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Machine-learning-assisted and real-time-
feedback-controlled growth of InAs/GaAs
quantum dots

Chao Shen1,2,3,7, Wenkang Zhan1,2,7, Kaiyao Xin2,4, Manyang Li1,2, Zhenyu Sun1,2,
Hui Cong2,5, Chi Xu2,5, Jian Tang6, Zhaofeng Wu3, Bo Xu1,2, Zhongming Wei 2,4,
Chunlai Xue2,5, Chao Zhao 1,2 & Zhanguo Wang1,2

The applications of self-assembled InAs/GaAs quantum dots (QDs) for lasers
and single photon sources strongly rely on their density and quality. Estab-
lishing the process parameters in molecular beam epitaxy (MBE) for a specific
density of QDs is a multidimensional optimization challenge, usually addres-
sed through time-consuming and iterative trial-and-error. Here, we report a
real-time feedback control method to realize the growth of QDs with arbitrary
density, which is fully automated and intelligent. We develop a machine
learning (ML)model named 3D ResNet 50 trained using reflection high-energy
electron diffraction (RHEED) videos as input instead of static images and
providing real-time feedback on surfacemorphologies for process control. As
a result, we demonstrate thatML fromprevious growth could predict the post-
growth density of QDs, by successfully tuning the QD densities in near-real
time from 1.5 × 1010cm−2 down to 3.8 × 108cm−2 or up to 1.4 × 1011cm−2. Com-
pared to traditional methods, our approach can dramatically expedite the
optimization process and improve the reproducibility of MBE. The concepts
andmethodologies proved feasible in this work are promising to be applied to
a variety ofmaterial growth processes,whichwill revolutionize semiconductor
manufacturing for optoelectronic and microelectronic industries.

Self-assembled quantum dots (QDs) have attracted great interest due
to their applications in various optoelectronic devices1. The so-called
Stranski-Krastanow (SK) mode in molecular beam epitaxy (MBE) is
widely used for growing these high-quality QDs2. For specific applica-
tions, such as QD lasers, high QD densities are required; while low-
density QDs are necessary for other applications, such as single photon
sources1. However, the outcomes of any QD growth process are a
complex function of a large number of variables including the

substrate temperature, III/V ratio, and growth rate, etc. Building a
comprehensive analytical model that describes complex physical pro-
cesses occurring during growth is an intractable problem3. The opti-
mization of material growth largely depends on the skills and
experienceofMBE researchers. Time-consuming trial-and-error testing
is inevitably required to establish optimal process parameters for the
intended material specification. It is needed to build a real-time con-
nection between in situ characterization and material growth status.
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Machine learning (ML) is revolutionary due to its exceptional
capability for pattern recognition and its potential in approximating
the empirical functions of complex systems. It enables researchers to
extract valuable insights and identify hidden patterns from large
datasets, leading to a better understanding of complex phenomena
required to build predictive models, generate new hypotheses, and
determine optimal growth conditions for MBE4–8. It offers an alter-
native approach where the growth outcomes for an arbitrary set of
parameters can be predicted via a trained neural network, which has
been applied to extract film thickness and growth rate information9,10.
Moreover, by enabling the direct adjustment of parameters during
material growth, ML-based in situ control can detect and correct any
deviation fromexpected values in a timelymanner11–13.Meng et al. have
utilized a feedback control to adjust cell temperatures after an amount
of film being deposited, thereby capable of regulating AlxGa1-xAs
compositions in situ13. However, these remain posteriori ML-based
approaches, since they require the completion of the growth10.
Therefore, once the sample characterization results deviate from
expectation, it becomes challenging and time-consuming to identify
reasons11.

To fully exploit the effectiveness of real-time connection based
on ML, an in situ characterization with continuous and transient
working mode is highly desirable to unveil the material status.
Reflection high-energy electron diffraction (RHEED) has been widely
used to capture a wealth of growth information in situ14. However, it
still faces the challenges of extracting information from noisy and
overlapping images. Traditionally, identifying RHEED patterns dur-
ing material growth was mainly depended on the experience of
growers. Progress has been made in the automatic classification of
RHEED patterns through ML that incorporates principal component
analysis (PCA) and clustering algorithms9,14–17. It surpasses human
analysis when a single static RHEED image is gathered with the sub-
strate held at a fixed angle16,18. However, this may result in an
incomplete utilization of the temporal information available in
RHEED videos taken with the substrate rotating continuously16,19,20.
Although few researchers have highlighted the importance of ana-
lyzing RHEED videos, their ML models were still based on PCA and
encoder-decoder architecture with a single image input16,21. To date,
it is still hard to build a real-time connection between in situ char-
acterization andmaterial growth status, which is a prospectiveway to
realize the precise control on material specifications.

In this work, we proposed a real-time feedback control based on
ML to connect in situ RHEED videos andQDdensity, automatically and
intelligently achieving a low-cost, efficient, reliable, and reproduceable
growth of QDs with required density. By investigating the temporal
evolution of RHEED information during the growth of InAs QDs on
GaAs substrates, the real-time status of the sample was better reflec-
ted. We applied two structurally identical 3D ResNet 50 models in ML
deployment, which takes three-dimensional variables as inputs to
determine the QD formation and classify density22,23. We showed that
ML can simulate and predict the post-growth material specifications,
and based on which, growth parameters are continuously monitored
and adjusted. As a result, the QD densities were successfully tuned
from 1.5 × 1010cm−2 down to 3.8 × 108cm−2, and up to 1.4 × 1011cm−2,
respectively. The methodology can also be adapted to other QD sys-
tems, such as the droplet QDs, the local droplet etching, and manhole
infilling QDs with distinct RHEED features24–27. The effectiveness of our
approach by taking full advantages of in situ characterization marks a
significant achievement of establishing a precise growth control
scheme, with the capabilities and potentials of being extended to
large-scale material growth, reducing the impact on material growth
due to instability and uncertainty of MBE operation, shortening the
parameter optimization cycle, and improving the final yield ofmaterial
growth.

Results
Sample structure and data labeling
Our method relied on an existing database of growth parameters with
corresponding QD characteristics, which helped us decide the growth
parameters needed to achieve a target density for QDs. The sample
structure is shown in Fig. 1a, with density results of 30 QD samples
summarized in Table 1, which are correlated with the RHEED videos.
Each QD growth was repeated on average 4 times, leading to the
generation of 120RHEEDvideos. The samples grownwithoutQDs have
flat surfaces determined by an atomic force microscope (AFM) as
shown in Fig. 1b, corresponding to streaky RHEED patterns in Fig. 1f,
whichwas artificially labeledwith “zero” referring to the density ofQDs
on the surface27. With the increase of QD density, it was found that the
RHEED gradually converted from streaky to spotty patterns. The QDs
density of ~2.9 × 109 cm−2 from Fig. 1c corresponds to the RHEED pat-
tern consisted of streaks and spots in Fig. 1g27. As shown in Fig. 1d, h,
with the further increase of QDs density reaching 1.9 × 1010cm−2, the
arrangement of RHEEDpattern showed typical spot features28–30. Upon
conducting a more thorough analysis of the RHEED patterns, we
identified the patterns transition fromhavingboth streaks and spots to
only spots, corresponding to a density of 1 × 1010cm−2 in AFM images.
So, we assigned the “low” label to densities below 1 × 1010cm−2, the
“middle” label to densities ranging from 1 × 1010cm−2 to 4 × 1010cm−2. As
the density exceeds 4 × 1010cm−2, the spot features become more
rounded and show higher brightness, we labeled densities exceeding
4 × 1010cm−2 as “high” (see Supplementary Information for RHEED
characteristics of QDs with different labels, S1)31–33. Fig. 1e, i show the
typical AFM and RHEED images after the QD formation, respectively,
with the QD density of ~1.0 × 1011 cm−2. It is worth noting that we keep
the labels to the RHEED videos the same before and after the QD
formation. The RHEED information before the QD formation can be
used to determine the resulting QD density grown under the same
conditions, enabling us to adjust the material growth parameters
before the QD formation.

Program framework and video processing
The design framework of our program is illustrated in Fig. 2a. An
appropriate scheme was designed to pre-process the RHEED video
data. Then, a ML model was selected based on the pre-processing
results. Furthermore, we alsodetermined theway to adjust parameters
according to output results of the model.

RHEED videos taken during growth were first deconstructed into
multiple temporal images and utilized as input for our model, which is
a technique for breaking down video processing, offering a more
versatile and efficient approach to analyze and process information in
dynamic scenes34. The original image collected has uncompressed 4
channels of 8-bit depth color with a resolution of 1920 × 1200. The
software cropped a square area from the image, as shown in Fig. 2b,
immediately compressed to 300× 300 by zero-order sampling and
converted it to a single 4 × 300× 300 matrix (see Supplementary
Information for the cropping area of RHEED images, S2). To efficiently
utilize the temporal information within RHEED data, we used the latest
RHEED image as a starting point, acquired an additional several con-
secutive images before, and bundled as the original RHEED dataset for
the model, as shown in Fig. 2c35. Subsequently, each image was con-
verted to a single-channel 8-bit grayscale image based on the lumi-
nance information16,21, and stitched into an N × 300× 300 3D matrix
through shift registers, as shown in Fig. 2d. Additionally, we modified
the convolutional filtering order. Traditional Convolutional Neural
Networks (CNNs) tend to uniformly sample color channels, which is
effective for images with rich color information, but not suitable for
our data36,37. To address this issue, we designed an image processing
approach that uses longitudinal size information instead of color
channel information, which can improve the correlation between
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channels, reduce unnecessary calculations, and improve data proces-
sing efficiency38–40. Therefore, the size of the preprocessed data was
N × 300× 1 × 300, representing the image number, imagewidth, image
color channel, and image length. We then compared the impact of
choosing different numbers of images onmodel training accuracy and
speed, ultimately determined that selecting 8 images was the appro-
priate choice (see Supplementary Information for the number of
images selected and speed management, S3 and S4). Finally, we con-
ducted preprocessing for all data before model training to reduce the
time. We have also applied data augmentation techniques to the
training data, including adjusting image curves, cropping images, and
scaling images, which effectively increase data diversity and improve
the model’s generalization ability. This process resulted in the acqui-
sition of ~360,000 NumPy arrays with each sample ~704KB in size.

Model construction and evaluation
The ResNet 50 model has emerged as our preferred choice for several
reasons, including its capability to address gradient vanishing issues
and automatically learnmethods for extracting features from raw data
withoutmanual feature engineeringor dimensionality reduction, rapid
convergence, and suitability for deep training. When processing video
frame data, 3D convolution proves more effective in extracting spatial
and temporal dimension information from videos than the 2D con-
volution used in the standard ResNet model. The difference between
our network and the original ResNet lies in the dimensionality of the
convolutional kernel and batch normalization operations23. Our 3D
ResNet 50 model employs 3D convolutions and 3D batch normal-
ization. This spatiotemporal-feature-learning method enables the 3D
ResNet 50 model to better capture the dynamic information in videos

compared to 2D CNN, resulting in an enhanced ability to identify and
differentiate the categories of videos41,42. Furthermore, we have
adjusted the structure of identity shortcuts to reduce information loss
during downsampling and reduced the frequency at which the model
doubles the number of channels after passing through the residual
structure (see Supplementary Information for the detailed structure of
the ResNet 50 model and the principle of the basic residual block in
ResNet, S5 and S6). We also compared the ResNet 50model and other
models, and the results revealed that ResNet 50outperforms the other
models significantly (see Supplementary Information for comparison
of training and validation results of different models, S7)23.

We trained models for judging the QDs formation and classifying
density, which are called the “QDs model” and the “density model”,
respectively (see Supplementary Information for model development
and training result, S8). As shown in Fig. 3a, the output of the QDs
model consists of just two categories, represented as “Yes” or “No”,
indicating whether the QD has formed. In contrast, the output of the
density model consists of “zero”, “low”, “middle”, and “high” labels,
corresponding to different QD density prediction results.

The accuracy and loss of the QDs and density models during the
training are shown in Fig. 3b, c. Overall, the improvement trend of
accuracy for the two models is evident. As the training of the two
models progresses, the Acc curve exhibits an overall upward trend,
while the Loss curve shows a downward trend. Due to the more sig-
nificant changes in loss values compared to accuracy values, additional
simple polynomial fitting and thefirst derivative of the Loss curvewere
performed to obtain Trend and Change curves. It can be observed that
the Train Trend and Train Change show a stable trend close to zero
throughout the entire training process. Furthermore, the change in

)e()d()c()b(
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Fig. 1 | Quantum dot (QD) sample structure and data labeling. a The schematic
of the sample structure. The thick GaAs buffer layer is grown on an n-type GaAs
substrate at 600 °C. Subsequently, the substrate is cooled to 450–500 °C for the
growth of InAs QDs. b–e The 2μm×2μm atomic force microscope (AFM) images
of QDs with varied labels. “zero”: there are no QDs on the surface. “low”: the InAs

QDs sample with density less than 1 × 1010cm−2. “middle”: the InAs QDs sample with
density range from 1 × 1010cm−2 to 4 × 1010cm−2. “high”: the InAs QDs sample with
density higher than 4 × 1010cm−2. f–iCorresponding reflection high-energy electron
diffraction (RHEED) images with varied labels.

Article https://doi.org/10.1038/s41467-024-47087-w

Nature Communications |         (2024) 15:2724 3



Valid Loss can better reflect the model’s performance compared to
Train Loss. The Valid Trend and Valid Change curves fluctuate sig-
nificantly and gradually stabilize, indicating that the model is pro-
gressively learning information from initial states and achieving stable
convergence, resulting in aminor deviation between themodel output
and the dataset. Throughout themodel trainingprocess, thepersistent
fluctuations and plateaus in the “QDs model” and “density model”
accuracy were attributed to the data diversity and the manual label
assignment process instead of limitations inherent in the model itself.
After 120 training cycles, the “QDs model” maintained a validation
accuracy of over 90%, as shown in Fig. 3b, ultimately achieving a final
average validation accuracy of 94.4%. The fluctuations observed in the
“QDs model” validation process predominantly originate from a spe-
cific time before the QD formation when the RHEED streaks still
dominatedmost of the collected images.As theQDs are about to form,
the spot features closely associated with QD formation are often faint
and overshadowed by the streak features. As depicted in Fig. 3c, the
validation accuracy of the “density model” continues to exhibit fluc-
tuations even after 100 epochs, primarily attributed to label overlap
when low-density QD data exhibit an increase in density with
deposition43,44. However, it consistently maintained a validation accu-
racy of over 80%, and the final average validation accuracy
reached 95.1%.

Furthermore,we collectmultiple results fromtheQDs anddensity
models outputs when deploying. The result with the highest

probability is selected to determine whether the adjustment to the
growth parameters is necessary. This approach helps mitigate the
impact of randomness and variability, reducing the likelihood of
operational errors by the model during software deployment45–47.
Moreover, we converted the model into the open standard Open
Neural Network Exchange (ONNX) format. When deployed in a Lab-
VIEW environment equipped with TensorRT accelerators, the QDs and
density models can each produce results at an approximate rate of
1 sample per second, effectively meeting the application’s require-
ments (see Supplementary Information for hardware wiring scheme
for model deployment and Program interface and deployment envir-
onment, S9 and S10). Additionally, the model is universally applicable
to other systems with different wobble characteristics without a new
training cycle (see Supplementary Information for theQDs anddensity
models with different wobble characteristics, S11).

To enable early intervention in the growth process before theQDs
formation, we developed a control logic for the LabVIEW program, as
shown in Fig. 3d. After opening the shutter, the substrate temperature
remains unchanged if the label output from the density model aligns
with the preset target before QD formation. If the output label’s den-
sity from the density model exceeds the target density, the substrate
temperature increases; otherwise, it decreases. Once the QDs model
recognizesQD formation, the shuttlewill remainopenuntil the density
model’s output matches the target. At this point, it closes the shutter
to complete the growth process. This control logic adjusts the sub-
strate temperature continuously, gradually increasing the likelihoodof
growing QDs with the target density.

Controlled growth of low-density QDs
We have grown a reference sample with QD density of 1.5 × 1010cm−2,
corresponding to label “middle” (see Supplementary Information for
details of the reference sample, S12). Subsequently, we set the initial
substrate temperature equivalent to that used in the reference sample
and conducted in situ control experimentwith the “low”or “high” label
as the target. After growth, we compiled each frame of the RHEED
video captured during the growth into a sequence and analyzed. In
order to distinguish different growth stages under model control, we
marked the QD formation time and the In shutter closing time judged
by the model with blue and yellow lines in the Figs. 4, 5. In addition,
since the “zero” labels appear rarely and have little impact on output
results, it was not included in the figures.

As shown in Fig. 4a, the substrate temperature increased by 44 °C
from the beginning of the sequence until the In shutter was closed (see
Supplementary Video 1 for the experiment). This indicates that the
initial substrate temperature was not suitable for the “low” label. In
addition, the blue line and yellow line are in the same sequence, indi-
cating that when the QDs are formed, the “density model” has already
determined that the RHEED sequences are consistent with the “low”
label. As shown in Fig. 4b, theRHEED imagesmainly show streaks in the
initial growth stage of QDs; it kept even before the QD formation, as
shown in Fig. 4c. This is attributed to the relatively flat surface of the
sample in the early stage of QD growth. After the QD formation, a
pattern coexisting streaks and spots was immediately observed as
shown in Fig. 4d, consistent with the “low” label characteristics27. The
QDs has a density of 3.8 × 108cm-2, with an average diameter of 50.5 nm
and height of 10.0 nm, as shown in the AFM image in Fig. 4e.

Figure 4f shows the “QDs model” results of the experiment with
the “low” label as the target. To effectively depict data trends, we have
incorporated running average plots to illustrate the evolution of the
model’s output results. We classified RHEED videos as “Yes” or “No”
based on observations of QDs formation. At the beginning of growth,
the primary output of the QDs model was “No” from the initial to the
200th sequence, and the probability of outputting “Yes” was only 7%.
Even though the proportion of outputting “Yes” increases to 15%, the
likelihood of the model outputting “No” remains higher from the

Table 1 | QD densities and labels assigned for the samples in
the dataset, the density of QDs was determined by counting
the number of QDs in the AFM image

Sample Density (cm�2) Label

1 0.000E +00 zero

2 0.000E +00 zero

3 0.000E +00 zero

4 3.960E +08 low

5 6.936E +08 low

6 1.700E +09 low

7 3.900E +09 low

8 9.000E +09 low

9 9.442E +09 low

10 1.250E + 10 middle

11 2.035E + 10 middle

12 2.416E + 10 middle

13 2.616E + 10 middle

14 2.666E + 10 middle

15 2.768E + 10 middle

16 2.920E + 10 middle

17 2.999E + 10 middle

18 3.266E + 10 middle

19 3.330E + 10 middle

20 3.389E + 10 middle

21 3.537E + 10 middle

22 3.629E + 10 middle

23 3.725E + 10 middle

24 3.836E + 10 middle

25 4.740E + 10 high

26 6.480E + 10 high

27 7.040E + 10 high

28 9.493E + 10 high

29 1.177E + 11 high

30 1.691E + 11 high
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200th to the final 40 sequence before the blue line. When the growth
process approaches the QDs formation, we observed a significant
increase from 15% to over 27% of the “Yes” label. This trend continues
until the shutter closes, with over 55% probability of outputting “Yes”.
This indicates that the QDs model exhibits a certain sensitivity to the
presence of low-density QDs (see Supplementary Information for
another controlled growth experiment of low-density QDs, S13).

Figure 4g shows the “density model” results of the experiment
with the “low” label as the target. From the initial to the 200th

sequence, the probability of output “low” is significantly lower than
that of combined “middle” and “high”. However, with the real-time
feedback control of growth conditions, it is evident that the prob-
ability of output “low” approaches over 50%. The growth conditions
have been gradually adjusted to better suit the growth of low-density

QDs. It becomes apparent from the sequence before and after the blue
line that the probability of the model outputting “low” surpasses 55%
and persists until the end of the growth.

Controlled growth of high-density QDs
Wealso conducted an in situ control experimentwith the “high” label as
the target (see SupplementaryVideo2 for the experiment). FromFig. 5a,
it can be observed that the substrate temperature decreased by a total
of 24 °C, indicating that the initial substrate temperature was not sui-
table for “high” label. In addition, the blue line did not overlap with the
yellow line, which indicates the RHEED image with “high” label did not
appear during the initial stage of theQD formation. In the initial stage of
InAs growth, the RHEED pattern mainly showed streaky features, as
shown in Fig. 5b. As the deposition amount increased, the streaks

T

T-1

T-2

tt-1t-2t-3t-4t-5t-6t-7· · ·· · ·· · ·

(b)

(c)

tt-1t-2t-3 t-4t-5t-6t-7 tt-1t-2t-3t-4t-5t-6t-7

(d)

(a)

Substrate rotation

Electron gun

Fluorescent screen Sample

Reshape

Cell temperature

Cell shutter

Substrate temperature

Fig. 2 | Control program framework and video processing principle. a The fra-
mework of the program. An electron beam generated by an electron gun is con-
tinuously applied to the rotating substrate, creating a diffraction image frame by
frame on the fluorescent screen. Multiple images are then converted to a new
matrix, and the reshapedmatrix is then transferred to the model for generation of
results to guide the adjustment of material growth parameters. b A typical reflec-
tion high-energy electrondiffraction (RHEED) image taken from the cameraand the
cropping area.The areamarkedby theblue square is an effective selectionarea that
the software must handle and subsequently provide as input to the model.

c Continuous sampling method for RHEED images. The software processes images
with data at position T during each iteration. T is comprised of several sub-images
taken sequentially from time t, including t-1, t-2, and so forth. Similarly, the data
positions processed by the software in the previous iteration are T-1, T-2, and so on.
dProcessingmethod for sampled images. Thedata at a specificpositionT is initially
acquired. Subsequently, each data point within T, denoted as t, t-1, t-2, and so forth,
is transformed into a 2D matrix containing only black and white channels. Finally,
these individual 2D matrices are stitched into a 3D matrix.
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Fig. 3 | Model construction, evaluation, and deployment. a A simplified archi-
tectural diagram of the model. The preprocessed data is processed by a 3D ResNet
50 model, which comprises both residual and fully connected structures and out-
puts classification results. Conv3D is a 3D convolution layer. BatchNorm3D is a 3D
batch normalization layer. ReLU represents the rectified linear unit activation
function. Training performance of (b) “QDsmodel”, and (c) “density model”. Train:
training. Valid: validation. Acc: accuracy. Loss: loss. The Loss and Acc curves are
derived from results during model training. The Trend and Change curves are
simple polynomial fit and the first derivative of the Loss curve, respectively. (d) A

control logic diagram for the model deployment. After opening the shutter, the
substrate temperature remains unchanged if the label output from the density
model aligns with the preset target before quantum dot (QD) formation. If the
output from the density model exceeds the target density, the substrate tem-
perature increases; otherwise, it decreases. Once the QDs model recognizes QD
formation, the shuttle will remain open until the density model’s output matches
the target. At this point, it closes the shutter to complete the growth process.
Source data are provided as a Source Data file.
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gradually became blurred before the QD formation, indicating that a
certain amount of InAs has already deposited and caused the substrate
surface to become rough, as shown in Fig. 5c. The RHEED pattern in
Fig. 5d showed streaks and spot feature after the QD formation like
those shown in Fig. 4d, which are typical features of the “low” label. This
explains why the blue line and the yellow line in Fig. 5a did not coincide.
As the In shutter closed, and the RHEED pattern exhibited spots, as
shown in Fig. 5e. The QDs density is ~1.4 × 1011 cm−2 with an average
diameter of 33.5 nm and height of 3.2 nm, as shown in Fig. 5f.

In high-density growthexperiments, the shutter remainsopenafter
the formation ofQDs for a period. As depicted in Fig. 5g, theQDsmodel
predominantly outputs “No”beforeQDs formation,with theprobability
of outputting “Yes” reaching amaximumof 30%, as evidenced from the
initial to around 1000th sequence. As we approach the formation of
QDs, the probability of the QDs model outputting “Yes” approaches
100% around the blue line, indicating high accuracy in recognizing spot
patterns after the QD formation. It is noteworthy that there is still a
distance between the last “No” label and the blue line, since we confirm
the QD formation by collecting multiple results of the model.

The output results of the density model are also presented in
Fig. 5h. BeforeQDs formation, the densitymodel rarely outputs “high”.
However, as the growth process approaches the stage of QD forma-
tion, the probability of “high” label output slowly increases to 15%
around the blue line. Following the formation of QDs, the probability
of the density model outputting “high” rapidly increases to over 30%

around the 1100th sequence. Due to the unique nature of QD systems,
closing the shutter at this point would restrict the formation of high-
density QDs48,49. As the growth process continues and approaches the
moment the shutter is closed, it becomes evident that the probability
of themodel outputting “high” rapidly increases to over 70%. This also
indicates the successful growth of high-densityQDs inour experiment.

Discussion
Furthermore, we also set the initial conditions favorable for the growth
of high-densityQDs and conducted experimentswith the “low” label as
the target (see Supplementary Information for controlled growth of
low-density QDs with initial high-density growth conditions, S14). The
densities of QDs we demonstrated in the experiments are typical for
single photon sources and QD lasers. Note our experiments have a
certain failure rate due to data labeling, the accuracy of themodel, and
limited dataset50–52. In our experiment, each prediction takes a few
seconds, which is limited by the graphics card of our setup; the com-
munication between the server and MBE controller takes seconds
which is determinedbywiring, the baud rates of serial communication,
and the output capacity of the controller. By upgrading the hardware
of our MBE system, a few tens of milliseconds of response can be
achieved using the sameworkflow developed in this report. Moreover,
as the breakthroughs in data label partitioning methods and dataset
expansion in the future, we anticipate achieving finer-grained density
regulation during the material growth process.

low

(a)

(b) )e()d()c(

)g()f(

Fig. 4 | Controlled growth process of low-density quantum dots (QDs).
Experiment with the “low” label as the target. Blue lines: the QD formation time.
Yellow lines: the In shutter closing time. a Substrate temperature during growth.
The reflection high-energy electron diffraction (RHEED) image (b) captured at
200th frame after growth; (c) before the QD formation; (d) after the QD formation;

(e) the 2μm×2μm atomic force microscope (AFM) image of the sample; the pre-
diction results of (f) the “QDsmodel” and (g) the “densitymodel”. Dots: probability
statistics of different labelsbasedon themodel results. Lines: running averageplots
of dots. Source data are provided as a Source Data file.
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In conclusion, we developed a metrology to control the material’s
properties grown by MBE in situ. Specifically, we showed that a neural
network could accurately predict the post-growthdensity ofQDswithin
a wide range by utilizing RHEED videos information of as-grown sam-
ples. We applied the method to InAs/GaAs QDs by tuning growth
parameters in near real-time and validated it to in situ control the QD
density, which was usually only possible by trial-and-error. The cap-
ability can significantly reduce the timeand thenumberof experimental
iterations required for development and optimization to achieve
material specifications. In this proof-of-concept study, we trained a
network to simulate a specific type of MBE growth task by varying the
substrate temperature. In practice, one would train the network to the
tasks with a full range of system metadata. In this way, the network
would accrue an “understanding” of the complex relationships among
the numerous samples and system parameters that affect the growth
outcomes. Our investigations highlighted the considerable strength
and practicality of the growth metrology to achieve high-quality epi-
taxial thinfilms for various applications.Moving forward, there is a huge
potential for such networks to be deployed for defect detection, iden-
tification, and repair during material growth at an early stage.

Methods
Material growth
The InAs QD samples were grown on GaAs substrates in the Riber 32 P
MBE system, equipped with arsenic (As) valved cracker, indium (In),
and gallium (Ga) effusion cells. As4 was used in the growth by keeping

the cracker temperature at 600 °C. The beam equivalent pressure
(BEP) was used to evaluate the flux of the III and V elements and cali-
brate their ratio53. A C-type thermocouple measured the substrate
temperature, and the growth rates were calibrated through the RHEED
oscillations of extra layers grown on GaAs substrates. The substrate
was outgassed at 350 °C in the buffer chamber, then heated to 620 °C
in the growth chamber for deoxidation. The substrate was then cooled
to600 °C for the growthof theGaAsbuffer layer. The sample structure
is shown in Fig. 1a. The BEP of In was 1.4–1.5 × 10-8Torr, while the BEP of
As was 0.95–1.0 × 10-7Torr. The QDs were formed in the SK growth
mode after depositing 1.7ML of InAs at a temperature of 450–500 °C
and a rate of 0.01ML/s. The initial growth showed a relatively flat
planar structure, pertaining to the wetting layer growth54–59. The for-
mation of InAs QDs was verified by the streaky-spotty RHEED pattern
transition60.

Material characterization
RHEED in theMBE growth chamber enabled us to analyze andmonitor
the surface of the epilayer during the growth. RHEED patterns were
recorded at an electron energy of 12 kV (RHEED 12, from STAIB
Instruments). A darkroom equipped with a camera was placed outside
the chamber to continuously collect RHEED videos with the substrate
rotating at 20 revolutions per minute. The exposure time was 100ms,
with a sampling rate of 8 frames per second. To achieve a clear cor-
relation of RHEED with QD density, we also characterized the surface
morphologyof the InAsQDsusingAFM(Dimension Icon, fromBurker).

high

(a)

(b) (c) (d) (e)

)h()g(

(f)

Fig. 5 | Controlled growth process of high-density quantum dots (QDs).
Experiment with the “high” label as the target. Blue lines: the QD formation time.
Yellow lines: the In shutter closing time. a Substrate temperature during growth.
The reflection high-energy electron diffraction (RHEED) image (b) captured at
200th frame after growth; c before the QD formation; d after the QD formation;

e before the end of the growth; f the 2μm×2μm atomic force microscope (AFM)
image of the sample; the prediction results of (g) the “QDs model” and (h) the
“density model”. Dots: probability statistics of different labels based on the model
results. Lines: running average plots of dots. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-47087-w

Nature Communications |         (2024) 15:2724 8



Hardware wiring scheme
Our model is deployed on a Windows 10 computer system with an
AMDR9 7950X CPU, 64GB of memory, an NVIDIA 3090 graphics card,
and a 2TB solid-state drive. The programprimarily obtains information
from the temperature controllers, shutter controllers, and the camera
(Fig. S11). We use a USB 3.0 interface to connect the camera to the
computer. Temperature controllers are connected in series using the
Modbus protocol to simplify the wiring. To reduce the delay in sub-
strate temperature control, our program solely looks up information
by address from the temperature controllers connected to the
substrate.

Model construction environment
The model development occurred in the Jupyter Notebook environ-
ment on the Ubuntu system, utilizing Python version 3.9. We installed
PyTorch based on CUDA 11.8 in this environment to leverage graphics
card operations. The original video datawas rapidly converted into the
NumPy arrays format using code with random data augmentation
within the Ubuntu system. Subsequently, the processed data was
stored on our computer’s hard disk.

Program interface and deployment environment
The program was developed using LabVIEW, the built-in NI VISA, NI
VISION, and Python libraries for data acquisition and processing (see
Supplementary Information for program interface and deployment
environment, S12). The program also employs ONNX for model
deployment and TensorRT for inference acceleration and allows users
to set targets for the desiredQDdensity. Once the substrate and In cell
temperatures stabilize, the program can be initiated. Firstly, the pro-
gram checks the shutter status and controls the substrate and cell
temperatures. Once the In shutter is open, the model starts to analyze
RHEEDdata in real-time. Themodel outputs are displayed as numerical
values at the top of the interface and are converted to corresponding
label characters on the right side. The growth status can be displayed
in the “Reminder Information”. Before and after theQDs formation, the
“Reminder Information” will show up as “Stage 1” and “Stage 2”,
respectively. It will display “Finished”when themodel results meet the
targets several times after the QD formation.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analyzed during the current
study are available in the Figshare repository, https://doi.org/10.6084/
m9.figshare.2434705361. Source data are provided with this paper.

Code availability
The codes supporting the findings of this study are available from the
corresponding authors upon request.
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