot

ij be an observed
count of 2-haplotypes (i, j), i, j =0, 1, at a time point t∈ {1,…, T}.

We define a coordinated substitution network at the time point t
as a graph Gt with nodes representing SAVs, and two nodes being

adjacent whenever the corresponding non-reference alleles are
simultaneously observed more frequently than expected by chance.
Formally, SAVs at positions u and v are adjacent in Gt (or linked), when
the following inequality holds:

1�
XOt
11�1

i =0

N

i

� �
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10 � Ot
01
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00 � N

 !i
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� � , ð3Þ

where ρ is a pre-defined P value (in this study, we used ρ = 0.05).
In the remaining part of this subsection, we provide a justification

for the formula (3). We suppose that viral evolution is driven by
mutation and selection, where (a) each 2-haplotype (i, j) has fitness fij;
(b) each transition (mutation) from the allele k to the allele l at the
position u (resp. v) happens with probability qu

kl (resp. qv
kl). Thus,

expected 2-haplotype counts Et
ij can be described by the quasispecies

model55 (or mutation-selection balance model in the classical popula-
tion genetics terms56) in the following form:

Et
ij =

X
k,l2f0,1g

f klq
u
kiq

v
ljE

t�1
kl ð4Þ

Mutation probabilities per genomic position per year of most viruses
haveordersofmagnitudebetween 10−3 and 10−557. Thus,wecanassume
that for time intervals considered in this study, the non-negative
probability of allelic change is smaller than the probability of no-
change, i.e.,

0 <qu
ij <q

u
ii, 0 <qv

ij <q
v
ii, i, j 2 f0,1g i≠ j ð5Þ

Fig. 5 | The model of an epistatically-constrained sequence space and fitness
landscape. a The epistatic network G. Edges of inclusion-maximal cliques are dis-
played in blue, green and purple. bGenotypes that are viable under the constraints
imposed by the epistatic networks. Stars represent 1-alleles, colors denote loci.
c The viable space is depicted alongside the corresponding fitness landscape. For
better visualization, as is customary in the literature70, the fitness landscape is
depicted as a continuous surface. Surface and vertex colors represent fitness values
on a scale from blue (low fitness) to red (high fitness). Sub-hypercubes corre-
sponding to three maximal cliques of the epistatic network G are highlighted in

blue, green, and purple, respectively, with edges belonging to two sub-hypercubes
colored in intermediate shades. The circled vertices represent local maximums
within each sub-hypercube. For example, all minor alleles of the genotypes
g4, g6, g7, g8, g10, g11, and g12 are situated at loci 1, 2, or 3. These loci form a clique of
the epistatic network, while these genotypes, together with the wild-type genotype
g0, form a 3-dimensional sub-hypercube of the sequence space (highlighted in
black in (c)). The genotype g12 has the maximum fitness within this sub-hypercube.
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We can use the model (4) to decide whether the 2-haplotype (1, 1) is
viable or its observed appearances can be plausibly explained by
random mutations. The corresponding test is based on the
following fact:

Theorem 1 Suppose that the 2-haplotype (1, 1) is not viable, i.e.,
f11 = 0. Then

Et
11 ≤

Et
01 � Et

10

Et
00

ð6Þ

Proof The proof follows the same lines as the proof in ref. 39.
Given that f11 = 0, we have
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It is easy to see that the terms in Eqs. (7) and (8) except for the last ones
are equal. Thus we have

Et
01 � Et

10 � Et
00 � Et

11 =

= ðqu
00q

v
11q

u
11q

v
00 +q

u
10q

v
01q

u
01q

v
10 � qu00q

v
10q

u
11q

v
01

� qu
10q

v
00q

u
01q

v
11Þf 01 f 10Et�1

01 Et�1
10 =

= 1� qu01q
u
10

qu00q
u
11

� �
1� qv

01q
v
10

qv
00q

v
11

� �
qu
00q

v
11q

u
11q

v
00 f 01 f 10E

t�1
01 Et�1

10 ≥0,

ð9Þ

where the last inequality follows from (5). Thus, the inequality
(6) holds.

Using Theorem 1, we can evaluate the likelihood of the event that
a large number of genomes contain 2-haplotype (1, 1) given that this
2-haplotype is not viable. Considering the density of sampling and the
number of SARS-CoV-2 genomes analyzed in this study, we assume
that observed and expected numbers of 2-haplotypes are close to each
other. Let q is the probability of observing a genome containing
2-haplotypes (1, 1) among N genomes given that f11 = 0. Following
ref. 36, we model the count of such genomes, X, with a binomial dis-
tribution B(N, q). The probability that X ≥Ot

11 is:

pðX ≥Ot
11jf 11 = 0Þ= 1� FX ðOt

11 � 1jN,qÞ= 1�
XOt
11�1

i=0

N

i

� �
qið1� qÞN�i,

ð10Þ

where FX is the binomial cumulative distribution function. Theorem 1
implies an upper bound for q: q≤p= Ot
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00�N

. Therefore

pðX ≥Ot
11j f 11 = 0Þ= 1� FX ðOt

11 � 1jN,qÞ≤ 1� FX ðOt
11 � 1jN,pÞ: ð11Þ

We consider SAVs at positions u and v linked when the probability
pðX ≥Ot

11jf 11 = 0Þ is sufficiently low, which is guaranteedwhen its upper
bound in Eq. (11) is sufficiently low, i.e.,

pðX ≥Ot
11jf 11 = 0Þ≤ 1� FX ðOt
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L

2

� � ,
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where ρ is a chosen significance level, and the denominator L
2

� �
is a

Bonferroni correction. The latter is used to account for multiple

comparisons between L
2

� �
pairs of SAVs being tested for linkage. This

leads to the formula (10).

Estimation of density-based P values of viral haplotypes
Wehypothesize that viral haplotypes corresponding to potential VOCs
and VOIs formdense subgraphs of coordinated substitution networks.
Below we describe the method used to statistically verify this
hypothesis.

In what follows, we will use the standard graph-theoretical nota-
tion: V ðGÞ and EðGÞ are the sets of vertices and edges of the graph G,
respectively; NGðvÞ is the set of neighbors of a vertex v in G; the sub-
graph of G induced by a subset S is denoted by G½S�.

We use the statistical test (12) to construct coordinated substitu-
tion networks Gt for different time points t using SARS-CoV-2
sequences sampled before or at the time t. These networks have the
same set of vertices but different sets of edges. A viral haplotype thus
can be associated with a subset of vertices H � V ðGtÞ of a network Gt .
The density of a haplotype H is thus defined as the density of the
subgraph of Gt induced by H, i.e.,

dGt
ðHÞ= jEðGt ½H�Þj

jHj ð13Þ

Weestimate the statistical significance of our hypothesis by producing
density-based P values of known VOC and VOI haplotypesH. Given the
subgraph sample S* = fS1, . . . ,SjS* jg, P value of a haplotype H in the
network Gt is defined as

pGt
ðHÞ=

Sj 2 S* : dGt
ðSjÞ≥dGt

ðHÞ
n ������

jS*j
ð14Þ

A low P value indicates that the subgraph representing haplotype H is
denser compared to other subgraphs of Gt .

The naive way to produce the sample S* is to randomly generate
subgraphs of Gt of the size ∣H∣. However, SARS-CoV-2 coordinated
substitution networks are relatively sparse, and thus many sampled
subgraphswill be a priori disconnected and, consequently, also sparse.
As a result, such a sampling scheme is inherently biased towards
assigning low P values to haplotypes corresponding to connected
subgraphs and subgraphs with few connected components. Known
VOCs and VOIs at most time points have these properties, and thus
their statistical significance could be overestimated. This problem can
be resolved by sampling only connected subgraphs.

The following numerical example shows why an advanced
method for connected subgraph sampling is essential and a naive
approach is ineffective. Consider one of the coordinated substitution
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networks generated in this study with 1273 vertices and 7329 edges.
For a tree (a minimal connected subgraph) with 10 vertices, naive
sampling of 1,000,000 samples yielded 188 subgraphs not less dense
than the tree, resulting in a P value of 0.000188. In contrast, the P value
from connected subgraph sampling is 1, as a tree has the minimal
density among all connected subgraphs. Moreover, naive sampling
produced only 2 connected subgraphs, making re-normalization with
respect to such a small subsample unreliable. Generating a sufficiently
large sample of connected subgraphs via naive method is thus
impractical due to the enormous naive sample size required.

To sample connected subgraphs, we utilize a more sophisticated
randomized enumeration sampling algorithm that follows the network
motif sampling scheme introduced in ref. 58. The algorithm assumes
that vertices of Gt are labeled by the unique integers 1,…, L, and per-
forms a recursive backtracking. For each vertex v in ascending numer-
ical order, the algorithm iteratively grows a connected subgraph S by
adding a randomly chosen new vertex w from the set of allowed
extensionsW. The setW is then updated to include neighbors of w not
in the exclusion set X. The exclusion set X allows to speed up the cal-
culations and prevent double sampling by excluding (a) neighbors of
vertices already in S to avoid multiple additions of the same vertex toW
and (b) vertices numbered 1 to v to prevent re-sampling subgraphs that
should have been sampled at earlier iterations. The process continues
until a subgraph of the desired size k is formed. Sampling for subgraphs
containing the vertex v goes on until the predetermined sample count is
reached. The full procedure is detailed in Algorithm 1, and the proof of
the correctness of this scheme can be found in ref. 58.

If, at some point, the subgraph induced by the haplotype H is
disconnected, we replace it with its largest connected component. In
this study, for each analyzed coordinated substitution network Gt , the
sampling was performed until M = minf3000,ηGt

ðvÞg subgraphs for
each vertex v are generated, where ηGt

ðvÞ is the total number of con-
nected subgraphs containing v. The value of 3000 was selected
empirically to provide a sufficient number of sampled subgraphs for all
analyzed viral variants.

Algorithm 1. Sampling of connectedk-subgraphs without
forbidden pairs

1: Input: graph G with V(G) = {1,…, L}, an integer k and the sample
size per vertex M.

2: for v = 1: L do
3: S← {v}; W  NGðvÞ n f1, . . . ,vg; X  NGðvÞ∪ f1, . . . ,vg
4: global Mv =0
5: call SampleSubgraph(v,S,W,X)
6: end for
SampleSubgraph(v,S,W,X)

7: if ∣S∣ = k then
8: output S, Mv←Mv + 1 and return
9: end if
10: while W ≠ ; and Mv ≤ M do
11: sample a random vertex w∈W and set W←W⧹{w}
12: S0  S∪ fwg; W 0  W ∪ ðNGðvÞ n X Þ; X 0  X ∪NGðwÞ
13: call SampleSubgraph(v,S0,W 0,X 0)
14: end while

Inference of viral haplotypes
In this subsection, we describe the method for inference of viral hap-
lotypes as dense communities in coordinated substitution networks.
Community detection is a well-established field of network science, with
numerous algorithmic solutions proposed over the last two decades59.
Typically (though not always), the collection of communities in a net-
work is defined as a partition60. However, in the case of viral genomic
variants, there can be overlaps, as observed in known VOCs and VOIs.
Additionally,most existing algorithms are heuristics designed to scale to
the sizes of extremely large networks rather than to produce optimal

solutions. Viral coordinated substitution networks, although containing
hundreds of vertices, are typically smaller thanmost networks studied in
applied network theory. Thus we use our own community detection
approach, which extends our previously developedmethodology36. This
approach uses exact algorithms rather than heuristics and is tailored to
account for the characteristics of viral data.

Major steps of our computational framework called HELEN (Her-
alding Emerging Lineages in Epistatic Networks) are depicted in Fig. 6,
and the full algorithmic workflow is described by Algorithm 2. For a
given time point t, HELEN starts by constructing a coordinated sub-
stitution network Gt , as described in “Inference of coordinated sub-
stitution networks”. Then it generates a pool of candidate dense
subgraphs of Gt using Integer Linear Programming (ILP). Finally, it
combines generated subgraphs into clusters corresponding to differ-
ent haplotypes, and infers a haplotype from each cluster.

Generation of dense subgraphs:Our approach isbasedon a Linear
Programming (LP) formulation61 for finding the densest subgraphs of
networks Gt at each time point t. This formulation contains variables xi
for each vertex i 2 V ðGtÞ, variables yij for each edge ij 2 EðGtÞ, and the
following objective function and constraints:

X
ij2EðGt Þ

yij ! max ð15Þ

yij ≤ xi, yij ≤ xj , ij 2 EðGtÞ ð16Þ

X
i2V ðGt Þ

xi ≤ 1 ð17Þ

xi,yij ≥0, i 2 V ðGtÞ,ij 2 EðGtÞ ð18Þ

Note that the variables xi, yij are continuous rather than integer since it
can be shown that the value of the optimal solution of the LP (15)–(18)
and the maximum subgraph density of Gt coincide

61; furthermore, if
U � V ðGtÞ is the vertex set of the densest subgraph, then ðxi = 1

jUj ,i 2
U; xi =0,i =2U; yij =

1
jUj , i, j � U; yij =0, i, j⊈UÞ is the optimal solution of

(15)–(18). Thus, densest subgraphs of the networks Gt canbe found in a
polynomial time.

The single densest subgraph can, however, provide only a single
haplotype per time point. We need to produce multiple dense com-
munities to infer multiple haplotypes that could correspond to VOCs
and VOIs. So,wegenerate a pool of candidate dense subgraphs ofGt as
follows. We iterate through a given range of fixed subgraph sizes k
from kmax down to kmin); at each iteration,we generate a setSk of up to
nmax densest subgraphs of size k that are not contained in subgraphs
generated in the previous iterations. Here kmax,kmin and nmax are
parameters of the algorithm. However, finding the densest subgraph
of a given size is anNP-hardproblem62,63. Therefore, for each value of k,
we use the following Integer Linear Programming formulation:

1
k

X
ij2EðGt Þ

yij ! max ð19Þ

yij ≤ xi, yij ≤ xj , ij 2 EðGtÞ ð20Þ

X
i2V ðGt Þ

xi = k ð21Þ

X
i2V ðGt ÞnS

xi ≥ 1, S 2
[kmax

k0 = k + 1

Sk 0 ð22Þ
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xi,yij 2 f0,1g, i 2 V ðGtÞ,ij 2 EðGtÞ ð23Þ

Here the constraint (21) sets the size of a dense subgraph, and the
constraints (22) ensure that for any subgraph S previously generated,
the subgraphs produced in the current iteration must include at least
one vertex not in S, meaning they should not be subsets of S. The
problems (15)–(18) and (19)–(23) are solved using Gurobi (Gurobi
Optimization, LLC); for the latter, we used an option to continue the
search until the pool of up to nmax optimal solutions is produced.

Inference of haplotypes from dense subgraphs: Now, let
Ŝt = St,1, . . . ,St,jŜt j be the set of generated densest subgraphs with sizes
ranging from kmin to kmax. This set does not necessarily have a one-to-
one correspondence with the true haplotypes due to two reasons.
First, some haplotypes may consist of more than kmax SAVs, so the
generated subgraphs only cover parts of these haplotypes. Second,
many generated subgraphs overlap significantly, and thus most likely
correspond to the same haplotypes.

To obtain full-length haplotypes, we employ the algorithmic
pipeline described in detail in steps 3–5 of Algorithm 2 and Fig. 6.
Initially, we partition the set of generated dense subgraphs into

clusters such that the subgraphs from each cluster ideally correspond
to the same true haplotype. To achieve this, we construct a graph of
subgraphs LðŜtÞ, whose edges represent pairs of subgraphs with large
overlaps, and split it into clusters using a series of graph clustering
techniques. Then, we locate the haplotype for each cluster of sub-
graphs by finding the densest core community in the union of ele-
ments of that cluster.

Algorithm 2. HELEN: inference of viral haplotypes using coordinated
substitution networks.

Input: the set Pt of aligned viral sequences sampled before or at
the time point t.
Output: the set of haplotypesHt = fHt,1, . . . ,Ht,jHt jg designated as
potential variants with altered phenotypes.
1) Construct a coordinated substitution network Gt from
sequences Pt , as described in “Inference of coordinated sub-
stitution networks”.
2) Using the Integer Linear Programming formulation (19)–(23),
iteratively generate the set of candidate dense subgraphs
Ŝt = fSt,1, . . . ,St,jŜt jg of sizes k 2 fkmax,kmax � 1, . . . ,kming, so that
the elements of Ŝt are not subgraphs of each other.

Fig. 6 | General scheme of HELEN. Step 1: construction of a coordinated sub-
stitution network (CSN) from aligned sequences. Step 2: generation of candidate
dense subgraphs of CSN (highlighted in different colors). Step 3: construction of an
intersection graph of subgraphs. Each colored vertex represents a subgraph of the
same color; two vertices are adjacent whenever the corresponding subgraphs have
sufficiently many common vertices (in this example—two). Step 4: decomposition

of the intersection graph into clusters (depicted as ovals). Each cluster reflects a
single haplotype. Step 5: construction of the haplotype for each cluster. The hap-
lotype is found as a densest community in the union of the CSN subgraphs forming
that cluster (e.g., the haplotype H1 is found as the union of the blue and the red
subgraphs that form the cluster C1).
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3) Construct an intersection graph LðŜtÞ, whose vertex set is Ŝt ,
and two vertices St,i and St,j are adjacent, whenever
jSt,i \ St,jj≥ minfjSt,ij,jSt,j jg � 1. In other words, vertices of this
graph of subgraphs are adjacent whenever they have the largest
possible intersection.
4) Partition the intersection graph LðŜtÞ into clusters Lt,1,…, Lt,r,
with each cluster corresponding to a single haplotype. The par-
tition is carried out in stages as follows:
4.1) Split the graph LðŜtÞ into connected components and then
subdivide each component into (κ + 1)-connected components,
where κ denotes the minimum size of a vertex cut (vertex con-
nectivity). To achieve this, we use an algorithm proposed in
ref. 64, which computes the vertex connectivity and corre-
sponding vertex cut as the smallest of (s, t)-cuts between the fixed
vertex v of the minimal degree and its non-neighbors ordered by
their distance to v, as well as between non-adjacent pairs of
neighbors of v. The algorithm computes these (s, t)-cuts using
network flow techniques65.
We further augmented this algorithm by adding an extra step.
Consider a pair of vertices (s, t) forwhich theminimal vertex cut of
size κs,t has been found, and P1

s,t , . . . ,P
κs,t
s,t are the corresponding

internal vertex-disjoint (s, t)-paths (which can be found using
network flows65 and whose existence is guaranteed by Menger’s
theorem66). If a vertex s0 is adjacent to the internal vertices of all of
these paths, then we can exclude the pair ðs0,tÞ from further
consideration because κs0 ,t ≥ κs,t . This step significantly accel-
erates the connectivity calculation for graphs with many high-
degree vertices, and the connected components ofLðŜtÞ typically
exhibit this property.
4.2) Suppose thatLt,1, . . . ,Lt,r0 are the components produced at the
previous step. Further subdivide each component Lt,i as follows:
first, find an embedding of the subgraph LðŜtÞ½Lt,i� formed by the
vertices of Lt,i into R3 using a force-directed graph drawing
algorithm67; second, cluster the obtained embedded graph by a
spectral clustering algorithm68 using the largest Laplacian eigen-
value gap to estimate the number of clusters.
Each cluster produced at steps (4.1)–(4.2) is supposed to contain
dense subgraphs corresponding to a single haplotype.
5) For every cluster Lt,i, we examine the induced subgraph
Gt,i =Gt ½

S
St,j2Lt,i St,j �, which consists of the SAVs covered by the

dense subgraphs contained in Lt,i.
5.1) Suppose that Dt,i is the sequence of vertex degrees of Gt,i. We
cluster the elements ofDt,i using the k-means algorithm and select
the subset of vertices Ct,i with degrees from the cluster with the
largest mean value. The goal of this procedure is to identify the
core of Gt,i consisting of high-degree vertices. To choose the
number of clusters k, we use the gap statistics69.
5.2) Find the densest subgraph Ht,i of Gt,i½Ci� using the LP for-
mulation (15)–(18). If the subgraph is large enough (by default
∣Ht,i∣≥5), then output Ht,i as an inferred haplotype.
In addition to the set of haplotypes Ht , Algorithm 2 returns a

support σ(Ht,i) for each inferred haplotype, that is defined as a relative
number of elements (i.e., candidate dense subgraphs) in the cluster
Lt,i: σðHt,iÞ= σt,i =

jLt,i jP
j
jLt,j j

.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The findings of this study are based on genomic data available on
GISAID; sequence accession numbers can be found at https://epicov.
org/epi3/epi_set/230407vq?main=true. The generated secondary data
are available at https://github.com/compbel/HELEN(https://doi.org/
10.5281/zenodo.10695159).

Code availability
The code developed and used in this study is available at https://
github.com/compbel/HELEN(https://doi.org/10.5281/zenodo.
10695159).
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