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Landslide topology uncovers failure
movements

Kushanav Bhuyan 1,2,8 , Kamal Rana 2,3,4,8 , Joaquin V. Ferrer 4,5,
Fabrice Cotton2,6, Ugur Ozturk 2,4, Filippo Catani1 & Nishant Malik 7

The death toll andmonetary damages from landslides continue to rise despite
advancements in predictive modeling. These models’ performances are lim-
ited as landslide databases used in developing them often miss crucial infor-
mation, e.g., underlying movement types. This study introduces a method of
discerning landslide movements, such as slides, flows, and falls, by analyzing
landslides’ 3D shapes. By examining landslide topological properties, we dis-
cover distinct patterns in their morphology, indicating different movements
including complex ones with multiple coupled movements. We achieve 80-
94% accuracy by applying topological properties in identifying landslide
movements across diverse geographical and climatic regions, including Italy,
the US Pacific Northwest, Denmark, Turkey, and Wenchuan in China. Fur-
thermore, we demonstrate a real-world application on undocumented data-
sets from Wenchuan. Our work introduces a paradigm for studying landslide
shapes to understand their underlying movements through the lens of land-
slide topology, which could aid landslide predictive models and risk
evaluations.

Landslides cause economic damages worth 20 billion US dollars every
year1, andbetween 2004 and 2019 non-seismic landslides alone caused
about 70,000 fatalities worldwide2. Within the first two months of
2024, we have seen reports of devastating landslides in Colombia3,
Southern Philippines4, and Yunnan, China5, injuring many and killing
approximately 74people. Adding to this, recent studies count overone
million landslide occurrences, with annual volumes estimated at fifty-
six billion cubicsmeters globally6, presenting a risk to sixty-fivemillion
people7. With the increase in urbanization, global climate change, and
environmental change trends, the frequency of landslides and the
associated risks will keep increasing globally over time7. In line with
this, landslides are anticipated to evolve and remobilize with increased
frequency under changing climatic conditions on a decadal scale8,9.
Our ability to identify hazards from emerging landslides and

dynamically assess impact areas is essential in averting risk to rapidly
urbanizing communities and adapting to changing environmental
conditions7,10.

To address the rising landslide risk, predictive models for hazard,
risk, and early warning systems assist in forecasting landslide occur-
rences and locating landslide-prone regions to mitigate the undesired
impacts11. However, the efficacy of these models is contingent on the
quality of the underlying landslide databases. These databases often
lack the much-needed information about the type of failure of the
mapped landslides12. Generally, these databases include a broader
definition of landslides that covers all types of gravitational mass
wasting processes, such as slides, flows, and falls including sub-types
based on their movement, e.g., rotational slides13 combined together,
thereby hampering the capability of predictivemodels. Typically, each
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landslide failure type exhibits different geological, geometrical, and
geotechnical properties (see Fig. 1). For instance, slides have con-
spicuous primary scarps and collapse along the planar or rotational
surfaces14, flows such asmudflows exhibit visco-plastic or viscous/fluid
kinematics caused by excess porewater pressure15, and rock falls entail
the free falling of fragmented rocks from steep slopes16 (see
Note S1 and S2 for detailed explanations). Practitioners usually com-
bine these different failure movements into one group within an
inventory, despite their different properties17–19, since categorizing
them manually requires comprehensive surveys (both in the field and
remotely) and standardized classification protocols12, which are
laborious and time-consuming. Consequently, predictive models start
to harbor significant levels of uncertainty and bias20, hence failing to
match empirical observations, especially when moving from local
levels to regional and global scales21–23.

Preliminary attempts at identifying failure movement types have
considered both knowledge-driven and data-driven approaches.While
the former are region-specific, bounded by expert-based rules, and
constrained to small areas24,25. The latter addressed these problems
with supervised learning and have successfully identified landslide
failure types in the Italian context26. However, the existing solutions
are limited in their prediction capabilities, as the failure information is
derived from geometric properties of two-dimensional (2D) landslide
polygons (outlining the landslide planforms). Owing to the inherent
limitations of 2D landslide polygons, crucial kinematic andmechanical
details embedded in the landslides’ three-dimensional (3D) morphol-
ogy are overlooked, such as the style of kinematic progression,
deformation patterns and structures, and depositions. The complex
kinematic evolution of one or more failure types may culminate in the
convergent evolution of landslide shapes, wherein landslides starting
as completely differentmovementsmay evolve to follow similar planar
outlines (debris slides converging to debris avalanches13). This pre-
sents challenges in deducing failure types solely based on 2D

geometric descriptors or rudimentary topographic metrics. We argue
that these overlooked kinematic attributes are intricately linked with
the 3D morphological properties of landslides, which can be com-
prehensively analyzed through topological methods.

Topology is a sub-discipline of mathematics explored in many
fields that concern the study of shapes27, such as in protein
structures28, data modeling29, complex networks30, and signal
processing31. We explore advanced data analysis tools rooted in
topology, known as topological data analysis (TDA), which captures
critical structures present in the data’s shape (in our case, landslide’s
3D shape). We hypothesize that key features of landslide kinematics
are embedded in the 3D topology of the involved landforms and that
TDA properties can capture their kinematic movements as a proxy for
identifying landslide failures.

In this study, we introduce an approach for uncovering landslide
failure types based on their mode of movement by examining the
topological properties inherent in the 3D shapes of landslides. We
develop the method using the Italian historical inventory from Inven-
tario dei Fenomeni Franosi (IFFI)32 and then deploy it to landslide
inventories from varying geomorphological and climatic settings: the
United States (US) Pacific Northwest region (which includes the states
of Oregon and Washington), Denmark, Turkey, and Wenchuan, China
(see Fig. 2) to validate the effectiveness and applicability of the
approach. We demonstrate that the method offers a more compre-
hensive understanding of the underlying failure types—slides, flows,
falls, and complex—compared to traditional analyses based on 2D
polygonal geometry, as hypothesized. We explore the model’s ability
to identify sub-types of failure movements (e.g., translational and
rotational slides, earth anddebris flow). Also, we utilize the topological
properties of complex landslides to reveal coupled failure types
underlying the formation of complex landslides. In addition, we
identify the types of failure in an event-basedmulti-temporal landslide
inventory, enhancing our understanding of landslide dynamics and
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Fig. 1 | A schematic representation of different landslide failure movements.
The schematic broadly illustrates different landslide failure types and their asso-
ciated mechanical and kinematic behavior, excluding sub-type movements. For
example, Type 1 refers to slide-type failures that can constitute deep ruptures,
where a cohesive unit of soil or rock (colored in red) slides down a slope following a
well-defined rupture plane (colored in yellow). Type 2 refers to flow-type failures
where regolith, rock, or other material travels down a slope as a dense, fluid-like

mass with a flow-like motion. Type 3 is a fall-type failure where a body of rock
detaches from a steep slope or cliffs and exhibits free-falling and episodic impacts
as it propagates down the slope. Type4 refers to the complex interaction and effect
of numerous geomorphic processes transpiring in a single failure event, where
processes start as one type and evolve into another; such as a slide-type failure
evolving to a flow-type failure.
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behaviors in real-world scenarios. Moreover, we deployed ourmethod
on two undocumented (paleo-event) datasets as a real-world applica-
tion, which we verified using Google Earth archive imageries. To the
best of our knowledge, sub-type failure movements, temporal pre-
diction of failure movements, and detection of the underlying failure
types within complex landslides have never been investigated using an
automated data-driven approach. Here, we showcase with our findings
that the proposed method (1) is user-friendly, exclusively requiring
only the landslide polygonal shape and a Digital Elevation Model
(DEM) as input, (2) exhibits high performance in discerning failure
types based on their movements, (3) is adaptable across various geo-
morphological and climatic regions, and (4) shows strong perfor-
mance and remains robust, even with limited training samples, thus
indicating the method’s deployability in data-scarce regions. By
offering a deeper understanding of landslide failure movements, our
approach has the potential to enhance the accuracy and reliability of
landslide susceptibility, hazard, and risk assessmentmodels, providing
valuable insights to the predictive modeling community.

Results
Landslide topology as a proxy to identify failure types based on
style of movement
The underpinning of topological data analysis (TDA) is rooted in
structures in the data’s shape, such as connected components and
holes. Holes represent the empty spaces in the data’s shape, and
connected components represent the connection of the data’s points
linked by a continuous path33. Using the holes and connected com-
ponents, we can calculate various topological properties to quantify a

shape. For this, we perform the TDA on landslide shapes to compute
topological properties, which can then be used as a proxy to investi-
gate the underlying failure types. It is important to note that we
employ 3D point clouds (containing geographical latitude, longitude,
and elevation information) from the landslide’s outline (see Fig. 3)
estimated via the landslide polygon and the digital elevation model
(DEM). The landslide polygon provides the best available approxima-
tion of the landslide boundaries in the geographic space, as derived by
standard surveying methods with suitable accuracy.

The degree of compactness in a landslide shape is essential when
identifying failure types26. For instance, slides are characterized by a
more cohesive material that tends to remain as a single component
(e.g., slideswith clay-rich soil34), leavingbehind amore compact-shaped
footprint as they fail. In contrast, flow-type failures involve more fluid
and fragmented materials deposited on a debris fan and display vis-
cous/fluid kinematics that follow the channelized topography of the
natural landscape and are hence, sinuous and less compact. On the
other hand, falls consist of fragmentedmaterials that roll or bounce off
steep cliffs with a rather shorter and straighter run-out path compared
toflows,which leave behind a footprint that has an intermediate degree
of compactness between the slide and flow-type failures.

We use the amount of empty space inside the footprints of
the landslide shape outline to quantify its compactness. To give a
simple example, a higher amount of empty space in a landslide shape
outline is associated with a higher degree of compactness (e.g.,
for slide-type failures, as seen in Fig. S1a). Representing the average
lifetime of holes, ALH (one of the topological properties) computes
the hole’s average size and estimates the information pertaining to the
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Fig. 2 | Location of the study areas. The diagram shows the geographical regions:
Italy, the US PacificNorthwest, Turkey, Denmark, andWenchuan, China whose data
we analyzed in this work. The green star showcases regions encompassing histor-
ical inventories and the yellow star showcases an event-based spatiotemporal
inventory. The inset in the circular shape shows snippets from diverse regions with

landslide polygons of different failure movements (slide: colored in orange, flow:
colored in darkblue, complex: colored in red, and falls: colored in light blue) on top
of the World Imagery from ESRI. Map credits: Esri, Maxar, Earthstar Geographics,
and the GIS User Community68.
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empty space, and thus the compactness of a landslide’s shape. So,
landslide shapes with a longer ALH aremore compact than shapes with
a shorter ALH. Based on the probability density function (PDF) of the
ALH, our analysis reveals that slides aremore compact than flows, falls,
and complex landslides because they have a longer ALH (see Fig. 4).We
observe the PDF of the ALH curve for falls to lie between those of slides
and flows, showing that empty spaces generated in falls do not survive
long since materials detach from steep slopes and travel a short dis-
tance, thereby leaving behind a footprint that represents an inter-
mediate level of compactness. Also, the PDF of the ALH for complex
landslides shows an intermediate level of compactness, credited to
their amalgamatedbehavior as a combination of slides, falls, and flows.

Another critical property for diagnosing failure types is the sinu-
osity of the transport zone, which describes the landslide’s path or
kinematic propagation as it progresses downslope. Among various
types of failure, flows exhibit the greatest sinuosity, following the
channelized topography more than other mass-wasting mechanisms.
This pattern is attributed to the fluid and mobile characteristics of the
materials involved. In contrast, slides are the least sinuous as their
deposits are rarely channelized and remain on the open slope, result-
ing in a relatively straight and uniform path. Fall-type failures are
comparatively less sinuous than flows but still exhibit some degree of
sinuosity, as they too follow the landscape’s topography. Sinuosity
defines the existence of numerous curves in the landslide’s shape
attributed to the landscapes’ topography, leading to the generation of
partitions within the landslide outlines by the TDA and, hence, gen-
erating multiple empty spaces with a shortened lifetime (see Methods
section). This information on the sinuosity of landslide shapes is
inferred from the combination of two topological properties—the
bottleneck amplitude of holes, BAH, and the average lifetime of holes,
ALH. The BAH represents the maximum lifetime of holes in the land-
slide shape, which quantifies the maximum empty space in the 3D
space occupied by the landslide. As sinuous shapes result in numerous

smaller empty spaces with shorter lifetimes, the ALH drops without
significantly impacting the largest empty space as determined by the
BAH (see Fig. 4). Consequently, a landslide shape with a relatively
higher BAH and a shorter ALH is indicative of increased sinuosity. In
light of these observations, our findings indicate that flow-type land-
slides indeed display a higher degree of sinuosity compared to other
failure types. This finding is evident from the fact that flows exhibit a
similar BAH to falls but a shorter ALH in comparison. This is expected,
as flows, being the most sinuous, cause multiple small holes or empty
spaces (see flow-type and fall-type failures in Fig. S1b, c) that lead to
shortening the ALH. Conversely, slides display both longer BAH and
ALH, reflecting their minimal level of sinuosity.

We are also interested in the role of slope variations, as they sig-
nificantly impact the stability of the hillslope and influence the type of
landslide. For example, falls and slides have a more significant slope
transition in their profiles compared to flows, which propagate with a
nearly constant slope35. This slope variation is captured by the lifetime
of the connected components. A sharp change in the hillslope causes
the points outlining the landslide to be spaced vertically further apart,
leading to a longer lifetime of the connected components. Two
topological properties–the Wasserstein amplitude of the connected
components, WAC, and the average lifetime of the connected com-
ponents, ALC—help capture information about this slope variation in a
landslide’s profile. TheWAC quantifies the set of longer lifetimes of the
connected components, quantifying themost significant slope change
in the landslide outline. This quantification is nicely illustrated in the
PDF (Fig. 4) of WAC, which shows that slide and fall failures underwent
more drastic slope changes compared to flows. Yet, falls possess a
shorter ALC than slides. This is due to the lower portion of the shape’s
outline (at the talus) displaying a flatter terrain (representing the area
where materials accumulate) and attributing negligible slope change,
which ultimately shortens the ALC. In contrast, flows display the
minimum ALC, as they roughly propagate on constant slopes.

Flow Complex Fall

a)
z

x y

b) c) d) e)Slide

Toe Crown

Landslide Landslide 
polygon

Fig. 3 | 3D illustration of different landslide movements and their polygonal
shapes. a An example of a landslide failure in a terrain with a steep slope. The
diagram also shows the 3D landslide polygon, which outlines the landslide shape

(depicted with a gradient color from dark blue to light green highlighting relative
elevation from the crown to the toe). b–e 3D landslide samples for different
landslide failure types, namely, the slide, flow, complex, and fall types.
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Several topological properties, like the Betti curve-based feature
(BC), capture more intricate landslide shape properties and help in
discerning landslide failure types. The Betti curve-based feature
represents the total number, lifetime, and presence of the structures
(holes and connected components) emerging simultaneously. We
hypothesize that it encompasses a combination of compactness,
sinuosity, slope variations, and similar structures within a given land-
slide shape. However, the exact connection to the underlying physical
types is not clear due to the complex nature of this topological
property. We anticipate that such properties consider higher-order
information about the landslide shape that is not immediately
apparent.

Through our analysis, we discovered that common topological
properties such as ALH, ALC, and BCC reflect the generalmovements of
distinct failure types. These properties act as proxies for the diverse
kinematic and mechanical characteristics, essential to consider when
identifying thedifferent failure types. Thisfinding simplifies andbrings
coherence to our understanding of landslide behaviors through a
topological lens, offering a more effective approach to discerning and
predicting complex phenomena.

Advantages of landslide topology over landslide geometry
Traditional geometric descriptors of landslide shape, including prop-
erties such as area, perimeter, and convexity, are derived from 2D

representations of the landslide body36. As a consequence of this
inherent simplification, these 2D-based geometric properties may not
adequately capture crucial information, such as failure depth or
internal deformations, associated with the landslides’ 3D configura-
tion. To address these limitations and provide a more comprehensive
understanding of the landslide dynamics, we computed topological
properties that are derived from the landslides’ 3D configurations. We
postulated that the topological properties would prove more mean-
ingful in decoding the characteristics of the landslides and their
underlying failure types than the traditional geometric counterparts.
To test this, we used a set of seven well-known geometric properties
that are commonly employed in the literature36–38 along with six
topological properties—average lifetime of holes (ALH), Average life-
time of connected components (ALC), Betti-curve based feature of
connected components (BCC), Betti-curve based feature of holes
(BCH), Wasserstein amplitude of holes (WAH), and Bottleneck ampli-
tude of holes (BAH)—(for the justification of using six topological
properties, please refer to the Methods section) to determine the
failure types in Italy.

We jointly computed the feature importance of geometrical and
topological properties using the Gini-index feature importance
method in the random forest algorithm (see Fig. 4g). After running
over 100 iterations on the Italian inventory, our findings consistently
demonstrated that topological properties exhibited higher feature
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Plots a–f show the probability distribution functions of the six most optimal
topological properties used in classifying the failure types for slides (colored in
orange),flows (colored in dark blue), complex (colored in red), and falls (colored in
light blue) in Italy. Note that we discuss the probability distribution functions of
different failure types for the Italian region only, as the Italian data set is the most
data-rich inventory. The y-axis shows the probability density values (calculated
using kernel density estimation), and the x-axis shows the value of topological
attributes. The topological properties in plots a–f are: Average lifetime of holes
(ALH), Average lifetime of connected components (ALC), Betti-curve based feature
of connected components (BCC), Betti-curve based feature of holes (BCH), Was-
serstein amplitude of holes (WAH), and Bottleneck amplitude of holes (BAH) (the

computations of these properties are explained in detail in Note S3). The percen-
tage values in the gray circular disk in each figure indicate the topological feature’s
importance (in %), as estimated by the random forest-based classification proce-
dure. Plot g shows the joint computed feature importance of topological (colored
in purple) andgeometric (colored in beige) properties by the random forestmodel.
The analysis shows topological properties consistently outperform geometric
properties with a standard deviation under 0.1% (the error bar represents the
standard deviation. However, it is not visible in plot-g because the standard
deviation is very small). The geometric properties are: area (A), perimeter (P), the
ratio of area to perimeter A

P, convex hull-based measure (Ch), minor (sm) (refer to
Note S4 for the definitions), and width (W) of the minimum area bounding box
fitted to the polygon.
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importance than their traditional geometric counterparts (achieving
Micro F1-scores of 94% and ~65% respectively), yielding superior pre-
dictive capabilities for identifying failure types. Additionally, we
observed that even the least important topological property (BCC) has
similar feature importance as the other geometric ones, while the
former conveys unique information about the landslide shapes as
discussed in the previous section. Moreover, we calculated the prob-
ability density function (PDF) for both geometric and topological
properties and observed that the latter had greater dissimilarity than
the former among different failure types (see Fig. S2). These two
findings demonstrate that topological properties are stronger pre-
dictors for identifying failure types. The reason behind this can be
attributed to the enhanced capacity of topological properties to
encapsulate important information pertaining to landslide kinematic
progression, failure depth, sinuosity, compactness, and slope
variation.

Determining failure types with TDA and machine learning
Next, we employed topological data analysis (TDA) to compute a
diverse array of topological properties/features using the landslide
inventory of Italy. Subsequently, we conducted a correlation analysis
and feature importance assessment to identify the six most optimal
properties out of thirty. Our evaluation unveiled that several TDA
properties were redundant, amplifying the model’s complexity and

undermining its predictive potential. Consequently, we opted to
eliminate the irrelevant ones. Leveraging the six best features, we
applied the random forest algorithm to discern the failure types. We
independently scrutinized the performance of our approach using
various training and testing sets for the Italian inventory.

We applied the model to approximately 250,000 landslide sam-
ples, ensuring balanced training by using an equal number of samples
—13,000 for each landslide type. To mitigate over-fitting and bias, we
performed 10-fold cross-validation 1000 times on a subset of
54,440 samples. This approach yielded a Micro F1-score, a key per-
formance metric, surpassing 94% for each failure type (see Fig. 5a),
with a performance standard deviation of less than 0.2%. This illu-
strated the robustness of our methodology in handling variations
among training samples across Italy. We examined various other
metrics, such as the true positive rate (TPR) and true negative rate
(TNR), to evaluate the method’s performance. These metrics con-
sistently exhibited high scores (94–98%) across all classes, thereby
ascertaining the model’s classification ability.

Method implementation for failure-type identification
In this sub-section, we assess our method’s implementation across
both historical and event-based landslide inventories that include
both spatial and temporal data. Additionally, we tested themethod’s
efficacy in scenarios where information on failure types is either
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Fig. 5 | Analysis of landslide classification accuracy across regions and sub-
movement failures. Plot a shows the classification accuracy (in %) for each failure
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in red, and falls: colored in light blue). The x-axis of the plots shows the testing
sample’s index, and the y-axis shows the class probability corresponding to each
failure class. Plot b shows the classification accuracy (in %) corresponding to each
failure type with the number of training samples. The x-axis shows the number of
training samples from each class used to train the model, and the y-axis shows the
classification accuracy (in %) corresponding to each class. At 100 samples, themean
classification accuracy already reaches over 70% in Italy. Plot c demonstrates the
model’s versatility in accurately identifying various types of landslides across

multiple geographical regions, including Wenchuan, China, Turkey, Denmark, and
theUSPacificNorthwest,with their correspondingF1-scores listed for each type. Plot
d highlights the model’s capability to distinguish sub-types of landslide failures,
specifically in the US Pacific Northwest and Italy. In the US Pacific Northwest, the
model successfully classifies four additional sub-types--rotational slide (colored in
orange with diagonal strips), translational slide (colored in orange with horizontal
strips), debris flows (colored in dark blue with diagonal strips), and earthflows
(colored in dark blue with horizontal strips)—with an average F1-score of 84% along
with the other failure type classes (complex and fall type). In Italy, the model iden-
tifies two additional sub-types—debris flows and earthflows—with an average F1-
score of 96% along with the other failure movements (slides, complex, and falls).
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scarce or lacking. We highlight the results in the following
paragraphs.

Training and testing in regions individually: In this aspect, we test
the performance of our method’s implementation across diverse
geomorphological and climatic settings in the regions of the US Pacific
Northwest, Turkey, Denmark, and Wenchuan in China (2008 earth-
quake event). The evaluation schemes involved training and testing
themethod individually for each region, where themean classification
accuracy was observed above 80% for each region (see Fig. 5c). This
result highlights the adaptability of the proposed method in accli-
mating to these varying geographical regions.

Implementation in data-scarce contexts: In real-world scenarios,
most landslide inventories have limited or no information regarding
failure types. To evaluate the method performance in the regions with
limited samples, we train and test the method with different amounts
of training samples. In Italy, where the landslide samples are dis-
tributed around the entire country, even a small subset of samples <1%
of entire databases (~100 samples from each class) achievesmore than
>70% performance. In Wenchuan, China, where landslides are dis-
tributed in a basin, with just <20 samples from each class, the method
achieves more than 75% performance. These analyses highlight that
irrespective of the scale (national- or basin-level), the model can per-
formwellwith limited trainingdata. Similar resultswere also replicated
for the US Pacific Northwest, reflecting robustness and applicability
across the board. These tests indicate that robust training can be
achieved in any region with scarce data. More information can be
found in Fig. S3.

Implementation across multi-temporal inventories (temporal
transferability): We implemented the method in an event-specific
multi-temporal inventory from Wenchuan, China, containing eight
event-specific inventories from distinct years, triggered by a combi-
nation of rainfall and earthquakes. To assess the method’s perfor-
mance for temporal transferability, we trained the model using the
initial earthquake-triggered inventory from 2008. Thenwe tested it on

the remaining inventories from the subsequent years (2011 to 2018).
Across all the testing inventories, our method achieved a mean clas-
sification accuracy of over 90% (see Fig. 6c), highlighting the temporal
transferability of themodel. Additionally,we implemented themethod
on two undocumented inventories predating the 2008 event, specifi-
cally from 2005 and 2007 (see Fig. 6a, b). In our prediction of the
landslide types within these inventories, we found that most were
identified as debris flows (117 in 2005 and 40 in 2007), with the
remaining few classified as debris slides (14 in 2005 and 32 in 2007).
We manually verified the method’s predictions for these landslides
using Google Earth archive imagery. Further details regarding the
verification of these landslides are provided in Note S5 and
Figs. S4 and S5.

Determining sub-type failure movements
Sub-type classification of landslides is critical for devising targeted
mitigation strategies and understanding the underlying mechanisms
that drive these movements. To address this need, we go beyond the
general categorization of landslide failure types to test the ability of
the model to identify/classify specific landslide typologies for the
inventories of Italy and the Pacific Northwest of the USA. In the case of
Italy, we tested with five sub-type failure movements (slides, debris
flows, earthflows, complex landslides, and rock falls) achieving an F1
accuracyof 96%while in the case of the PacificNorthwest of theUS, we
tested with six sub-type failures (debris flows, earthflows, rotational
slides, translational slides, rock falls, and complex landslides) achiev-
ing an average F1 accuracy of 84% (see Fig. 5d). This extension
demonstrates that our method can handle more than the basic four
classes or types, including differentiating sub-types within slides (such
as rotational and translational) and flows (including earthflows and
debris flows). Such distinctions are vital for type-specific predictive
modeling and a comprehensive understanding of landslide move-
ments, aswell as the underlying causes of their behaviors. This success
can be attributed to the TDA’s capability of discriminating among

Fig. 6 | Multi-temporal analysis and prediction on undocumented inventories.
Rows a and b display snippets of proposed method predictions in two undocu-
mented databases from the 2005 and 2007 inventories of Wenchuan, China,
respectively. Each row in these plots shows debris slides (colored in orange) and
flows (colored in dark blue) as identified by the model, with the accompanying bar
chart quantifying the number of landslides by their type. Plot c shows the method
performance on multi-temporal inventories triggered by either earthquake or
rainfall spanning from 2011 to 2018 on both movement types (also on a

combination of them together, colored in gray). The model is trained on the 2008
inventory associated with that year’s co-seismic event and tested against each
consecutive temporal inventory. The chart also includes a composite dataset
derived from combining all the multi-temporal inventories. Error bars represent
mean values ± SD (n = 5) for each landslide type within each inventory. The model
achieved an average F1-score of 89%, with a mean standard deviation (for the F1-
score) of ±4%. The base map was sourced from the World Hillshade Map. Map
credits: World Shaded Relief-ESRI68.
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various failure types, like debris flows and earthflows. This distinction
arises from the inherent morphological variations between debris
(characterized by more sinuous and longer trails) and earthflows
(marked by less sinuous and relatively shorter trails).

Identifying failure types within the complex landslides
Complex landslides typically occur as amalgamations of numerous
processes or failure types that appear successively, such as slides to
flows39. Because complex landslides include multiple failures, it is
challenging to investigate their behavior for the purposes of predictive
modeling. Topological properties are capable of capturing intricate
information between different failure processes (as seen in the pre-
vious sections), and hence, we further explored TDA’s capability to
understand the underlying coupled failure types that form complex
landslides. We utilize 428 complex landslides from the US Pacific
Northwest inventory to discern the combination of failure types pre-
sent in them. Out of 428 complex landslides, 198 of them are docu-
mented as “Translational rock slides followedby rock falls" and the rest
are documented as “Rotational slides followed by flows" (as reported
by the Statewide Landslide Information Database for Oregon,
SLIDO40).

To identify the failure types within these complex failures, we
trained our method with three classes (i.e., slides, flows, and falls) and
forced the model to predict the class probability corresponding to
each failure type. For 198 complex landslides documented as “Trans-
lational rock slides followed by rock falls", our model predicts slide-
type failures with the highest probability followed by falls (see
Fig. S6d). Similarly, for the remaining 230 “Rotational slides followed
by flows" complex landslides, our model predicts slide-type failures
with the highest probability followed by flows (see Fig. S6e). Among
these 428 landslides, sliding failures are predicted as the most domi-
nant failure type, which is also evident when observing the resem-
blance of the slide and complex failure topological properties (such as
ALH, BCH, and BAH) in the PDF plots (see Fig. S6a–c). These findings
demonstrate that topological properties can capture more than just
onephysical process in a given landslide and that they couldbe used to
automatically improve large Varnes-based14 inventories toward Cru-
den and Varnes-based41 classification.

Discussion
In this work, we attempted to determine the failure types based on
landslide movements through the lens of landslide topology. Our key
findings elucidate the connection between the topological properties
as a proxy to identify underlying failure movements. We observe that
identical landslide types harbor similar topological properties, indi-
cating the presence of common morphological characteristics that
govern the general movement of the failures. We find that topological
properties offer a more profound capacity to distinguish between
failure types than traditional geometric properties (see Results,
“Landslide topology as a proxy to identify failure movements"). This
finding can be attributed to the fact that topological properties
inherently capture critical information related to landslide kinematic
progression, failure depth, sinuosity, compactness, and variations in
slope. In contrast, geometric properties tend to oversimplify the
complex spatial, kinematic, and mechanical relationships that govern
thebehavior of landslides and arehence less effective in differentiating
between various failure types. Building on the advantages of topology
over geometry, we developed a method using the Italian landslide
inventory that utilizes topology to identify failure types.

The efficacy of our work is showcased through discussions on the
method’s implementation, the analysis and implications of sub-type
movements in landslide risk, deciphering complex landslide interac-
tions, and connecting movement types with process insights. We then
pivot to outline ourmethod’s inherent limitations for a comprehensive
view. The discussion then concludes with an outlook on the method’s

potential across geophysical disciplines, underscoring its wide-
reaching implications and versatility.

An important step involved recognizing our method’s capability
to adapt across diverse geomorphological and climatic settings,
including both historical (such as Italy, the US Pacific Northwest,
Denmark, and Turkey) and event-based inventories (such as Wench-
uan, China). This exploration yielded noteworthy results, as the
method is capable of identifying failure types across these diverse
regions. Thus, the method can help identify failure movements in
previously undocumented inventories. Consequently, recent events
and their corresponding inventorieswould benefit from this approach,
as they could be efficiently classified, particularly in data-scarce
regions (see Results, “Method implementation for failure-type
identification").

Beyond adapting to different regions, our approach also opens
possibilities for studying the complexity and evolution of landslide
behavior, with the potential to improve hazard forecasting37. As
demonstrated in the temporal experiment in Wenchuan, China, our
approach admittedly holds the ability to identify failure movements
across not just space but also time, with which we were able to also
recognize and quantify the failure movements in two undocumented
inventories predating the Wenchuan earthquake event (Mw 7.9) of
2008. Such information carries substantial importance as it paves the
way for focused research into quantifying (re-)mobilization of failures,
extracting precise data on sediment budgets, and understanding
dominant geophysical cycles at continental and global levels42–45.

Drawing on the experiments of the sub-type classification (e.g.,
debris flows and earthflows) of landslide failures using the Italian and
the US Pacific Northwest dataset (see Results, “Determining sub-type
failure movements"), we recognize the substantial value in identifying
and quantifying these sub-movements, bearing notable potential to
enhance both landslide risk assessment and related hazard models20.
The level of damage to infrastructure and the risk of human casualties
vary depending on the intensity of the failuremovement, which differs
for each failure type14. For example, a slow-moving deep-seated rota-
tional landslide (1.5m/year to 16mm/year)may not pose an immediate
threat to the population, but it can cause extensive structural damage
tobuildings over a prolongedperiod46,47. In contrast,flow-type failures,
such as debris flows, have rapid mobility and can result in significant
casualties and infrastructure damage simultaneously48,49. Similarly,
episodic impacts in fall-type failures can cause massive damage to
infrastructure in a matter of seconds due to their high energy (e.g.,
impact pressure measured in kilopascals, kPa)50. We can infer from
these broad examples that the availability of failure-type, especially
sub-type, information could considerably enhance the accuracy of
predictive modeling and that incorporating it benefits the landslide
community as it enables the development of accurate landslide pre-
dictive models. Nevertheless, certain failure movements fall in
between, for instance, avalanches (flow-typeprocesses) between slides
and flows, where avalanches can occur in similar topographical con-
ditions as slides13. The presence of larger boulders in avalanches than
debris flows has concrete implications for the protective measures
required to absorb the impacts. We discuss this facet, particularly,
separating the intertwined movements of avalanches from debris
slides, in Note S6.

In addition, we utilized topological properties to dive deeper into
complex landslides and identify the underlying coupling of failure
types that contribute to their formation (see Results, “Identifying
failure types within the complex landslides”). Our findings in the US
Pacific Northwest suggest that topological properties can reveal more
than one physical process in a given landscape (for example, identi-
fying coupled failures of slides following falls or slides following flows).
This has significant implications for understanding complex landslide
failures, which often arise from a combination of different failure
movements, such as sliding, flowing, and falling, and may not be fully
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encompassed by conventional characterization and classification
methods for large-scale analysis13,14,41. Traditional approaches may
struggle to pinpoint the exact cause, leading to hindrances in pre-
vention efforts. The use of topological properties to uncover these
intricacies offers a path towards a more comprehensive characteriza-
tion, where capturing the dominant failure type would enable pin-
pointing the possible initial failurewithin the complex landslide. Given
these advantages, we anticipate that ourmethodwill open avenues for
future research, particularly in the landslide modeling community, for
example, working on large-scale post-event mapping and large- to
medium-scale hazard forecasting.

The 3D topological descriptions of landslides do not directly
connect landslide failuremovement to the failure process, as they rely
solely on the topography and the shapeof the landslide. In establishing
characteristics for failure movements with topological information,
the model provides insights into the predominant landslide types
prevalent in the landscape. Regardless, it is important to recognize
that 3D-based topology alone may not directly lead to the underlying
processes driving landslides. Incorporating ancillary information such
as land use characteristics (e.g., vegetation or lithology) and informa-
tion on the triggers (e.g., peak-ground acceleration or rainfall inten-
sity) into future models could tailor the characterization of mapped
landslides to assess particular failure processes.

Our approach has the potential to link the movement types that
emerge from anthropogenic activities with characteristics that may
deviate from naturally induced landslides. For instance, fill-slope
landslides induced by human activities might resemble naturally-
induced deep-seated landslides in appearance, but their underlying
processes are distinctly different. This overlap poses challenges to
effectively comment on the processes behind landslide failures
(between urban and natural landslides) that look similar. Anthro-
pogenic activities such as land use change, urbanization, and soil
management practices have various impacts on landslide activities,
sometimes leading to complex scenarios47. If trained with appropriate
data, our model could effectively distinguish between landslide types
in urban and natural environments and be instrumental in studying the
disparities in between. By doing so, the method can improvemapping
and classification protocols, which may contribute to understanding
how human pressures, particularly in urban areas, are influencing the
timing and characteristics of landslide failures51.

While the proposed method demonstrates notable success in
identifying failure types, there are inherent limitations. Although the
method adapts across regions (US Pacific Northwest, Turkey, Den-
mark, and Wenchuan in China) and temporal settings (Wenchuan,
China), the accuracy of the results is limited by the specific landslide
movement types available during training. Hence, all new landslide
typesmust be introduced to themodel in advance.We showcased that
the model can easily accommodate additional landslide types if
desired (see Results, “Determining sub-type failure movements of the
landslides”, Fig. 5d). We suggest continual updates to both the model
and inventories with newmovement types as they become available to
sustain reliable performance.

Another concern about our approach is transferability. An ideal
solutionwouldbea transferablemodel that canbe trained and tested in
geographically disparate areas. However, the development of such an
ideal solution is exceptionally challenging.Model training and testing in
such disparate conditions can introduce bias since distinct failure types
from different regions can have dissimilar shapes and thereby, dis-
similar topological responses, even for the same failure movements13.
This challenge is due to diversities in the landscape features, both
internally by geology and topography and externally by climate and
tectonic activity worldwide, and therefore, impacts how landslides
propagate in varying ways in different parts of the world. Alternatively,
comprehensive training landslide data that encompasses the diverse
landscapes of the earth can aid in achieving a global generalization.

However, such detailed-curated data is unavailable at the moment.
More insights into the technical limitations are explored in Note S7.

In real-world scenarios where the landslide databases are undo-
cumented, i.e., devoid of any information regarding failure types,
practitioners and experts can train themodel on amanually annotated
small subset of samples and then classify the remaining landslides in
the inventory using our method. The amount of samples that need to
be annotated depends on the scale of the region. For example, in Italy,
~100 samples from each class achieved satisfactory results, whereas, in
Wenchuan, China, <20 samples from each class were enough. This
practical solution ensures an economical direction to obtain reason-
able prediction capability in new study areas (see Fig. 5b and Fig. S3).
Additionally, we chose the combination of TDA with decision tree-
based shallow learning52 (i.e., random forest) deliberately to capitalize
on a functioning model for data-scarce contexts to ensure practicality
in the real world. This solution expresses a streamlined approach
highlighting the importance of dynamic, adaptable models in
improving landslide prediction across diverse regions.

The potential of the proposed method reaches beyond just
understanding the complex interplay between landforms, their
shapes, and the underlying geophysical processes responsible for their
formation; they also serve as a subject captivating interest across
various geophysical disciplines. The ability to acquire knowledge
about the processes generating complex landforms based solely on
their shapes suggests a rich presence of signatures imprinted on the
landscapes. Our method leverages their topological properties to
effectively extract this information. Envisioning compelling applica-
tions beyond landslides, we can explore other geophysical processes
suchas permafrost-borne retrogressive thawslumps inArctic regions53

and sub-surface processes, e.g., submarine landslides54, which com-
monly occur in a typical data-scarce environment such as the sea
bottom, where geological and geotechnical information are almost
absent. Furthermore, the lens of topological characteristics can enable
research on extra-terrestrial landslides such as those on Mars. The
topology of Martian rock avalanches, slumps, and slump-flows with
cryosphere characteristics55 can assist in understanding the paleoen-
vironmental conditions on the planet. Characteristics of landslide
mobility could provide insights into material properties and the con-
ditions of sediment deposition at their occurrence time, for example,
the presence of water and ice content55,56. These geomorphological
processes give rise to unique landforms displaying distinct shapes and
configurations, both terrestrial and extra-terrestrial, and employing
topology can aid in gauging the mechanisms governing their occur-
rences. By doing so, our method could provide alternate perspectives
on mathematical and physical phenomena underlying various geo-
physical and environmental scenarios.

Methods
Topological feature engineering
In the proposed method, landslide polygons serve as the primary
input. These polygons represent the 2D outline of the landslide body
on the ground and are commonly found in landslide databases. Each
vertex of the landslide polygon comprises geographical latitude and
longitude coordinates. Utilizing the digital elevation model, the land-
slide polygons are transformed into normalized 3D shape outlines,
wherein each vertex encompasses latitude, longitude, and elevation
information. Topological data analysis (TDA) is employed to extract
the geometrical and topological characteristics of a landslide’s 3D
shape outline (see Fig. 7). This information is subsequently used as
input for a machine learning algorithm, specifically the random forest.
The Python library Giotto-TDA is leveraged to extract an assortment of
TDA properties/features from the 3D shape of landslides57. To ascer-
tain the most pertinent features for landslide-type classification, a
correlation test is conducted between TDA features, and those with
high correlation are removed. The remaining, less correlated features
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are then assessed, and the least important ones are iteratively elimi-
nated until six robust predictors remain. The exclusion of additional
predictors results in decreased performance, while incorporating
more than seven yields comparable outcomes. Utilizing fewer pre-
dictors facilitates the development of amore generalizablemodel. The
six features thus form a feature space for the random forest classifier,
which is then evaluated using a confusion matrix and other accuracy
metrics like True Positive Rate (see Note S8 and Fig. S7).

Topological data analysis (TDA) quantifies the multidimensional
shapeofdata using algebraic topology techniques. TDAoffers a variety
of metrics for capturing the geometric and topological properties of
data shapes58. These metrics could be used as a feature space for the
machine learning algorithm to solve various classification and regres-
sion problems, such as shape classification. TDA’s central idea is per-
sistent homology, which identifies persistent geometric features by
using simplicial complexes to extract topological features from point
cloud data. Simplicial complexes are a collection of simplexes that are
the building blocks of higher-dimensional counterparts of a graph. An
n-dimensional simplex is formed by connecting n + 1 affinely inde-
pendent points59,60. For example, a point is a 0-dimensional simplex, an
edge that connects two points is a 1-dimensional simplex, and a filled
triangle formed by combining three non-linear points is a
2-dimensional simplex. A Vietoris-Rips complex indicates the simpli-
cial complex in the data’s shape using a parameter ϵ. The main idea of
the Vietoris-Rips complex is to connect any two points in the point
cloud data set whose distance is less than ϵ. These connections of data
points create structures in the data that change with the parameter ϵ.
Therefore, to get complete information about all the structures in the
data, the idea is to use all ϵ >0 values.

Only specific structures in the data shape provide crucial infor-
mation about the geometrical and topological properties of the data.
Homology measures these unique structures in the data, where e.g.,

0-dimensional homology captures connected components or clusters,
1-dimensional homology measures loops, and 2-dimensional homol-
ogy measures voids59. These crucial structures emerge and die with
changes in ϵ, and this information is captured in the persistence dia-
gram.With the help of a persistence diagram, we can calculate various
measures quantifying the topological properties of the shape—per-
sistence entropy, average lifetime, number of points, Betti curve-based
measure, persistence landscape curve-based measure, Wasserstein
amplitude, Bottleneck amplitude, Heat kernel-based measure, and
landscape image-based measure61,62. We have explained all the topo-
logical features in detail in Note S3. Finally, we used all thesemeasures
as input in the machine learning method–random forest.

Machine learning model: Random Forest
Random forest is an ensemble-based learning method that has shown
promising results in various classification and regression problems63,64.
Random forest classifiers consist of multiple classifiers trained inde-
pendently on bootstrapping training samples. Bootstrapping N train-
ing samples leads to 2N

3 independent samples, so each tree in the
random forest is constructed from a distinct subset of training
samples65. Moreover, each tree in the random forest predicts the
output class of the testing sample independently, and the class with
the majority votes is the final decision of the random forest65.

Each random forest tree divides a parent node into two daughter
nodes, right (r) and left (l). For each node split, the random forest
choosesp features from them total features of the samples66. Amongp
features, the random forest selects a single feature for a node split
based on the “Gini-index" criterion. The Gini-index for each right and
left daughter node can be calculated as: Gr = 1 − Σj =N

j = 1 Prj and
Gl = 1 − Σj =N

j = 1 Plj . Here, Prj(Prlj) andN are the probability of the samples in
the right (left)nodes having class j and the total number of the classes.
The features that maximize the change in the Gini-index that is cal-
culated as follows:Δθ(sq) =Gq − ρrqGr − ρlqGl is used for the node split67.
Here, ρrq and ρlq are the proportion of samples in the right and left
daughter nodes. The process of splitting nodes continues until a
stopping criterion is met, such as when no more samples are available
for splitting or when the Gini-index of parent nodes is lower than that
of daughter nodes.

Data availability
Sample data for feature engineering and model training-testing are
provided in a GitHub repository69. The predicted data generated for
the Wenchuan, China 2005 and 2007 landslides inventories as part of
the temporal transferability experiment have also been deposited in
the same repository.

The dataset utilized for Italy in this study was obtained from the
Inventario dei Fenomeni Franosi (Inventory of Landslide Phenomena)
in Italy (IFFI)32. The IFFI project catalog (www.progettoiffi.
isprambiente.it) was created in 1999, with the aim of mapping and
identifying landslides in Italy, and holds information on over 250,000
usable landslide polygons. Aerial image interpretation, historical
sources, and field surveys were used to acquire and validate this cat-
alog, while the classification protocol or scheme referred to that of
Varnes14 and Cruden and Varnes41. In our work, we chose the polygonal
landslidedata from this catalog and also carried out post-processing to
correspond to the spatial extent and resolution of the 25-m EU-DEM70.

The dataset from the US Pacific Northwest consists of inventories
from the Oregon Statewide Landslide Information Database (SLIDO—
updated 10/29/2021; Franczyk et al.40), mapped by the Oregon
Department of Geology and Mineral Industries (DOGAMI), and the
Washington State Landslide Inventory Database (WASLID updated
2018/08/01; Slaughter et al.71), mapped by the Department of Natural
Resources, Washington Geological Survey (WGS). The combined
inventories comprise 47,653 landslides from the US Pacific Northwest
region. The inventories contain LiDAR-derived landslide polygons

Fig. 7 | Flowchart of topological data analysis. The diagram illustrates the pro-
cedure of computing topological features corresponding to a landslide shape. The
color gradient in the example landslide depicts relative elevation from the crown
(colored in dark blue) to the toe (colored in light green). The flowchart shows the
use of persistent homology in capturing various structures of the landslide shape
by using an evolving disk size (ϵ) around each point in the point cloud. With the
increase in ϵ, various structures like connected components and holes emerge in
the data’s shape which is captured by the persistence diagram. Using this infor-
mation, we can calculate the topological properties of the landslide’s shape. Please
note that when processing the topological data analysis (TDA) features, we display
the flowchart using a 2D illustration for simplicity and better visualization.
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guided by protocol to capture the movement types with spatial
information on the scarps, head scarps, toes, and deposits71–73. Since
this data is categorized using a combination of Cruden and Varnes41

and Hungr et al.13 (i.e., slides, flows, complex, and falls), we modified
the Italian data correspondingly to maintain uniformity in the tax-
onomy of the failure mechanisms.

The national landslide inventory of Denmark was obtained from
Luetzenburg et al.74, published in 2022. The landslides were mapped
via high-resolution DEM of 2015 and orthophotos supplied by the
Danish Agency for Data Supply and Infrastructure, consisting of 3202
unique polygons of mapped landslides following the classification
from Hungr et al.13.

The landslide inventory of Turkey was obtained from Gorum75

published in 2019. The landslides were mapped from airborne LiDAR
data, with a total count of 900 landslides classified according to the
Cruden and Varnes41 system.

Landslide inventory for the Wenchuan region of China was
acquired from Fan et al.76 where they generated a multi-temporal
inventory of the infamous Wenchuan 2008 earthquake event causing
~10,000 landslides after the event. The multi-temporal window spans
from 2005 to 2018, mapped with a custom classification system based
upon a simplification of Hungr et al.13.

The EU-DEM for Italy and Denmark was downloaded from https://
www.opentopodata.org/datasets/eudem/ and the DEM for the US
Pacific Northwest was downloaded from https://www.
opentopography.org/. The Shuttle Radar Topography Mission
(SRTM) DEM for Wenchuan, China, and Turkey was downloaded from
https://dwtkns.com/srtm30m/.

Code availability
Data analysis and processing were conducted using the Python pro-
gramming language and its associated libraries. The various scripts
used for data analysis are available at the GitHub repository69.
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