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Velocities of transmission eigenchannels and
diffusion

Azriel Z. Genack 1,2 , Yiming Huang1,2,3, Asher Maor1,2,4 & Zhou Shi1,2,5

The diffusion model is used to calculate both the time-averaged flow of par-
ticles in stochastic media and the propagation of waves averaged over
ensembles of disordered static configurations. For classical waves exciting
static disordered samples, such as a layer of paint or a tissue sample, the flux
transmitted through the sample may be dramatically enhanced or suppressed
relative to predictions of diffusion theory when the sample is excited by a
waveform corresponding to a transmission eigenchannel. Even so, it is widely
assumed that the velocity of waves is irretrievably randomized in scattering
media. Here we demonstrate in microwave measurements and numerical
simulations that the statistics of velocity of different transmission eigen-
channels are distinct and remains so on all length scales and are identical on
the incident and output surfaces. The interplay between eigenchannel velo-
cities and transmission eigenvalues determines the energy density within the
medium, the diffusion coefficient, and the dynamics of propagation. The dif-
fusion coefficient and all scattering parameters, including the scatteringmean
freepath, oscillatewith thewidthof the sample as thenumber and shapeof the
propagating channels in the medium change.

The diffusion equation describes the flow of particles, waves and
energy from neutrons, electrical charge, molecules and microscopic
particles to light, sound, and heat1–4. The diffusion model begins with
the assumption that scattering is local—the velocity, v, is randomized
within a distance of the transport mean free path, ℓ, and is determined
solely by scattering within the medium and not by its overall
dimensions1–4. The average over time of the flux within the medium is
determined by Fick’s first law, j= - D∇u, where j is the current density,D
is the diffusion coefficient, and u is the average particle concentration
or energy density2,3. For particles in d dimensions, the Boltzmann dif-
fusion coefficient for particles is DB =

1
d vl

1–4. The diffusing quantity
drops towards open boundaries and extrapolates to zero at a distance
zb beyond the sample, which is proportional to ℓ2,5–9.

The diffusion model can also be applied to the average of pro-
pagation over random configurations in mesoscopic media, in which
multiply scattered waves are temporally coherent throughout the
medium10–16. The interference of classical and quantum mechanical

waves in mesoscopic samples produces a stable speckle pattern of
energy or particle density. The spatial field distribution has a correla-
tion length of half the wavelength, λ/217,18, and provides a fingerprint of
the wave interaction with the material. Averaging such speckle pat-
terns over an ensemble of random sample realizations yields a smooth
profile of particle or energy density16. In the limit in which the prob-
ability that randomly scatteredwave trajectorieswithwidth λ/2, known
as Feynman paths, loop back upon a typical coherence length along
the trajectory tends to zero11,12,16, the average profile in space2,6–9 and
time19–21 is a solution of the diffusion equation2 with boundary condi-
tions given in terms of zb

2,6–9.
As the scattering strength of the medium and the confinement of

the wave increase and the dimensionality of the sample decreases, the
transmission and the diffusion coefficient are increasingly suppressed
by the interference of waves crossing back upon themselves within the
medium.When the probability that a Feynman path will cross a typical
coherence length along the path approaches unity, the wave becomes
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localized11. Transport is then suppressed relative to predictions of
diffusion theory and quasi-normal modes of the medium become
exponentially localized instead of being extended over the entire
sample22–24. Propagation in multiply scattering samples is diffusive for
samples with lengths, L, for which l < L < ξ, where ξ is the localization
length.

The limits of diffusive propagation may also be given in terms of
the ensemble average of the dimensional conductance, g, which is
equivalent to the average of the classical transmittance, g =〈T〉25,26.
The dimensionless conductance is the average electronic con-
ductance in units of the quantum of conductance, e2

h , while the
transmittance is the sum over all pairs of flux transmission coeffi-
cients between the N incident and outgoing channels of the sample,
T =

PN
a,bjtbaj2 = Tr tty

� �� �
10,27,28. Here, t is the transmissionmatrix (TM)

with elements tba. The TM is most often applied to the quasi-1D wire
or waveguide geometry with constant cross section and reflecting
sides. A natural choice for the channels is the set of the N propa-
gating modes of the empty waveguide. The eigenvalues of tt† are the
transmission eigenvalues, τn, so that T =

PN
n= 1τn, with τn decreasing

for increasing n. For g >1, waves in multiply scattering media are
diffusive with g open transmission eigenchannels (TEs) with τn>

1
e
10,29,

while for g < 1, transmission is small in all channels and waves are
localized. Dorokhov showed that each of the N TEs of a conducting
wire scales differently with its own localization length10. Waves pro-
pagate diffusively for N ≽ g ≽ 1.

The TEs are the singular vectors found in the singular value
decomposition (SVD) of the TM, t =UΛVy10,26,29–33. Here V and U are
unitary matrices whose columns are the singular vectors on the input
and output of the sample, respectively, and Λ is a diagonal matrix
whose elements are the singular values, λn =

ffiffiffiffiffi
τn

p
. The amplitudes of

the mth channel in the nth TE
on the input and output surfaces are vnm and unm, respectively.

Here, the channels will be taken to be the waveguide modes.
Aside from the suppression of transport due to Anderson

localization22,34 and weak-localization precursors11–16, dramatic devia-
tions from diffusion theory arise in mesoscopic samples with g > 1 due
to global correlation which produces strong variation of transmission
in different TEs10,29,31,32,35,36. Transmission may be perfect10,29,37–40 or
vanish41,42, and the energy within the sample may be greatly enhanced
or suppressed relative to the diffusive solution43–45 when the sample is
excited by a TE. This makes it possible to control the transmission of
classical waves33,37–39,41,46–49.

The enhancement of transmission in highly transmitting TEs
may be exploited, for example, to reduce the power required for
cellular communication39, while the enhancement of energy within a
medium holds promise formedical imaging and intervention33,49. On
the other hand, the suppression of transmission may enable high
dynamic range switching and extreme sensitivity to sample
deformation33,41,46,48–50. In random slabs thinner than the transport
mean free path, L < ℓ, the grain sizes of optical speckle patterns of
different TEs differ51. This provides an approach towards engineer-
ing speckle correlation in thin samples for improved resolution for
structured illumination microscopy52.

In this study, we show that the velocity distributions of TEs on
the input and output surfaces of multiply scattering media are not
randomized by multiple scattering. We focus on the longitudinal
components of the transmission eigenchannel velocities (EVs), vn,
which are the weighted averages over the angular distribution of the
velocity component of the wave normal to the sample surface for
different TEs. In the waveguide geometry, this may be computed as
the weighted average over the distributions of group velocities of
waveguide modes. The vn asymptotically approach different values
as the sample length increases. As a result, the different TEs have
different speckle patterns on the sample’s surfaces. The interplay
between the τn and vn yields the energy density on the open surfaces

of the sample, as well as D and zb. These parameters, as well as the
scatteringmean free path, ℓs, in which spatial coherence is lost, and g
vary with the width of the sample as the number and shape of the
transverse propagating modes change. We describe the impact of
transverse boundaries on the diffusion coefficient and the Thouless
conductance.

Results
Measurement of eigenchannel velocities
Microwave measurements of spectra of the in- and out-of-phase
components of field transmission coefficients, are described in Meth-
ods and in Supplementary Fig. 1a. Spectra are obtained for two per-
pendicular orientations of wire antennas on the input and output of
the sample on a square grid of points with use of a vector network
analyser, as shown in Supplementary Fig. 1b47. The sample is composed
of randomly positioned dielectric elements contained in a copper
tube. Over the frequency range of the experiment of 14.70–14.94GHz,
the number of propagating modes supported by the waveguide
changes from N = 61,62 to 63,64. The wave is diffusive with g ~ 6.
Experimental details are given in Methods.

A superposition of waveguide modes is fit to the spatial dis-
tributions of the field at points on the grid at the incident and output
surfaces for each of the four antenna orientations. The TM at each
frequency is then expressed in terms of thewaveguidemodes. The TEs
on the surfaces of the sample are then obtained from the SVD of the
TM. This yields continuous profiles of intensity and phase at each
frequency and polarization of the source and detector, such as the
intensity speckle patterns in transmission for n = 1 and n = 50, shown in
Fig. 1a, b, and the corresponding phase patterns shown in Fig. 1c, d.
There are fewer speckle spots for n = 1 than for n = 50.

The number of speckle spots in the intensity pattern for a single
polarization on the output surface is proportional to the number of
phase singularities at which the intensity vanishes and the phase
changes by 2π in a loop around a singularity53,54. The average number of
phase singularities in polarized speckle patterns on the output surface
of the TEs is plotted in Fig. 1e and seen to increase with n. This reflects
the larger rangeof values of the transverse k-vectors for TEswith higher
n, and corresponds the smaller longitudinal k-vectors and smaller EVs.
This is seen in the plots of theweights ofwaveguidemodes in the TEs at
the sample output, |unm|2, for n = 1 and 50 in Fig. 1f. The waveguide
modes are indexed with m increasing as the group velocity falls.

The EVs of the incident and transmitted waves for the nth TE, vn,i

and vn,t, respectively, are given by vn,i =
PN

m= 1 vnm
�� ��2vwm and

vn,t =
PN

m= 1 unm

�� ��2vwm, where vwm is the group velocity of the mth

waveguide mode. The average EVs for TEs on the input and output
surfaces fall with n, as seen in Fig. 1g. This reflects the increasing
contributions of waveguide modes with smaller axial velocities as n
increases. The small differences between the plots in Fig. 1g, h are
consistentwith the source antennabeingmorenearly perpendicular to
the axis of thewaveguide than the detection antenna. Suchdifferences
are absent in the numerical simulations discussed below. Numerical
simulations facilitate the study of the scaling of EVs and other propa-
gation parameters.

Simulations of eigenchannel velocities
We carry out recursive Green’s function simulations55,56 of electro-
magnetic propagation polarized perpendicular to random 2D samples
such as shown schematically in Supplementary Fig. 2. The samples of
widthW and length L are composed of square cells with sides of length
a = λ0/2π, where λ0 is the free-space wavelength. The dielectric con-
stant in each cell, ε, is drawn randomly from a rectangular distribution
[1 − Δε, 1 + Δε] with Δε = 0.3. The dielectric constant is uniform in the
direction perpendicular to the plane of the sample. The recursive
Green’s function method is discussed in Supplementary Note 1.
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The scaling of the transmission eigenvalues and the EVs for N = 8
are shown in Fig. 2a and b, respectively. Whereas the τn fall exponen-
tially beyond the localization length of each of the TEs and approach
unity as L → 0, the EVs of the transmitted wave vn,t saturate at distinct
values as the sample length increases. For samples with large N, vn,t
approaches its asymptotic value at lengths shorter than the localiza-
tion length of approximately Nls, as can be seen clearly in a sample
with N = 64 in Supplementary Fig. 3 and Supplementary Note 2. This
indicates that the different values of the EVs is a mesoscopic phe-
nomenon unrelated to Anderson localization. The decrease in trans-
mission for TEs with smaller EVs is consistent with the decrease in
transmission with angle of incidence of an optical beam illuminating a
random slab9, as discussed in Supplementary Note 3.

The inverses of the EVs obey a sum rule because of their rela-
tionship to the average density of states (DOS) per unit angular fre-
quency and length, which is uniform along the sample, ρω,L zð Þ=ρω=L.
The relationship can be found by considering the sum of transmission
times in all channels, given by τT =

PN
n= 1tn =πρω

57. Since ρω is inde-
pendent of scattering strength in systemswith the same average value
of ε, it is the same as in a homogeneous sample58. In the present work,
〈ε〉 = 1, and the transmission time for a TE in a uniformsample of unit
length is tn =

1
vn
. The ensemble average local DOS (LDOS) can, thus, be

expressed as, ρω,L =
1
π

PN
n= 1

1
vn

� N
πv+

. As a result, v+ is independent of
sample length, as seen in Fig. 2b.

The correlation of the EVs across the sample is seen in the iden-
tical PDFs of EVs with the same n on the incident and output surfaces,
while the statistics of different EVs for different n, showndiffer, as seen
in Fig. 2c for n = 1 and 8 in a sample with g = 1.74. In addition, the
reflected TE is proportional to the complex conjugate of the incident
TE, so that the PDFs of EVs in reflection are also identical, as demon-
strated in Supplementary Note 4. Thus, the average values of the EVs
for the incident, reflected and transmitted waves are identical,

vn,i = vn,r = vn,t � vn: ð1Þ

As is conventional in discussions of the transmission eigenvalues,
τn, symbols for the EVs or other variables can refer either to the vari-
able in a single configuration or the average over a random ensemble,
depending on the context.

The EVs provide the link between the flux τn and the linear
energy densities excited in TEs on the left and right boundaries of
the sample, un(0) and un(L), respectively. For unit incident flux from
the left, the linear energy densities of the incident and transmitted
TEs are un,ið0Þ= 1=vn,i and un,t Lð Þ= τn=vn,t, respectively. Since energy
is conserved, the reflected flux in a transmission eigenchannel is 1-τn
and the energy density of a TE in reflection is un,r 0ð Þ= ð1� τnÞ=vn,r.
The PDFs of τn=vn,i and τn=vn,t are seen in Fig. 2d to be identical, and
these are also identical to the PDFs of τn=vn,r. The average energy
density in a TE at the input is found in simulations to be the sum of
the averages of the energy density in the incident and reflected
waves, un 0ð Þ=un,i 0ð Þ+un,r 0ð Þ= 1

vn,i
+

1�τnð Þ
vn,r

. The absence of inter-
ference terms between the incident and reflected waves in the
average energy density at the sample input surface is shown in
Supplementary Note 5 to be a consequence of the proportionality of
the reflected wave and the complex conjugate of the incident wave.
The average energy density excited from the left is the sum over TEs,
u zð Þ=PN

n= 1un zð Þ. This gives

u 0ð Þ=
XN
n= 1

2� τn
vn

, ð2aÞ

u Lð Þ=
XN
n= 1

τn
vn

, ð2bÞ

on the left and right sides of a dissipationless sample.

The diffusion coefficient
When the energy density within the sample excited from the left falls
linearly, it is possible to define a diffusion coefficient via Fick’s first law
as the ratio of the flux and themagnitude of the gradient of the energy

Fig. 1 | Measurements of microwave speckle and eigenchannel velocities.
a, b The intensity and (c, d) the phase patterns of the 1st and 50th TEs at a single
frequency for a single polarization of the incident and output field in a single
configuration. e The average number of phase singularities in polarized spectra.
The intensity vanishes at a phase singularity. f The weight of waveguide modes in

the 1st and 50th TE.gThe EVs of the incident and transmittedwaves vs. eigenchannel
index, n. h The probability distribution functions (PDFs) of EVs for the incident and
transmitted TE for n= 1,30,50. The differences between the input and output dis-
tributions in (g) and (h), are consistent with a small difference in orientation of the
source and receiver antennas relative to the waveguide axis.
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density, D= � g= du
dz, with

du
dz =

u Lð Þ�u 0ð Þ
L , giving

D=
gL

u 0ð Þ � u Lð Þ : ð3Þ

With the energy densities at the sample boundaries given in
equation (2), this gives

D=
gL

2
PN

n= 1
1
vn
�PN

n= 1
τn
vn

h i : ð4aÞ

The diffusion coefficientmay also be expressed in terms of v+ and
an effective transmission velocity, vT, defined via the relation,

u Lð Þ=PN
n= 1

τn
vn

� g
vT
, as

D=
gL

2 N
v+

� g
vT

h i : ð4bÞ

The diffusion coefficient can be defined as in Eqs. (3) and (4) even
for g = 1.74, which is close to the crossover to Anderson localization,
since du(z)/dz is essentially constant throughout the sample, as seen in
Fig. 3. u(z) is normalized in the figure by its spatial average, huðzÞiz = N

v+
,

which is calculated in SupplementaryNote 6. The figure also shows the
normalized energy density in a single configuration. The configuration
average of uðzÞv+ =N falls linearly in the sample and extrapolates to
zero a distance zb to the right of the sample and to 2 at a distance zb to
the left of the sample. Since the triangles in Fig. 3 with base of L + 2zb
and height 2 and with base zb and height u Lð Þv+ =N are similar,

2
L+ 2zb

= u Lð Þv+ =N
zb

59, and

u Lð Þ= 2Nzb=v+

L+2zb
: ð5Þ

Since g =u Lð ÞvT, this gives

g =
2Nzb
L+2zb

vT
v+

: ð6Þ

Substituting Eq. (6) into Eq. (4b) gives

D= zbvT, ð7Þ

as shown in Supplementary Note 7. Unlike, the Boltzmann diffusion
coefficient, DB, the diffusion coefficient, D, is expressed here in terms
of the nature of thewave near the boundaries rather than in the bulk of
the medium.

Comparing Eq. (7) to the classical expression for the diffusion
coefficient in d dimensions, DB =

1
d vEl, gives, l=dzbvT=vE . As seen

Fig. 2 | Simulations of scaling and statistics of eigenchannel velocities. a,b Scaling of transmission eigenvalues and EVs in a randommediumwithN = 8. c PDFsof EVs of
the incident and transmitted waves. For the same n, the PDFs overlap. d PDFs of τn/vn for given n at the input and output boundaries also overlap.

Fig. 3 | Energy density inside the random medium. Profiles of the normalized
energywithin amediumexcited from the left withunitflux in all channels in a single
configuration (red curve) and averaged over 2000 configurations (blue curve) for a
medium with N =8, L= 600a, and g = 1:74. The linear energy density is normalized
by its spatial average obtained for TEs with unit incident flux. The average nor-
malized energy density falls linearly and extrapolates to 2 and 0 at a distance zb in
front of and behind the sample, respectively.
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below, D and its factors zb and vT vary with the dimensions of the
sample, so that l that appears in the Boltzmann diffusion coefficient is
not an intensive parameter for diffusing waves, as is often assumed. In
the extreme diffusive limit, however, in which N ≫ g ≫ 1, D and its
factors zb and vT would be expected to approach the classical particle
limit, in accord with the correspondence principle.

The variation of D with length and width for an ensemble with
Δε = 0.3 and N = 8, 16, 32, and 64 channels is shown in Fig. 4a and b,
respectively. To place the results in the context of particle diffusion,
D is normalized by fD0 =

1
d cls, where d = 2 is the dimensionality, c is

the speed of the wave in a medium with ε = 1, and ls is the scattering
mean free path, which is the distance in which the wave loses
coherence. ls is determined from the identical decay times of the
coherent flux for all waveguide modes59, as discussed in Supple-
mentary Note 8 and shown in Supplementary Fig. 4. fD0 approx-
imates the bare particle diffusion coefficient, D0 =

1
2 vEl

2,3,60. Here, vE
is the energy transport velocity60, which may be lower than the
phase velocity in the medium as a result of resonances with scat-
tering elements. However, since the sides of the scattering elements
of the sample are considerably shorter than the wavelength, a = λ0/
2π, these elements are far from resonance. Scattering should
therefore be nearly isotropic, with vE ∼ c, ls ∼ l, and fD0 =

1
2 cls ∼DB.

The variation ofDwith length for sampleswithwidth in the centre
of the range for each channel, W ∼ N + 1

2

� �ðλ0=2Þ is shown in Fig. 4a.
D(L) reaches a peak after several scattering mean free paths and then
falls due to weak localization12,61. The decay is more rapid for samples
with smaller N since the crossover to localization at g ∼ 1 at length
ξ ∼Nl∼Nls, is reached at shorter lengths. The value of D found from
the decay of pulsed transmission following the peak in transmission is
the same as obtained in steady-state simulations, as shown in Sup-
plementary Note 9 and Supplementary Fig. 5.

The diffusion coefficient also changes as the ratio of the sample
width andwavelength is variedby changing thewavelength in a sample
with the same number of square scattering elements with sides of
length λ=2π: The variation of D over the range of width of [N,
N + 1]λ0=2 for the same values ofN and λ0 as in Fig. 4a at values of L=ls
at whichD=fD0 reaches its peak is shown in Fig. 4b.D varies because the
shapes of the propagating modes changes with sample width. The
fractional variation of D over the range of wavelengths for a given N
decreases asN increases but is still appreciable forN =64.Wenote that
the crossover to a new channel differs slightly from the value
N =W=ðλ=2Þ because of the discretization of the sample in the
simulations.

The variation of zb and vT with length for samples with
W = ðN + 1

2Þ
λ0
2 for N =8,16,32,64 is shown in Figs. 5a and 5b. Since vT

varies little for L=ls>2, the fall in D=fD0 with L after the crossover from

ballistic to diffusive propagation primarily reflects the variation of
zb=ls. The values of zb in Fig. 5a are obtained by solving Eq. (6) to give

zb = gL=2 N
vT
v+

� g
� 	

ð8Þ

Equation (8) shows that zb depends upon the EVs as well as upon
the transmission eigenvalues.

The values of zb=ls in the centre of the wavelength range for a
given N are close for all values of N, as seen in Fig. 5c. For N =64,
zb=ls =0:711. This is close to the value obtained from the solution of
theMilne problemof 0.7104 for equilibrium radiative transfer near the
surface of a half space due to a remote source within the medium2,5

The variationwith samplewidth of zb=ls, vT=c, zb, and ls is shown
in Fig. 5c–f for sample lengths at whichD=fD0 reaches its peak value for
each value of N at sample widths W = ðN + 1

2Þ
λ0
2 . The variation of these

parameters with width for N = 8 and 64 and a large range of lengths is
shown in Supplementary Fig. 6 and Supplementary Note 10.

Closer to the Anderson localization threshold, the diffusionmodel
breaks down with u zð Þ falling faster in the centre of the sample than at
the boundaries, as seen in Fig. 6a, so that it is not possible to define a
diffusion coefficient. For g = 1:078, u zð Þ falls 10% faster at the centre
than at the edges of the sample, as is seen in Supplementary Fig. 7 and
discussed in SupplementaryNote 11. Transport can thenbedescribed in
termsof aposition-dependentdiffusion coefficient,D zð Þ � �g= duðzÞ

dz
62,63,

which dips in themiddle of the sample because of the larger probability
of trajectory crossing themselves there than near the sample
boundaries.

The energy density profiles in Figs. 3 and 6a, and Supplementary
Fig. 7 are the sums of the energy density of TEs, un zð Þ, such as the
profiles shown in Fig. 6b–d, with values at the boundaries that depend
upon τn=vn, as in Eq. (2). In addition to the largermagnitudeof the slope
of u zð Þ in the centre relative to that at the boundaries of the sample as g
decreases, as seen in Fig, 6a and Supplementary Fig. 7, there is an
inversion in the ranking of energy excited in the sample vs. eigen-
channel index, n, in the crossover from ballistic to diffusive propaga-
tion. In translucent samples, all of the τn are close to unity and the
energy density throughout the sample is dominated by the factor 1/vn,
and so the energy within the sample is larger for smaller transmission
eigenvalues, as seen in Fig. 6b. This trend is reversed in longer samples,
as seen in Fig. 6c, d. For L>ls, the variation of τn=vn with n is pre-
dominantly due to the strong variation of τn with n, as seen in Fig. 2a,
and not to the weaker variation of vn, as seen in Fig. 2b, and the energy
excited in the sample decreases with n, as seen in Fig. 6c and d.

Fig. 4 | Scaling of the diffusion coefficient. aD(W, L) forW = ðN + 1
2Þλ0=2 is plotted

for different values ofW/(λ0/2). The diffusion coefficient may be defined according
to Fick’s first law as long as the derivative of energy density within the sample is
nearly constant, which is the case down to values of g close to unity. The diffusion

coefficient, as given by Eq. (3) and (4), is plotted as dashed curves once g < 1 since
u(z) then no longer falls linearly. b The variation of the diffusion coefficient with
wavelength for each N is plotted for sample lengths at which the diffusion coeffi-
cient in (a) is at its maximum.
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The Thouless conductance
The scaling theory of localization24,64, according to which the variation
of g with the dimensions of the sample depends only upon g, is built
upon the relationship between static and dynamic aspects of wave
transport. The classical geometricmodel of the scaling of conductance
in the diffusive limit, g = Aσ

L e2
h

� �, may be expressed in terms of dynamic

parameters via the Einstein relation for the conductivity, σ = e2DρE,A,L

in terms of local parameters. Here, ρE,A,L is the LDOS per unit energy

and volume, ρE=AL
24. This gives g = hDρE

L2
. The classical wave analog of

this relation is g = 2πDρω

L2
.

Using the results in the previous section, we obtain a relationship
between g, D, and ρω by substituting Eq. (7) into Eq. (6) and utilizing
the relation, ρω = NL

πv+
, to give

g =
2πDρω

L L+2zb
� � : ð9Þ

Equation (9) is valid as long as uðzÞ falls linearly within the sample,
which is the case even close to the localization threshold.

Following Thouless, the right-hand side of Eq. (9) may be
expressed in terms of the degree of spectral overlap of the quasi-
normal modes, or resonances, of the open medium, which is the ratio
of the modal linewidth and the spacing between modes, δ = δω=Δω
and is known as the Thouless number or the Thouless conductance,
δ � gTh. The linewidth of quasi-normal modes in a diffusive sample,

δω= π2D
L+ 2zbð Þ2, is equal to the decay rate of stored energy following

pulsed excitation and also to the decay rate of the lowest diffu-
sion mode of the diffusion equation19, while the DOS is equal to the
inverseof the average spacing betweenmodes,ρω = 1

Δω. Even asDðW ,LÞ

is renormalized by weak localization, its value as determined from
Fick’s first law is still identical to that obtained from the decay rate of
energy following pulsed excitation, as seen in Supplementary Fig. 5.

Equation (9) can thus be expressed as g =
2 L+ 2zbð Þ

πL
δω
Δω � 2 L+ 2zbð Þ

πL δ.

The Thouless conductance may be compared to the degree of
crossing of wave trajectories, which is the ratio of the average time for
waves to traverse the sample, τTh, to the time to visit each coherence
volume in the sample, τT,

τTh
τT
. Since τT =πρω and, τTh = L+2zb

� �2/D21,
and Δω and δω are as given above, this gives, δ =π τTh

τT
. Equation (9) can

be written as, g =
2 L+ 2zbð Þ

L
τT
τTh

. Thus, whether because of low modal
overlap, δ, or a large fraction of coherence lengths along the trajectory
that are crossed by a trajectory, τTh

τT
, g is suppressed below the pre-

dictions of diffusion theory as g falls towards andbelowunity11,16,24,64–66.
Mesoscopic fluctuations are then greatly enhanced over the level
predicted by Gaussian field statistics13,16,65,67,68, transmission spectra are
sharply peaked69–71, and energy density falls exponentially from the
point at which it is injected72–74. Since 1=g expresses the degree of
departure from diffusion theory, the longitudinal scaling of the con-
ductance should depend only upon g itself 24,64. However, the oscilla-
tions in scattering parameterswith samplewidth show that knowledge
of g alone is not sufficient to determine the scaling with transverse
dimensions. An important question is whether the scaling of con-
ductance may be fully determined once a second dimensionless
parameter, the number of channels, is added to g.

Discussion
The absence of randomization of the velocity of transmission eigen-
channels in mesoscopic samples ushers in the EVs, vn, as a new set of
parameters of the TM alongside the transmission eigenvalues, τn. The
average values and statistics of different EVs are different, but they are
identical on the input and output surfaces of the sample for the same

Fig. 5 | Scaling of the factors of the diffusion coefficient. a, b The scaling of zb/ℓs
and vT/c with length for various values of N. zb falls linearly with length while vT
become nearly independent of L after two scattering lengths. c–f The parameters

zb
ls

cð Þ, vTc dð Þ,zbðeÞ, and ℓs (f) all vary with sample width. The variation of ℓs with W
demonstrates that the scattering process is nonlocal.
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TE. This makes it possible to utilize the TM to explore dynamic as well
as steady-state propagation,

Theenergydensities of different TEs on theoutput surfacemaybe
expressed using the sets of τn and vn since un Lð Þ= τn=vn. This allows
the gradient of energy density within the sample and the diffusion
coefficient to be found. Transport in steady-state and in the time
domain can thus be described via Fick’s first and second laws,
respectively, in terms of the TM. Values of the diffusion coefficient
found from simulations of steady-state and pulsed transmission are
the same.

We have found that the diffusion coefficient, D, the boundary
extrapolation length, zb, and the effective longitudinal velocity in
transmission, vT, may vary appreciably over the range of wavelength
or sample width in which the number of channels exciting the
sample increase by unity. Since all these quantities dip near the
crossover to a new channel as the sample width or wavelength is
changed, even in the diffusive regime, these parameters are global
rather than local and their variation with the transverse dimensions
of the sample is only tangentially related to wave localization. The
degree of modulation of these parameters with W=ðλ=2Þ falls as the
size of the sample increases in harmony with the correspondence
principle.

The nonlocality of propagation is seen in the expression for the
diffusion coefficient as a product of two factors which reflect propa-
gation at the sample boundaries rather than in its interior, D= zbvT.
This expression forD differs from the Boltzmann diffusion coefficient,
DB =

1
d vl, expressed in terms of local parameters, which are generally

assumed to be independent of the sample’s dimensions.
We have also found in simulations that even the scattering mean

free path, ls, which might be expected to represent local scattering,
dips near the crossover to a new channel. The scattering elements in
the simulations are small relative to the wavelength, so that l∼ ls. The
ratio zb=ls ∼ zb=l, which has been assumed to have a constant value of
0.7104 obtained in the solution of theMilne problem in an unbounded
sample2, also varies with sample width.When the samplewidth is close
to the centreof the range ofwidths for a given value ofN, however, this

ratio is close to the particle diffusion value found in the solution of the
Milne problem.

Systematic variations of the conductance and transmittance as
the number of propagating channels changes also arise in ballistic
and diffusive samples. Stepwise increases in the conductance are
measured in ballistic heterojunctions as the width is changed by a
gate voltage75 and also in the optical transmittance of diffuse light
through an adjustable aperture76. Simulations of conductance in
diffusive quasi-1D samples were carried for the Anderson model of a
tight-binding Hamiltonian with diagonal disorder. Instead of steps,
dips were found in the conductance near the threshold to each new
channel77,78. The origin of the dips will be shown in future work to
emerge from the correlation within and between the sets of τn
and vn.

The modulation of scattering with the number of propagation
channels is reminiscent of the Wigner cusp in the nuclear scattering
cross section that arises when new scattering channels open up as the
energy of incident particles increases79–81. The enhanced variation of
scattering around the crossover to a new channel can be the basis for
enhanced sensitivity of classical waves to variations in the sample
dimensions82. Present research is exploring the extreme sensitivity of
EVs to changes in the sample dimensions at the crossover to a new
channel. Immediate questions that emerge from this work are the
relationships between the EVs and the transmission eigenvalues and
the profiles of EVs within the sample.

Methods
Microwave measurements
In- and out-of-phase spectra of field transmission coefficients between
source and receiver antennas on opposite sides of the sample are
shown in Supplementary Fig. 1a. Such spectra are obtained for each of
four pairs of polarizations between the input and output surfaces for
each pair of locations of the 4-mm-long source and receiving antennas
on a square grid with 9-mm spacing on the sample’s surfaces. A
schematic of the experimental setup is shown in Supplementary
Fig. 1b. A copper sample tube of inner-diameter 7.3 cm is filled to a

Fig. 6 | Profiles of excitation inside the medium. a The sum over all TEs of the
average energy density excited within the medium from the left for ballistic, dif-
fusive, and localizedwaves. The energy density falls linearly throughout the sample

for ballistic and diffusive waves but falls more rapidly near the centre for localized
waves. b–d The energy excited in TEs increases with n for ballistic waves but
decreases with n for diffusive and localized waves.
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length of 23 cm with 0.95-cm-diameter alumina spheres of refractive
index 3.14 embedded in the centres of Styrofoam shells to yield an
alumina volume fraction of 0.07. An ensemble of 23 random sample
configurations is created by briefly rotating the tube about its axis and
vibrating the sample. The sample is vibrated to allow the sample to
settle so that it is static over the 40-hour period required to measure
the spectrum of the TM. The antennas are formed by stripping the
outer conductor and bending the central conductor of a microwave
cableby approximately 90°. The bent central conductors of the source
anddetector are brought close to the input and output surfaces and lie
parallel to the respective surfaces.

The electric fields launched into and emerging from the sample
are polarized along the direction of the respective wire antennas. The
fluxes on the incident and output surfaces are found by expressing the
field amplitudes of the incoming and outgoing waves as super-
positions of waveguide modes. The propagating modes of the empty
waveguide are either transverse electric or transversemagneticmodes
with the same group velocity83. A single crossover for waveguide
modes from N =61,62 to N = 63,64 occurs at 14.8317 GHz over the
frequency range of the experiment.

Data availability
The datasets generated during and/or analysed during the current
study are available from figshare at https://doi.org/10.6084/m9.
figshare.25352956.

Code availability
The simulation codes used in the current study are available from the
corresponding author upon request.
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