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Plasmids in the human gut reveal neutral
dispersal and recombination that is
overpowered by inflammatory diseases

Alvah Zorea 1,2,3, David Pellow4, Liron Levin5, Shai Pilosof2,3,
Jonathan Friedman 6, Ron Shamir4 & Itzhak Mizrahi 1,2,3

Plasmids are pivotal in driving bacterial evolution through horizontal gene
transfer. Here, we investigated 3467 human gut microbiome samples across
continents and disease states, analyzing 11,086 plasmids. Our analyses reveal
that plasmid dispersal is predominantly stochastic, indicating neutral pro-
cesses as theprimary driver of their wide distribution.Wefind that only 20-25%
of plasmid DNA is being selected in various disease states, constraining its
distribution across hosts. Selective pressures shape specific plasmid segments
with distinct ecological functions, influenced by plasmidmobilization lifestyle,
antibiotic usage, and inflammatory gut diseases. Notably, these elements are
more commonly shared within groups of individuals with similar health con-
ditions, such as Inflammatory Bowel Disease (IBD), regardless of geographic
location across continents. These segments contain essential genes such as
iron transport mechanisms- a distinctive gut signature of IBD that impacts the
severity of inflammation. Our findings shed light on mechanisms driving
plasmid dispersal and selection in the human gut, highlighting their role as
carriers of vital gene pools impacting bacterial hosts and ecosystemdynamics.

Plasmids play a vital role in bacterial evolution and gene transfer,
but limited studies have explored their natural distribution and
function across ecosystems1–3. Understanding their ecological
roles can provide insights into microbial community dynamics
and evolution4–7. Plasmids can be categorized into three lifestyles:
conjugative, mobilizable, and non-mobilizable8. Additionally,
phages have been identified as major contributors to the dis-
semination of non-mobilizable plasmids9. Plasmids contain genes
required for their own maintenance, such as DNA replication and
mobility genes, as well as accessory genes that confer advantages
to bacterial hosts under selective pressures, such as antibiotic
and heavy metal resistance, organic compound degradation, and
virulence10,11.

Plasmids facilitate the transfer of genetic material, including
antibiotic-resistance genes12–14. That being said, it is important to
broaden our understanding of other functional elements transferred
via plasmids. Specifically, investigating the forces driving plasmid
segment recombination across ecosystems can provide deeper insight
into the ecological functions and implications of these genetic ele-
ments within microbial communities. There is limited research on the
distribution of plasmids, especially in the human gut, across different
geographical regions and disease states15.

Understanding how ecological and geographical barriers influ-
enceplasmiddispersal and recombination is crucial for gaining deeper
insights into their implications within microbial communities. In this
context, there are two opposing forces for the dispersal of entities
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across ecosystems: neutral (stochastic) and selective (deterministic).
Neutral theory16 assumes that stochastic dispersal and drift are
responsible for community assembly, hence the composition at a local
scale is shapedby randomdispersal from theglobal pool. “Nonneutral”
niche theory17 suggests that the abundance of microbial species is
influenced by environmental factors, thus communities with similar
ecological conditions are likely to have similarmicrobial compositions.
Several studies on microbial environments have found that both
selective and neutral forces shape microbial communities in various
environments, such as hot springs, wastewater treatment plants, and
human microbial environments18–20. These forces were used to deter-
mine ecosystem functions, such as in a study of lung microbiomes,
where theneutralmodelwasused todifferentiate betweenhealthy and
diseased lungs18.

To the best of our knowledge, there are no studies that have
examined the effect of neutrality on plasmid dispersal. Deeper insight
in this regard is fundamental, as it may contribute to our under-
standing and improve predictions of plasmids’ functional contribution
to their environment, allowing us to manipulate or selectively target
them to modify their functionality to suit our needs.

In this study, we focused on both healthy individuals and those
with diseases associated with gut microbiome dysbiosis, including
Glucose-metabolism Related Diseases (GRD), Inflammatory Bowel
Disease (IBD), and obesity21–23. Our research explores patterns of
plasmid dispersal among individuals across these disease states
(defined as both healthy and diseased individuals) and geographical

locations and investigates the interconnection between plasmids’
coding capacity and lifestyle. Using a neutral community model, we
explored the diversity and mobility of plasmids in these environments
and analyzed the impact of selective environments on the distribution
of plasmid gene content. Finally, we constructed a plasmid similarity
network to examine the extent and restrictions of plasmid segment
dispersal and recombination tendencies between individuals. We
found that neutral forces primarily govern plasmid and plasmid seg-
ment dispersal, while mobility and inflammatory diseases can influ-
ence this process by driving plasmid segment recombination and
selecting for disease-related functions, even in the presence of geo-
graphical barriers. Our findings reveal the dynamics of plasmid dis-
semination, including their segments and the carried functions, and
the factors driving their spread in gut bacterial communities.

Results
Gut inflammation is reflected in the plasmid-to-species
richness ratio
We analyzed 3467 human gut samples from 26 datasets across dif-
ferent geographies spanning four different continents (Fig. 1A, Sup-
plementary Table 1 and Supplementary Table 2). A total of 38,383
plasmids were assembled using SCAPP24, a plasmid assembler that
classifies plasmids according to the presence of plasmid genes or the
presence of sequences with high similarity to known plasmid
sequences. These were verified using other tools for plasmid classifi-
cation and plasmid gene annotation (PlasForest25, MOB-suite26,

Fig. 1 | Plasmids assembled in this study and the functions they encode for.
A Proportions of disease states of samples analyzed in this study, per continent.
B The proportions of (i) annotated ORFs, (ii) KEGG Orthology pathways and Brite
levels, and (iii) antimicrobial resistance genes found on assembled plasmids.
C Plasmid/species richness distributions within each disease state (two-sided
Wilcoxon rank-sum test, false discovery rate (FDR) corrected p = 0.00021).

Midlines of boxplots represent the median, boxes the interquartile range (25th to
75th percentile), and whiskers the range of data. n = 1548 healthy, 339 IBD
(Inflammatory Bowel Disease), 1035 GRD (Glucose-metabolism Related Diseases),
and 545 obese individuals. D A linear–log plot depicting the plasmid length dis-
tribution in kilobase pairs (kbp). The red line represents the local trough
between peaks.
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Blastn27, PlasClass28 and an in-house plasmid gene database29, Supple-
mentary Fig. 1A and “Methods”), and were reduced to 11,086 unique
plasmids after removing duplicates. Of all open reading frames (ORFs)
encoded on these plasmids, 15.25% were annotated, including DNA
replication proteins, toxin-antitoxin and secretion systems, plasmid
mobility genes, and antimicrobial resistance (AMR) genes (Fig. 1Bi, ii).
These genes conferred resistance to a wide range of antibiotics,
including some of the most relevant families in clinical practice (i.e.,
Cephalosporins and Aminoglycosides) and might represent the com-
mon use of antibiotic agents as part of the westernized lifestyle
(Fig. 1Biii and Supplementary Fig. 1B).

Previous studies have shown that diseases, particularly those
involving inflammation of the gut, are associated with reduced gut
microbiota richness30,31. Our analysis extends this finding to plasmid
richness, referring to the variety of plasmids, clustered at 95% identity
over 95% of the larger plasmid’s length in a given sample, as we found
that plasmid richness was significantly higher in healthy samples
compared to diseased samples (Wilcoxon rank-sum test, p <0.01,
Supplementary Fig. 1C). This is in linewith a recentmetagenomic study
that pointed to a reduced plasmid richness in IBD and Clostridium
difficile patients32. However, when plasmid richness was normalized by
microbial richness by calculating the ratio of plasmids to microbial
species richness, this phenomenon was reversed, with higher ratios
observed in both Inflammatory Bowel Disease (IBD) and Glucose-
metabolism Related Diseases (GRD) compared to healthy and obese
groups (Wilcoxon rank-sum test, p < 0.001, Fig. 1C and Supplementary
Fig. 1D). The decrease in plasmid richness could suggest that the
inflammatory diseases exerted a type of selection on the plasmidome
and microbiome, while the increase in the ratio of the plasmid to
species richness might suggest that per species, the versatility of the
mobile gene pool increases, highlighting the plasmidome as a reser-
voir of functions that may relate to the diseased environment. Our
analysis also revealed a bimodal distribution of plasmid lengths
(Fig. 1D), with a smaller proportion of larger plasmids, consistent with
previous research33. This could indicate a potential negative selection
against medium-sized plasmids and suggest an evolutionarily stable
size range.

Plasmid lifestyle determines the functions they carry
We categorized plasmid lifestyle based on the presence or lack of
mobility genes, into mobilizable (1027) and non-mobilizable (10,059)
plasmids. There was a significantly higher frequency of mobilizable
plasmids in individuals with IBD and GRD compared to healthy or
obese individuals (IBD 2.63%, GRD 2.04%, healthy 1.69%, and obesity
1.64%, pairwise chi-square test, p <0.001, 95% CI, Fig. 2A). These find-
ings could suggest that mobilizable plasmids may have a more sig-
nificant role in horizontal gene transfer (HGT) in diseased
environments associated with inflammation, a notion supported by
previous research that has documented an acceleration of HGT in
inflamed states34. A KEGG pathway enrichment analysis of plasmids
revealed distinct patterns regarding the functional potential and gene
content of mobilizable vs. non-mobilizable plasmids (hypergeometric
test, p <0.0001, gene ratio > 0.1, Fig. 2B). Non-mobilizable plasmids
were enriched with maintenance-related functions, including homo-
logous recombination. In addition, non-mobilizable plasmids were
enriched with accessory functions that confer advantages to the bac-
terial host within the gut ecosystem, such as carbon utilization
enzymes, energy harvesting enzymes, and enzymes involved in
cofactor and vitamin production, all belonging to the “Metabolic
pathways” pathway (Fig. 2B). Among these accessory genes, we
detected important enzymes that reflect the gut ecosystem’s central
functions, including those involved in sugar metabolism and fermen-
tative energy harvesting pathways, such as cellobiose phosphorylase
[EC:2.4.1.20], rhamnulokinase [EC:2.7.1.4], xylulokinase [EC:2.7.1.17],
acyl-CoA dehydrogenase [EC:1.3.8.7], and butyryl-CoA dehydrogenase

[EC:1.3.8.1]. Non-mobilizable plasmids also carried genes involved in
cofactor and vitamin production, such as nicotinate-nucleotide ade-
nylyltransferase [EC:2.7.7.18], an enzyme that promotes oxidative
phosphorylation and improves host energy utilization efficiency.
Although non-mobilizable plasmids were enriched with more path-
ways essential for their maintenance, the average size of mobilizable
plasmidswas significantly larger than that of non-mobilizableplasmids
even after excluding mobilization genes from mobilizable plasmids
(11,098.42 vs. 10,276.74, respectively, Wilcoxon rank-sum test,
p <0.001, Fig. 2C). This could indicate that on average, mobilizable
plasmids may carry additional genes, which could be reflected in dif-
ferent functional potentials. Indeed, our analysis of the distribution of
AMR genes on mobilizable versus non-mobilizable plasmids showed a
significant difference, with mobilizable plasmids carrying more AMR
genes compared to non-mobilizable plasmids (Kolmogorov–Smirnov
test,D =0.05,p < 0.05, Fig. 2D). Specifically,mobilizable plasmidswere
found to be six timesmore likely to carryAMRgenes compared to non-
mobilizable plasmids (odds ratio = 6.14). These findings suggest that
themobilization lifestyle of plasmids influences their gene content and
functional potential, where mobilizable plasmids are more likely to
carry systems important for their own transfer, as well as accessory
AMR genes that are generic and thus could be used by various
microbial hosts regardless of their ecological niche. In contrast, non-
mobilizable plasmids carry accessory genes that are ecologically rele-
vant and directly linked to their microbial host’s ecological niche. It is
important to acknowledge that our efforts to understand the selective
forces acting on plasmids are challenged by the limited annotation of
genes, and that selection driven by adaptive traits encoded by non-
annotated genes is likely an important factor for the detected plasmid
distribution as well.

Plasmid dispersal is neutral and is affected by disease state and
plasmid mobilization lifestyle
To unravel the forces driving plasmiddispersal, we employed a neutral
community model (NCM)16. This model assumes that plasmids are
dispersed across individuals in proportion to their abundance in the
regional pool. The R2 value of the NCM provides an estimate of the fit
of plasmid dispersal to the neutral model, with higher values implying
greater random dispersal, and lower values suggesting selective fac-
tors influence plasmid distribution.

Plasmids’ dispersal fits the neutral model with a relatively high R2

value in our dataset, suggesting predominantly neutral dispersal
(R2 = 0.5, Fig. 3A). Here, we applied higher stringency in our analysis,
wherewe added twomore filtration steps. Across the samples, a depth
cutoffwas established at 1% of the lowestplasmid abundance observed
in the sample with the lowest read depth, and a minimum read cov-
erage threshold of 70% per plasmid was applied, resulting in 3966
plasmids.

We next investigated the impact of plasmid lifestyle on dispersal
(Fig. 3B). Mobilizable plasmids (n = 123) exhibit dispersal rates more
consistent with neutrality (R2 = 0.82), compared to non-mobilizable
plasmids (n = 3843) with R2 = 0.52. This observation was corroborated
by randomly selecting 123 non-mobilizable plasmids in 1000 iterations
and comparing their R2 values to that of the mobilizable plasmids
(p = 0.03, Supplementary Fig. 2A). This suggests that non-mobilizable
plasmids experience stronger selection pressure, likely due to their
selection together with their host cells and limited dispersal capacity,
resulting in reduced neutral dispersal. In contrast, a mobilizable life-
style allows plasmids greater autonomy, potentially relieving selective
pressure and enabling more neutral dispersal. Our analysis showed a
good fit of plasmid dispersal to the neutral model in all disease states
(GRD R2 = 0.49, IBD R2 = 0.41, obesity R2 = 0.59, healthy R2 = 0.49,
Supplementary Fig. 2B), indicating that plasmids may maintain a
neutral dispersal, even in diseased environments. Nevertheless, the
noticeable decrease in R2 values of plasmid dispersal in IBD patients
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Fig. 2 | Plasmid lifestyle dictates their distribution and functionality.
A Proportions and distributions of mobilizable and non-mobilizable plasmids in
individuals as a function of their disease state (two-sided Wilcoxon rank-sum test,
false discovery rate (FDR) corrected p = 5.9e−6).Midlines of boxplots represent the
median, boxes the interquartile range (25th to 75th percentile), and whiskers the
range of data. n = 1548 healthy, 339 IBD (Inflammatory Bowel Disease), 1035 GRD
(Glucose-metabolism Related Diseases), and 545 obese individuals. B Pathways
enriched on mobilizable and non-mobilizable plasmids and the proportions of
modules found within the KEGG “Metabolic pathways” category (hypergeometric

test, FDR corrected p <0.0001, gene ratio >0.1). Colors represent the different
plasmid lifestyles, while gene ratios represent the prevalence of the pathways
within each plasmid lifestyle. C Mobilizable vs. non-mobilizable plasmid lengths
(log scale), (two-sided Wilcoxon rank-sum test, p = 2e−16). Midlines of boxplots
represent the median, boxes the interquartile range (25th to 75th percentile), and
whiskers the range of data. n = 1027 mobilizable plasmids and 10,059 non-
mobilizable plasmids.D Distributions and ratios of AMR (antimicrobial resistance)
gene count on plasmids as a function of plasmid mobilization lifestyle.
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compared to healthy individuals indicates that plasmid distribution is
more neutral in healthy samples than in IBD (a 16% decrease for IBD
compared to healthy individuals, Fig. 3C).

We divided our dataset into mobilizable and non-mobilizable
plasmids obtained from healthy individuals, as well as from those with
obesity, IBD, and GRD, and compared their R2 values of NCM fits
(Supplementary Fig. 2C). This hints that plasmid lifestyle was the

primary factor influencing neutrality, with mobilizable plasmids
showing more neutral dispersal than non-mobilizable plasmids.
Common to both lifestyles, was the decrease in neutrality for plasmids
originating from individuals with IBD compared to healthy individuals,
highlighting this disease as a more selective one. Specifically, mobi-
lizable plasmids in both IBD and GRD environments were dispersed in
a less neutral manner than in healthy individuals (IBD R2 = 0.75, GRD
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R2 = 0.77, healthy R2 = 0.82) whereas non-mobilizable plasmids were
dispersed in a less neutral manner in IBD when compared to healthy
(IBD R2 = 0.46, healthy R2 = 0.49).

Given that plasmid recombination drives plasmid adaptation33,35,
we examined the dispersal and the evolutionary forces acting on
plasmids by studying plasmid segments, defined as stretches of plas-
mid DNA of at least 1 kbp in length and at least 80% identity between
two plasmids. Similar to what we observed in plasmids, we saw a ten-
dency for less neutral dispersal among individuals with IBD and GRD
compared to healthy individuals, with a 15% decrease in R2 values for
IBD samples and an 8%decrease for GRD samples compared to healthy
individuals, IBD R2 = 0.53, GRD R2 = 0.57, healthy R2 = 0.62, Fig. 3D). We
investigated the functional composition of specific plasmid segments
that exhibited deviations from the neutral model fit and were widely
present among individuals, suggesting that these segments were
undergoing selection (Fig. 3D and Supplementary Fig. 3). The func-
tions carried on these segments significantly differed from the overall
distribution within each disease state (Fisher’s exact test, IBD GRD and
healthy p < 0.001, obesity p <0.05, Fig. 3Ei). Notably, beta-lactam
resistance was the predominant function among selected plasmid
segments across conditions, except in obesity. In individuals with IBD,
it accounted for 40% of selected functions, in GRD it was 25%, and in
healthy samples, it constituted 16%. The odds ratios for beta-lactam
resistance genes on selected segments compared to the overall dis-
tributionwithin each disease state were 284 for IBD, 15 for GRD, and 10
for healthy individuals. Moreover, the odds ratios of beta-lactam
resistance genes on the selected segments were higher in IBD andGRD
compared tohealthy individuals,with a ratioof 1.76 forGRDvs. healthy
and 3.52 for IBD vs. healthy (Fig. 3Eii). These findings indicate that
antibiotic usage strongly drives plasmid segment selection in the
human gut, particularly in individuals with IBD and GRD.

Segments with selection-driven dispersal across all diseases
exhibited a higher prevalence of the “ABC transporters” pathway
compared to other non-selected segments within the same disease,
except for healthy individuals (odds ratio: IBD 15.03, GRD 4.77, obesity
11.68). Additionally, the observed odds ratios were higher when com-
pared to selected segments within healthy individuals in the case of
IBD and obesity, but not GRD (odds ratio: IBD 1.2, obesity 3.9). The
“ABC transporters” pathway in our dataset included genes from the
lantibiotics permease system, commonly carried on plasmids and play
important roles in maintaining gut homeostasis36. This suggests that
segments encoding for these AMR systems confer a specific advantage
to their microbial hosts37.

Disease state selects for ecologically relevant functions via
plasmid segment recombination
To delve deeper into the relationship between plasmid segment dis-
persal, disease state, and geography, we generated a network in which
samples (nodes) were connected if they shared plasmid segments
(edges, Fig. 4Ai). Using this approach, we could analyze and visualize
the intricate relationships between humans via segment

recombination and dispersal across the plasmid population. The net-
work revealed distinct patterns in segment sharing among individuals
with IBD and GRD, indicating a predominant random recombination
pattern, together with selective forces that are at play within these
diseases (Fig. 4Aii). Specifically, individuals with IBD and GRD shared a
higher number of plasmid segments within their groups compared to
between the groups (Wilcoxon rank-sum test, p <0.0001, Fig. 4Bi, ii,
and Supplementary Fig. 4A). The ratio of plasmid segment sharing
within disease states compared to between disease groupswas 1.36 for
IBD and 1.19 for GRD, while for healthy individuals, the ratio was lower,
~1 (Fig. 4Bii). This observation suggests that specific segments are
selected for and shared across plasmids within the IBD and GRD
groups.

We further investigated the cross-continental edges within each
disease state and found that individualswith IBD andGRD sharedmore
plasmid segments per person within their respective groups than
healthy individuals, suggesting that the selective pressures in these
diseases overpower geographic ones (mean of IBD 174.15, GRD 238.95,
and healthy 158.42, Wilcoxon rank-sum test, p <0.01, Supplementary
Fig. 4B). To identify non-randomplasmid segment sharing within each
disease state, we generated a null model through 10,000 simulations
by randomly permuting edges while preserving node degrees and
comparing it to the observed network to determine significance (with
samples belonging to the obesity disease group disregarded due to
their limited geographic origin). Strong patterns of sharing plasmid
segments with ecologically relevant functions were observed among
individualswith IBD andGRD (p <0.0001, FDR corrected). This sharing
appeared to overcome geographical barriers, as significant non-
random cross-continental segment sharing was exclusively detected
in these two diseases and not among healthy individuals (Fig. 4Aii). In
IBD, 56.1% of the cross-continental edges showednon-random sharing,
while in GRD, only 3.77% exhibited non-random sharing. Healthy
individuals did not exhibit any significant non-random cross-con-
tinental connectivity, and other non-random connections were
observed within continents, highlighting the impact of geography on
plasmid segment dispersal.

Moreover, our findings suggest that the observed patterns are
primarily influenced by large andmobile plasmids, supported by odds
ratios exceeding 1 compared to the overall dataset. This alignswith our
detection of more mobilizable plasmids within the disease states of
IBD and GRD (Fig. 2A). In individuals with IBD and GRD, significant
segments shared across continents were primarily associated with
mobile plasmids (odds ratio of 7.14 and 3.96, respectively, Supple-
mentary Fig. 4C) and large plasmids (odds ratio of 1.98 and 1.27,
respectively).

Similar significant connectivity within disease states was seen
when creating networks based on segments of 500bp in length (cor-
responding to the predominant length of open reading frames found
on plasmids) and permuting them 10,000 times (Supplementary
Fig. 4D, Ei, p < 0.0001, FDR corrected). Specifically, individuals with
IBD, GRD, and healthy controls exhibited significant connectivity

Fig. 3 | Neutral communitymodelfits of plasmids and segments as a functionof
disease state and plasmid lifestyle. Fit of the neutral community model (NCM) of
all plasmids (A) and of the mobilizable (blue) and non-mobilizable (orange) plas-
mids, separately (B). Each dot represents a plasmid, and the solid lines indicate the
best fit to the NCM. R2 values measure the goodness of fit to the neutral model and
the mN values are the migration rates from global to local patches (metacommu-
nity size times immigration). Comparison of plasmid (C) and plasmid segment (D)
dispersal in healthy and diseased environments, represented by ratios of R2 values
(R2/healthy R2). D NCM fits of plasmid segments, separated by disease state. Each
dot represents a segment. Selected segments that occur more frequently than
predicted by the model among individuals are shown in different colors, corre-
sponding to the disease state (>95%prevalent and >95%confidence interval around
the neutral fit). The pie chart adjacent to each plot shows the distribution of the

KEGG pathways present on these selected segments. IBD Inflammatory Bowel
Disease, GRD Glucose-metabolism Related Diseases. E Comparison of the odds
ratios of KEGG pathways carried on selected segments in each disease state as
compared to all segments within the same disease state (i) e.g., the odds ratio
within IBD individuals of the beta-lactam resistance on selected plasmids is 284
times higher when compared to its ratio in the non-selected plasmid population in
IBD individuals, and compared to selected segments in healthy individuals (ii) e.g.,
the beta-lactam resistance odds ratio on selected plasmids in IBD is 3.52 times
higher when compared to selected plasmids in healthy individuals. The colors of
the bubbles represent the disease state of the selected segments that are being
compared, while their sizes represent their odds ratio value. Bubbles with dashed
borders indicate odds ratios with values less than 1.
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Fig. 4 | Selectionacts onsegments sharedwithindiseasegroupsandovercomes
spatial barriers. A A schematic (i) and actual (ii) representation of the similarity
network, where nodes represent humans, and the edges connecting individuals of
the same disease state symbolize shared plasmid segments. The weights of these
edges represent the number of shared segments between any two individuals. For
visualization purposes only, edges that appear in this network connect between
humans if they share at least 100 segments (weight > 100) and are part of a group of
disease states and continents that exhibit significant connectivity compared to a null
model. Nodes are grouped by their continent of origin and are colored according to
their disease states. IBD Inflammatory Bowel Disease, GRD Glucose-metabolism
Related Diseases. B (i) A diagram illustrating the definition of an individual’s con-
nectivity (determined by their strength, i.e., the sum of edge weights) with others of
the same disease state (within-disease strength, represented by solid lines) com-
pared to those of different disease states (between-disease strength, represented by
dashed lines). Numbers adjacent to the edges represent their weights (i.e., the
number of shared plasmid segments between two individuals). (ii) A violin plot

showing the ratio of strengths between individuals within the same disease state and
those from different disease states (two-sided Wilcoxon rank-sum test, false dis-
covery rate (FDR) corrected p = 2e−16). Boxplots indicate the median and quartiles,
withwhiskers reaching up to 1.5 times the interquartile range. The violin plot outlines
illustrate kernel probability density, i.e., the width of the shaded area represents the
proportion of the data located there. n= 1548 healthy, 339 IBD, 1035 GRD, and 545
obese individuals. (iii) Functions that are enriched on significantly connected seg-
ments within each disease group, as determined by comparing their frequencies to
the nullmodel (hypergeometric test, FDR corrected p <0.01, gene ratio >0.1). Colors
represent the different disease states, while gene ratios represent the prevalence of
the pathways within each disease state. C (i) A schematic diagram depicting
increased cross-continental connectivity between diseases compared to healthy.
(ii) Functions that are enriched on significantly connected plasmids within IBD and
GRD individuals across continents (hypergeometric test, FDR corrected p <0.01,
gene ratio >0.1). Colors represent the different disease states, while gene ratios
represent the prevalence of the pathways within each disease state.
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within continents. Additionally, individuals with IBD and GRD
demonstrated significant cross-continental connectivity, with GRD
significantly connected between Europe and North America, and IBD
showing significant connections between North America and Europe,
as well as North America and Asia. In contrast, healthy individuals did
not show any significant cross-continental connectivity. Similar pat-
terns were observed for networks based on segments of 1000bp with
90 and 95% similarity (p <0.005, FDR corrected, Supplementary
Fig. 4Eii, iii).

By comparing the original and permuted networks and analyzing
the segment frequencies across individuals of each disease state, we
identified segments that displayed significant connectivity within each
respective disease state. Within each disease group, 20–25% of the
overall plasmid segments were significantly shared (20% in IBD, 23% in
obesity and 25% in both GRD and healthy individuals). Analysis of the
functions carried on these selected segments revealed three enriched
pathways in healthy individuals, four in IBD, and five in GRD (hyper-
geometric test, p < 0.01, gene ratio > 0.1, Fig. 4Biii). In individuals with
IBD, the pathways “Mismatch repair” and “Homologous recombina-
tion” were significantly enriched. Additionally, in these individuals, we
observed the presence of the enzyme aerobactin synthase in two sig-
nificantly enriched pathways: “Biosynthesis of secondary metabolites”
and “Microbial metabolism in diverse environments”. Aerobactin
synthase is an iron-related virulence factor known to induce inflam-
mation in patients with Crohn’s Disease. It has been found to be
overexpressed in virulent E. coli strains that are more prevalent in IBD
patients compared to commensal strains and is considered the main
gut microbiome signature in IBD38. This enzyme, typically plasmid-
encoded, is an iron-scavenging siderophore and serves as a fitness
determinant, providing a competitive advantage to pathogenic bac-
teria over non-carriers of this system39. In GRD, the “beta-Lactam
resistance” pathway was enriched, which is directly linked to diabetes
development40. These findings provide further evidence that the
highly connected plasmid segments within disease environments may
carry ecologically relevant functions for their microbial host and are
linked to the disease.

This observed effect was due to recombining segments impartial
from the microbial host (Supplementary Fig. 5), suggesting that seg-
ments, rather than entire plasmids, are likely the basic entities under
selection. These findings suggest that the movement of microbes or
whole plasmids is not the primary driver of plasmid functional spread,
but rather recombination events occurring among plasmid entities.
Moreover, this strongly indicates that the selective pressures imposed
by the diseases IBD and GRD drive the sharing and recombination of
plasmid segments within these groups, even across great distances.

Analyses of specific functions enriched on cross-continental
plasmid segments revealed that many of these segments carry
advantageous functions linked to the pathology of the disease
(hypergeometric test, p < 0.01, gene ratio > 0.1, Fig. 4Ci, ii). Among
individuals with IBD, we identified 830 segments that were sig-
nificantly shared across continents, with 525 carrying annotated
functions. Notably, the “ABC transporters” pathway was enriched in
cross-continental segments in IBD samples, including proteins of the
SitABCD system involved in manganese/iron transport systems, pre-
viously identified on plasmids41. Iron deficiency anemia is a common
complication in IBD, where iron leaking from the intestinal environ-
ment is scavenged mainly by pathogenic bacteria in the gut, trans-
forming commensal gut microbes into pathobionts and inducing
inflammation. Accordingly, iron was found by many studies to be the
main factor in determining the inflammation state in IBD by favoring
pathogenic enterobacteria in the gut42–44.

We identified 358 segments significantly shared across continents
among individuals with GRD, with 187 carrying annotated functions.
These segments were enriched with KEGG pathways such as “beta-
Lactam resistance”, consistent with our previous finding of higher

proportions of this pathway on selected segments in GRD (Figs. 3E and
4Cii). Moreover, the “Vibrio cholerae infection” pathway, including the
Zona occludens toxin (Zot), was enriched on cross-continental seg-
ments in GRD patients. This toxin is the main determinant of peptide
transfer through the intestinal epithelium45 and accordingly, affects
intestinal permeability to insulin by modifying tight junctions that
restrict the transfer of these peptides46. These results support the
involvement of specific selective forces in plasmid segment dispersal
and sharing, prioritizing essential functions formicrobial hosts to cope
in these environments, such as iron scavenging, and can directly relate
to the disease pathology. Importantly, evidence of segment selection
was also observedwithin healthy individuals (Fig. 4Biii), indicating that
these selective pressures may not be exclusive to diseased
environments.

Discussion
Plasmid studies have traditionally focused on antimicrobial resistance
gene dispersal under antibiotic-selective conditions1,12–14. However, the
broader role of plasmids and their selective environments has been
overlooked, and in vitro studies may not fully capture their natural
dynamics. Consequently, while plasmids are often perceived as under
constant selection, in natural conditions, selection may not be con-
stant or prevalent, suggesting that plasmids are exposed to stochastic
forces and disperse neutrally.

In this study, we sought to determine whether plasmid dispersal
aligns with the predictions of the neutral theory of biodiversity16 or
deviates from them, indicating nonrandom patterns driven by selec-
tive pressures. Our findings challenge prevailing beliefs, showing that
plasmid dispersal is predominantly driven by neutral forces, suggest-
ing random dispersal. Additionally, the lifestyle of plasmids affects
their dispersal, with mobilizable plasmids showing more neutral ten-
dencies than non-mobilizable ones, suggesting that mobilizable plas-
mids are better equipped to disperse and colonize in non-selective
conditions. It should be noted that further exploration of different
subdivisions of plasmid physiology such as plasmid incompatibility
groups within each plasmid lifestylemight yield different insights into
plasmid dispersal patterns with relation to these subgroups.

Our analysis revealed a bimodal distribution of plasmid lengths,
indicating a potential negative selection against medium-sized plas-
mids and suggesting evolutionarily stable size ranges. This findingmay
be connected to the functional content, geneburden, andmobilization
lifestyle of plasmids. Indeed, we find that the mobilization lifestyle of
plasmids significantly impacts their gene content and functional
potential. Mobilizable plasmids carry systems that facilitate their
transfer between hosts, as well as AMR genes, while non-mobilizable
plasmids carry ecologically relevant accessory genes that benefit
bacterial hosts within the gut. AMR genes have broader applicability,
protecting various hosts regardlessof theirmetabolism, unlike specific
metabolic functions that might not fit certain microbial hosts. This
pattern can be explained by metacommunity theory paradigms, such
as the patch-dynamic paradigm, which proposes a trade-off between
dispersal and local dominance in patchy habitats47. Accordingly,
mobilization systems in mobilizable plasmids increase their dispersal
frequency, increasing their chances of survival along with the generic
AMR genes they carry. In contrast, non-mobilizable plasmids have
limited dispersal, but carry genes that reflect the environment’s
desirable traits, enabling local dominance due to the advantage they
confer to microbial hosts. However, the small sample size of mobiliz-
able plasmids in our study may limit the detection of additional enri-
ched accessory functions.

In individualswith InflammatoryBowelDisease (IBD) andGlucose-
metabolismRelatedDiseases (GRD), we observed a decrease in neutral
dispersal for plasmids and their recombination fragments, indicating
higher selection forces within these environments. This aligns with
decreased plasmid andmicrobial species richness in these individuals,
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implying higher ecological selection rates in these environments.
Interestingly, we observed an increase in plasmid richness per micro-
bial species in these environments, which may suggest an increase in
the plasmid reservoir and their functions within phylogenies, mostly
true for the non-mobilizable plasmids which constitute themajority of
our dataset.

We found that ecologically selected plasmid segments, defined as
those that were more prevalent than their relative abundance in the
global pool, have a different distribution of functions compared to the
overall function pool within their corresponding disease state. This
suggested that specific functions were under selection, despite the
general neutral dispersal of plasmid segments. We observed an
enrichment of beta-lactam resistance in IBD, GRD, and healthy hosts,
indicating the impact of antibiotic overuse in human populations48.
These selective patterns, as well as others, were prominent in GRD and
IBD, but less evident or absent in obesity, implying minimal impact of
obesity’s low-grade inflammation on microbiome composition49,50.

Network analysis of plasmid recombinating segments across
continents and disease states further supported the role of selection
acting on specific functions. Increased plasmid segment sharingwithin
IBD and GRD, compared to healthy individuals, indicated selection
acting on these segments via HGT51. Notably, non-random plasmid
segment sharing between continents was observed in individuals with
IBD and GRD only, and not healthy individuals. These segments
encoded fordisease-relevant genes that couldprovide an advantage to
the bacterial host, further supporting the notion of selection on plas-
mid segments carrying specific functions in diseased environments.
On these shared segments in individuals with IBD, we identified genes
associated with the scavenging and transport of iron, which has been
previously linked to the pathogenesis of IBD by exacerbating
dysbiosis52. Collectively, our results suggest that segment dispersal via
selection or randomprocess ismainly driven by recombination events
and not whole plasmid mobilization or movement together with the
microbial host itself. This is seen in the higher turnover within and
between continents of the segments when compared to the plasmids
and microbes as well as the fact that the edges in our network are
composed of segments and not whole plasmids.

Our study provides strong evidence that plasmid dispersal in
human gut systems is predominantly random, with many plasmids
dispersing neutrally. However, under harsher selection pressures,
specific plasmid segments with ecological functions are selected,
reflecting the environment’s most important traits. These segments
act as reservoirs of fundamental functions in each ecosystem, poten-
tially supporting the overall health and stability of the microbiome.

Furthermore, our findings have implications for understanding
the spread and evolution of antibiotic resistance, challenging the
deterministic view of plasmid selection in antibiotic resistance spread
and emphasizing the unpredictable nature of resistance gene dis-
semination. This highlights the need to consider the stochastic aspect
of plasmid dispersal in combating antibiotic resistance. The study
underscores the importance of studying plasmids in diverse environ-
ments to gain insights into their ecology and evolution53.

This study may also contribute to resolving the plasmid paradox,
where plasmids persist in bacterial populations despite the inherent
fitness costs they impose54,55. It suggests that plasmids persist not
because they confer a fitness advantage to their hosts, but due to the
neutral dispersal and stochastic forces on both the plasmid and its
host. Overall, our findings represent a paradigm shift in our under-
standing of plasmids and their role in the spread and evolution of
accessory functions.

Methods
Datasets
Metagenomic paired-reads of 3588 samples were downloaded from
the National Center for Biotechnology Information’s (NCBI) Sequence

Read Archive (SRA) from a total of 26 Bioprojects (Supplementary
Table 1). These data spanned different continents and dis-
eases associated with dysbiosis (Fig. 1A and Supplementary Table 2).
Samples with read depths below 2 million were discarded from the
analyses, resulting in 3467 samples with read depths between 2 and 86
million reads.

Plasmid assembly
Paired-end reads were trimmed and cleaned using Trim Galore v2.656

and assembled into contigs by Megahit v1.0.357. Sequentially, a total
of 38,383 plasmids were assembled by SCAPP v0.1.424. To dedupli-
cate the plasmids, we employed a clustering approach that kept the
larger of two plasmids if their identity (as determined by BLASTn
v2.10.1+27) was above 95% and covered at least 95% of the larger
plasmid, which reduced the data to 11,086 non-redundant plasmids.
We conducted additional analyses on these 11,086 predicted plas-
mids and plotted these results using the “UpSetR”58 R package
(Supplementary Fig. 1A). We used additional tools, including MOB-
suite26, which annotates plasmid genes such as rep, mob, oriT, and
mpf, Blastn27, which we used to annotate additional plasmid genes
within the nr database, PlasForest25, a random forest classifier to
identify contigs of plasmid origin, PlasClass28, a k-mer based
sequence classifier which uses a set of standard classifiers trained on
the most current set of known plasmid sequences for different
sequence lengths achieving higher F1 scores in classifying sequences
from a wide range of datasets, and finally, an in-house plasmid gene
database (available on GitHub29). Altogether, all identified plasmids
are either predicted as such or carry plasmid genes according to at
least one of the employed methods above.

A lot of reads are lost in this process of readassembly into contigs,
contig assembly into plasmids, and further filtration steps done by
SCAPP to reduce false positive plasmids. To compensate, reads were
mapped to the non-redundant plasmids using BBmap v38.8659, and
their abundance per sample was determined using Metabat2 v2.12.160.
The read coverage of plasmids in each sample was computed by
SAMtools mpileup v1.1061. Plasmids were considered present in a
sample if they had at least 70% coverage (i.e., reads mapped at least
once over 70% of the plasmid length), reducing our data to 10,605
plasmids. To compensate for uneven read depths between samples, a
depth cutoff was determined as 1% of the lowest plasmid abundance in
the sample with the lowest read depth (~2 million reads), refining our
data to 3966 plasmids.

In all subsequent analyses, plasmid sequences were duplicated to
avoid cases where genes were split into two segments in the repre-
sented output sequence, due to random linearization during the de-
novo assembly process. The output was then corrected for this
duplication by removing repetitive results.

Plasmid and metagenome annotation
We utilized MOB-suite v3.0.326 to classify plasmids into 10,059 non-
mobilizable and 1027 mobilizable (105 conjugative and 922 mobiliz-
able). We regarded both “mobilizable” and “conjugative” plasmids as
“mobilizable” plasmids, as the only way to determine whether a
“hitchhiker” mobilizable plasmid can transfer horizontally is by
examining the presence of a conjugative plasmid within the same cell,
on the single-cell level. Following the plasmid filtration process
described earlier, this was reduced to 123 and 3843 mobilizable and
non-mobilizable plasmids, respectively. Enrichment analyses were
performed by comparing the functions associated with each plasmid
lifestyle to the overall distribution of functions on plasmids (hyper-
geometric test, false discovery rate (FDR) corrected p < 0.0001, gene
ratio > 0.1)

To assess that the observeddifference in plasmid lengths between
the mobilizable and non-mobilizable groups wasn’t due to the pre-
sence of the relatively large backbone mobility genes62, we subtracted
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these gene lengths from the length of mobilizable plasmids when
comparing plasmid lengths between the two groups.

A total of 144,339 Open Reading Frames (ORFs) were predicted
by Prokka v1.1263. Annotations were achieved using anvi’o v7.164 by
converting plasmids and segments to an anvi’o database (using anvi-
gen-contigs-database) and annotating them with the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) KOfam database version 465

(using anvi-run-kegg-kofams), resulting in a total of 22,016 KOs on
plasmids (15.25% of the predicted and clustered ORFs) and 12,567 on
segments. The annotated entities were then used as input to the
program anvi-estimate-metabolism, with the parameter --output-
modes set to both hits and modules to get the enzyme annotations
and their correspondingmetabolic modules. These steps were all run
in parallel using the NeatSeq-Flow workflow platform66. Subse-
quently, we identified 592 KOs belonging to the “Antimicrobial
resistance genes” Brite level. Of these, 252 AMR genes were validated
with the Resistance Gene Identifier (RGI) v6.0.1, based on the Com-
prehensive Antibiotic Resistance Database (CARD) v3.2.567 (Supple-
mentary Fig. 1B). Thesewere cross-referencedwith Brite annotations,
resulting in AMR genes. Read taxonomies were determined by
MetaPhlAn v4.0.368.

Plasmid segmentation
Segments were defined as a stretch of at least 1000 bp of DNA
repeating in at least two samples with at least 80% identity, as deter-
mined by a reciprocal BLASTn of plasmids against their duplicated
selves, resulting in 8234 segments. These were then clustered by 80%
identity with coverage of at least 90% length of both segments using
cd-hit-est v4.8.169,70, and filtered by plasmid coverage, refining the data
to a total of 6138 segments, across 1754 plasmids (44.23% of all plas-
mids, average length: 3033 bp). Notably, 3.4% of these shared seg-
ments also included full plasmid sequences that recombined into
larger plasmids. These rare casesmay in fact be a result of gene gain or
loss and we cannot differentiate between the two.

Neutral community model
The relative abundances of plasmids were fit to a neutral community
model (NCM)16. This model was modified to account for the large
population sizes of prokaryotic communities and allows for the
incorporation of competitive advantage71,72. We examined to which
degree the abundances of plasmids in different diseases fit this near-
neutral model. Nm indicates metacommunity size times immigration.
When comparing mobilizable and non-mobilizable neutral models, we
corrected for the uneven sample size by randomly subsampling the
non-mobilizable plasmids to match the sample size of the mobilizable
plasmids. This was done 1000 times for comparison. Segments under
selection within each disease state were defined by being in the 5%
highest frequency and 5% highest deviation values from the neutral fit
(determined by their distance from the fit on the y-axis, Supplemen-
tary Fig. 3).

Network construction and analyses
Using the “igraph”73 R package, we constructed the network of inter-
actions across the human cohort by connecting two humans if they
share at least one plasmid segment. In the resulting network based on
these segments, we observed a total of 1,931,343 interactions between
humans (out of a possible 4,501,500, network density: 43%). To iden-
tify significantly connected subgroups, we conducted a 10,000-fold
randomization process by permuting the network using the
“BiRewire”74 R package. This package is specifically designed for
bipartite networks, ensuring that the degree of each node in the ori-
ginal network is conserved while maximizing randomization. Subse-
quently, we reconstructed the segment-sharing network based on
these permutations. We then analyzed the non-random connections

within each disease state and compared connectivity across andwithin
continents to assess the effect of geographic barriers (p <0.0001, FDR
corrected). To eliminate any bias, we excluded samples from the
obesity disease group, which mainly came from one continent only.
The network was visualized using Cytoscape75. For visualization pur-
poses only, we reduced the network complexity by filtering out edges
with weights less than 100 (meaning humans that shared less than
100 segmentswere not connectedby anedge in thefigure) andfiltered
out edges connecting humans of different disease states. All analyses
and statistics were done on the original unfiltered network. Significant
edges within each disease state were determined by comparing their
frequency in the original network with that in all permuted networks
(p < 0.05, FDR corrected). Enrichment analyses were performed by
comparing the functions associated with these significant segments to
the overall distribution of functions observed on segments (hyper-
geometric test, FDR corrected p <0.01, gene ratio >0.1, Fig. 4Biii). In
addition, significant cross-continental disease groups (specifically IBD
and GRD) were analyzed for significantly connected edges within
them. These significant edges were defined by comparing their fre-
quency between significantly connected continents in the original
network with that in all permuted networks (p <0.05, FDR corrected).
Enrichment analyses were performed by comparing the functions
associated with these significant segments to the overall distribution
of functions observed on segments within the respective diseases
(hypergeometric test, p < 0.01, gene ratio >0.1, Fig. 4Cii).

R packages
Statistical analyses were carried out using R 3.5.176. Data manipulation
was achieved using “tidyverse”77 and “dplyr”78 R packages. Graphswere
generated using the R package “ggplot2“79, including the map dis-
played in Fig. 1A, statistics were plotted with “ggpubr”80 and the gra-
phics were modified using “ggh4x”81 and “ggtext”82. All enrichment
tests of KEGG Orthology pathways were achieved using a hypergeo-
metric test and a false discovery rate correction for multiple testing,
with “clusterProfiler”83. Jaccard distances were calculated using the
“vegan”84 R package. Chi-square, Fisher’s exact, and Wilcoxon rank-
sum tests, as well as linear models and correlations, were calculated
using the “stats” R package. All p-values of multiple comparison ana-
lyses were corrected accordingly (FDR).

Statistics and reproducibility
With the exception of samples with low read depths, no data were
excluded from the analyses. All statistical analyses conducted in this
paper are detailed in the previous sections.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All the utilized metagenomes in this study are publicly accessible on
NCBI: PRJEB17784, PRJNA339012, PRJNA356102, PRJEB18755,
PRJNA196801, PRJNA290729, PRJNA690543, PRJEB12947, PRJEB7774,
PRJEB7949, PRJEB10878, PRJNA328899, PRJNA321058, PRJEB15371,
PRJNA305507, PRJEB2054, PRJEB1786, PRJEB12124, PRJNA319574,
PRJNA422434, PRJNA278393, PRJEB4336, PRJEB1220, PRJNA324129,
PRJNA299502, PRJNA361402. Details of accession numbers, alongwith
paper references, are outlined in Supplementary Table 1. The relevant
metadata, plasmid sequence files, and in-house plasmid gene database
are all available on GitHub29.

Code availability
The scripts to execute the main analyses conducted in this study are
available on GitHub29.
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