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An optoacoustic field-programmable
perceptron for recurrent neural networks

Steven Becker1,2, Dirk Englund 3 & Birgit Stiller 1,2

Recurrent neural networks (RNNs) can process contextual information such as
time series signals and language. But their tracking of internal states is a lim-
iting factor, motivating research on analog implementations in photonics.
While photonic unidirectional feedforward neural networks (NNs) have
demonstrated big leaps, bi-directional optical RNNs present a challenge: the
need for a short-term memory that (i) programmable and coherently com-
putes optical inputs, (ii) minimizes added noise, and (iii) allows scalability.
Here, we experimentally demonstrate an optoacoustic recurrent operator
(OREO) which meets (i, ii, iii). OREO contextualizes the information of an
optical pulse sequence via acoustic waves. The acoustic waves link different
optical pulses, capturing their information and using it to manipulate sub-
sequent operations. OREO’s all-optical control on a pulse-by-pulse basis offers
simple reconfigurability and is used to implement a recurrent drop-out and
pattern recognition of 27 optical pulse patterns. Finally, we introduceOREO as
bi-directional perceptron for new classes of optical NNs.

Understanding the context of a situation is a powerful ability of the
human brain, allowing it to predict possible outcomes and to make
intelligent decisions. While humans can access the context of a situa-
tion via the short-termmemory, machines struggle in contextualizing.
Artificial neural networks, one of the most powerful computing
architectures, face this problem as well. To overcome this limitation,
they can be equipped with recurrent feedback, allowing them to pro-
cess current inputs based on previous ones. The so-called recurrent
neural networks (RNNs) can contextualize, recognize, and predict
sequences of information and are applied for numerous applications
such as language processing tasks, and for video and image
processing1–5. One of the simplest versions of a RNN is the Elman
network6, which adds a recurrent operation to each neuron of its fully-
connected network, analogous to the neuron’s activation function.
With this three-layer network, Elman was already able to understand
simple grammatical structure. More complex models have proven
themselves as Chinese poets, rap artists, and empathetic listeners7–9.

Currently, the scientific community aims to transfer electronic
neural networks into the optical domain. The resulting optical neural
networks have attracted great interest due to their promises of high

processing speed and broad bandwidth, and low dissipative losses10–12.
Thus, they are considered to pave theway towards energy efficient and
highly parallel optical circuits, enhancing the performance and cap-
abilities of future artificial neural networks13–19.

Although the field of optical neural networks has made great
progress in recent years, the field of recurrent optical neural networks
is still very limited to concepts based on artificial reservoirs, such as
free-space cavities20, delay systems21,22, and microring resonators23.
These designs can face several challenging issues. Firstly, the usage of
an artificial cavity, e.g. a ring resonator, requires additional tuning of
the individual rings due to manufacturing depended properties such
as the free spectral range (FSR). This requires additional compensation
routines in order to match the FSR witch the chosen temporal
dynamic, wavelength and coupling. Secondly, the free-space cavities
and delay systems may not be frequency sensitive, preventing them
from being applied for resource-efficient multi-frequency data pro-
cessing. Finally, the cavity’s recurrentweights cannot be varied rapidly,
limiting the control of the recurrent process such as the implementa-
tion of recurrent dropout on single pulse level in order to regularize
the network.
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Here, we experimentally demonstrate an optoacoustic recurrent
operator (OREO) based on stimulated Brillouin-Mandelstam scattering
(SBS) that can unlock recurrent functionalities in existing optical
neural network architectures (see Fig. 1a). SBS is an interaction of
optical waves with traveling acoustic waves which serve in our system
as a latency component due to the slow acoustic velocity. OREO is
therefore able to contextualize a time-encoded stream of information
by using acoustic waves as a memory to remember previous opera-
tions (see Fig. 1b).

In contrast to previously reported approaches20–24, OREO controls
its coherent recurrent operation completely optically on pulse level
without the need of any artificial reservoir such as a ring resonator or a
delay system. Hence, OREO does not rely on complicated manufactur-
ing processes of microstructures. It functions in any optical waveguide,
including on-chip devices, as it harvests the physical property of a
sound wave25–27. With the announcement of the first on-chip EDFA28 a
fully integrated design is in reach. While recognizing the outstanding
efforts of the scientific community to implement non-reciprocal devices
on-chip29–34, we would like to highlight the work35 which implements an
on-chip circulator free SBS experiment. More details about how OREO
could be integrated on-chip can be found in the discussion.

We demonstrate OREO experimentally from different perspec-
tives. Firstly, we show how OREO links different input states of sub-
sequent optical pulses to each other via acoustic waves. Secondly, we
present how the all-optical control of OREO can be used to implement
a recurrent dropout. Finally, we applyOREO as an acceptor36 to predict
up to 27 different patterns carried by a time series of input pulses.

Results
Concept of an optoacoustic recurrent operator
The recurrent operation of OREO is based on the interaction of optical
and acoustic waves through SBS, which is one of the most prominent
third-order nonlinear effects and describes the coherent coupling of two
optical waves, data and control, to an acoustic wave in a material. The

dynamic is illustrated in Fig. 1c and follows from the Hamiltonian (1)37–39:
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using the optoacoustic coupling constant g0, the frequency relation
between the optical fields ωD =ωC +Ω, and the wave packet operators
aD, aC, b of the data, control and acoustic field, respectively. Similar to
the clinking of a wine glass, the acoustic wave b persists beyond its
excitation, decaying exponentially with time bðtÞ / exp �t=τac

� �
, where

τac / Γ�1
ac is the acoustic lifetime, which depends on the properties of

the used waveguide and is for a photonic crystal fiber (PCF) about
τac≈ 10ns (see Fig. 1c). As a result, an acoustic wave bi can seed sub-
sequent SBS processes j> i. Moreover, the acoustic builds up with each
SBS process, which can be described as a superposition of all previous
created acoustic waves bi with amplitude b0,i, created at the time ti and
carrying a phaseφi. Hence, the acousticwave bN afterN SBS interactions:

bNðz, tÞ=
XN
i = 1

biðz, tÞ=
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yields the recurrence in the interaction Hamiltonian:
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Equation (3) shows furthermore that programming the field aC con-
trols the acoustic feedback all-optically, enabling a pulse-by-pulse
increase or suppression. For instance, setting aC,i=0 corresponds to a
recurrent dropout so that aD,i leaves the fiber unchanged.

Fig. 1 | Schematic of the optoacoustic recurrent operator (OREO) and its pro-
posed function in a recurrent optical NN. a An example of a photonic recurrent
network with N layers Xn, which are connected by amatrix operationWn. b The bi-
directional perceptron contains an OREO and an activation function. OREO cap-
tures and links sequential information aD using a sound wave b, which is gener-
ated by SBS and controlled by an optical control pulse aC. The output of the
acoustic recurrent neuron a0

D is fed into the next layer of the optical neural
network. The blue arrow indicates the recurrent nature of one neuron.
c Conceptional illustration of the SBS process with its interaction Hamiltonian
Hint. The sound wave b carries the information of the neuron’s input and decays

after the SBS process exponentially with the acoustic lifetime τac. d–g Illustration
of three recurrent operations performed by OREO. d shows the initial situation
with three data-control pulse pairs separated by a deadtime dt. The data and
control pulses are launched from opposite sides into a photonic crystal fiber
(PCF). e shows the system after the SBS-interaction of aD,1 and aC,1, which trans-
fers energy from aD,1 to an acoustic wave b1. f shows the system after a second
pulse pair has passed the PCF. The acoustic wave b1 connects the interaction of
aD,2 and aC,2 with the previous one, while the SBS process transfers information
from aD,2 into b2. g highlights the acoustic link created by OREO between three
optical pulse pairs.
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We experimentally implement OREO in a telecom-fiber apparatus
illustrated in Fig. 1d. Here we launch several consecutive rectangular
optical input data pulses aD,i and strong counter-propagating optical
control pulses aC,i into a PCF. The optical data pulses are shifted up in
frequency byΩ/2π ≈ 10.6 GHz compared to the optical control pulses,
which is close to the Brillouin frequency of the PCF. When a data and
control pulse pair aD,1 and aC,1 meets inside the PCF, they induce SBS,
depleting the data pulse and transferring its energy into the acoustic
domain. Eventually, an acoustic wave b1 is generated, which persists
much longer than the optical interaction (see Fig. 1e). An optoacoustic
recurrent operation is performed, when a subsequent data and control
pulse pair (aD,2 and aC,2) reaches the acoustic wave b1 before it has
decayed. Hence, the deadtime dt until the second pulse pair arrives
must be less then the acoustic lifetime. The previously generated
acoustic wave connects to the subsequent SBS process between aD,2
and aC,2 and establishes a link of the second data pulse aD,2 to the first
data pulse aD,1. In addition, the second SBS process creates a second
acoustic wave b2, carrying information of aD,2. Now, the acoustic
domain holds information of both data pulses aD,1 and aD,2 (see Fig. 1f).
The discussed procedure could now be repeated also for a third pulse
pair and, in general, as long as subsequent pules pairs arrive before the
acoustic wave decayed completely (see Fig. 1g).

Recurrent operation
In the following, we continue with the previously introduced setting of
three pulse pairs (aD,i, aC,i), i = 1, 2, 3. We use this configuration to
experimentally study the recurrent feedback, established by the
acousticwaves bi. Precisely, three different acoustic links occur. On the

one hand, b1 connects the input aD,1 to the output a0
D,2 and a0

D,3 and, on
the other hand, b2 connects aD,2 to a0

D,3 (see Fig. 2a). In order to study
the different connections, we sweep the input amplitude of either aD,1
or aD,2, while keeping the other data pulses constant. For instance, if
the input amplitude of aD,1 is varied, aD,2 and aD,3 are fixed in ampli-
tude. The control pulses aC,i are kept constant over the entire study.
For each amplitude step,wemeasure the area under the curve (AuC) of
the output pulses a0

D,i. In the subsequent analysis, we normalize the
AuC of a0

D,i with the AuC of an input data pulse aD,i with an amplitude
scale of 1, representing the highest input value. In order tomeasure the
reference, we launch a data pulse sequence into OREO without
counter-propagating control pulses. In order to rule out drifting
effects, we measure each amplitude twice in a random order and take
the mean value afterwards. Furthermore, the amplitude sweep is per-
formed for three different time delays dt = 2.5, 4.5, and 10 ns, as the
acoustic link decays over time. In order to have a reference for the
dynamic of the Brillouin process, we use the interaction of a single
data-control pulse pair. The data pulse aD gets depleted by the SBS
process in this single pulse interaction (SPI). The degree of depletion
dependsmainly on the power carried by the control pulse25. For OREO,
we deplete about 47% of the data pulse. For a deadtime of 2.5 ns, an
increase in amplitude of aD,1 raises the output amplitude a0

D,2 as shown
by Fig. 2b. The reason for this dynamic is that aD,2↔ aC,2 is seeded by
the acoustic wave b1 influencing the degree of depletion. More pre-
cisely, the dynamic canbe explainedwith the different acoustic phases
of b1 and b2 (see Eq. (2)), which can lead to constructive or destructive
interference during the SBS process. The acoustic phase is introduced
by detuning the frequency difference between data and control pulses

Fig. 2 | Observing OREO’s optoacoustic linking and recurrent dropout cap-
abilities. a Schematic illustration of the amplitude sweep that investigates how
different optical states are passed between the optical data pulses aD,i via an
acoustic wave b. b–d Experimental results of the amplitude sweep. While
aD,i, i = 1, 2 is changed, its impact on the subsequent pulses aD,j, j > i is studied for
different deadtimes dt. Each SBS process creates an acoustic wave bi, which

interferes with pre-exisiting ones bk, k < i, eventually. We mark the links aD,i→ aD,j
with a +, −, and ⋅, when they experienced an enhancement, a reduction and an
annihilation of the SBS process, respectively. We added the depletion of a single
pulse interaction (SPI) as reference. e Schematic illustration of the pulse config-
uration used to study the OREO’s feature to implement a recurrent dropout.
f–h Experimental results of OREO’s recurrent dropout capabilities.
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slightly from the Brillouin frequency. For example, if the interaction
aD,i↔ aC,i has created the acoustic wave biwith a specific phase (see Eq.
(2)), then a second SBS process j > i would generate dynamically bj on
top of bi. Both bi and bj have a different phase which lead to acoustic
interference40. As Brillouin scattering describes a dynamic coupling
between photons and phonons, the acoustic interference effects the
overall “stimulated" dynamic. Hence, if bi and bj interferedestructively,
the “stimulated” dynamic is slowed down and, therefore, the depletion
of the data pulse aD,j lower. However, if bi and bj add up via con-
structive interference, then the stimulation is accelerated, increasing
thedepletionofaD,j. The acoustic interference is also the reason for the
decreasing behavior of the link aD,1 ! a0

D,3 on aD,3↔ aC,3. Here, the
acoustic wave b1 accelerates the SBS process of aD,3↔ aC,3 which leads
to an increased depletion of aD,3.

The symbols + and −mark the constructive and destructive nature
of the underlying acoustic interference in Fig. 2b, respectively. OREO
achieves amaximal dynamic range (Max DR) of 33%. For a deadtime of
dt = 4.5 ns we observe a flip in the dynamic as all links switch their
behavior from a constructive (+) to destructive (−) acoustic link, and
vice versa (depicted in Fig. 2c). In addition, the overall level of deple-
tion is larger in comparison to the SPI-case. For a deadtime of dt = 10 ns
(equal to the acoustic lifetime), the dynamic range of the optical
connection decreases further as we can see for the connection aD,1 !
a0
D,2 in Fig. 2d. Ultimately, the effect of the decaying acoustic wave

becomes in particular visible for the interaction aD,1 ! a0
D,3 as a0

D,3
remains constant over the entire sweep range of aD,1 (see Fig 2d). Note
that we marked vanished acoustic links with the •-symbol.

With this, we have shown that OREO connects the information
carried by subsequent optical data pulses. The acoustic link is sensitive
to the amplitude and deadtime of the involved optical data pulses. As
the interaction is continuous, it can be used for digital and analog
recurrent tasks. Moreover, the acoustic interference observed with
OREO ties in with previous studies based on continuous optical waves
and our measurement extends the observation of acoustic inter-
ference into a pulsed context40,41. Being able to distinguish nine dif-
ferent amplitude levels, we conclude that OREO can resolve at least
3-bit information. In general, SBS is sensitive to continous amplitude
levels, hence higher number of unique symbols can be encoded. The
fundamental limitation is the data encoding and detection. In the
supplementary material, we study OREO numerically and experimen-
tally in a highly nonlinear fiber (HNLF), using the framework presented
in ref. 42. With the HNLF we study the linear response of OREO, which
occurs in the case that the frequency difference of data and control
matches exactly the Brillouin frequency. OREO controls the recurrent
operation completely optically via the control pulses, enabling us to
implement use case specific computations. For instance, in a pulse
sequence consisting of three data pulses, one could skip the middle
pulse aD,2 by dropping the second control pulse, which could be useful
for regularization43. In order to demonstrate the recurrent dropout, we
excluded the second control pulse aC,2 from the pulse train. Note, that
the amplitudes of the other control pulses remain the same. In a next
step, we vary the amplitude of data pulses aD,1 and aD,2 in upward and
downward direction and check the impact on the subsequent data
pulses (see Fig. 2e). Furthermore, we change the deadtime to investi-
gate the influence of the acoustic interference on the interac-
tion aD,1 ! a0

D,3.
OREO turns off the links between aD,1 ! a0

D,2 and aD,2 ! a0
D,3 as

we can see in in Fig. 2f. As marked with the •-symbol, those two links
show a constant behavior for the entire amplitude sweep. Only the
interaction aD,1 ! a0

D,3 is active as the control pulses aC,1 and aC,3
establish the required acoustic link. Note, that for the case of aD,2 !
a0
D,3 the interaction aD,3↔ aC,3 is influenced by the acoustic wave

generated of the aD,1↔ aC,1-interaction (aD,1 is constant). This link can
also explain the lower degree of depletion of aD,1 ! a0

D,3 at dt = 4.5 ns
(see Fig. 2g). Here, the aD,1 and aD,3 are already separated by 10 ns,

which eliminated almost their acoustic link. At a deadtime ofdt = 10 ns,
thea0

D,3 is completely disconnected fromaD,1 andaD,2 as canbe seenby
the constant behavior of a0

D,3 for both sweeps of aD,1 and aD,2 (see
Fig. 2h). Besides, over all measurements, a0

D,2 is below the reference
level (a0

D,2<1), e.g., for the interaction aD,1 ! a0
D,2 in Fig. 2f. The

increased optical noise floor appears as soon as the EDFA is turned on
and could lead to this intrinsic depletion.

Optical pattern recognition
From the beginning on, recurrent operators have been used to
recognize patterns6. In the following section, we experimentally
employ OREO as an acceptor36 to recognize any pattern that can be
created with two different data pulses a and b: aa, ab, ba & bb, where
the b-pulse is half the amplitude of the a-pulse. Each pulse is launched
with a matching control pulse aC,i into the PCF, where SBS is intro-
duced. The deadtime between two consecutive pulses is 2.5 ns. Fig-
ure 3a shows schematically the information flow of the acceptor task.
The individual pulses of the pattern ab are launched into OREO each
after 2.5 ns with a corresponding control pulse aC,i. The information of
the pattern is captured by the acoustic wave and flows in time, con-
necting the different SBS processes. Eventually, the sequential infor-
mation captured by OREO is evaluated with a third optical evaluation
pulse (Eval). In this way, we map the sequential information onto a
single optical pulse which can be used then for classification, realizing
experimentally a photonic acceptor.Weperformthefinal classification
bymeasuring the output evaluation pulse (Eval0), extracting its AuC in
post-processing and then feeding this value into a digital Random
Forest classifier44 (RFC). In total, we check all patterns 250-times in a
random order and classify the resulting experimentally obtained data
set (70% training, 30% testing) with the RFC implemented in scikit-
learn-package v1.1.345. Furthermore, we perform the described study
twice, once with the SBS-process and once without to isolate OREO’s
effect.

When OREO is off, the RFC cannot distinguish the different pat-
terns and shows the same accuracy as a random guess (see Fig. 3b).
However with OREO, the RFC is capable of distinguishing the different
patterns almost with an accuracy of almost a 100% (see Fig. 3c).

Next, pushing OREO to the acoustic lifetime limit, we evaluate its
performance for three different states encoded onto three pulses. The
third state c is three quarters of the a state. In total, we test OREO to
distinguish every possible permutation of a, b, and c, giving 27 dif-
ferent patterns. This time we launch a fourth data-control pair into the
PCF, in order to evaluate OREO’s memory (see Fig. 3d). Note that all
four control pulses aC,i carry the same optical energy as in the three
pulse configuration. We increased the sample size n per pattern from
250 to 500 measurements in order to decrease statistical errors. Fig-
ure 3e shows the corresponding confusion matrix. OREO functions as
acceptor and generates distinguishable distributions for the 27 pat-
terns. The RFC achieves an accuracy of 45%, exceeding the accuracy of
a simple guess by 11-times. The performance of OREO is currently
limited by experimental precision, which is reduced by drifts of the
optical pulses over the measurement period. Therefore, we perform a
numerical analysis of OREO as an acceptor in the frequency matched
case, in order to assess its potential performance. In this simulated
experiment, OREO and the RFC achieve an accuracy of 92%. Figure 3f
shows the corresponding confusion matrix. In the supplementary
material, we describe the numerical analysis and check the impact of
the pulse width, deadtime, acoustic lifetime, and experimental preci-
sion on OREO’s pattern recognition performance. This analysis indi-
cates that OREOs performance can even be pushed further to an
accuracyof 97%. The current implementation ofOREO can be seen as a
photonic recurrent extreme learning machine with one layer and one
neuron. Hence, we compare the result of the abc-study to a digital
RNN-classifier containing a single recurrent neuron and a fully-
connected network (FCN). This classifier achieves in the same task
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on average an accuracy of ≈ 55.9 %. The relative difference to OREO is
about 10%P, hence OREO’s performance is almost on pair with the
digital RNN. However, it should be noted that the digital RNN is trained
actively whereas OREO is used as an extreme learning machine.
Accordingly, one could improve the accuracy of OREO in the future by
training (in-situ) the amplitudes of the control pulses aC,i, for instance,
using simultaneous perturbation stochastic approximation46. Further
details on the comparison of OREOwith an RNNclassifier can be found
in the supplementary material.

Discussion
The acoustic link employed by OREO enables the processing of time-
encoded serial information within a PCF. Its capability to control the
recurrent interaction all-optically, gives the concept unique features.
The adjustable amplitudes of the control pulses allowOREO’s behavior
to be changed at the single pulse level, offering an all-optical degree of
freedom to adjust its recurrent operation. Moreover, we have shown
that it offers the possibility to exclude data pulses from the recurrent
interaction. As a consequence, a single data pulse can propagate
through OREO without experiencing any manipulation. This can be
used to implement recurrent dropout as regularization for the RNN.

The coherent nature of the underlying SBS process offers OREO
not only to compute amplitude information but also phase

information. Eventually, OREO could compute quadrature amplitude
modulated (QAM) data streams.

Higher memory depths could be achieved with three different
approaches. Firstly, a higher pulse density could be used to increase
the number of operations that could be performed within the intrinsic
acoustic lifetime. This could be achieved by decreasing the pulsewidth
and the deadtime between the pulse pairs. For instance, with a pulse
width of 100ps and a deadtime of 100ps (the minimal deadtime is
dictated by the length of the waveguide), one could induce up to 50
recurrent interactions. Secondly, one could increase the acoustic life-
time to realize a deep recurrent link, for instance by using materials
with longer acoustic lifetimes or operating at cryogenic temperatures.
Thirdly, an optical refreshment of the acoustic waves could lead to an
increase in memory depth47.

Considering the current configuration of the OREO setup, one
could realize up to four layers in an OREO-based RNN. In comparison,
to best of our knowledge, the maximum number of layers reported in
an ONN without transferring information back to the digital domain is
so far three46,48. A more detailed discussion on the scalability of an
OREO-based RNN is provided by the supplementary material.

Because the SBS process does not significantly change the optical
control pulses, anoptical recycling schemecould be applied to achieve
high computational efficiencies. Computational efficiency is

Fig. 3 | Applying OREO as an acceptor to predict patterns of optical pulses.
a Schematic illustration of how the acoustic link can be used by an optical eva-
luation pulse (Eval) to predict a pattern from optical pulses, which have been
launched into the optical fiber before. The example shows a ab-pattern. Note that
the output pulses a0, and b0 are not shown. The control pulses aC,i are numbered
according to the time sequence of the data pulses as they enter the sample.
b, c Confusion matrix of a Random Forest classifier (RFC) which is used to classify
the experimental data setwith andwithout SBS. TheRFCachieves analmost perfect
classification rate as soon as OREO provides the recurrent feedback. d Schematic

illustration of the three pulse pattern recognition task. This case shows the cab-
pattern. Note that the output pulses c0, a0, and b0 are not shown. e Shows the
confusionmatrix of the RFC, using 30% of the experimentally obtained data set for
training. The RFC achieves an accuracy of 45% and outperforms a simple guess by
11-times. The accuracyof the RFC ismostly limited by experimental precision. fRFC
confusion matrix using simulated data to study OREO’s performance with experi-
mental optimization. In this case, we can achieve an accuracy of 92%. The simula-
tion are based on a frequencymatched SBS process and is described inmore detail
in the supplementary material.
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determinedby thenumber of operations (OPS) thatOREOcanperform
with one Joule of power. With an optical recycling scheme this value
depends only on the deadtime between the pulse pairs, yielding an
efficiency from up to ≈ 11 POPS

J ; it could potentially increase the com-
putational efficiency of the method described in Reference22 by three
orders of magnitude. A more detailed description of the computa-
tional efficiency can be found in the supplementary material. The
information bandwidth of an optical signal can be significantly
increased by employing different optical frequencies as independent
information channels. This has been recently exploited by Sludds
et al.49 to implement an high-performance optical deep learning
architecture for edge computing. OREOcould be added to this scheme
as SBS is highly frequency-selective50.

This unique feature of the optoacoustic interaction could also be
employed together with an optical multi-frequency matrix
operator51–53 to realize an multi-frequency recurrent neural network.
Therefore, OREO has to be implemented on-chip. Applications of
Brillouin scattering for gyroscopes, photonic memories, and micro-
wave photonic devices haven been experimentally demonstrated in
on-chip configurations26,54–58. Moreover, different integrated platforms
for Brillouin scattering have been discussed extensively59–61. Still, a key
challenge of using backward Brillouin scattering is themanagement of
the counter propagating data and control pulses. For an in-fiber setup
this is usually achieved by using isolators or circulates. The usage of
those non-reciprocal devices on-chip is currently more challenging,
however, there is extensive study on possible implementations29–34. In
the context of Brillouin scattering, Liu et al. have demonstrated a
complete on-chip backward Brillouin experiment without the need for
isolators or circulators35. Furthermore, one could also employ a nar-
rowband filter that filterers either the data or the control light. In the
following, we eleborate on possible waveguide platforms, the foot-
print of an SBS active waveguide and the energy conmsuption of on-
chip Brillouin process.

Firstly, SBS can be used in a variety of different integratable
platforms including Silica, Silicon andGermanium60. Backward SBS has
also been studied in Silicon Nitride62,63 and recently reported in
Lithium Niobate on Insulator waveguides64,65. Moreover, waveguides
based on chalcogenide soft glass offer a large Brillouin gain60,66,67.

Secondly, The footrpint of on-chip OREO depends on two prop-
erties. First, the pulse width τ defines the optimal length Lopt of the
Brillouin active waveguide: Lopt ≈ c0τ/neff with the speed of light c0 and
the effective refractive index of the waveguide. Secondly, the minimal
bending radius of the Brillouin active waveguide. This is an important
parameter as it allow to route Lopt as spiral, which reduces the overall
footprint significantly. This reduction of footprint has been used, for
instance, to build a 50 cm long Brillouin active spiral in SiliconNitride63

and chalcogenide spiral with a total length of 5.8 cm and a footprint
below 1mm2(compare67). In addition, bending radii of ≤ 200μm have
been demonstrated for chalcogenide waveguides68,69.

Finally, the power consumption of OREO is mainly defined by the
optical power of the control pulses Pc. In order to estimate the power
consumption of an on-chip OREO, we assume to describe the Brillouin
dynamics with an effective Brillouin gain geff = gLeffPc − αL with the
intrinsic Brillouin gain g, the optical loss of the waveguide α, the entire
length of waveguide L, the the effective interaction length of two
pulses Leff = ð1� expð�αLoptÞÞ=α. By choosing different platforms one
effectively changes the values for g and α. For instance, the PCF used to
demonstrate OREO offers a gain of gPCF ≈ 2.5m−1 W−1 and a loss of
αPCF ≈ 2.7 dB km−1 (compare70). In comparison, a chalcogenide wave-
guide offers a gain of gAsS ≈ 500m−1 W−1 with a loss of αAsS ≈0.5 dB cm−1

(compare60). In this case, one could reduce the required optical power
to realize the same geff by 99% to PAsS

c ≈ 1:27mW. Recalling that this is a
theoretical improvement and keeping in mind the experimental Bril-
louin demonstrations on-chip, we would frame this improvement as a
long-term goal. Nonetheless, we would like to highlight the

demonstration of a hybrid waveguides66 offering a gain of
gHybrid ≈ 750m−1 W−1 and the proposal for sub-wavelength waveguides
with a gigantic Brillouin gain gsub > 100000m−1 W−1 (compare71). In
conclusion, on-chip devices could reduce the power consumption
of OREO.

In conclusion, we have demonstrated the first optoacoustic
recurrent operator (OREO), which connects the information carried by
subsequent optical data pulses. Our work combines for the first time
the field of traveling acoustic waves and artificial neural networks and
paves the way towards SBS-enhanced computing platforms. This new
fusion brings context to optical neural networks, but can also enable
much more. Typical building-blocks of a neural network, such as
nonlinear activation functions and other types of optoacoustic
operators are within reach. Especially, the different time scales of
optical and acoustic waves open up a whole new playground for the
implementation of a variety of computing architectures.

Methods
Experimental setup
To demonstrate OREO, we build the all-fiber setup shown in Supple-
mentary Fig. 1. As a sample, we use a photonic crystal fiber (PCF) with a
length of ≈ 40 cm, an average hole diameter of 1.44μm, an average
core diameter of 1.842 nm, a pitch of 1.756μm, and d/Λ =0.82. A con-
tinuous wave laser at 1550 nm is split into the data and control branch
via a 50/50-splitter. An IQ-modulator shifts the data signal by Ω/2π ≈
10.6GHz, which is close to the PCF’s Brillouin frequency of ΩPCF /
2π ≈ 10.45GHz. The data signal’s spectrum is cleaned with a sub-
sequent narrow bandpass filter and afterwards amplified by an Erbium-
doped fiber amplifier (EDFA). An optical intensity modulator driven by
an arbitrary waveform generator (AWG) generates the rectangular
optical pulses and, thus, imprints the amplitude-encoded information.

A single data pulse is 1 ns long and separated to an adjacent data
pulse by a deadtime dt. The repetition rate of a pulse sequence is
≈ 1MHz. The pulses are guided to the PCF by an optical circulator and,
afterwards, measured with a high-speed photodiode and a 16GHz
Oscilloscope. The optical power of the data pulse is about 1mW. An
additional narrow bandpass filter cleans the signal before detection. In
the control branch, optical pulses are generated with the same pulse
width and repetition rate as the data branch. Afterwards, the pulsed
signal is amplified by an EDFA and filtered by a narrow bandpass filter
before launched into a high-power EDFA. The amplified signal is fil-
tered by a 1 nm-width bandpass filter and launched with an average
power of about 126mW into the SBS process.

Training the Random Forest classifier (RFC)
We use a Random Forest classifier (RFC) to classify the area
under the curve (AuC) of the output evaluation pulses Eval0 (see
Fig. 3a, d). We initialize our RFC with the scikit-learn python
package v1.1.345, setting its maximal depth to 10 and the random
state to 2. We found those to be the best configuration to achieve
the highest accuracies for both the ab- and the abc-study. The
function sklearn.model_selection.train_test_split splits the initial
data sets into the test and training one with a random state of 20.
We ensure that that the different patterns are equally distributed
to the train and test data set with the stratify-keyword of the
train_test_split-function. We fit the RFC to the data set using its
default fit-function.

Data availability
The data that supports findings of this study are available from the
corresponding author upon request.

Code availability
The code that supports findings of this study are available from the
corresponding author upon request.
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