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InPACT: a computational method for
accurate characterization of intronic
polyadenylation from RNA sequencing data

Xiaochuan Liu 1,7, Hao Chen2,7, Zekun Li 1, Xiaoxiao Yang 1,3, Wen Jin 1,3,
Yuting Wang1,3, Jian Zheng 4, Long Li 4, Chenghao Xuan 2 ,
Jiapei Yuan 5,6 & Yang Yang 1,3

Alternative polyadenylation can occur in introns, termed intronic poly-
adenylation (IPA), has been implicated in diverse biological processes and
diseases, as it can produce noncoding transcripts or transcripts with truncated
coding regions. However, a reliable method is required to accurately char-
acterize IPA. Here, we propose a computational method called InPACT, which
allows for the precise characterization of IPA from conventional RNA-seq data.
InPACT successfully identifies numerous previously unannotated IPA tran-
scripts in human cells,many ofwhich are translated, as evidenced by ribosome
profiling data. We have demonstrated that InPACT outperforms other meth-
ods in terms of IPA identification and quantification. Moreover, InPACT
applied to monocyte activation reveals temporally coordinated IPA events.
Further application on single-cell RNA-seq data of human fetal bone marrow
reveals the expression of several IPA isoforms in a context-specific manner.
Therefore, InPACT represents a powerful tool for the accurate characterization
of IPA from RNA-seq data.

The process of mRNA precursor maturation through cleavage and
polyadenylation at polyadenylation (polyA) sites is a critical step of
post-transcriptional regulation1. Alternative cleavage and poly-
adenylation (APA) is recognized as an important post-transcriptional
regulatory mechanism that generates multiple RNA transcripts from a
single gene through the selection of various polyA sites. APA has been
implicated in diverse biological processes, including immune
response, stem cell differentiation, and cancer progression2–7. APA can
be categorized as different types based on the genomic location of
polyA sites, such as 3’ untranslated region (UTR) APA and intronic APA

(IPA)8,9. The 3’UTRAPA events arise in the 3’-most exons, leading to the
generation of tandem 3’UTR isoforms without altering the protein-
coding sequence, while IPA events take placewithin introns, giving rise
to the generation of alternative last exon isoforms8,9. The regulatory
role of 3’UTR APA in modulating gene expression has been demon-
strated through its impact on mRNA stability, localization, and trans-
lation efficiency10–12. In contrast, IPA can not only give rise to isoforms
with distinct 3’UTRs, but also result in the production of either non-
coding transcripts or truncated protein-coding transcripts with the
loss of C-terminal domains in the protein product2,3,5,13–15.
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The IPA events can be categorized into two distinct groups:
composite IPA events and skipped IPA events. Composite events
involve the conversion of an internal exon into a 3’ terminal exon,
whereas skipped events involve the utilization of a 3’ terminal exon
that would be otherwise skipped9. The expression of IPA isoforms is
demonstrated to exhibit a cell-type-specific manner, as evidenced by
the immunoglobulin M heavy chain (IGHM) locus. Specifically, mature
B cells produce full-length IGHM isoforms, whereas plasma cells gen-
erate IPA isoforms that result in the loss of the transmembrane domain
and the secretion of IgM antibodies3. Recent investigations have illu-
minated the biological significance of IPA. In the context of B cell
leukemia, aberrant IPA events have been demonstrated to generate
truncated proteins that deactivate tumor suppressor genes, such as
DICER, FOXN3, and MGA2. Furthermore, atypical IPA events have been
observed to be augmented in solid tumors, including TSC1 in lung
cancer and MAGI3 in breast cancer13,14. In addition to generating trun-
cated proteins, IPA can also alter the 3’UTR content, thereby influen-
cing the subcellular localization of RNA molecules. Taliaferro et al.
have examined RNA subcellular localization at the isoform level and
found that gene-distal alternative last exon isoforms preferentially
localize to neurites15. These findings collectively suggest thatmany IPA
isoforms may play an unanticipated role in various biological pro-
cesses and pathological conditions.

Despite the crucial role of IPA in various biological and patholo-
gical processes, its precise genome annotations and biological sig-
nificance remain incompletely understood. While a number of high-
throughput sequencing techniques, such as A-seq, 3P-seq, 3’READS,
PAS-seq, and PolyA-seq, have been developed to directly sequence 3’
ends of RNAs and detect polyA sites, they have not beenwidely utilized
and the available data remain relatively scarce, impeding further
investigation16–20. In contrast, RNA-seq has been extensively utilized in
various samples and conditions, providing an opportunity to char-
acterize APA. Although several computational tools, including MISO,
QAPA, and LABRAT, enable APA quantification, they do not possess the
capability to identify novel IPA isoforms21–23. Furthermore, several
methods such as DaPars, Aptardi, APAtrap and TAPAS have been spe-
cifically designed for the identification of and quantification of APA
basedonRNA-seqdata, but are limited to the analysis of 3’UTRAPA24–27.
Recently, a specialized tool called IPAFinder has been proposed to
identify IPA sites and analyze the dynamic regulation of IPA using RNA-
seq data14. However, IPAFinder relies on read coverage fluctuations,
which necessitates adequate sequencing depth, and the precision of
identified IPA sites raises concerns regarding subsequent analysis14.
Additionally, a recently published method called APAIQ, which
leverages the combined effect of DNA sequence and RNA-seq read
coverage, can also be employed to identify IPA sites28. Nevertheless,
APAIQ is not specifically designed for IPA analysis and therefore cannot
assemble IPA isoforms and cannot differentiate between skipped and
composite IPA events. Consequently, the precise characterization of
IPA from conventional RNA-seq remains a challenge, impeding the
progress towards a comprehensive understanding of IPA.

Here, we present a new computational method, InPACT (Intronic
PolyAdenylation Characterization Tool), which incorporates a
sequence module and a read module to enable precise sample-wise
characterization of IPA using conventional RNA-seq data (Fig. 1).
InPACT can reproducibly and accurately identify IPA sites and recon-
struct IPA isoforms. 3’-Rapid Amplification of cDNA Ends (3’-RACE)
experiments have been conducted to validate the presence of several
predicted IPA sites. We show that InPACT-predicted IPA isoforms are
sufficiently stable to undergo translation, as evidenced by ribosome
profiling data. Demonstrating the effectiveness of our method, we
show that InPACT outperforms IPAFinder in identifying and quantify-
ing IPA with 3’-end sequencing data, long-read sequencing data and
simulated RNA-seq data as benchmarks. By leveraging InPACT,we have
profiled and determined the dynamics of novel IPA events inmonocyte

activation. Furthermore, we illustrate the potential of InPACT in the
investigation of IPA using human fetal bone marrow single-cell RNA-
seq data, thereby enabling the characterization of cell-type-specific IPA
events. Collectively, our results underscore the potential of InPACT to
facilitate the detection and characterization of IPA from conventional
RNA-seq data, thereby enabling a more comprehensive understanding
of IPA in diverse biological processes and pathological conditions.

Results
InPACT design
The InPACT was designed to effectively identify and quantify IPA
events via the examination of contextual sequence patterns and RNA-
seq reads alignment. Notably, the modular structure of InPACT
includes a sequence module that utilizes a convolutional neural net-
work (CNN) to scan for all potential polyA sites within genomic regions
annotated as introns, as well as a read module that employs a sample-
specific classifier trained on features that characterize the alignment of
sequencing reads generated from single- or paired-end RNA-seq. The
methodology and architecture of InPACT are depicted in Fig. 1.

Briefly, the sequence module was designed to utilize a convolu-
tionalneural network architecture to learn from thegenomic sequence
surrounding annotated polyA sites (Fig. 1, see Methods). As the cis-
regulatory elements are typically within 100 nt upstream and down-
stream of a polyA site29, this module takes genomic sequence in 201 nt
windows centered on target sites as input. These sequences were
encoded using one-hot representation, resulting in a dimensionality of
4 × 201 (Fig. 1). With the human reference annotation of Refseq as an
example, a CNN was trained to predict polyA sites, resulting in accu-
rate predictions (Supplementary Fig. 1a). Then, we evaluated the per-
formance of our trained CNN on three commonly used polyA
databases: GENCODE, PolyA_DB 3, and PolyASite 2.030–32. To ensure
unbiased testing, we excluded any overlapping polyA sites used for
model training and constructed separate sets of testing polyA sites.
The results demonstrated that our CNN model effectively predicted
the polyA sites in the aforementioned databases, achieving AUROC
values of 0.954 for GENCODE, 0.920 for PolyA_DB 3, and 0.794 for
PolyASite 2.0 (SupplementaryFig. 1b–d).When comparingourmodel’s
performance with three other deep-learning models (DeepPASS,
APARENT, and DeepPASTA)33–35, we found that our model’s overall
performance is either better or comparable (SupplementaryFig. 1b–d).
Notably, all models exhibited lower performance on PolyASite 2.0
compared to other testing sets of polyA sites (Supplementary Fig. 1d).
However,DeepPASS showed slightly better performance,which canbe
attributed to its training on a comprehensive set of polyA sites from
multiple databases, including PolyASite 2.033. Furthermore, we applied
thismodel to scan for IPA sites across non-overlapped intronic regions
annotated in the human genome, yielding candidate IPA sites. These
findings demonstrated the potential utility of the sequence module in
predicting polyA sites and identifying novel IPA sites.

Next, wedesigned a readmodule to accurately identify previously
unannotated terminal exons located in non-overlapped intronic
regions, which allows for the identification of IPA sites existing in the
RNA-seq data from candidate IPA sites predicted from the sequence
module (Fig. 1). This was accomplished by training a classifier specific
to the RNA-seq data under analysis to distinguish terminal exons from
background regions and internal exons, which was inspired by the
previous study36 (Supplementary Fig. 2, seeMethods). Various features
were constructed to characterize these regions from the alignment of
RNA-seq data, including both spliced and unspliced reads surrounding
the 5’ and 3’ boundaries, which was inspired by previous studies9,24,36

(Fig. 1, Supplementary Fig. 3). The read module differs from previous
methods by considering coverage patterns and alignment informa-
tion, rather than merely read coverage. Two types of new terminal
exons classified based on their structural composition were con-
sidered. The first type, referred to as composite terminal exon, spans
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the entire sequence from the upstreamdonor splice site to the intronic
polyA site (Supplementary Fig. 2). The second type, known as skipped
terminal exon, results from the IPA event that introduces a novel exon
ending at the intronic polyA site, necessitating the recognition of both
an upstream donor splice site and a new acceptor splice site (Supple-
mentary Fig. 2). To that end, InPACT can train separate models for
skipped and composite candidates using corresponding feature
combinations (Fig. 1, Supplementary Fig. 3). The accuracy of the
models was tested with two published RNA-seq replicates of human
embryonic kidney 293 (HEK293) cells37 (Supplementary Data 1). The
results showcased that both models effectively identified terminal
exons in the testing set (Replicate 1: AUROCskipped = 0.999,
AUROCcomposite = 0.997; Replicate 2: AUROCskipped = 0.998,
AUROCcomposite = 0.998) (Supplementary Fig. 4). The performance of
the models was evaluated using various metrics, including true nega-
tive rate, precision, F1-score, accuracy, true positive rate, and Mat-
thew’s correlation coefficient (Supplementary Fig. 4).

InPACT reproducibly and accurately identifies intronic
polyA sites
Leveraging the two RNA-seq replicates of HEK293 cells, we conducted
a comprehensive evaluation of the performance of InPACT

(Supplementary Data 1). 471 (319 skipped and 152 composite) and 393
(287 skipped and 106 composite) polyA sites that arenovel with regard
to the Refseq annotation were identified for those two replicates,
respectively (Supplementary Fig. 5). As an example, a skipped IPA site
of gene ZNF771 was identified in HEK293 cells with a novel splice
junction supported by many spliced reads (Fig. 2a). In addition, a
composite IPA site of gene TERF2was identified inHEK293 cells, which
was novel with respect to GENCODE annotation (Fig. 2b). In compar-
ison, an overlap of approximately 50% (218 sites in total, with
182 skipped and 36 composite) was observed between two replicates
(Supplementary Fig. 5a–c). The moderate consistency observed
between the replicates may be ascribed to the relatively low coverage
of those non-overlapped IPA isoforms (Supplementary Fig. 5d). To
further validate the reliability of the IPA sites identified by InPACT, we
conducted 3’-RACE experiments on 15 selected candidate IPA sites in
HEK293 cells, including the IPA sites within gene ZNF771 and TERF2
(Fig. 2c, d, Supplementary Fig. 6, Supplementary Data 2). Remarkably,
all candidate IPA sites were successfully confirmed using 3’-RACE in
HEK293 cells. Specifically, the results showed that 10 out of the 15
candidate IPA sites were confirmed within 10 nt of their predicted
positions, while the remaining 5 sites were confirmed within approxi-
mately 40 nt (Supplementary Data 2).
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The polyA signals, which are typically located upstream of the
polyA sites, are required for pre-mRNA cleavage and polyadenylation.
The AAUAAA, AUUAAA, and related variants have been identified as
canonical signals. To assess the reliability of InPACT, we examined the
polyA signals and base compositions in the vicinity of IPA sites iden-
tified by InPACT. The results indicated that the canonical polyA signal
(AAUAAA) was significantly enriched in each RNA-seq replicate,

followed by AUUAAA (Fig. 2e). Additionally, the nucleotide profile
surrounding the identified IPA sites was found to be similar to that
obtained from Refseq annotated polyA sites. InPACT also has the
capability to reconstruct intronic terminal exons corresponding to the
IPA sites. The median lengths of intronic terminal exons identified by
InPACT in two HEK293 RNA-seq replicates were found to be shorter
compared to annotated ones (Fig. 2f). In addition, to assess their
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evolutionary conservation, phyloP scores in regions ranging from 20
nt upstream and 20 nt downstreamof polyA sites were computed. The
identified IPA sites were observed to be moderately evolutionarily
conserved, albeit a lesser extent than annotated polyA sites (Fig. 2g).
These results collectively supported the authenticity of IPA sites
identified by InPACT.

Moreover, InPACT possesses the capability to assemble novel IPA
isoforms and annotate putative protein-coding regions contingent on
the identified IPA events. With the augmented annotation, we can
quantify the isoformexpression levels from theRNA-seqdata. A robust
correlation of the expression levels of novel assembled IPA isoforms
was observed between two HEK293 RNA-seq replicates (Pearson’s
correlation r = 0.94, P <0.05), suggesting that they exhibit repro-
ducible expression across different biological replicates (Fig. 2h). In
addition, ribosome profiling data of HEK293 cells was utilized to
determine the translational efficiency of each identified IPA isoform38.
In both annotated isoforms and novel IPA isoforms identified by
InPACT, the ribosome footprint density was observed to peak around
stop codons (Fig. 2i). Further, the ribosome profiling data showcased
that the identified intronic terminal exons exhibit a greater transla-
tional efficiency than intronic sequences, but a little lower than those
already annotated terminal exons (Fig. 2j). For example, the ribosome
footprints were found along the intronic terminal exons of the skipped
IPA isoform of gene PIGL and the composite IPA isoform of gene
CHRNA5, both of which were experimentally validated by 3’-RACE in
HEK293 cells (Fig. 2k, l). Taken together, these findings suggested that
the InPACT-identified IPA isoforms are adequately stable to undergo
translations.

The interaction between U1 small nuclear ribonucleoprotein
(snRNP) and factors involved in cleavage and polyadenylation plays
a crucial role in regulating premature 3’ end cleavage and poly-
adenylation by binding to cryptic intronic polyA sites39–41. This
process, known as telescripting, is essential for ensuring complete
transcription and serves as a general mechanism for controlling
transcription elongation39–41. Therefore, we employed InPACT to
analyze an RNA-seq dataset from HeLa cells treated with antisense
morpholino oligonucleotide (AMO) targeting U1, as well as a control
group41 (Supplementary Data 1). Our analysis identified 767 novel
IPA events in HeLa cells treated with U1 AMO, while the control
group only had 151 events (Supplementary Fig. 7a). Additionally, we
examined the dynamic usage of IPA sites in HeLa cells treated with
U1 AMOcompared to the control group. The observations revealed a
significant increase in IPA usage in HeLa cells treated with U1 AMO
(Wilcoxon rank sum test, P < 2.2e-16) (Supplementary Fig. 7b). These
results are in line with the telescripting activity of U1 snRNP. Overall,
these results provided additional compelling evidence supporting
the efficacy of InPACT.

InPACT outperforms current methods on IPA identification and
quantification
In order to assess and compare the efficacy of InPACT with other
computational methods for IPA analysis based on conventional RNA-
seq data, we conducted a comparative analysis using various bench-
marks, including experimental 3’-end sequencing data, PacBio long-
read sequencing data, and simulated RNA-seq data. We collected
several additional RNA-seq datasets with matched benchmarking data
from different samples, including the MicroArray/Sequencing Quality
Control (MAQC) Universal Human Reference (UHR), MAQC human
brain, and human small airway epithelial cells42 (Supplementary
Data 1). It is noteworthy that while several computational methodol-
ogies have been developed to investigate APA using RNA-seq data,
such asDaPars,QAPA, and APAtrap, they do not extend to IPA analysis.
Recently, a method called IPAFinder has been proposed, which is
specifically designed for identifying IPA sites from RNA-seq data by
considering the changepoint in read coverage14. In terms of design
principles, InPACT theoretically has the potential to outperform IPA-
Finder as it incorporates both genomic sequence and RNA-seq read
coverage. Additionally, APAIQ, a recently published method that also
leverages the synergistic effect of sequence and read coverage, can be
used for identifying IPA sites28. Therefore, we primarily focused on
comparing InPACT with APAIQ and IPAFinder by evaluating various
aspects of performance.

With the curated RNA-seq datasets, we can identify novel IPA sites
using InPACT, APAIQ and IPAFinder, respectively. Examination of the
polyA signals and nucleotide compositions near IPA sites identified by
each tool revealed considerable differences43. Specially, both InPACT-
identified and APAIQ-identified sites exhibited significant enrichment
of the canonical polyA signal (AAUAAA) upstream of the sites, whereas
IPAFinder-identified sites did not display enrichment (Fig. 3a). Addi-
tionally, the nucleotide profiles surrounding IPA sites identified by
InPACT and APAIQ closely resembled those of annotated polyA sites
(Supplementary Fig. 8a–p).

In addition, we evaluated and compared the performance of
InPACT, APAIQ, and IPAFinder in identifying IPA sites using experi-
mental 3’-end sequencing data from the corresponding samples as the
ground truth. Different types of experimental 3’-end sequencing data
has been utilized, including A-seq, 3P-seq, and PolyA-seq16,19,44 (Sup-
plementary Data 1). For the HEK293 cells, comparison of InPACT-,
APAIQ-, and IPAFinder-identified IPA siteswith those identified inA-seq
and 3P-seq data revealed that over 60% of InPACT-identified IPA sites
were located within 50 nt to polyA sites in ground truth, whereas only
about 30% of APAIQ-identified IPA sites and 20% of IPAFinder-
identified IPA sites were within the same distance. The predicted IPA
sites proximal to the ground truth ( < 50 nt) were considered as true
positive, and it was found that over 80% InPACT-predicted true

Fig. 2 | Identification of novel IPA sites in HEK293 cells using InPACT. a, b Two
examples of InPACT-identified IPA sites in HEK293 cells. The Sashimi plots depict
the RNA-seq reads aligned to the ZNF771 (a) and TERF2 loci (b), with the annotation
of Refseq isoforms and InPACT-identifiednovel IPA isoforms. The densities of RNA-
seq reads from two RNA-seq replicates of HEK293 cells are shown in purple. Splice
junctions are displayed as arcs connecting exons. The number of reads observed
for each junction is indicatedwithin the arc. c,d Experimental validationof InPACT-
identified IPA sites in ZNF771 (c) and TERF2 (d) genes from HEK293 cells. The gel of
3’-Rapid Amplification of cDNAEnds (3’-RACE) experiments and Sanger sequencing
results of the amplified transcripts by 3’-RACE experiments were depicted. Each
experiment was repeated n = 3 times. e The bar plot depicts the frequencies of 18
known polyA signals detected in the regions of 60 nt upstream of the respective
sites. The IPA sites identified from two RNA-seq replicates ofHEK293 are compared
with randomly selected genomic sites in introns. f, g The cumulative distribution
curves of terminal exon length (f) and conservation scores (PhyloP) (g). The IPA
terminal exons identified from two RNA-seq replicates of HEK293 are compared
with annotated terminal exons or randomly selected genomic sites in introns.hThe

scatter plot depicts the estimated expression levels of annotated isoforms (blue)
and InPACT-identified novel IPA isoforms (red) from two RNA-seq replicates of
HEK293. The Pearson correlation coefficients are indicated in the respective colors.
i The plots depict the read coverage of ribo-seq reads around stop codons of
annotated isoforms and IPA isoforms. The upper panels depict the average read
coverage. The lower panels show the read coverage for each isoform using heat-
maps. j The violin plot depicts translational efficiencies of annotated terminal
exons (n = 1048 for rep1 and n = 925 for rep2), IPA terminal exons (n = 382 for rep1
and n = 312 for rep2) and introns (n = 9,268 for rep1 and n = 8284 for rep2). The
center lines denote the median values with the boxes are bounded by the 25th and
75th percentiles. Thewhiskers extend to themaximum andminimum values within
1.5 times the interquartile range (IQR) from each end of the box. k, l Two examples
of InPACT-identified IPA isoforms translated in HEK293 cells. The plots show the
reads coverage of RNA-seq and ribo-seq in the locus for PIGL (k) and CHRNA5 (l),
with the annotation of Refseq isoforms and InPACT-identified IPA isoforms. The
coding sequences and stop codons are illustrated in the annotation tracks.
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positive IPA sites located within less than 10 nt to the ground truth,
outperforming APAIQ and IPAFinder (Fig. 3b, c). The similar results
were also observed in the comparisons of RNA-seq data of MAQCUHR
and MAQC human brain (Supplementary Fig. 9). Despite the RNA-seq
data and matched 3’-end sequencing data were generated using
obviously different sequencing technologies and from different labs,

the results were consistent across different datasets. Collectively,
InPACToutperformsAPAIQand IPAFinder in accurately identifying IPA
sites from conventional RNA-seq data.

Long-read sequencing methods offer the capability to capture
high-quality, full-length transcript sequences, thereby providing reli-
able isoform information without the requirement for transcript
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Fig. 3 | InPACT outperforms other methods on IPA identification and quanti-
fication. aMotif enrichment of canonical polyA signal (AAUAAA) upstream (50 nt)
on the IPA sites identified by InPACT, APAIQ and IPAFinder in different RNA-seq
datasets by hypergeometric test of MEME Suite (two-sided). b, c The cumulative
distribution curvesof thedistancebetween the truepositive identified IPA sites and
the ground truth, including A-seq (b) and 3P-seq (c). If an identified IPA site is
located within 50 nt from the ground truth, it was regarded as true positive. All the
datasets are from HEK293 cells. d The cumulative distribution cure of the distance
between the true positive identified IPA sites and the ground truth (Iso-seq). This
dataset is from human small airway epithelial cells. e, f Two examples of InPACT-
identified IPA isoforms in human small airway epithelial cells. The plots show the
read coverage of RNA-seq in the locus for HPS1 (e) and CDC23 (f), with the anno-
tation assembled from long-read Iso-seq and InPACT-identified IPA isoforms.

g, h The precision (g) and sensitivity (h) of InPACT, APAIQ and IPAFinder are
evaluated for identifying IPA sites using simulated RNA-seq data with varying
sequencing coverage levels ranging from 10X to 50X. The identified IPA site located
within 50 nt to a predefined polyA site was classified as true positives (TP), while
those were not classified as false positives (FP). Replicates were utilized for each
coverage level (n = 5 random simulations). The precisions are presented as mean
values + =� SD (g). The sensitivities are presented as box plots. The center lines
denote the median values with the boxes are bounded by the 25th and 75th per-
centiles. Thewhiskersextend to themaximumandminimumvalueswithin 1.5 times
the interquartile range (IQR) from each end of the box. i The cumulative distribu-
tion curve depicts error of the relative usage of IPA sites determined by InPACT,
APAIQ and IPAFinder in the simulated RNA-seq data with a sequencing coverage
level of 50X.
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reconstruction. To evaluate the IPA events identified by InPACT,
APAIQ, and IPAFinder, we made use of a dataset that sequenced
samples from human small airway epithelial cells in parallel on both
short-read and long-read sequencing platforms (Supplementary
Data 1). Despite primarily capturing isoformswith high expression, the
PacBio platform based single-molecule real-time (SMRT) Iso-seq data
validated about 20% of the InPACT-identified novel IPA isoforms, while
only approximately 2% of the APAIQ-identified IPA isoforms and 5% of
the IPAFinder-identified IPA isoforms were verified. Furthermore, the
use of Iso-seq data as ground truth revealed that genomic positions of
InPACT-identified IPA sites were more precise than those identified by
APAIQ and IPAFinder (Fig. 3d). Specifically, the Iso-seq data of human
small airway epithelial cells validated a skipped IPA isoform of gene
HPS1 and a composite IPA isoform of gene CDC23, both of which are
novel with respect to Refseq annotation (Fig. 3e, f, Supplemen-
tary Fig. 10).

Furthermore, we employed simulated RNA-seq data to assess the
efficacy of InPACT in detecting IPA sites, with a particular focus on the
impact of sequencing depth on the accuracy of identification. The
RNA-seq data were simulated with sequencing coverage ranging from
10X to 50X. The precision and sensitivity of InPACT were found to be
superior to those of APAIQ and IPAFinder in identifying IPA events,
with an increase in sensitivity and precision observed with increasing
sequencing depth (Fig. 3g, h). Notably, InPACT successfully identified
approximately 90% of IPA sites at a sequencing coverage of 50X
(Fig. 3h). Furthermore, InPACTwas also evaluated in terms of its ability
to identify both skipped and composite IPA sites (Supplementary
Fig. 11). Our results demonstrated that InPACT outperforms IPAFinder,
regardless of the type of IPA sites. Lastly, we aimed to compare the
performance in quantifying IPA events using the simulated RNA-seq
data. The ground truth IPA usage can be estimated directly from the
simulated RNA-seq data by using the isoform expression level divided
by the total expression level of all isoforms from the corresponding
gene. The difference between the IPA usage predicted by the tools and
the ground truth was used as an error metric to compare the accuracy
of InPACT, APAIQ, and IPAFinder in quantifying IPA. The results indi-
cated that InPACT exhibited a lower error rate than both IPAFinder and
APAIQ in quantifying IPA events with a sequencing coverage of 50X
(Fig. 3i). Additionally, the impact of sequencing depth on quantifica-
tion accuracy was evaluated by estimating error rates using simulated
RNA-seq data with sequencing coverage ranging from 10X to 50X
(Fig. 3i, Supplementary Fig. 12). The findings demonstrated that
InPACT outperforms both APAIQ and IPAFinder in quantifying IPA
events from conventional RNA-seq data.

Dynamic IPA events in monocytes activation
We next applied InPACT to investigate the transcriptome-wide land-
scape of IPA in the context of monocytes activation. Specifically, we
analyzed RNA-seq from untreated and lipopolysaccharide (LPS)-acti-
vated human monocytes, with three replicates per condition45 (Sup-
plementary Data 1). By utilizing InPACT, we identified a total of 2977
novel IPA sites, with 1105 being skipped and 1872 being composite. We
conducted principal component analysis (PCA) on the estimated
relative usage profile of these novel polyA sites. The results demon-
strated that the biological replicates cluster well with each other,
indicating robustness and reliability of our approach (Supplementary
Fig. 13a). We focused on the first principal component (PC1) which
accounted for the variances and found that the computedPC1 loadings
assigned to each IPA event are significantly correlated with the dif-
ference between untreated and LPS-activated conditions, providing
evidence that the IPA changes are associatedwithmonocyte activation
(Supplementary Fig. 13b, c). To further elucidate the underlying pat-
terns of IPA changes during monocyte activation, we conducted a
differential transcript usage analysis using DRIMSeq46, resulting in the
identification of 204 significantly differential IPA events (Fig. 4a,

Supplementary Data 3). Additionally, Gene Ontology (GO) enrichment
analysis was also conducted, and it was revealed that differential IPA
events were associated with a variety of biological processes such as
neutrophil degranulation, neutrophil activation, defense response and
innate immune response (Fig. 4b).

The production of truncated proteins by IPA events may lead to
the loss of C-terminal domains or post-translationalmodification sites,
which can affect the functionality of full-length proteins both directly
and indirectly. To evaluate the impact of IPA, we conducted an analysis
of the percentage of retained coding region (CDR) for eachdifferential
IPA isoform in relation to the full-length CDR. The resulting histogram
of retained CDR fraction evinced a uniform distribution, albeit with a
notable overrepresentation of IPA isoforms that lose all or nearly all
the CDR (Fig. 4c). Additionally, we investigated the relationship
between IPA and gene expression. A very weak correlation was
observed between changes in IPA and changes in gene expression
(Spearman’s ρ = −0.079, P =0.0049) (Fig. 4d). These findings sug-
gested that IPA represents a distinct layer of regulation that is largely
independent of gene expression.

As an example, we found that the IPA usage of gene ARHGAP24
was significantly upregulated in the LPS-activated monocytes
(Fig. 4e, f). The ARHGAP24 gene encodes Rho GTPase-activating pro-
tein 24 (ARHGAP24) that possesses a RhoGAP domain responsible for
catalyzing the hydrolysis of active guanosine triphosphate (GTP)
bound to Rac1, Cdc42, and RhoA, thereby inactivating these
regulators47. Previous studies have demonstrated that ARHGAP24 can
ameliorate inflammatory response through inactivating Rac148. Nota-
bly, the truncated protein resulting from the IPA isoform of ARHGAP24
exhibited a lack of core RhoGAP domain and C-terminal coil structure,
as compared to the full-length isoform (Fig. 4g). Consequently, we
postulated that the increased usage of IPA may lead to a loss-of-
function ofARHGAP24, thereby reducing the inhibition of Rac1 activity,
which could potentially promote monocyte activation. Furthermore,
we conducted 3’-RACE experiments in LPS-activated monocytes to
validate four candidate IPA events, including ARHGAP24. Conse-
quently, three candidate IPA sites within gene ARHGAP24, RALA, and
PDCD6IP were successfully confirmed, whereas the candidate IPA site
within the SDHD gene failed validation, possibly due to its relatively
low expression level (Fig. 4h, Supplementary Fig. 14).

Application of InPACT to a single-cell RNA-seq dataset
The utilization of single-cell RNA-seq has proven to be crucial in
unraveling the heterogeneity and complexities of transcriptomes
within individual cells. In order to further demonstrate the utility of
InPACT, we have employed InPACT on a human fetal bone marrow
(FBM) scRNA-seq dataset consisting of 486 cells49 (Supplementary
Data 1). This dataset encompassed a wide range of cell types, including
mast cell (n = 47), basophil (n = 20), eosinophil (n = 54), polymorpho-
nuclear leukocytes (PMN, n = 65), myelocyte (n = 61), promyelocyte
(n = 44), monocyte (n = 32), B cell (n = 52), hematopoietic stem cells
(HSC, n = 32), plasmacytoid DCs (pDC, n = 30), CLEC9A+ DC1 (n = 34)
and CD1c+ DC2 (n = 15) (Fig. 5a). These cells were isolated using fluor-
escent activated cell sorting (FACS) based on cell-state defining mar-
kers and originated from two biologically independent replicates of
human FBM.

To comprehensively investigate IPA in human FBM at single-cell
resolution49, we first employed InPACT to identify novel IPA sites. As a
result, we discovered a total of 2635 novel IPA events located in 2157
genes, including 599 skipped and 2076 composite events (Supple-
mentary Data 4). The number of novel IPA isoforms expressed in each
cell type were depicted in Fig. 5b. For instance, the discovery of SRP68
IPA and HMGCL IPA were supported by a gradual drop-off reads cov-
erage (Fig. 5c, d). Following this, InPACT was further utilized to eval-
uate the relative usage of all novel IPA events in each individual cell. To
elucidate the specific differences in IPA that emerge at the individual
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Fig. 4 | Applying InPACT to identify dynamic IPA events in monocyte activa-
tion. a The heatmap shows 204 significantly differential IPA events between
untreated and LPS (lipopolysaccharides)-activated human monocytes (n = 3 repli-
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transcripts were depicted. The experiment was repeated n = 3 times.
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gene level across various cell types, we undertook a comparison of IPA
usage between all cells of one cell type and those of all other cell types
sequentially. IPA events displaying significant upregulation in each cell
type were designated as cell type-specific events. In the totality of cell
types under examination, 533 cell type-specific IPA events were iden-
tified (Fig. 5e, Supplementary Data 5).

Furthermore, we performed GO enrichment analysis to evaluate
the biological functions associated with genes exhibiting cell type-
specific IPA events. The findings revealed that those gene sets are

enriched for biological processes related to the respective cell types.
For instance, B cell-specific IPA events were linked to genes involved in
antibody secretion and B cell maturation, as evidenced by GO terms
suchas vesicle organization, Golgi vesicle transport, and IL-6-mediated
signaling pathway (Fig. 5e). We also highlighted several specific
examples of cell type-specific IPA events, including the SCARB2 gene,
which is known to regulate IFN production of pDC50. Interestingly,
SCARB2 was found to utilize IPA sites more frequently in pDC than in
other cell types in humanFBM (Fig. 5f). Overall, these results suggested
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Fig. 5 | Applying InPACT on a human FBM scRNA-seq dataset identifies cell
type-specific IPAevents. aThe t-distribute stochasticneighbor embedding (t-SNE)
plot of 12 different cell types in human FBM on gene expression level. The HSC
represents hematopoietic stem cell, the PMN represents polymorphonuclear leu-
kocytes, the DC represents dendritic cells and the pDC represents plasmacytoid
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that IPA of genes implicated in distinct biological processes could
potentially account for the observed physiological differences among
various cell types in the human fetal bone marrow.

Discussion
In this study, we presented InPACT, a computational approach that
incorporates a sequence module and a read module to accurately
identify IPA sites from conventional RNA-seq by utilizing both con-
textual sequence patterns and read alignment information. The effi-
cacy of InPACTwas validated through successful detection of IPA sites,
which are further confirmed using experimental validations. The
authenticity of these IPA sites was confirmed through sequence and
expression analyses using multiple lines of evidence, while ribosome
profiling data revealed that many of the identified IPA isoforms are in
fact translated. Comparative analysis with existing methods, such as
APAIQ and IPAFinder, reveals that InPACT outperforms them in pre-
cisely identifying IPA sites, as evidenced by comparison to sites cap-
tured by 3P-seq, A-seq, polyA-seq, and long-read Iso-seq. Furthermore,
comprehensive evaluation using simulated RNA-seq data with varying
coverage depths demonstrated InPACT’s superior performance, par-
ticularly in scenarios of low coverage. Additionally, InPACT exhibited
improved accuracy in quantifying IPA events with a lower error rate
compared to IPAFinder and APAIQ. Overall, these findings underscore
thepotential of InPACTas a valuable tool for accurately identifying and
quantifying IPA events in conventional RNA-seq data.

Moreover,wedelved to the effectiveness of incorporating InPACT
into the conventional transcriptome analysis to augment the inter-
pretation of results. By employing InPACT to the RNA-seq data of
untreated and LPS-activated human monocytes, the findings revealed
several previously unannotated IPA sites. The estimated profile of IPA
usage revealed that the IPA difference among different samples aligns
with their corresponding biological conditions. The set of genes fea-
turing differential IPA events manifests enrichments for immune
response-related genes. Additionally, it is observed that themajority of
genes regulated by IPA during monocyte activation do not overlap
with differentially expressed genes, which implied that IPA is involved
in monocyte activation via an add-on level of regulation. For instance,
ARHGAP24, a gene causally linked to Rac1 activity, can generate a
truncated protein concerning ARHGAP24 IPA that lacks the catalytic
activity of RhoGAP domain. This, in turn, lowers the inhibition of Rac1
activity, which potentially regulates monocyte activation. Undoubt-
edly, a comprehensive study is needed to clarify the role played by
ARHGAP24 IPA in monocyte activation. These preliminary results,
however, shed light on how InPACT can successfully help understand
the role of IPA in regulating biological processes.

The advent of scRNA-seq technologies has presented an unpre-
cedented opportunity to explore transcriptomes at the resolution of
individual cells, facilitating the elucidation of cell states and diversities.
In this study, we have attempted to investigate the landscape of IPA in
various cell types of human fetal bone marrow utilizing a recently
published scRNA-seq dataset generated by the SMART-seq2 protocol.
The application of InPACT to the dataset, with a pooling strategy,
effectively uncovered both skipped and composite IPA events. The
quantification of IPA at single-cell resolution revealed that several IPA
events exhibited a cell type-specific manner. Further, those genes
harboring cell type-specific IPA showed enrichment for corresponding
biological functions, hinting at the potential roles of IPA in cellular
properties and function maintenance. These results highlight the
broad applicability of InPACT in characterizing IPA at the single-cell
level, thereby allowing for a greater understanding of the context-
specific regulation and function of IPA. Notably, scRNA-seq protocols
currently in use have been developed based on twoprimary strategies,
full-length and tag-based. InPACT is suitable for full-length data, as it
requires full-length coverage of sequencing reads to accurately
reconstruct putative intronic terminal exons. However, 3’ tag-based

data obtained by enriching RNA 3’ ends can inherently be used for APA
analysis. Several bioinformatic methods, such as Sierra, SAPAS and
SCAPTURE, have already been developed to address this particular
issue33,51,52. However, it is worth mentioning that these methods are
limited to identifying polyA sites and cannot assemble APA isoforms.

Also of note, InPACT offers a user-friendly approach to char-
acterizing IPA from RNA-seq data. InPACT does not require additional
data processing prior to running the program. Moreover, as the
sequencemodule does not rely on RNA-seq data, InPACT has scanned
thehuman referencegenomeandprepared the set of putative IPA sites
of human for users. InPACT also offers the option of constructing a
model for a new species, increasing the breadth of its applicability. The
read module of InPACT is fully automated and easily accessible, with
readily available input RNA-seq alignment files that require no custo-
mized processing steps. Additionally, unlike other methods for APA
analysis in RNA-seq data, which solely report identified polyA sites and
require supplementary manipulation for subsequent analysis, InPACT
has integrated the assembly of novel IPA isoforms and the annotation
of protein-coding sequences. The resulting augmented GTF file can be
readily incorporated into downstream analyses without the need for
additional processing steps. This feature enhances the utility of
InPACT for IPA analysis and provides a more streamlined and com-
prehensive approach for users.

Nonetheless, InPACT has several limitations that need to be
acknowledged. One such limitation is that InPACT primarily overlooks
sample-specific genomic variants, as it utilizes the common reference
genome assembly for scanning putative IPA sites in the sequence
module. Nevertheless, it is noteworthy that InPACT can adapted to
accommodate genome sequences that account for sample-specific
variants. Another limitation of InPACT is that its performance is influ-
enced by the quality of the RNA-seq data used. Specially, low RNA
integrity and inadequate readcoveragemaycompromise theprecision
of identifying and quantifying novel IPA events.

Several recent studies have shed light on the prevalence of IPA
events across a variety of tissues and cell types [8, 9]. However,many
isoforms, which are specific to particular cell types or conditions,
have yet to be characterized in the existing genome annotations. A
comprehensive examination of IPA is challenging due to the limited
availability of specialized 3’-end sequencing technologies. More-
over, using only 3’-end sequencing data may be insufficient for
assembling IPA isoforms, which may complicate downstream ana-
lyses. Although long-read sequencing can be utilized to detect full-
length transcripts, it primarily captures high-abundance transcripts
and frequently has lower per-read accuracy than short-read
sequencing. With RNA-seq entrenched as the standard method of
capturing the transcriptomes, researchers have developed several
tools, such as DaPars, Aptardi, and TAPAS, to de novo infer polyA
sites in 3’ UTR depending solely on RNA-seq data. Recently, a com-
putational method inspired by DaPars, called IPAFinder, has been
proposed for identifying IPA sites by recognizing fluctuations in
read coverage. Additionally, a recently published method called
APAIQ, which combines DNA sequence and RNA-seq read coverage,
can also be used to identify IPA sites. However, APAIQ is not speci-
fically designed for IPA analysis and cannot distinguish between
skipped and composite IPA events. Nonetheless, a method to char-
acterize IPA from conventional RNA-seq data is still greatly needed.
In this regard, InPACT has been introduced in this study, which is
capable of identifying and quantifying IPA with high performance
based on conventional RNA-seq data. The broad applicability of
InPACT has been demonstrated in inferring the dynamic usage of
IPA based on RNA-seq data from different conditions and detecting
cell-type-specific IPA events from full-length scRNA-seq data. We
envision further applications of InPACT on large-scale tran-
scriptomic datasets such as The Cancer Genome Atlas (TCGA),
Genotype-Tissue Expression (GTEx), and Human Cell Atlas (HCA)
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could lead to a more comprehensive atlas of IPA, facilitating the
understanding of the biological relevance of IPA in human health
and diseases.

Methods
This study complies with all relevant ethical regulations. Ethical
approval for all human studies was obtained from the Ethics Com-
mittee of Blood Diseases Hospital, Chinese Academy of Medical Sci-
ences, and written informed consent was obtained from the donors.

InPACT
InPACT is a computational method that could be used to identify IPA
sites by combining two modules: the sequence module that scans for
all potential polyA sites in genomic regions annotated as introns, and a
read module to determine the IPA sites from conventional RNA-seq
data (Fig. 1).

Sequence module. The sequence module incorporates a convolu-
tional neural network (CNN) with multiple convolutional and pooling
layers, and one fully connected hidden layer, which takes genomic
sequences in 201 nt windows centered on target sites as input. The
sequence is encoded as a binary matrix using one-hot encoding
representation. Four nucleotides are converted as followed: A =
[1,0,0,0], T = [0,1,0,0], G = [0,0,1,0], C = [0,0,0,1]. The sequences with a
length of 201 nt, centered around the polyA sites annotated in Refseq
are regarded as positive examples, while a set of 201 nt sequences
randomly selected from the intergenic regions, matching the size of
the positive examples, as demonstrated in previous studies33,53.

The CNN model is composed of two pairs of convolutional-
pooling layers and one fully connected layer. The sliding window
approach is used at the convolutional layer to extract sequence fea-
tures, which are then fed into themodel. The activations Af ofmultiple
convolutional filters are computed:

Af =ReLU Wf � S+ bi

� �
ð1Þ

ReLUðxÞ= maxð0,xÞ ð2Þ

Here, Wf are the weights of convolutional filters, S is a set of data fed
into the model, bi is the bias, and the rectified linear unit (ReLU) is the
activation function. To prevent the gradient from disappearing, the
activation function is used to increase non-linearity. The activation
layers’ output sends features to the max-pooling layer, after which the
number of parameters could be reduced. The pooling layer aggregates
adjacent neurons’ activations by extracting the maximum value.
Assuming P represents the pooling region and Ak is the activation of
the corresponding position, the max pooling M is defined as:

M = max Ak jk 2 P
� �� � ð3Þ

Following the learning of sequence features by two pairs of
convolutional-activation-pooling layers, fully connected layers and a
dropout function is used. The dropout function is employed to reduce
the model’s dependence on some neurons to avoid overfitting. The
model isfitted on the training set, andhyper-parameters are optimized
on the validation set by random sampling. The trained CNN for human
has further been evaluated on the polyA sites of GENCODE, PolyA_DB 3
and PolyASite 2.030–32. To ensure unbiased testing, we excluded any
overlapping polyA sites used for model training and constructed
separate testing sets of polyA sites from GENCODE, PolyA_DB 3 and
PolyASite 2.0. For comparison, the performance of DeepPASS, APAR-
ENT, and DeepPASTA have also been evaluated on the constructed
testing tests.

Read module. The read module utilizes the candidate IPA sites from
the sequence module as well as the genomic alignments of RNA-seq
(BAM format) as input. The read module first constructs putative
intronic terminal exons based on the candidate IPA sites and the
genomic alignments of RNA-seq data. For each candidate IPA site,
InPACT defines a candidate region from the IPA sites to the closest
upstream splice site. Candidate regions with enough reads are
retained, as determined by featureCount54. Then, InPACT can con-
struct putative composite terminal exons or skipped terminal exons
based on the read alignments (Supplementary Fig. 2). The skipped
terminal exons are constructed when the number of uniquely mapped
spliced reads with the 3’ end in the candidate region surpasses a user-
defined lower bound (default: five reads). The composite terminal
exons are constructed when the number of uniquely mapped
unspliced reads that cross the closest upstream splice site surpasses a
user-defined lower bound (default: ten reads).

Subsequently, InPACT can determine whether the putative
intronic terminal exons exist in the RNA-seq data. This is accomplished
by training a machine-learning classifier specific to the analyzed RNA-
seq data, leveraging features that characterize the alignments of RNA-
seq reads. In order to train the classifier, InPACT first defines three
classes of genomic regions based on the Refseq annotation and the
corresponding RNA-seq data. These classes include terminal exons
(annotated unique last exons that have at least five splice-in reads),
internal exons (annotated unique exons located between the first and
last exons that have at least five splice-in reads) and background
regions (annotated unique last exons that have less than five splice-in
reads). The training and testing sets are created by randomly splitting
this collection of these genomic regions in an 80:20 ratio. InPACT
computes various features from the alignments of RNA-seq data to
characterize each region. These features enable discrimination
between true terminal exons, internal exons, and background regions.
The features encompass relative region length, normalized region
expression, coefficients of variation, entropy efficiency and others that
predominantly characterize the spliced and unspliced reads across the
5’ end and3’ end (Supplementary Fig. 3). To account for thedifferences
between skipped and composite terminal exons, the classifiers with
different feature sets are trained for putative skipped and composite
terminal exons, respectively. To increase the stability of the model,
InPACT trains classifiers on ten randomized subsamples of the training
set using random forest, and then ensemble the classifiers. With the
testing set, a series of metrics for the evaluation could be measured,
including true negative rate, true positive rate, Accuracy, Precision,
F1 score and Matthew’s correlation coefficient.

TNR=
TN

TN+FP
ð4Þ

TPR=
TP

TP+FN
ð5Þ

ACC=
TP+TN

TP+TN+FP+FN
ð6Þ

Precision=
TP

TP+FP
ð7Þ

F1 score =
2 ×TP

2×TP+ FP+ FN
ð8Þ

MCC=
TP×TN� FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP+ FPð Þ TP+FNð Þ TN+FPð ÞðTN+FNÞ
p ð9Þ
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TP, TN, FP, and FN denote the number of true positives, true
negatives, false positives, and false negatives, respectively. With the
trained classifiers, InPACT candetermine the genuine intronic terminal
exons from the candidate regions, thereby identifying the IPA sites.

Quantification of IPA events. Through the sequencemodule and read
module, InPACT can accurately identify novel IPA sites and intronic
terminal exons. In the final step, InPACT can assemble novel IPA iso-
forms based on the reference annotation and search for the first in-
frame stop codon in the isoform. The detailed annotation for each IPA
isoform is outputted in General Transfer Format (GTF) by InPACT.
Salmon, a fast and GC bias-aware quantification procedure using dual-
phase inference, is implemented to compute the transcript-level
abundance of all isoforms55. To quantify the relative usage of an IPA
isoform, InPACT calculates the relative expression of an IPA isoformby
comparing it to the total expression level of all isoforms within a gene.
This metric, referred as IPA usage, allows for the assessment of the
relative usage of IPA isoforms:

IPAusage=
xigP
jxig

ð10Þ

Where g is a give gene, xig is the expression level of isoform i within
gene g, measured in transcripts per million (TPM).

Conservation analysis
PhyloP scores could be used to assess evolutionary conservation, with
positive and negative scores respectively indicating that predicted
sites are conserved and fast-evolving56. To establish a suitable negative
control, we initially randomly selected a set of genomic sites within
annotated intronic regions, ensuring that the group’s size matched
that of the analyzed IPA sites. Subsequently, we obtained the PhyloP
30-way track for the human genome from the UCSC Genome Browser
and proceeded to calculate the conservation level for each site by
averaging the scores of the 20nt upstreamanddownstreamof the site,
utilizing the bigWigAverageOverBed tool57.

Analysis of translation using ribosome profiling data
The ribosome profiling data of HEK293 cells were used to determine
whether the InPACT-identified novel IPA isoforms are actively
translated38. We first removed those readsmapped to rRNA sequences
using Bowtie58, and then aligned the reads to the human genome
(GRCh38) using HISAT259. The genome index was built based on the
Refseq annotation. Reads flagged as secondary alignmentwere filtered
out using SAMtools60, ensuring one genomic position per aligned read.
RiboWave, a ribosome profiling data processing tool that denoise the
original signal by wavelet transforms, was then used to further denoise
the ribosome profiling data61. Only the identified IPA isoforms with an
in-frame stop codon were considered for translation analysis. We
countedmapped ribosome-protected reads around the stop codons in
both annotated isoforms and InPACT-identified novel IPA isoforms
and plot the ribosome footprint density around stop codons,
respectively.

Benchmarking InPACT using A-seq, 3P-seq, polyA-seq, and long-
read Iso-seq data
To benchmark InPACT in terms of identifying IPA sites, multiple
datasets of cell lines and tissue samples were utilized as the ground
truth for comparison. These datasets were generated through differ-
ent 3’ end sequencing protocols, namely A-seq, 3P-seq, and polyA-seq.
Detailed information regarding each dataset, including the accession
number, can be found in Supplementary Data 1. The genomic coordi-
nates of polyA sites identified in A-seq, 3P-seq, and polyA-seq were
obtained from the Gene Expression Omnibus (GEO) and subsequently
converted to the GRCh38 genome assembly using the liftOver tool57.

Subsequently, the IPA sites identified by InPACT, APAIQ, and IPAFinder
from RNA-seq data were compared with those captured in the 3’ end
sequencing data. Each of the A-seq, 3P-seq, and polyA-seq datasets
served as the respective ground truth. The distances between the
identified polyA sites and the closest reference were determined using
BEDTools closest62.

We further utilized a dataset sequencing human small airway
epithelial cells in parallel using both conventional short-read RNA-seq
and long-read Iso-seq protocols to benchmark the performance of
InPACT. This dataset was downloaded from GEO under accession
number GSE167486 (Supplementary Data 1). For the short-read data,
IPA sites can be identified using InPACT and IPAFinder, respectively.
For the long-read data, polyA sites can be directly extracted from the
released isoform annotation file assembled from the Iso-seq data.
Then, we compared the IPA sites identified using InPACT and IPA-
Finder with the polyA sites detected from Iso-seq using BEDTools
closest62.

Benchmarking InPACT for IPA analysis using simulated RNA-
seq data
The precision of identifying IPA sites can be influenced by the
sequencing depth of RNA-seq data. In order to further compare
InPACT with APAIQ and IPAFinder, we simulated several RNA-seq data
with different sequencing coverage levels using the R package
Polyester63. The RNA-seq data were simulated with varying sequencing
coverage levels ranging from 10✕ to 50✕ with a 10✕ increment, and
five replicates were generated for each coverage level to ensure
accuracy and reliability of the results. Subsequently, InPACT, APAIQ
and IPAFinder were employed to predict IPA sites for each simulated
RNA-seq data. The IPA sites predicted within 50 nt of a predefined
polyA sitewere classified as truepositives (TP),while thoseoutside this
range were classified as false positives (FP). Sensitivity and precision
were calculated for each coverage level using the formulas: Sensitivity
= TP / Predefined and Precision = TP / (TP + FP).

For benchmarking IPA quantification, we first utilized InPACT,
APAIQ and IPAFinder to compute the relative usage of each identified
IPA site based on the simulated RNA-seq data. The determined relative
usage of predefined polyA sites were considered as the ground truth.
We then utilized a metric inspired by a previous study, referred to as
error, to assess the concordance between estimated IPA usage and the
ground truth64. For each IPA site, error was defined as the absolute
difference between the estimated relative usage and the ground truth
(|ΔPAU | ). The cumulative distributions of error across all identified
IPA sites were compared between InPACT and IPAFinder.

IPA analysis of monocytes’ RNA-seq data
The RNA-seq data of six samples from human monocytes (three con-
trol samples and three samples stimulated with 100ng/ml LPS for 6 h)
were downloaded from GEO under accession GSE11816545. The raw
RNA-seq data were aligned to human reference genome (GRCh38)
using HISAT259. Thenwe applied InPACT to identify novel IPA sites and
assemble novel IPA isoforms from these RNA-seq data. After com-
puting the expression level of these novel IPA isoforms, we applied
DRIMSeq to conduct differential transcript usage analysis between
control and LPS stimulated group65. DRIMSeq employs a statistical
framework based on the Dirichlet-multinomial distribution, which
allows for the identification of changes in isoform usage between
conditions46. As a result, we could define the significantly differentially
expressed IPA isoforms by the cutoff of | log2fold_change | > 1 and
FDR <0.05, thereby identifying the differentially used IPA sites. Gene
Ontology enrichment analyses were performed on the genes with
differentially used IPA sites using ClusterProfiler (version 3.18.1)66. The
significant enriched GO terms of biological processes were defined by
FDR <0.05. The InterPro, an integrated resource for protein families,
domains and functional sites, was used to predict protein domains67.
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IPA analysis of human FBM scRNA-seq data
The scRNA-seq of human FBM were downloaded from EMBL-EBI
ArrayExpress under accession E-MTAB-980149. The scRNA-seq reads
weremapped to the human referencegenome (GRCh38) usingHISAT2
for each individual cell, followed by the removal of PCR duplicates
using samtools rmdup59,60. Subsequently, the aligned reads were
pooled together, and InPACT was applied to identify novel IPA sites
and reconstruct novel IPA events. Using the augmented annotation file
by combining novel IPA events, we could estimate the relative usage of
each IPA event in each individual cell. To determine cell type-specific
IPA events, low-abundance genes with TPM< 1 were filtered out. Then,
we conducted a comparisonof IPAusagebetween cells of the same cell
type and those of other cell types sequentially to identify the cell type-
specific IPA events. The significance of GO term enrichment was
determined using the hypergeometric test.

Experimental validation of candidate IPA sites
The HEK293T cells were obtained from the National infrastructure of
Cell Line Resource (1101HUM-PUMC000010, China) and cultured in
cultured in 10% FBS DMEM medium (MA0212, MeilunBio, China).
Human peripheral blood samples were collected from healthy donors
and treated with EDTA anticoagulant to prevent clotting. The blood
sample was mixed with an equal volume of PBS. Diluted blood was
added to the upper layer of the Ficoll density gradient solution
(17144002, Cytiva, USA) and then centrifuged at 20 °C, 400 × g for
30min. White PBMC layer was collected and washed with cold PBS for
two times. Human monocytes were isolated from the PBMC and cul-
tured in 10% FBS RPMI-1640 medium (11875119, Gibco, USA). Subse-
quently, monocytes were stimulated with 100ng/ml LPS (L2630,
Sigma-Aldrich, USA) for 6 h. Total RNA from both HEK293T cells and
human monocytes were isolated using TRIzol (P118-05, GenStar,
China) according to the manufacturer’s instructions. 3’-RACE was
performedusing 3’-Full RACECore Setwith PrimeScript™RTase (6106,
TaKaRaBio Technology, China) according to the manufacturer’s
instructions. Briefly, 1μg of total RNA from HEK293T cells or mono-
cyteswas reversely transcribed into cDNAusing 3’-RACE adaptor. Then
the cDNA of a specific gene was amplified using 3’ RACE outer primer
andgene specific outer primer, followedby anested PCRusing 3’RACE
inner primer and gene specific inner primer. The PCR products were
ligated into pCDH-CMV-MCS-EF1-Puro or pUCm-T vector and
sequenced. The sequences of all primers were described in Supple-
mentary Data 6 and 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
A detailed description of datasets used in this study is provided in
Supplementary Data 1. Specially, the RNA-seq, ribo-seq, A-seq, and 3P-
seq of HEK293 cells can be downloaded from GEO under accession
number GSE56010, GSE73136, GSE37037, GSE52527, respectively. The
RNA-seq dataset of HeLa cells treated with control and U1 AMO can be
downloaded fromGEOunder accession number GSE193200. The RNA-
seq and polyA-seq datasets of MAQC UHR and human brain can be
downloaded from GEO under accession number GSE49712 and
GSE30198, respectively. The RNA-seq and matched PacBio SMRT Iso-
seq dataset of human small airway epithelial cells can be downloaded
from GEO under accession number GSE167486. The RNA-seq dataset
of untreated and LPS-activated humanmonocytes can be downloaded
from GEO under accession number GSE118165. The scRNA-seq data of
human fetal bone marrow can downloaded from EMBL-EBI ArrayEx-
press under accession number E-MTAB-9801. The Sanger sequencing
data of 3’-RACE products have been deposited in Zenodo [https://doi.
org/10.5281/zenodo.10801168]. All data generated during this study

are included in this published article and its supplementary informa-
tion files. Source data are provided with this paper.

Code availability
InPACT is implemented as an open-source tool that can be obtained
from GitHub repository (https://github.com/YY-TMU/InPACT) and
also from Zenodo68.
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