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Single cell deciphering of progression
trajectories of the tumor ecosystem in head
and neck cancer

Z. L. Liu1,6, X. Y. Meng1,6, R. J. Bao2,6, M. Y. Shen2, J. J. Sun3, W. D. Chen4, F. Liu5 &
Y. He 1

Head and neck squamous cell carcinoma is the sixth most common cancer
worldwide and has high heterogeneity and unsatisfactory outcomes. To better
characterize the tumor progression trajectory, we perform single-cell RNA
sequencing of normal tissue, precancerous tissue, early-stage, advanced-stage
cancer tissue, lymph node, and recurrent tumors tissue samples. We identify
the transcriptional development trajectory of malignant epithelial cells and a
tumorigenic epithelial subcluster regulated by TFDP1. Furthermore, we find
that the infiltration of POSTN+

fibroblasts and SPP1+ macrophages gradually
increases with tumor progression; their interaction or interaction with malig-
nant cells also gradually increase to shape the desmoplasticmicroenvironment
and reprogram malignant cells to promote tumor progression. Additionally,
we demonstrate that during lymph node metastasis, exhausted CD8+ T cells
with highCXCL13 expression strongly interactwith tumor cells to acquiremore
aggressive phenotypes of extranodal expansion. Finally, we delineate the dis-
tinct features of malignant epithelial cells in primary and recurrent tumors,
providing a theoretical foundation for theprecise selectionof targeted therapy
for tumors at different stages. In summary, the current study offers a com-
prehensive landscape and deep insight into epithelial andmicroenvironmental
reprogramming throughout initiation, progression, lymph node metastasis
and recurrence of head and neck squamous cell carcinoma.

Therapeutic strategies for head and neck squamous cell carcinoma
(HNSCC) have undergone a paradigm shift from chemotherapy,
radiotherapy, and targeted therapy to immunotherapy, through
the targeting of tumor cells and immune checkpoints (PD-1, PD-L1,
and CTLA4). Nevertheless, all of these treatments have limited

effectiveness and unsatisfactory outcomes, which may be ascribed to
intratumor, intertumor and intercellular heterogeneity, reflecting
complex cancer–immune–stromal communication in the tumor
microenvironment (TME). Specifically, therapeutically targeted path-
ways are not restricted to cancer cells but also involve other cellular
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components in the TME; this topic has puzzled cancer biologists and
clinicians for some time1,2. High transcriptomic heterogeneity and
diverse landscapes of the TMEwithin or between tumors are intimately
associated with poor prognosis3. Given the potential impact of the
TMEonpatient care, a better understanding of the ecosystemdiversity
in HNSCC may lead to a compelling approach for promoting ther-
apeutic efficacy.

Recent advances in single-cell transcriptomics have provide an
avenue for dissecting the constitutive and functional heterogeneity of
HNSCC at an individual-cell resolution4. Based on single-cell RNA
sequencing (scRNA-seq), investigators have identified the partial
epithelial-mesenchymal transition (p-EMT) program in HNSCC,
observed the localization of p-EMT cells to the leading edge near
cancer-associated fibroblasts (CAFs), determined the transcriptional
profiles of nonimmuneand immunepopulationswithin tumors ofHPV–

andHPV+HNSCC, and investigated the immune infiltrate inHNSCCand
site-matched inflamed tissues in efforts to elucidate the transformation
from inflammation to carcinoma1,5–7. These efforts have provided
insight into the distinct landscapes of the TME between normal tissue
andmalignant tissue, laid the foundation for a renewed understanding
of cancer biology, and elucidated candidate targets for cancer therapy.

Nonetheless, the dynamic profiling of HNSCC initiation and pro-
gression has not been fully elucidated. Choi et al. explored the eco-
systemofHNSCCevolution and focusedon tumor cells, CAFs, andTreg
cells. They reported thatfibroblast-derivedCOL1A1 interacts with CD44
in malignant cells and that CXCL8-expressing CAFs and LAIR2 expres-
sion in Treg cells are associated with HNSCC progression8. Theymainly
concentrated on the precancerous status and the development from
theprimary tumor to lymphnodemetastasis andhas contributed to the
in-depth understanding of HNSCC microenvironment. However, since
HNSCC progresses stepwise from normal tissue (NT) to precancerous
lesions (pre-Ca), followed by early cancer (E), advanced cancer (A),
recurrent cancer (R), and ultimately lymph node (LN) metastasis and
distant spread (e.g., the lung), there are several key scientific issues have
not been settled with regard to the HNSCC progression: Firstly, how
HNSCC initiates fromprecancerous lesions andprogresses to advanced
disease has not been fully characterized. Secondly, how tumor cells,
CAFs, macrophages, and T cells, the most important cell types in the
TME of HNSCC, undergo reprogramming and aberrant cross-talking
thus contributing to HNSCC progression have not been elucidated.
Thirdly, extranodal extension (ENE) is themost serious situation during
lymph node metastasis and indicates the most advanced stage for
locoregional metastasis and signifies a particularly poor prognosis for
HNSCC patients. Overall, knowledge of themicroenvironment features
of lymph nodes with ENE and the underlying mechanism of ENE are
scarce9. Fourthly, the differences in the ecosystem between primary
and recurrent tumors and whether this diversity plays a determining
role in targeted therapeutic selection are unclear.

In this work, we perform scRNA-seq profiling of normal tissues,
precancerous tissues, early-stage cancer, advanced-stage cancer,
recurrent cancer, and metastatic LN (ENE+/ENE-) tissues to dissect the
dynamic transition of the TME in HNSCC and attempt to address the
abovementioned limitations. We subsequently explore the develop-
mental trajectory of HNSCC and assess dynamic alterations in the
infiltrative proportion and the biological function of malignant cells,
immune cells and stromal cells, contributing to a comprehensive
understanding of the HNSCC ecosystem during tumor initiation, pro-
gression, lymph node metastasis, and recurrence.

Results
A single-cell expression atlas of HNSCC ecosystems during
tumor progression
To comprehensively explore tumor ecosystem heterogeneity across
various stages of HNSCC, including initiation, progression, lymph
node metastasis, and recurrence, we performed scRNA-seq (10X

Genomics) to profile malignant and nonmalignant cells from 26 fresh
specimens from 13 patients (Fig. 1A), including 3 adjacent normal tis-
sues (NT), 3 precancerous lesions (Pre), 3 early-stage tumors (E), 6
advanced-stage tumors (A), 3 intracapsular metastatic (ENE-) lymph
nodes (LN-in), 2 extracapsularmetastatic (ENE+) lymphnodes (LN-out),
2 normal lymph nodes (LN-normal), and 4 recurrent tumors (R), which
span the cascade from normal epithelial to local advanced and meta-
static cancer and provide a relatively comprehensive collection of
tissues mirroring the tumor progression process (Supplementary
Fig. 1a). Among them, samples from patients with stage NT-Pre-E dis-
ease were paired; advanced-stage tumors andmetastatic lymph nodes
were also paired. All diagnoses were made after careful pathological
investigation, and the detailed demographic and clinical information
of the patients can be found in Supplementary Data 1.

After strict quality control and filtration, a total of 120, 952 single
cells with a median of 1, 642 expressed genes were retained for sub-
sequent analysis. We integrated all cells from various stages of HNSCC
using Harmony10 to remove the batch effect, performed graph-based
clustering and used marker-based annotation to define each cluster.
All cells were classified into 9 major cell clusters, according to the
uniform manifold approximation and projection (UMAP) tool (Fig. 1B,
Supplementary Fig. 1b), which included epithelial cells (n = 11, 722)
identified by EPCAM and CDH1; T cells (n = 42, 609) expressing the
T-cell receptor (TCR) signaling mediators CD3D, CD3E, and CD3G;
myeloid cells (n = 20, 306) marked as CD14 and FCGR3A; plasma cells
(n = 5, 146) defined by SDC1 andMZB1; B cells (n = 10, 177) annotated
by CD19 and MS4A1; fibroblast cells (n = 15, 291) positive for COL1A1
and COL3A1; endothelial cells (n = 10, 005) positive for PECAM1 and
CDH5; pericytes/SMCs (n = 5, 310) marked as MCAM and RGS5;
and Schwann cells (n = 386) characterized as expressing GPM6B and
S100B (Fig. 1C). The cell composition and infiltration fraction of
these 9 main cell types in tissues across diverse pathological stages
revealed notable heterogeneity, as evidenced by the different dis-
tributions, numbers, and percentages of the individual cell clusters
(Fig. 1D, E).

In summary, we herein provide an overview of the HNSCC
microenvironment during tumor initiation, progression, lymph node
metastasis, and recurrence. The results suggest that HNSCC ecosys-
tems are highly heterogeneous, which was further investigated in our
subsequent analyses.

A specific malignant cell cluster determining the invasive
phenotype
Given the central role of malignant cells in tumor progression and
immunosuppression, we investigated the transcriptomic diversity of
these pivotal cell types. As shown in Fig. 2A, the expression patterns of
epithelial cells exhibited substantial heterogeneity. Subsequently, 7,
054 malignant epithelial cells of epithelial origin, and 4, 336 non-
malignant cells were identified according to the Copy Number Kar-
yotyping of Aneuploid Tumors (CopyKAT) algorithm (Fig. 2B,
Supplementary Fig. 2a)11. The epithelial cells from Pre, E, and A stage
samples contained a greater proportion of cycling cells than did those
from normal tissues (Supplementary Fig. 2b). Interestingly, a propor-
tion of epithelial cells in the NT sample were identified as aneuploid.
Therefore, we re-analyzed epithelial cells in NT, pre-, and E-stage
samples of representative patient P13. The results showed that, gen-
erally, the predicted copy numbers of epithelial cells in the NT samples
were smaller than those in the pre- and E-stage samples (Supplemen-
tary Fig. 2c). Among the aneuploid epithelial cells in the NT samples,
genes related tooncogenesis processes suchas ‘cell growth’, ‘epithelial
cell proliferation’, and ‘Wnt signaling pathways’ were upregulated
compared to those in their diploid counterparts (Supplementary
Fig. 2d, e). These results suggested that aneuploidy epithelial cells in
NT samples may be in a transitional status from bona fide normal cells
to precancerous cells. Then, we examined the tumor progression
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process. Epithelial cells were found to express cytokines in a stage-
dependent manner; for instance, CXCL14, IL-18, and TYMP were con-
sistently upregulated across the Pre, E, A, and R stages. However,
protumor cytokines, such as TNFRSF12A, PLAU, and SDC1, were found
mainly in A/R stage tumors and metastatic lymph nodes. Moreover,

EGFR, SAA1 and SAA2 were specifically expressed in ENE+ lymph nodes
(Supplementary Fig. 2f). These results reflect the self-renewal and
phenotypic transition of epithelial cells during the multistep devel-
opment of HNSCC, which may be pivotal contributors to tumor
progression12–14.
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Fig. 1 | Single-cell expression profiling of human HNSCC. A A schematic graph
shows the studydesign.BUniformmanifold approximation andprojection (UMAP)
visualization of 120952cells from26 samples, showing9 clusters in different colors.
C Dot plots show average expression of known markers in indicated cell clusters.
The dot size represents percent of cells expressing the genes in each cluster. The
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To probe transcriptional heterogeneity, epithelial cells were then
classified into 5 subclusters termed C0 to C4 (Fig. 2C, Supplementary
Fig. 2g). Based on the copy number variation (CNV) profile, cluster 4
was uniquely present in the NT samples as the major cell subtype;
clusters 1 and 2 mainly appeared in tumor tissues. We constructed
gene signatures of different clusters using CibersortX algorithm. The
abundance of cluster 1 significantly associatedwith unfavorable overall

survival (OS) in the bulk RNA-seq data of The Cancer Genome Atlas
(TCGA)-HNSCC cohort (Fig. 2D, Supplementary Fig. 2h–j), indicating
that cluster 1 acquired anaggressive phenotype, andpromotedHNSCC
progression. To further determine the biological characteristics of the
different epithelial cells, we calculated the enrichment scores of the
hallmark gene sets from theMolecular Signatures Database (MsigDB)15

and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and
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analyzed the differences among the clusters of epithelial cells. Clusters
1 and 2 were composed mainly of cells from stages A, E, and R but
exhibited significant differences in function. Cluster 1 exhibited
significant enrichment of MYC target expression, G2M checkpoint,
and E2F target expression, indicating increased cell proliferation and
division rate (Fig. 2E). Then we contextualized our tumor sub-
populations with malignant cell signatures in Puram’s work5 and
found cluster 1 had high expression of the cell cycle signature,
indicating that it had a more malignant phenotype than the other
clusters (Supplementary Fig. 2k). This discovery was also confirmed
by GeneOntology (GO) analysis, which revealed that nuclear division
was obviously enriched in cluster 1 and that keratinocyte differ-
entiation and cornification were significant in cluster 2 (Supple-
mentary Fig. 2l, m). To further uncover metabolic diversity, we
observed that cluster 1 was enriched in the citrate cycle, oxidative
phosphorylation, folate biosynthesis, and pyrimidine metabolism.
However, cluster 2 exhibited high expression of the glycolysis
pathway, demonstratingmetabolic heterogeneity in different cancer
cell subtypes (Fig. 2F).

To better understand the trajectory ofmalignant epithelial cluster
development,we applied themonocle2 andRNAvelocity algorithms in
a two-dimensional UMAP representation to visualize the status tran-
sition of epithelial cells along a dynamic biological timeline. The
pseudotime trajectory produced a prominent linear (right to left)
trajectorywith 2 branches (up-State 3 andbottom-State 2), indicating 2
developmental fates of malignant cells both starting from State 1, with
the lowest pseudotime value (Fig. 2G). Among them, cluster 1 was
localized almost entirely in State 3, skewing toward the ends of the
trajectory; this was verified by RNA velocity analysis, which showed
that cluster 1 originated from cluster 2 (Supplementary Fig. 2n, o). We
also performed the trajectory analysis of epithelial cells obtained from
the same patient (P2, P10, and P13) with NT, pre, and E samples and
found consistent developmental trajectories of these three patients
with respect to total malignant epithelial cells (Supplementary
Fig. 2p–r). The developmental trajectory of cluster 1 is orchestrated by
a comprehensive network of transcription factors (TFs) that regulate
each other and their effectors by interacting with their cofactors and
downstream genes. Therefore, we evaluated the 5 most highly
expressed TFs and 5 most strongly expressed TFs in the TF regulatory
network via the SCENIC algorithm16 (Fig. 2H). The most prominent
findingwas thatTFDP1washighly activated in cluster 1 andwas the top-
rankedTF regulon,whichwas consistentwith the trend revealedby the
heatmap and tumor samples in our validation cohort (Fig. 2I, J, Sup-
plementary Fig. 2s). TFDP1 participates in cell proliferation and DNA
damage repair and has been considered to contribute to tumor pro-
gression in breast cancer and hepatocellular carcinoma17. Prognostic
analysis of the TCGA-HNSCC cohort and in-house validation cohort
both demonstrated that the abundance of TFDP1 was associated with
worse outcomes, suggesting that TFDP1 promotes HNSCC develop-
ment (Fig. 2J, K, Supplementary Fig. 2t, u). We confirmed this with an

in vitro transwell assay.When tumor cells were induced to overexpress
TFDP1, their migration and invasion capacity were significantly
increased, and vice versa (Fig. 2L).

In summary, we identified a group of malignant epithelial cells
that may be regulated by TFDP1 during HNSCC progression and pro-
mote cancer development.

Delineation of the dynamic microenvironment landscape
of HNSCC
To systematically contextualize both immune and stromal compart-
ment shifts in the cascade from normal tissue to local advanced
tumors, we attempted to comprehensively elucidate the dynamic
transformation of the TME during HNSCC progression. Fibroblasts are
the main stromal cells and play a critical role in TME remodeling.
Hence, we further stratified the 15, 291 fibroblasts into 8 subsets
according to representative gene signatures (Fig. 3A, B, Supplementary
Fig. 3a). Common fibroblastmarkers such as COL1A1 and COLA12, were
found to be expressed across all 8 subpopulations, confirming their
fibroblastic cell identity. In addition to feature low fibroblasts, other
subpopulations of fibroblasts exhibited significant expression of the
following marker genes: RSPO1+ fibroblasts, which were characterized
by RSPO1 and CRABP1; POSTN+

fibroblasts, which exhibited specific
expression of POSTN and LAMP5; DES+ myofibroblasts, which were
positive for DES and MYF5; proliferating fibroblasts, which were char-
acterized byMKI67 and TOP2A; andCCL19+

fibroblasts, which exhibited
high expression of inflammatory genes (e.g., CCL2 and CCL19).

Among these subclusters, RSPO1+ fibroblasts and POSTN+
fibro-

blasts exhibited opposite proportions of change trends and were
associated with opposite prognoses during stepwise progression of
HNSCC (Fig. 3C, D, Supplementary Fig. 3c). The proportion of RSPO1+

fibroblasts gradually decreased during HNSCC progression, whereas
the proportion of POSTN+

fibroblasts gradually increased from the NT
to the A stage and a signature score in the top 50was associatedwith a
worse prognosis (p = 0.03).

Myeloid cells are a main determinant of the intratumoral immune
landscape and contribute to tumorigenesis and therapeutic
resistance18. A total of 20, 306myeloid cells in our cohort were further
clustered into 11 individual subpopulations according to the reported
marker genes (Fig. 3E, F, Supplementary Fig. 3b). Four clusters of
dendritic cells (DCs) were identified: LAMP3+ DCs, pDCs, cDC1s, and
cDC2s.Unsupervised clustering ofmacrophages withCD68 expression
revealed FOLR2+ macrophages, SPP1+ macrophages, C1QC+ macro-
phages, and CXCL10+ macrophages in the TME of HNSCC patients. The
other myeloid cells were quantified as proliferating myeloid cells
(characterized by MKI67), mast cells (characterized by TPSB2 and
CMA1), and monocytes (characterized by CD14, FCN1 and VCAN but
lacking CD68). Like those of fibroblasts, the proportions of FOLR2+

macrophages and SPP1+ macrophages exhibited opposite trends, as
did theprognostic significance (Fig. 3G,H, Supplementary Fig. 3d). The
frequency of FOLR2+ macrophages decreased and that of SPP1+

Fig. 2 | Identification and transcriptional characterization of a malignant epi-
thelial cluster. UMAP projection of 7054 epithelial cells from 26 samples
colored by groups (A), diploid/aneuploid status (B), and clusters (C). D The
Kaplan-Meier curves showed patients with higher infiltration of cluster1 epi-
thelial cells are associated with worse overall survival (OS) in TCGA-HNSCC
cohort (n = 494, 247 samples for each group). Dot plot of top 5 hallmarks (E) and
6 metabolic pathways (F) for differentially expressed genes (DEGs) in each
epithelial cluster. G Potential trajectory of epithelial cells inferred by Monocle2.
The trajectory was divided into three states indicated as S1, S2, and S3.
H Heatmap shows normalized activity of top 5 transcription factors (TF) reg-
ulons predicted by the SCENIC algorithm (left) and the relative expression (z-
score) of top 5 TF genes (right) in epithelial cell clusters. I Heatmap shows the
dynamic changes in TF and regulons expression along the pseudotime. The
expression of TFDP1 is shown in the right panel. J Representative images of

multiplex immunohistochemistry (mIHC) staining of TFDP1+ epithelial cells in
HNSCC tumor and nonmalignant samples. Scale bar, 100 μm and 50 μm. The
quantitative results are shown on the right. Upper line: TFDP1+ epithelial cell
ratio in different stages (n = 69). Lower line: The Kaplan-Meier OS curves of
validation cohort patients stratified by TFDP1+ expression level (n = 52, 26 sam-
ples for each group). K The Kaplan-Meier curves of samples with high (n = 372)
and low (n = 122) TFDP1 expression level in TCGA-HNSCC cohort (n = 494).
L Images of Transwell assays for migration and invasion in different cell lines
with TFDP1 overexpression or knockdown. Scale bar = 100 μm. The quantitative
analysis is shown on the right. n = 3 biologically independent experiments. Data
represent mean ± SD. P values were calculated by two-side Student’s t-test in
J and L, by one-way ANOVA test in E and F, and by two-sided log-rank test in D, J
and K. Source data are provided as a Source Data Fig. 2A–L.

Article https://doi.org/10.1038/s41467-024-46912-6

Nature Communications |         (2024) 15:2595 5



Antigen processing and presentation of exogenous peptide antigen 
Antigen processing and presentation of exogenous antigen

Antigen processing and presentation of exogenous peptide antigen 
via MHC class I 

Antigen processing and presentation of peptide antigen via MHC class I
Endoplasmic reticulum to Golgi vesicle-mediated transport 

Golgi vesicle transport 
Antigen processing and presentation of exogenous peptide antigen 

via MHC class I, TAP-dependent 

External encapsulating structure organization
Extracellular structure organization

Extracellular matrix organization
Protein targeting to membrane

Viral gene expression
Nuclear-transcribed mRNA catabolic process

Translational initiation
Protein localization to endoplasmic reticulum

Establishment of protein localization to endoplasmic reticulum
Nuclear-transcribed mRNA catabolic process, nonsense−mediated decay

Protein targeting to ER
SRP-depedent coanslational protein targeting to membrane

Coanslational protein targeting to membrane

RSPO1_fibroblast POSTN_fibroblast

GeneRatio
0.02
0.03
0.04

0.010

0.020

p.adjust

GeneRatio
0.050
0.075
0.100

0.005

0.010

p.adjust

cDC1
cDC2
pDC
LAMP3_DC
Monocyte
Mast cell
CXCL10_macrophage
C1QC_macrophage
SPP1_macrophage
FOLR2_macrophage
Proliferating myeloid cell

cDC1
cDC2
pDC

LAMP3_DC
Monocyte
Mast cell

CXCL10_macrophage
C1QC_macrophage
SPP1_macrophage

FOLR2_macrophage
Proliferating myeloid cell

C
LE

C
9A

BA
TF

3
C

D
1C

FC
ER

1A
LI

LR
A4

G
ZM

B
LA

M
P3

FS
C

N
1

FC
N

1
VC

AN
TP

SB
2

C
M

A1
C

XC
L1

0
C

XC
L9

C
1Q

C
M

R
C

1
SP

P1
C

D
68

FO
LR

2
C

C
L1

8
M

KI
67

TO
P2

A

ATP synthesis coupled electron transport

Respiratory electron transport chain
Electron transport chain

Cellular respiration
Oxidative phosphorylation

ATP metabolic process
Neutrophil mediated immunity

Neutrophil activation involved
in immune response

Neutrophil degranulation
Neutrophil activation

Lymphocyte proliferation
Regulation of leukocyte proliferation

T cell activation
Regulation of leukocyte cell−cell adhesion

Leukocyte cell−cell adhesion
Regulation of hemopoiesis

Regulation of mononuclear cell proliferation
Regulation of T cell activation

Regulation of lymphocyte proliferation
Regulation of leukocyte proliferation

B. C.

E.

I. J.

F. G. H.

D.

K.

SPP1_macrophage

FOLR2_macrophage

RSPO1_fibroblast

POSTN_fibroblast

Pe
rc

en
ta

ge
 (%

)
Pe

rc
en

ta
ge

 (%
)

Pe
rc

en
ta

ge
 (%

)
Pe

rc
en

ta
ge

 (%
)

Feature low_fibroblast

Feature low_fibroblast

RSPO1_fibroblast

RSPO1_fibroblast

POSTN_fibroblast

POSTN_fibroblast SFRP1_fibroblast
SFRP1_fibroblast

SEMA4A_fibroblast

SEMA4A_fibroblast

CCL19_fibroblast

CCL19_fibroblast

DES_myofibroblast

DES_myofibroblast

Proliferating fibroblast

Proliferating fibroblast

C
O

L1
A1

C
O

L1
A2

R
SP

O
1

C
R

AB
P1

PO
ST

N
LA

M
P5

SF
R

P1
PL

A2
G

2A
SE

M
A4

A
SO

D
2

C
C

L1
9

C
C

L2
D

ES
M

YF
5

M
KI

67
TO

P2
A

Percent Expressed
0 25 50 75−1 0 1 2

Average Expression

Percent Expressed
0 25 50 75−1 0 1 2

Average Expression

RSPO1_fibroblast

O
ve

ra
ll 

su
rv

iv
al

 (%
)

O
ve

ra
ll 

su
rv

iv
al

 (%
)

A.

SPP1_macrophageFOLR2_macrophage

NAT

PO
ST

N
+  α

-S
M

A+  (
%

)

E stage A stage

−5

0

5

10

−10 −5 0 5
UMAP_1

U
M

AP
_2

−10

−5

0

5

−10 −5 0 5 10
UMAP_1

U
M

AP
_2

0

10

20

30

40

NAT E stage A stage

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++ ++ ++ ++

+ +

++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++

+
+

+

0

25

50

75

100

0 50 100 150 200
Time (Months)

Time (Months)

Time (Months)

Time (Months)

High (n=315)
Low (n=179)

+
+
p = 0.13

+++++
+++
+++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++

+

+ +
+ +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++ +++

++ + ++

0

25

50

75

100

0 50 100 150 200

POSTN_fibroblast
+
+

High (n=223)
Low (n=271)

p = 0.03

++
+
+++++
++++
++++++++++++

+++++++++++++++++ +

+

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++

+++ ++ ++

+

0

25

50

75

100

0 50 100 150 200

FOLR2_macrophage

O
ve

ra
ll 

su
rv

iv
al

 (%
)

O
ve

ra
ll 

su
rv

iv
al

 (%
)

+
+

High (n=85)
Low (n=409)
p = 0.13

++++
+
++++
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++ +
+

+ +

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++ +

+++ ++ ++

0

25

50

75

100

0 50 100 150 200

SPP1_macrophage

High (n=180)
Low (n=314)
p = 0.0056

+
+

N
T

Pr
e E A R

0

5

10

15

N
T

Pr
e E A R

20

30

40

50

N
T

Pr
e E A R

N
T

Pr
e E A R

10

15

5

10

15

α-
SM

A/
PO

ST
N

/D
AP

I
C

D
68

/S
PP

1/
D

AP
I

NAT E stage A stage

100μm 50μm

100μm 50μm

100μm 50μm

100μm 50μm

100μm 50μm

100μm 50μm

p=0.0007

SP
P1

+  C
D

68
+  (

%
) 1.0

0.8

0.6

0.4

0.2

0

p=0.0040

Fig. 3 | Characterization of fibroblasts and myeloid cells during HNSCC pro-
gression. UMAP plots show the composition of 15291 fibroblasts (A) and 20306
myeloid cells (E) from 26 samples. Dot plots show the expression of common
marker genes as well as top 2 most variable genes across each fibroblast (B) and
myeloid cell (F) subset. (C) The infiltrationproportionofRSPO1+ fibroblasts (above)
and POSTN+

fibroblasts (below). D The Kaplan-Meier overall survival curves of
TCGA-HNSCC patients stratified by RSPO1+ fibroblasts (above) and POSTN+

fibro-
blasts (below) infiltration, n = 494. G The infiltration proportion of FOLR2+ macro-
phages (above) and SPP1+ macrophages (below). H The Kaplan-Meier overall
survival curves of HNSCC patients stratified by FOLR2+ macrophages (above) and
SPP1+ macrophages (below) infiltration, n = 494. I Bubble plot shows comparison of

DEG enrichment GO terms between RSPO1+ fibroblasts and POSTN+
fibroblasts. (J)

Bubble plot shows comparison of DEG enrichment GO terms between FOLR2+

macrophages and SPP1+ macrophages. K Representative images of mIHC staining
of POSTN+

fibroblasts (POSTN+ α-SMA+ double positive) and SPP1+ macrophages
(SPP1+ CD68+ double positive) in HNSCC tumor and nonmalignant samples. Scale
bar = 50 μm. The quantitative results are shown on the right. n = 70 for POSTN+

fibroblasts, n = 68 for SPP1+ macrophages. Data represent mean± SD. P values were
calculated by two-sided Wilcoxon signed-rank test in I and J, by one-way ANOVA
test in K, and by two-sided log-rank test in D and H. Source data are provided as a
Source Data Fig. 3A–K.
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macrophages increased across multiple aggressive tumors. Moreover,
the top 50 signature score of SPP1+ macrophage signature was sig-
nificantly associated with worse overall survival (p =0.0056).

To further explore the biological functional differences
between these two pairs, we conducted GO analysis and discovered
that genes highly expressed in RSPO1+ fibroblasts are related to the
endoplasmic reticulum, translation initiation, and membrane pro-
tein and that pathways apparently enriched in POSTN+

fibroblasts are
related to extracellular matrix (ECM) organization, and antigen
processing and presentation, suggesting that POSTN+

fibroblasts
shape a more aggressive phenotype of HNSCC through ECM remo-
deling and immune regulation (Fig. 3I). We contextualized fibroblast
subpopulations according to currently known subtypes5,19,20 and
found POSTN+

fibroblasts tended to be myCAFs, dCAFs and
CAF1 cells related to desmoplastic component production (Supple-
mentary Fig. 3e–g).Differentially expressed genes (DEGs) and GO
analysis between FOLR2+ and SPP1+ macrophages revealed that genes
upregulated in the former participate in immune activation, such as
leukocyte proliferation, T-cell activation, and lymphocyte pro-
liferation, and that the genes highly expressed in the latter are
related to neutrophil activation, ATP metabolic process, oxidative
phosphorylation and respiratory electron transport chain (Fig. 3J).
Additionally, SPP1+ macrophages showed a higher M2 score than
FOLR2+ macrophages21 (Supplementary Fig. 3h). These results indi-
cate that FOLR2+ macrophagesmay exhibit the biological function of
T-cell recruitment as well as activation but that SPP1+ macrophages
represent specific metabolic features and may affect the TME in a
way different from that of FOLR2+ macrophages. Moreover, in a
validation cohort of 68 HNSCC samples, we confirmed the pre-
valence of POSTN+

fibroblasts and SPP1+ macrophages in the tumor
stroma. The percentage of POSTN+

fibroblasts with SPP1+ macro-
phages increased during HNSCC progression (p < 0.001 for POSTN+

fibroblasts, p = 0.004 for SPP1+ macrophages), which is consistent
with the in silico results (Fig. 3K).

Other cell types in the TME include CD4+ T cells, CD8+ T cells, B
cells, which are immune components and endothelial cells, which are
stromal components. Regarding the immune compartment, we iden-
tified the following: 7 subpopulations of CD4+ T cells - CD4-central
memory T cells (Tcm), CD4-effector memory T cells (Tem), Th17, T
follicular helper cells (Tfh), Tfh/Th1, ISG-CD4 T, and Treg cells
(Supplementary Fig. 3i); 7 clusters of CD8+ T cells - CD8-resident
memory T cells (Trm), CD8-Tcm, CD8-Tem, CD8-recently activated
effector memory T cells (Temra), CD8-Tex, ISG-CD8 T, and pro-
liferating T cells (Tprof) (Supplementary Fig. 3j); and 3 subsets of B
cells - naïve B cells,memory B cells, and germinal center B cells (GCB)
(Supplementary Fig. 3k). We found an overall trend of elevated Treg
infiltration with decreasing Th17, CD4_Tem, and CD8_Tem propor-
tions during HNSCC progression, which indicated the transition
from an immune-activated TME to an immune-exhausted TME.
Interestingly, the cell proportion of CD8_Tex decreased in A stage
compared to E stage, consistent with the findings of a recent report
of “partial immune recovery” in advanced tumors (Supplementary
Fig. 3i, j)22. With respect to the stromal component, we subclassified
endothelial cells into 6 clusters: immature ECs, arterial ECs, capillary
ECs, venous ECs, tip ECs, and lymphatic ECs (Supplementary Fig. 3l).
Immature ECs have recently been identified in NSCLC and are asso-
ciated with angiogenesis, and an increasing proportion of these cells
may be linked to angiogenic cell proliferation and reprogramming
during HNSCC development23.

Overall, we established a dynamic microenvironment landscape
during HNSCC progression. Among nonmalignant cell types,
RSPO1+ fibroblasts and FOLR2+ macrophages were identified as
potential tumor-suppressing populations and POSTN+

fibroblasts
and SPP1+ macrophages were identified as tumor-promoting
populations.

The cellular network of POSTN+
fibroblasts, SPP1+ macrophages

and malignant cells during HNSCC progression
To further investigate the underlying mechanism by which dynamic
changes in cellular composition regulate tumor development, we
focused on interactions between tumor cells and gradually increasing
or decreasing levels of fibroblasts (POSTN+

fibroblasts, RSPO1+ fibro-
blasts) and macrophages (SPP1+ macrophages, FOLR2+ macrophages).
First, the CellChat algorithm24 was used to calculate the interaction
weights among POSTN+

fibroblasts, SPP1+ macrophages, RSPO1+ fibro-
blasts, FOLR2+ macrophages, and tumor cells (Fig. 4A). We found that
the interaction of POSTN+

fibroblasts with SPP1+ macrophages, POSTN+

fibroblasts with tumor cells, and SPP1+ macrophages with tumor cells
gradually increased from NT to Pre, E and A stages, which was also
observed in separate analyses in P2, P10, and P13 (Supplementary
Fig. 4a). However, no trend toward a gradual increase in the interaction
density was observed between POSTN+

fibroblasts and FOLR2+ mac-
rophages or between SPP1+ macrophages and RSPO1+ fibroblasts,
indicating the specificity of the cellular interactions among POSTN+

fibroblasts, SPP1+ macrophages and tumor cells during the multistep
progression of HNSCC. We also validated the strongest interaction
between POSTN+

fibroblasts and SPP1+ macrophages in single A-stage
samples from the in-house cohort and public datasets (GSE18873725,
GSE18222726, and GSE23493327) (Supplementary Fig. 4b, c). Further-
more, the percentage of closely related of POSTN-positive and SPP1-
positive cells increased significantly from the E stage to the A stage,
supporting the gradual increase in the interaction between POSTN+

fibroblasts and SPP1+macrophages (Fig. 4B). Based on these results, we
further focused on POSTN+

fibroblasts and SPP1+ macrophages and
investigated how they interact with each other and how their cellular
communication regulates tumor cells.

Because the infiltration and interaction of POSTN+
fibroblasts and

SPP1+ macrophages were greatest in the A stage, we then analyzed the
ligand‒receptor (LR) interaction between these two cell types and
tumor cells. The A stage-specific ligands from POSTN+

fibroblasts to
SPP1+ macrophages included EGF, FGF, HGF, GDNF, PDGF and NRG; the
ligands from SPP1+ macrophages to POSTN+

fibroblasts comprised
CD23, FGF, NGF, FLT3, EPHB and complement (Fig. 4C). Considering
that the interaction weights between these two tumor-promoting
cells increase during HNSCC progression, we speculated that
such cell‒cell communication would be conducive to tumor develop-
ment. Therefore, we constructed an interaction signature by selecting
overlapping ligands and found that patients with high POSTN+

fibro-
blasts and high SPP1+ macrophages expression had significantly
poorer OS, consistent with our hypothesis (Fig. 4D, Supplemen-
tary Fig. 4d).

To explore the mediators and downstream targets of the POSTN+

fibroblasts and SPP1+ macrophages interaction, we performed Niche-
net analysis28 and found MDK and FGF to be specifically expressed in
A-stage POSTN+

fibroblasts with high ligand activity. In addition, the
ligand encoded byMDK bound to the receptor encoded byNUPR1 and
the ligand FGF bound to the receptor SPP1 on SPP1+ macrophages,
resulting in expression of target genes involved in cell metabolic
processes such as ATP metabolic, glycolytic, and NAD metabolic pro-
cesses, thus promoting fibroblast proliferation. Regarding the inter-
action of SPP1+ macrophages with POSTN+

fibroblasts, ligands encoded
by FN1, ILRN, and MMP9 presented the highest ligand activity in the A
stage. FN1 and ILRN1bind toMMP1 andMMP13, respectively, andMMP9
bind to ACTA2 on POSTN+

fibroblasts, triggering downstream path-
ways, including those related to ECM organization, cell-substrate
adhesion and focal adhesion (Fig. 4E–H, Supplementary Fig. 4e–g);
these processes may contribute to the formation of a desmoplastic
microenvironment, as reported in a previous study29,30. Moreover, the
ligand-receptor interaction between POSTN+

fibroblasts and SPP1+

macrophages and downstream regulatory effects were well validated
in other HNSCC datasets (Supplementary Fig. 4h–k). Taken together,

Article https://doi.org/10.1038/s41467-024-46912-6

Nature Communications |         (2024) 15:2595 7



these results suggest that in the A stage, POSTN+
fibroblasts regulate

the metabolic characteristics of SPP1+ macrophages and that SPP1+

macrophages regulate the ECM remodeling function of POSTN+

fibroblasts, potentially promoting desmoplastic structure formation
and abnormalmetabolism in the TME.We consolidate this result in the
TCGA-HNSCC cohort, finding that among the immune cell types, CD8+

T cell infiltration was significantly less abundant in POSTN+
fibroblast

high group, which was further validated by mIHC assay in the valida-
tion cohort (Supplementary Fig. 4l, m).

In addition to the interaction between POSTN+
fibroblasts and

SPP1+ macrophages, we were interested in how they influence tumor
cells because we found that their interaction weight with tumor cells
increased from the NT to A stage (Fig. 4A). HMGB2 in POSTN+

fibro-
blasts is predicted to bind to PLD2, LRP5, MYLK, and CD44 on tumor
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cells, regulating downstream genes, including BIRC5, CCNA2, CCNB1,
CCNB2, CDC20, and MKI67, which are related to the cell cycle. INHBA
on SPP1+ macrophages is predicted to interact with ACVR1 on tumor
cells, targeting downstream genes, including SERPINE1 and SMAD3,
which positively regulate cyclin-dependent protein kinase activity
(Supplementary Fig. 4n–s). In theA stage, POSTN+

fibroblasts and SPP1+

macrophages represented specific ligand‒receptor pairs (Fig. 4I). For
example, TGFB3-SDC4 and INHBA-TGFBR3were foundbetween POSTN+

fibroblasts and tumor cells and CXCL5-BDKRB2 and CCL7-ACKR2 were
found between SPP1+ macrophages and tumor cells. The overlap of
target gene enriched pathways included cell-substrate junction
assembly, ECM-receptor interaction, and osteoblast differentiation,
suggesting the combined oncogenic effects of POSTN+

fibroblasts and
SPP1+ macrophages on tumor cells (Fig. 4J). Interestingly, we observed
a positive correlation between the percentage of cluster1 malignant
epithelial cells and POSTN expression in POSTN+

fibroblasts, which
supports the tumor-promoting effects of POSTN+

fibroblasts (Supple-
mentary Fig. 4t).

Reprogramming of CXCL13+ CD8+ Tex cells to tumor cells con-
tributes to extranodal extension of lymph node
Extranodal extension (ENE) is associated with the poorest outcomes in
HNSCC patients9. To determine the underlying mechanism of ENE, we
analyzed the intracapsular (ENE-) (LN-in) and extracapsular (ENE+) (LN-
out) metastatic lymph node samples from our cohort by comparing
DEGs betweenmalignant epithelial cells in these two groups and found
that genes related to tumor invasion and metastasis (e.g.,MT2A, SAA1,
STATH, and CST1) were highly expressed in the LN-out group
(Fig. 5A)9,31. Immune response-related pathways (response to inter-
feron-γ, antigen processing and presentation of peptide antigen,
response to type I interferon) were enriched in the LN-out group
compared to the LN-in group (Fig. 5B), suggesting that malignant
cells may reshape the immune microenvironment, facilitating their
metastasis out of the lymph node capsule. Therefore, we computed
the interaction events of malignant cells with surrounding immune
cells as well as stromal cells in LN-out, LN-in, and LN-normal specimens
(Fig. 5C). Consistent with our speculation, malignant cells dis-
played higher levels of inferred interplay with CD4+ T, CD8+ T and
myeloid cells in the LN-out group than in the LN-in or LN-
normal group.

As an important constituent of CD4+ T cells, Tregs have been
reported to promote tumor progression by shaping the immunosup-
pressive microenvironment32, and their infiltration frequency was
substantially increased in the LN-out group, which was validated in
lymph node sections (Supplementary Fig. 5a–c). Moreover, circle plots
illustrated that the likelihood of interaction between tumor cells and
Tregs was significantly greater in LN-out samples (Supplementary
Fig. 5d, e). With respect to CD8+ T cells, the immunosuppressive CD8
Tex cells also exhibited a prominently proportional increase in the LN-
out group compared to the LN-in group (Fig. 5D-E). The DEGs of CD8
Tex cells in the LN-out group were functionally enriched in the
interferon-γ-mediated signaling pathway, response to type I inter-
feron, and other immune-related pathways (Supplementary Fig. 5f).
Further CellChat analysis revealed that the interaction intensity of

tumor cells with CD8 Tex cells and that of CD8 Tex cells with tumor
cells was much greater in the LN-out group than in the LN-in group
(Fig. 5F). Inspired by these results, we investigated elucidate the
functional significance of the ligand‒receptor interaction as well as
downstream signaling between tumor cells and CD8 Tex cells during
extracapsular lymph node metastasis. Significant differences in the
ligand‒receptor expression of immune checkpoints between LN-in
and LN-out malignant cells and CD8 Tex cells were observed (Sup-
plementary Fig. 5g, h). The expression of ligands, including TNFRSF14,
CD274, and LGALS9, on tumor cells increased in the LN-out group. In
addition, the expression of receptors, including TNFSF14, CD40, LTBR,
and VTCN1, was elevated in LN-out tumor cells. In other words, the
ligand‒receptor pairs CD40LG-CD40, TNFSF14-TNFRSF14, TNFSF14-
LTBR, BTLA-TNFRSF14, TNFRSF14-BTLA, CD274-PDCD1, and LGALS9-
HAVCR2 were upregulated during the ENE process, shaping the
immunosuppressive microenvironment for metastasis. Subsequent
pathway analysis indicated that, influenced by tumor cells, the recep-
tors of CD8 Tex cells in LN-out samples are involved in the response to
interferon-gamma, antigen processing and presentation, and regula-
tion of myeloid cell differentiation, suggesting that the cell‒cell
interaction of tumor cells with CD8 Tex cells favors the ENE by mod-
ulating the immunosuppressive efficacy of CD8 Tex cells and even the
immune microenvironment (Supplementary Fig. 5i). In turn, CD8 Tex
cells in the LN-out highly expressed TGF-β1, IFN-γ, and ITGB1, which
target FN1, EGFR, CTNNB1, COL1A1, andCFLAR in tumor cells, activating
downstream pathways including ERK1 and ERK2 cascade (Fig. 5G). We
validated this in lymph node metastasis and found that the pERK+

malignant epithelial cell ratio was greater in ENE+ samples. (Supple-
mentary Fig. 5j). This study uncovers the underlying mechanism of
CD8 Tex cell-mediated tumor cell reprogramming during the ENE
process.

Recent studies have identified a CD8 Tex cell subtype, CXCL13+

Tex cells32, which represent the terminal exhaustion status of the CD8+

T differentiation trajectory. Interestingly, when comparing theDEGs of
CD8 Tex cells between the LN-in and LN-out groups, we found that
CXCL13 was highly expressed in LN-out CD8 Tex cells, along with
another immune checkpoint inhibitor, LAG3, suggesting a more dys-
functional phenotype of CD8+ T cells in lymph nodes with ENE
(Fig. 5H, I). A feature plot also validated the presence of this subtype
among CD8 Tex cells (Supplementary Fig. 5k). Then, we performed
multiplex immunohistochemistry (mIHC) analysis for ENE+ and ENE-

metastatic lymph nodes. In the ENE+ lymph nodes, the infiltrating
fraction of CXCL13+ Tex (CXCL13+ PD1+ CD8+ cells) was significantly
greater than that in the ENE- lymph nodes. Furthermore, the number
of CXCL13+ T cells was positively correlated with pERK+ tumor
cell ratio (Supplementary Fig. 5j), revealing the role of CXCL13+ Tex
cells in activating ERK signaling and shaping the prometastatic
niche (Fig. 5J).

In summary, we dissected the microenvironment between intra-
capsular and extracapsular metastatic lymph nodes and revealed the
regulatory role of Tex cells among malignant cells during ENE. More-
over, the high level of infiltration of CXCL13+ Tex cells in extracapsular
metastatic lymph nodes may constitute a potential therapeutic target
in HNSCC.

Fig. 4 | Characterization of cell-cell interactions of POSTN+
fibroblasts, SPP1+

macrophages and tumor cells during HNSCC progression. A Comparison of
interaction strength between different cells in NT, pre, E, and A stage.
B Immunofluerence results showproportionof POSTN+

fibroblasts colocalizedwith
SPP1+ macrophages in A stage samples (n = 9 for E stage, n = 13 for A stage). Scale
bar = 50μm.CVenndiagrams showA stage-specific ligandsbetween different cells.
D The Kaplan-Meier curve shows patients with higher interaction signature exhibit
poorer OS in TCGA-HNSCC cohort (n = 494, 413 samples for high- and 81 samples
for low-group). E, G Heatmaps of Nichenet analysis show regulatory patterns
between POSTN+

fibroblasts to SPP1+ macrophages (E) and SPP1+ macrophages to

POSTN+
fibroblasts (G). Representative GO and KEGG pathways enrichment of the

predicted target genes expressed in SPP1+ macrophages (F) and POSTN+
fibroblasts

(H). ICircus plots show ligand and receptor pairs from POSTN+
fibroblasts (left) and

SPP1+ macrophages (right) to tumor cells. J Representative GO and KEGG pathways
enrichment of the target genes expressed in tumor cells. Ligands are from POSTN+

fibroblasts (above) and SPP1+ macrophages (below), respectively. Data represent
mean ± SD. P values were calculated by two-side Student’s t-test in B, by two-sided
Wilcoxon signed-rank test in F,H, and J, and by two-sided log-rank test inD. Source
data are provided as a Source Data Fig. 4A-J.
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Distinct phenotypes of malignant epithelial cells favor HNSCC
recurrence
Finally, we probed the tumor niche atlas in recurrent (R)-stage and
primary (A)-stage tumors. To determine differences in tumor cells
between R and A stage patients, we calculated the CNV score by the

inferCNV algorithm and found that malignant cells exhibited a sig-
nificantly greater CNV level in R stage than in A stage patients, sug-
gesting genetic evolution during the recurrence process (Fig. 6A,
Supplementary Fig. 6a)33. Subsequently, DEG analysis was conducted
between A and R stagemalignant cells. We found that genes with copy
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number gains in the R stage intersected with those upregulated in R
stage based on the scRNA-seq results (Supplementary Fig. 6b). These
results revealed that the top-ranked genes upregulated in malignant
cells in the R stagewereMMP12,MMP1, andCTSC, which are associated
with tumor invasion and metastasis (Fig. 6B)34,35. The genes upregu-
lated in A-stage malignant cells were enriched in immune-response-
related pathways (e.g., interferon alpha response, interferon gamma
response, IL2-STAT5 signaling, and inflammatory response), whereas
the genes involved in stress-response pathways (e.g., reactive oxygen
species pathway, UV response, and unfolded protein response) were
upregulated in R-stage tumors (Fig. 6C). Interestingly, malignant cells
in the R stage were observed to have a low cell proliferation score36,
suggesting that tumor cells in the R stage have lower proliferative
function signals (Fig. 6D). The metabolic patterns of malignant cells
were adapted to their proliferation mode and functional transition.
Unlike cancer cells in primary tumors, recurrentmalignant cells exhibit

a decrease in glycolysis metabolism but an increase in oxidative
phosphorylation (Fig. 6E, Supplementary Fig. 6c). We also observed
similar trends in public scRNA-seq27 and bulk RNA-seq datasets37

(Supplementary Fig. 6d, e). These results suggest that malignant epi-
thelial cells in recurrent tumors proliferate relatively poorly and have
greater metabolic activity than malignant epithelial cells in primary
tumors.

Next, we examined the expression of immune checkpoint ligands
and receptors (LRs). Among the genes related to immune surveillance,
differences in antigen presentation-related gene expression were
detected. We observed increased CD47, HLA-DQB1, HLA-DRB1, HLA-
DPA1, and HLA-DM1 expression but decreased enrichment of HLA-A,
HLA-B, HLA-C, HLA-E, and HLA-F in R stage malignant cells (Fig. 6F, G),
suggesting that malignant cells exert different functions regarding
immune activation and suppression between primary and recurrent
tumors. In primary lesions, tumor cells express MHC I molecules and
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activate the antitumor immunity of CD8+ T cells. However, in recurrent
lesions, tumor cells lose MHC I molecule expression, which may pro-
mote immune evasion in HNSCC patients during relapse38. Further-
more, many LR pairs, such as CD274-PDCD1 and CD86-CTLA4, were
expressed at low levels in both A- and R-stage malignant cells. In
contrast, CD47-SIRPG was significantly upregulated in malignant cells
from the R stagewith CD4+ andCD8+ T cells, whichwas validated in the
public scRNA-seq dataset (Fig. 6H, Supplementary Fig. 6f). Therefore,
we postulate that recurrent malignant cells may inhibit the antitumor
immunity of T cells and augment the protumor immune response of
myeloid cells through these interaction molecular pairs, rather than
through classic inhibitory signals.

To date, several targeted genes and corresponding drugs have
been proposed as clinical therapies for advanced HNSCC patients, but
these treatments are limited by discrepancies in outcomes between
primary and recurrent tumors. This inspired us to rethink therapeutic
selection regarding which targeted therapy is more suitable for pri-
mary tumors and the kind of targeted drugs that may benefit R-stage
patients, as these targets become amplified at different levels in
patients with primary and recurrent tumors. Accordingly, we com-
pared the expression of target genes (common in HNSCC) among
these two groups and found that the expression levels of CDKN2A,
EGFR, VEGFA, and TGF-β1 were greater in the R-stage samples, sug-
gesting that these patients may benefit less from CDK4/6 inhibitor
intervention but may achieve better clinical outcomes from the inhi-
bition of EGFR, VEGFR and TGF-β1 (Fig. 6I, Supplementary Fig. 6g). This
information provides a theoretical foundation for the precise selection
of targeted therapy for primary and recurrent tumors. In conclusion,
our analyses together highlight the different characteristics of malig-
nant epithelial cells in primary and recurrent tumors.

Discussion
With the application of the emerging technology scRNA-seq to
delineate intratumoral heterogeneity, the complex cellular ecosystem
ofHNSCChas been comprehensively analyzedwith regarding immune
and nonimmune compartments. Key findings of such studies include
identification of the p-EMT program in malignant cells in vivo and its
association with metastasis, discovery of germinal center B cells and
divergentmyeloid states inHPV+ TILs, and knowledge of the dominant
contributing role of tumor-associated macrophages in the expression
of PD-L1 and other immune checkpoint ligands1,5,6. However, the TME
profiles involved in HNSCC progression, especially from normal tissue
to premalignant, early malignant, advanced malignant, recurrent
lesions, and even lymph node metastasis, have not been totally eluci-
dated. Choi et. al delineated the heterogeneity of tumor cells, CAFs,
andTreg cells during the progression ofHNSCC fromnormal tissues to
leukoplakia, primary cancer, and lymph node metastasis. They have
identified CAF-derived COL1A1 interacts with CD44 in malignant cells,
revealing the promotive role of CXCL8-expressing CAFs and LAIR2
expression level in Treg cells during HNSCC progression8. In our cur-
rent study, through the integrated analyses of scRNA-seq data of our
in-house cohort, scRNA-seq andbulk RNA-seqdata ofpublic accessible
cohorts, and IF, IHC, andmIHCdata, we elucidated the comprehensive
landscape of the TME in stepwise HNSCC progression from normal
tissues to precancerous, early malignant, advanced malignant, recur-
rent lesions, and lymph node metastasis at a single-cell resolution. We
mainly focused on the tumor cells, CAFs, macrophages, and CD8+

T cells and obtained several original discoveries that were firstly
demonstrated in HNSCC ecosystem: Firstly, fibroblasts from our
samples were stratified in 8 clusters and 2 critical subpopulations
(POSTN+ and RSPO1+ fibroblasts) showed distinct changes of both
infiltrative proportions and biological functions during HNSCC step-
wise progression. Secondly, we classifiedmacrophages into 4 subtypes
and delineated the different proportional and functions changes
between SPP1+ and FOLR2+ macrophages during the development of

HNSCC. The third and the most important discovery was the repro-
gramming role of cellular interaction between SPP1+ macrophages and
POSTN+

fibroblasts and tumor cells, thus reshaping the desmoplastic
TME. Fourthly, we also proposed that CXCL13+ Tex contributed to ENE
through reshaping the malignant cells. Fifthly, we elucidated the TME
heterogeneity of primary and recurrent tumors, uncovered the
underlying mechanism of malignant cell-mediated tumor relapse,
which may contribute to further development of precise therapeutics
for patients with primary and recurrent tumors. This is an investigation
to describe in detail a single-cell atlas of immune/nonimmune com-
partments to determine the possible progression trajectories and
transition fates of HNSCC cells at whole clinical stages, including
tumor initiation, progression, recurrence and metastasis.

Our key finding is the enhanced infiltration of POSTN+
fibroblasts

and SPP1+ macrophages and the occurrence cell-cell interactions
between these two cell types in multiple processes during HNSCC
development. Among all cell types in the tumor stroma, fibroblasts,
especially CAFs, are the predominant mesenchyme-derived stromal
component in the TME and dynamically evolve along the tumor.
Accumulating evidence indicates that CAFs are highly heterogeneous
and composed of a dynamic collection of subclusters with distinct
phenotypes and biological functions that participate in tumor pro-
gression. Hence, CAFs may be potential therapeutic targets for cancer
treatment39–41. Thematricellular protein periostin, which is encoded by
POSTN, and uniquely expressed in CAFs but rarely detected in normal
tissues, facilitates tumor cell adhesion and migration, contributes to
the formation of cancer stem cells and premetastatic niches, and
supports TME remodeling and tumorigenesis42–44. However, fluctuat-
ing changes in the infiltration ratio and functional phenotype
of POSTN+

fibroblasts during HNSCC progression have not been
determined. We identified that the abundance of POSTN+

fibroblasts
increase during the transition from normal tissues to premalignant
lesions and from early to advanced and recurrent tumors.
High levels of POSTN+

fibroblasts are positively associated with poor
clinical outcome in HNSCC patients in the TCGA database, in accor-
dance with findings for gastric cancer45. In contrast, the infiltration
level and predictive role of RSPO1+ fibroblasts in predicting
patient prognosis showed a trend opposite to that of POSTN+

fibro-
blasts. This discovery suggested that POSTN+ and RSPO1+ fibroblasts
perform distinct biological functions, as evidenced by the greater
enrichment of pathways related to ECMorganization aswell as antigen
processing and presentation in POSTN+

fibroblasts than in RSPO1+

fibroblasts.
Macrophages are critical regulatorsof theTMEandare involved in

multiple aspects of tumor immunity18. In our study, four macrophage
subsets were identified in primary tumor and metastatic specimens:
SPP1+ macrophages, C1QC+ macrophages, CXCL10+ macrophages and
FOLR2+ macrophages. Among these cells, FOLR2+ macrophages,
whichare tissue-residentmacrophages, were preferentially enriched in
normal tissues and exhibited decreased infiltration during HNSCC
carcinogenesis and progression. These tissue-resident FOLR2+ macro-
phages were previously reported to exhibit fetal-liver macrophage
features and participate in onco-fetal reprogramming of the ecosys-
tem in hepatic cellular cancer46. In contrast, SPP1+ macrophages, which
exhibit higher M2 signatures and express SPP1, resemble a cluster of
angiogenesis- and ECM reorganization-associated macrophages, as
indicated by functional phenotype analysis of angiogenic and phago-
cytic signatures21,47,48. Interestingly, the SPP1+ macrophages identified
in our samples also showed preferential expression of gene sets
involved in neutrophil activation and degranulation. A higher expres-
sion of SPP1 correlates intimately with neutrophil extracellular trap
(NET) formation, and SPP1 influencesNET-inducedmalignant capacity,
indicating that the underlying mechanism of the regulatory effect of
SPP1 on neutrophils is a promising research direction49. Like those in
POSTN+

fibroblasts, the number of SPP1+ macrophages in tumor tissues
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were dramatically increased, and higher infiltration correlated with a
shorter overall survival in TCGA HNSCC patients.

According to our single-cell data, the interaction counts between
CAFs and macrophages were greater than those between CAFs and
other cell subpopulations, highlighting the potential role of these cells
in regulating and remodeling the TME. The macrophage-fibroblast
network shapes an immunosuppressed TME lacking antitumor CD8+

T cells. Immune surveillance escape is the most important hallmark of
cancer, and CAFs can facilitate this process not only by forming a
physical barrier but also by influencing the immune TME, such as
tumor-promoting macrophages48. Tumor-specific FAP+

fibroblasts and
SPP1+ macrophages are positively associated with published data from
colorectal cancer cohorts, and this interaction promotes the formation
of immune-excluded desmoplastic structures and the exclusion of
T-cell infiltration, limiting the therapeutic benefit of immune therapy29.
According to pancancer single-cell analysis by Luo et al., the crosstalk
between CAFs and proximal SPP1+ macrophages participate in the
endothelial-to-mesenchymal transition and contributes to survival
stratifications50. However, they did not distinguish which subpopula-
tion of CAFs strongly interacted with SPP1+ macrophages, nor did they
take tumor stage into consideration. Several studies have investigated
POSTN+

fibroblasts and SPP1+ macrophages in HNSCC; however, these
studies reported only the correlation of individual gene expression and
survival and lack deep insight into their interactions and effects on the
TME51,52. Notably, this crosstalk was investigated frommultiple aspects
in the current study, including single-cell transcriptomics, immuno-
fluorescent labeling of clinical specimens, and bioinformatics analysis
of published datasets. An interesting discovery is that specific reci-
procal communication occurs between POSTN+

fibroblasts and SPP1+

macrophages, with an upward trend in the interaction strength during
tumor progression. This finding was also verified in the HNSCC cohort
fromTCGA and other scRNA-seq datasets, in which SPP1+ macrophages
were the most relevant cells that interact with POSTN+

fibroblasts; the
interaction intensity was positively associated with poor overall
survival29,53. Spatial proximity betweenmacrophages and CAFs enables
paracrine interactions through the ligand‒receptor pattern inCRC, and
this intercellular communication influences the transcriptional phe-
notype of both cell types48. ECM remodeling is indispensable for the
formation of desmoplastic regions, and SPP1+ macrophages facilitate
ECMorganization and cell‒substrate adhesion in POSTN+

fibroblasts by
secreting cytokines encoded by MMP1, MMP13, COL1A1 and COL3A1;
these findings suggest that the desmoplastic microenvironment of
HNSCC is governed by SPP1+ macrophages and POSTN+

fibroblasts.
Conversely, POSTN+

fibroblasts influence SPP1+ macrophages via
enhanced ATP/NADmetabolismand glycolytic processes.Macrophage
metabolismplays a determining role in their functional phenotype, and
alterations in lipid metabolism are associated with poor prognosis in
CRC54,55. Taken together, these findings suggest that the metabolic
remodeling role of POSTN+

fibroblasts with respect to SPP1+ macro-
phages may contribute to HNSCC development. Furthermore, the
interaction between POSTN+

fibroblasts and SPP1+ macrophages con-
tribute to ECM remodeling and coordinates to form a desmoplastic
microenvironment by enhancing tumor cell ECM-receptor interac-
tions, and cell-substrate junctionorganization.Our studyhighlights the
potential value of identifying and establishing therapeutic strategies
targeting POSTN+

fibroblasts, SPP1+ macrophages, or the molecules
involved in their crosstalk to inhibit HNSCC progression.

In general, the spread of cancer cells from a primary tumor to a
locoregional lymph node is an important indication of HNSCC pro-
gression and a predictor of survival in patients with epithelial
carcinoma56. The presence of extranodal extension (ENE+) in tumor-
draining lymph nodes contributes to stage classification according to
American Joint Committee on Cancer (AJCC). For example, HNSCC
patients who are ENE+ may be classified as N3b, the most advanced
stage for locoregional metastasis, regardless of the status of the

primary tumor, and this could be an indication for adjuvant che-
motherapy or radiotherapy. Hence, the ENE is one of the most pivotal
parameters for assessing tumor progression. However, the mechan-
isms by which some tumor cells detach from the primary lesion to
colonize distant sites have not been fully elucidated. In the present
investigation, we focused on the underlying mechanism of ENE by
dissecting the microenvironment of normal, intracapsular, and extra-
capsular metastatic lymph node tissues. The most prominent finding
was the obviously greater fraction of exhausted CD8+ T cells in ENE+

lymph nodes than in normal and ENE- lymph nodes. An identical trend
was found for cell‒cell communication between exhausted CD8+

T cells and tumor cells, reflecting the presence of a metastatic niche
driving effector T cells toward exhaustion and an immunosuppressive
status. For example, tumor-derived IL-8upregulates PD-1 expression in
CD8+ T cells, promoting lymph node metastasis. NETs contain the
immunosuppressive ligand PD-L1, which is responsible for T-cell
exhaustion and dysfunction. Breast cancer cells transfer TGF-β type II
receptors through extracellular vesicles to induce CD8+ T-cell
exhaustion via the TGF-β signaling pathway57–60. However, the
mechanism by which CD8 Tex cells influence malignant cells and
promote LN metastasis has not been elucidated. Based on our data,
CD8 Tex cells in LN-out upregulate of TGF-β1, IFN-γ, and ITG-β1, which
subsequently target FN1, EGFR, CTNNB1, and COL1A1 in tumor cells,
activating the ERK1 and ERK2 cascade pathways and facilitating tumor
progression. This study has interpreted the underlying mechanism of
CD8 Tex cell-mediated tumor cell reprogramming during lymph node
metastasis, especially for the ENE process.

CXCL13 was found to be preferentially enriched in dysfunctional
CD8+ T cells within themelanoma ecosystem, and together with TIGIT,
PDCD1 and LAG3, it has been used to define the dysfunctional state of
T cells61. A subcluster of terminal Tex cells fromovarian cancer express
FOXP3, a dominant transcription factor in Treg cells, and these CD8+

FOXP3+ T cells shared TCRs with CXCL13+ cells. In addition, the RNA
velocity of these terminal Tex cells points to that of CXCL13+ cells,
suggesting a more terminal exhaustion state of CXCL13+ CD8 Tex
cells62. In our study,CXCL13+ CD8Tex cellswere highly infiltrated in LN-
out samples, as verified bymIHC analysis of LN-in and LN-out samples.
This special subset of CD8 Tex cells may be a pivotal contributor to
lymph node metastasis, especially for ENE patients.

The main limitation of our study is the combined trajectory plots
and analysis of tumor cells. Although an increasing number of studies
have combined tumor cells from different patients to study different
states andpotential trajectorycharacteristics of tumor cells6,63–67, these
tumor cells came from patients with distinct genetic entities, which
have not been revealed in the current study. Itmaybemore reasonable
and acceptable to perform longitudinal analysis of tumor cells indivi-
dually and add genetic sequencing data into the context. In our future
study, we would enlarge the sample number and include multi-omics
data to generate a more comprehensive landscape.

In conclusion, the current study provides insight into the pro-
gression of HNSCC stepwise progression in a niche atlas. We explored
the dynamic alterations in the infiltration proportions and biological
functions of malignant cells, immune cells and stromal cells, con-
tributing to a comprehensive understanding of the HNSCC ecosystem
during tumor initiation, development, recurrence and lymph node
metastasis. Our study describes strategies for molecular intervention
involving the cellular interaction of stromal cells (POSTN+

fibroblasts)
with immune components (SPP1+ macrophages), and suggests treat-
ment decision-making for primary and recurrent tumors, whichmight
ultimately improve survival in HNSCC patients.

Methods
Clinical cohort information
The detailed demographic and clinical information of the patients in
the scRNA-seq cohort are displayed in Supplementary Data 1. The
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information of the patients in validation Cohort1 and Cohort 2 is dis-
played in Supplementary Data 2 and Supplementary Data 3. Gender
analysis was not performed because we focused on the differences
between cancer stages instead of genders.

Clinical sample collection
Adjacent normal mucosa, precancerous lesions, tumor tissues, and
lymph nodes were collected from HNSCC patients with informed
written consent and under the approval of the local medical ethics
committee of Shanghai Ninth People’s Hospital Affiliated with Shang-
hai Jiao Tong University. Fresh tissues were stored in RPMI 1640 con-
taining 10% FBS on ice for transport.

Tissue dissociation
Fat tissues and visible blood vessels were removed before tissue pro-
cessing. Fresh oral mucosa, HNSCC tissues, and lymph nodes were
washed with ice-cold PBS and cut into small pieces. For the oral
mucosa and lymph nodes, the tissues were placed in 10mL of EDTA-
containing buffer (5mM EDTA, 15mMHEPES, 1mMDTT, and 10% FBS-
supplemented PBS) and shaken for 1 h at 37 °C. The tissues were
incubated with 10mL of DTT (65mM)-containing PBS (supplemented
with 10% FBS) for 15min at 37 °C with shaking. EDTA and DTT were
then removed by washing with PBS twice. The small tissue pieces were
minced and digested with 0.38mg/mL collagenase VIII and 0.1mg/mL
DNase I in complete RPMI 1640 medium (containing 10% FBS, 100U/
mL penicillin, and 100mg/mL streptomycin) for 1 h at 37 °C. After
digestion, the samples were shaken vigorously for 5min, and 21-gauge
syringes were used to dissociate the cells mechanically. The cells were
filtered through a 100-μm filter, pelleted and washed twice with PBS.
The freshly prepared cell suspensions were subjected to scRNA-seq
and flow cytometry staining.

Single-cell RNA sequencing
The scRNA-seq libraries were generated using a 10X Genomics Chro-
mium Controller Instrument and a Chromium Single Cell 5’ library &
gel bead kit. Briefly, cells were concentrated to approximately 1000
cells/μL and loaded into each channel to generate single-cell gel bead-
in-emulsions (GEMs). After the RT step, the GEMs were broken, and
barcoded cDNA was purified and amplified. The amplified barcoded
cDNA was fragmented, A-tailed, ligated with adaptors and index PCR
amplified. The final libraries were quantified using the Qubit High
Sensitivity DNA Assay (Thermo Fisher Scientific), and the size dis-
tribution of the libraries was determined using a High Sensitivity DNA
chipwith a Bioanalyzer 2200 (Agilent). All the librarieswere sequenced
using an Illumina sequencer (Illumina, San Diego, CA) with a 150-bp
paired-end run.

Data preprocessing
scRNA-seq data preprocessing was performed by NovelBio Co., Ltd.
with NovelBrain Cloud Analysis Platform (www.novelbrain.com). We
applied fastq68 with default parameter filtering of the adaptor
sequence and removed low-quality reads to obtain clean data. Then,
feature-barcode matrices were obtained by aligning reads to the
human genome (GRCh38 Ensemble: version 100) using CellRanger
v3.1.0. We performed a downsample analysis of the samples
sequenced according to the mapped barcoded reads per cell of each
sample and finally achieved the aggregated matrix. Cells containing
more than 200 expressed genes and a mitochondrial UMI percentage
less than 20% passed cell quality filtering, and mitochondrial genes
were removed from the expression table.

Dimension reduction and clustering analysis
Dimension reduction and unsupervised clustering were performed
according to the standard workflow in Seurat (v4.1.1)69. To integrate
cells from different samples into a shared space for unsupervised

clustering, we used the harmony algorithm in the R package (v0.1.0)10

to performbatch effect correction. For clustering and visualization, we
applied the FindCluster function in Seurat to obtain cell clusters at
various resolutions and reduced the dimensionality of the data using
UMAP implemented in the RunUMAP function with the following set-
tings: reduction = ‘harmony’, dims = 1:20.

Analysis of differentially expressed genes
We applied the FindMarkers function in Seurat to identify DEGs
between two groups with the min.pct parameter set at 0.2, which
considers only genes expressed in more than 20% of cells. The
nonparametric Wilcoxon rank-sum test was used to obtain the
p value for comparisons, and the adjusted p value based on Bon-
ferroni correction was calculated. Genes with adjusted p < 1 × 10−5

and log2[fold change] > 0.25 were considered differentially
expressed.

Functional annotation analyses
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontol-
ogy (GO) enrichment analyses were carried out for DEGs between two
groups or target genes of cell-to-cell communication by the R package
clusterProfiler (v4.0.5)70.We considered gene pathwayswith p <0.05 to
be significantly enriched.

Trajectory analysis
To clarify the differentiation trajectory among malignant subtypes,
Monocle (v2.20.0)71 was used to illustrate the differentiation of malig-
nant cells. First, we loaded the normalized count matrices and meta-
data information to create a new CellDataSet object. As the count
matrices had been normalized, we used the following setting:
expressionFamily = uninormal. During the construction of the single-
cell trajectories, we first used the VariableFeatures function in Seurat
(v4.1.1) to filter a list of gene IDs to be used for defining progression.
Then, dimensional reduction was performed using the DDRTree
method. Finally, we ordered cells in the state of S1 as the root. The
results were visualized using the function plot_cell_trajectory, with
color_by = “DefineTypes”, “Pseudotime” or “State “. The function
plot_genes_branched_heatmap was used to create a heatmap to
demonstrate the bifurcation of gene expression along S2 and S3.

The R package velocyto. R (v1.0.8)72 was used to calculate RNA
velocity values for each gene in tumor cells from malignant subtypes.
The resulting RNA velocity vector was subsequently embedded into
the UMAP space.

Analysis of malignant tumor differentiation-related TFs
To identify TFs that may play a role in malignant tumor development,
the DifferentialGeneTest function in monocle was applied for malig-
nant tumors. TFs with p values < 0.05 and q values < 0.05 were defined
as subtypes ofmalignant cell differentiation-related genes. At the same
time, we excluded TFs with expression whose expression decreased
along with pseudotime by filtering out those whose expression was
greater at the starting state than at the end state.

Transcription factor regulon analysis
The R package SCENIC (v1.1.3)16 was used to infer the activated reg-
ulons of each subtype from malignant tumor cells. The input files
consisted of the expression matrix and phenotype information.
Then, the co-expression network was calculated by GRNBoost2,
and the regulons were identified by RcisTarget. Next, the regulon
activity for each cell was scored by AUCell. A differentially expressed
regulon was identified by the Wilcoxon rank-sum test in the Fin-
dAllMarkers function in the R package Seurat with the following
parameters: min.pct = 0.2, logfc.threshold = 0.25, and only.pos = T.
Scaled expression of regulon activity was used to generate a
heatmap.
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Cell‒cell communication analysis
The R package CellChat (v1.5.0)24 was employed to analyze cell-to-cell
communication between tumor cells and other cell types. First, a
CellChat object was created by grouping defined clusters. The ligand‒
receptor interaction database we used for analysis was “CellChatDB.-
human”, without additional supplementation. Preprocessing steps
were all conducted with default parameters. The functions compute-
CommunProb and computeCommunProbPathwaywere applied to infer
the network of each ligand‒receptor pair and each signaling pathway
separately. A hierarchy plot, circle plot and heatmap were used as
different visualization forms.

The R package NicheNet (v1.1.0)28 was used to infer mechanisms
of interaction in POSTN+

fibroblasts, SPP1+ macrophages, and malig-
nant cells. For ligand and receptor interactions, clustered cells with
gene expression over 10% were considered. The top 100 ligands and
top 1,000 targets of differentially expressed genes of “sender cells”
and “receiver cells” were extracted for paired ligand‒receptor activity
analysis. When POSTN+

fibroblasts or SPP1+ macrophage as receiver,
other subtypes of fibroblasts or macrophages were considered refer-
ence cells. The function ligand_activity_target_heatmap in Nichene-
t_output was used to display the regulatory activity of ligands.

Mechanisms of interaction among macrophages, fibroblasts,
CD8+ Tex cells, andmalignant cells at different stages were compared.
Wedefinedniches of interest for each stage, and eachniche involved at
least one sender cell population and one receiver cell population at the
same stage. The next steps followed the pipeline of differential
NicheNet analysis between conditions of interest with default para-
meters. Before visualization, we defined the most important ligand‒
receptor pairs per niche. The functions make_ligand_receptor_lfc_plot
and make_ligand_activity_target_exprs_plot were used to plot ligand
expression activity and target genes, andmake_circos_lrwas applied to
plot ligand‒receptor pair circles.

Single-cell copy number analysis
Copy number instability was assessed with the R package infercnv
(v1.8.1)33, which is designed to infer copy number alterations from
tumor single-cell RNA-seq data. This package compares expression
intensities of genes across malignant cells in advanced and recurrent
tumor tissues. Epithelial cells in normal tissues were used as a
reference.

The R package copykat(v1.1.0)11 was employed to predict the aneu-
ploid/diploid cells for epithelial cells, function copykatwith the following
parameters: id.type= “S”, ngene.chr=1, win.size=25, KS.cut=0.1, sam.-
name= “test”, distance = “euclidean”, n.cores=20,output.seg = “FLASE”.

Signature score calculation
The signature genes (Supplementary Data 4) of CAFs,M1, andM2 from
previous study5,19–21,36, these signature scores calculated by “AddMo-
dulScore” functionwithdefault parameters in Seurat. Scoreexpression
plots were generated with the “VlnPlot” function in Seurat package.
The POSTN+

fibroblasts and SPP1+ macrophages interaction signature
was obtained by overlapping genes from specific ligands from the
POSTN+

fibroblasts (sender)-SPP1+ macrophages (receiver) interaction
and SPP1+ macrophages (sender)-POSTN+

fibroblasts (receiver) inter-
action at advanced stages. The cell type signatureswereobtained from
the top 50 marker genes in the corresponding cell type. Then, the
interaction signature score and cell type signature score calculated by
R package gene set variation analysis (GSVA; v1.40.1)73 in the TCGA-
HNSCC cohort.

Correlation analysis
To compute the pearson correlations of the percentage of Cluster 1 of
tumor cells and POSTN expression in POSTN+

fibroblasts, we calculated
average expression of POSTN according to sample in POSTN+

fibro-
blasts as described in a previous study74. Then the cor.test function

from the R stats (v4.1.0) package was applied to compute pearson
correlation coefficients and p-values.

Survival and multivariable Cox regression analysis
The functionmaxstat.test in theRpackagemaxstat (v0.7.25)75 wasused
to divide all samples into signature score-high and signature score-low
groups based on the optimal cutoff point. The hazard ratio (HR) was
calculated by the Cox proportional hazards model by R package sur-
vival (v3.3.1), and the 95% CI is reported. Kaplan‒Meier comparative
survival analyses for prognostic analysis were carried out, and the log-
rank test was used to determine statistical significance. Multivariable
Cox regression was performed by R package survival (v3.3.1) by con-
sidering the confounding factors, including HPV status76,77, margin
status, and stages.

Cell lines
Cal27 and SCC9 cells were obtained from American Type Culture
Collection (Manassas, VA, USA) and were cultured in DMEM (GIBCO,
#11965) supplemented with 10% fetal bovine serum (FBS). The cells
were authenticated based on the morphology under microscope and
growth rate. Cell lines were tested negative for mycoplasma con-
tamination. No misidentified lines were used.

Generation of TFDP1-overexpressing and knockdown cells
The cells were transfected using Lipofectamine 3000 (ThermoFisher,
L3000001). TFDP1-overexpressing plasmids were purchased from
Shanghai Nomics Co., Ltd. A plasmid vector was used as negative
control. Small interfering RNAs (siRNAs) specific for TFDP1 were pur-
chased from Shanghai Genepharma Co., Ltd. A scrambled nontarget-
ing siRNA was used as negative control. The cells were cultured under
basal conditions in vitro for 6 h and thenwashedwithOpti-MEM. Then,
the HNSCC cell lines were transfected with plasmids or siRNAs
according to the manufacturer’s protocol.

Transwell assay
The migration and invasion abilities of HNSCC cells were determined
by Transwell assays (8.0mm pore size, Corning, USA). Cells (1.0 × 105

for migration and 2.0 × 105 for invasion) were cultured in serum-free
DMEM in the upper chambers. DMEM containing 10% FBS was added
to the lower chambers. After the cells had cultured for 24 h, the cells
that hadmigrated to the opposite side of the Transwellfilterwerefixed
with 4% paraformaldehyde and stained with crystal violet staining
solution (Beyotime, Shanghai, China). For the transwell invasion assay,
the top chamber was coated with Matrigel (1:10 in DMEM dilution,
Corning, USA), the other procedures were the same as those used for
the transwell migration assay. Five fields were randomly selected
under a 100× microscope for image acquisition.

Immunohistochemical staining
Formalin-fixed, paraffin-embedded (FFPE) lymph node tissues were
separately sliced into 4-μm sections and mounted on glass slides. The
slides were baked at 65 °C overnight. After deparaffinization and
hydration, these slides were boiled in citrate buffer at 100 °C for
15min. Subsequently, a 3% H2O2 solution was used to block endo-
genous peroxidase activity for 20min. To prevent nonspecific anti-
body binding, the slides were then incubated with 5% normal goat
serum for 1 h at room temperature. Then these slides were incubated
at 4 °C overnight with an anti-foxp3 primary antibody (Abcam,
ab210034, 1:500). After 3 washes with TBST, the slides were incu-
bated with an HRP-conjugated goat anti-rabbit/mouse secondary
antibody (GeneTech, GK500705) for 1 h at room temperature.
The sections were stained with DAB and then counterstained
with haematoxylin according to the manufacturer’s instructions.
The 3Dhistech Pannoramic Scan system was used for image
acquisition.
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Immunofluorescence staining
Four-micron-thick sections were dewaxed in xylene, rehydrated in
alcohol, and subjected to heat-induced antigen retrieval in 0.1M
95–99 °C sodium citrate (pH 6.0) for 10min. After washing, the sec-
tions were incubated with 5% donkey serum in PBS for 60min at room
temperature to block nonspecific binding. Subsequently, the slides
were incubated overnight at 4 °C with the first primary antibody (anti-
POSTN) and then at room temperature for 60min in a dark chamber
with the first fluorophore-conjugated secondary antibody diluted in
PBS with 5% donkey serum. The slides were washed with PBS and then
incubated with the second primary antibody (anti-SPP1), followed by
staining with the second fluorophore-conjugated secondary antibody
diluted in PBS with 5% donkey serum. The last two steps were con-
ducted at room temperature for 60min in a dark chamber. The
3Dhistech Pannoramic Scan systemwas used for image acquisition. To
calculate the strength of the interaction between POSTN+

fibroblasts
and SPP1+ macrophages, we randomly obtained 5 images of SPP1+

macrophages fromeach slide and calculated the proportion of POSTN+

fibroblasts that colocalized with the SPP1+ cells.

Multiplexed immunofluorescence staining
Multiplexed immunofluorescence staining of 4-μm formalin-fixed,
paraffin-embedded sections was performed using the PANO 4-plex
IHC kit (abs50012, Absin) according to the manufacturer’s instruc-
tions. Different primary antibodies were sequentially applied, followed
by horseradish peroxidase-conjugated secondary antibody incubation
and tyramide signal amplification. The glass slides were microwave
heat-treated following each round of TyramideSignal Amplification.
Nuclei were stained with 4’−6’-diamidino- 2-phenylindole (DAPI,
D9542, Sigma‒Aldrich) after labeling human antigens. The following
antibodies were used: anti-TFDP1 primary antibody (Proteintech,
11043-1-AP, 1:200), anti-CK5 primary antibody (Abcam, ab52635,
1:200), anti-POSTN primary antibody (Abcam, ab152099, 1:1000), anti-
α-SMA antibody (Abcam, ab124964, 1:1000), anti-SPP1 antibody
(Abcam, ab214050, 1:1000), anti-CD68 antibody (Abcam, ab955,
1:3000), anti-CXCL13 (Abcam, ab246518, 1:1000), anti-CD8 (CST,
#70306, 1:400), anti-PD1 (Abcam, ab216352, 1:50), and p-ERK (Abcam,
ab201015, 1:500). The 3Dhistech Pannoramic Scan systemwas used for
image acquisition.

Statistics and reproducibility
All the statistical analyses were performed using R (version 3.6.1).
Student’s t test, Wilcoxon rank-sum test, Pearson’s chi-square test, log-
rank test, Pearson’s correlation coefficient and Spearman’s rank cor-
relation coefficient were utilized in this study. No sample size calcu-
lation was performed. We followed the routine biological replicate
requirement in experiment section, n ≥ 3 for each group. For sequen-
cing data, we excluded low-quality cells if abnormalities exist in (1) cell
library sizes; (2) the numbers of expressed genes; (3) the proportion of
mitochondrial gene counts. The details of cut-off line could be
checked in Methods. Randomization is not relevant to our study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The bulk RNA-seq publicly available data used in this study are avail-
able in the TCGA portal (http://gdac.broadinstitute.org/) and the Gene
Expression Omnibus under accession code GSE17385537. The pro-
cessed publicly available scRNA-seq data used in this study are avail-
able in the Gene Expression Omnibus under accession code
GSE18873725, GSE18222726, and GSE23493327. The raw data of single-
cell RNA-seq generated in this study were deposited in Genome
Sequence Archive (GSA) with accession ID HRA004648. Since these

data are related to human genetic resources, raw data can be obtained
directly by requesting and following the GSA guidelines for academic
use at https://ngdc.cncb.ac.cn/gsa-human/browse/HRA004648 after
the user log in to the GSA database with the email address of the
academic institution. The request will be responded to within two
weeks. Once access is granted, users have six months to download the
data. The guidance for making a data access request of GSA for
humans can be downloaded from https://ngdc.cncb.ac.cn/gsa-human/
document/GSA-Human_Request_Guide_for_Users_us.pdf. The sig-
nature gene lists fromother studies are listed in SupplementaryData 4.
The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with
this paper.

Code availability
Codes were implemented in R 4.1.0 and are deposited in https://
github.com/hedyBao/HNSCC_scRNA/tree/main.
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