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Fast Human Motion reconstruction from
sparse inertial measurement units
considering the human shape

Xuan Xiao 1,2, JianjianWang1,2, Pingfa Feng 1,2, Ao Gong1,2, Xiangyu Zhang1,2 &
Jianfu Zhang 1,2

Inertial Measurement Unit-based methods have great potential in capturing
motion in large-scale and complex environments with many people. Sparse
Inertial Measurement Unit-based methods have more research value due to
their simplicity and flexibility. However, improving the computational effi-
ciency and reducing latency in suchmethods are challenging. In this paper, we
propose Fast Inertial Poser, which is a full bodymotion estimation deep neural
network based on 6 inertial measurement units considering body parameters.
We design a network architecture based on recurrent neural networks
according to the kinematics tree. This method introduces human body shape
information by the causality of observations and eliminates the dependence
on future frames. During the estimation of joint positions, the upper body and
lower body are estimated using separate network modules independently.
Then the joint rotation is obtained through a well-designed single-frame
kinematics inverse solver. Experiments show that the method can greatly
improve the inference speed and reduce the latency while ensuring the
reconstruction accuracy compared with previous methods. Fast Inertial Poser
runs at 65 fps with 15 ms latency on an embedded computer, demonstrating
the efficiency of the model.

Motion capture is performed to digitally reconstruct the posture and
movement of the human body. This technique has extensive applica-
tions and is commonly employed in various fields suchas virtual reality
(VR) and augmented reality (AR), film and game production, human
factors analysis, biomechanical analysis, medical rehabilitation, and
sports training.

One approach for motion capture is based on vision systems.
Motion capture based on optical markers has been performed com-
mercially due to its high accuracy1. Camera vision-based methods2,
such as monocular image-based3,4, multi-view image-based5,6, and
video-based7–9 methods are widely used. However, these methods are
inevitably disturbed by occlusion and site limitations.

Although marker-based optical motion capture methods can
achieve very high accuracy, they require the complex post-processing
of data and may not be effective in cases with multiple occlusions.
Camera-based methods offer a convenient way to estimate human
motion, but they cannot guarantee effective motion reconstruction in
extreme occlusion environments, and they often make erroneous
estimations due to occlusions between limbs. To address occlusion10–12

and ambiguity13,14, some researchers have introduced a combination of
inertial sensors and optical approaches15. While this can improve the
accuracy of reconstruction to some extent, it introduces complexity in
the wearing process and still imposes limitations on the range of
human movements16.
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In addition, purely inertial-based methods can be further applied
in many application scenarios17,18.

To directly use the raw outputs of Inertial Measurement Units
(IMUs) to estimate the rotation of each joint of the whole body (except
the fingers), dense inertial configurations are necessary. More than
18 sensors can directly estimate the rotation of each joint that affects
the whole body posture without requiring excessive data post-
processing. This is because the sensors are directly placed at each
major joint, enabling them to directly output the orientation infor-
mation of those joints19,20. Therefore, this method relies more on the
accuracy of the sensors themselves than sparse inertial configurations,
as the latter can be used to estimate joint rotations based on a large
amount of prior humanmotion data and is not directly constrained by
sensor signals. Much work is required to perform efficient filtering or
nonlinear optimization to enable a sensor to obtain a high accuracy
output21–23. Due to sufficient information from sensors, this method
can provide higher accuracy and less computation, and there are
already commercial solutions based on thismethod19,20,24. To eliminate
the error obtained by the sensors, similar to Kalman filtering, some
methods predict thenext poseand calibrate the current pose using the
constraints of the human motion state24. Zihajehzadeh et al.17 intro-
duced data from other Ultra-Wideband (UWB) sensors to obtain more
accurate results. This kind of method involves numerous coordinate
system transformations among multiple sensors, and due to the large
number of sensors, it becomes challenging to ensure consistent sensor
orientations before each use. As a result, a substantial amount of time
is required for calibrating the coordinate system transformation
between sensors and the human body before usage. In the case of
sparse inertial configurations, the small number of sensors makes it
relatively easier to ensure consistent sensor orientations and positions
during the wearing process. The calibration process of sparse sensors
is simpler than that of dense sensors.

Although widely used, this kind of method still suffers from the
fact that it is highly intrusive and inconvenient considering that a large
number of sensors limits the behavior of the user to a certain extent.
To address this limitation, the number of sensors used can be reduced.

The sparse sensors solution faces the following challenges. First, a
reduction in the number of sensors leads to the lack of joint con-
straints, whichmakes the problem underdetermined. Second, directly
integrating the accelerometermeasurement is unreliable. Therefore, it
is impossible to directly reconstruct the human pose by a kinematic
inverse solution relying on these data.

In earlier studies, researchers tended to use optimization-based
methods rather than learning-based approaches. Slyper et al.25 used
5 sensors to estimate the posture of the upper body. Since the sensors
were stitched to a cloth, a strong prior assumption for pose estimation
was needed. Some methods use 4–6 sensors to estimate the pose of
the human body by matching the current sensor data with the recor-
ded data26,27. These methods often optimize the speed of search
matching by designing efficient data structures. Andrews et al.28 con-
strained physical quantities such as the torque, constructed state
transition equations, and reconstructed the posture of the whole body
by solving convex optimization problems. Marcard et al.29 used the
motion prior to construct a nonconvex optimization problem on the
entire time series and proved that the motion of the human body can
be reproduced by using 6 sensors. However, these methods can only
be used in scenarios with low real-time requirements.

Deep Neural Network (DNN)-based methods can effectively solve
the problems of data migration and the lack of real-time performance.
Huang et al.30 proposed Deep Inertial Poser (DIP), applying deep
learning to this kind of method. They used a simple bidirectional
RNN31,32 and a fine-tuning operation on a true dataset. They proposed
various data processing methods, and provided an open-source
dataset. Geissinger et al.33 applied a transformer34 with more sensors

in the layout scheme. Yi et al. proposed Transpose35, which is used to
determine whether a person is walking by introducing the probability
modeling of feet touching the ground and then multiplying the leg
length by the end speed to obtain the global travel speed. Jiang et al.
presented Transformer Inertial Poser (TIP)36, which used a transformer
and sampling-based optimization to reconstruct motion. Yi et al.
proposed Physical Inertial Poser (PIP)37 and introduced the dual PD
controller to model the torque38–40 and optimize the output of the
Transpose. However, it increases the computational burden because
of the design of the optimization approach. Based on these methods,
Yi et al.41 incorporated cameras on the helmet, achieving more precise
localization.

The above methods have good performance on PCs with high
computing abilities. However, due to the limited signal reception dis-
tance, they are not suitable choices for real-time motion reconstruc-
tion in large-scale scenes such as streets. This is because carrying a
large-volume computer can interfere with a user’s original motion.
Therefore, mobile terminals with limited computing power are usually
preferred. The computing modules in mobile terminals, such as AR
headsets, often exist in the form of embedded computers, which are
compact, low-power, and have limited computational capabilities.
Moreover, the methods didn’t consider the body shape information
that can be used. This inevitably introduces biases in body shape that
requiremore computational effort to eliminate. Since wearing sensors
requires the subjective participation of people, it is convenient to
make a simple measurement of human parameters before wearing it.
Our method introduces these measurements to reduce unnecessary
computations.

To this end, as shown in Fig. 1, we propose Fast inertial Poser (FIP),
which is a real-time motion capture method. FIP can reduce the com-
putational burden and latency while ensuring the reconstruction
accuracy, making it suitable for embedded platforms with limited
computing capabilities. The pose estimation stage of Fig. 1 is divided
into two stages: 1) the joint position estimation and 2) the kinematic
inverse solution. Thismethod focuses onobtaining faster performance
by introducing the physical parameters of the human body shape,
while the previous method did not consider such parameters. Com-
pared to the previous methods, the main reasons for the efficiency
improvement of this method are as follows: 1. eliminating additional
optimization designs; 2. enhancing the expressive power of neural
network structures by considering the human body shape parameters,
using a kinematic inverse solver and a shared model for different
sensors; and 3. removing the bidirectional propagation mechanism
of RNNs.

In the position estimation stage, we use three independent
recurrent neural networks (RNNs) to estimate the positions of leaf
nodes and body nodes. Tomake themodel inference process closer to
the real physical process, we used the sensor-shared integral RNN to
estimate the position of the leaf nodes. In other words, different sen-
sors share the same integral RNN to estimate their displacements.
Moreover independent RNNs areused to estimate the upper and lower
body nodes, respectively. In addition, for each RNN, we encoded the
human parameter information and inputted embedded vectors into
the network.

In the kinematic inverse solution stage, since the traditional IK
process is non-differentiable, we design a differentiable inverse kine-
matic solver based on the SkinnedMulti-Person Linearmodel (SMPL)42

kinematic tree. The joint positions of each frame are input to the
inverse solver separately, and the output is the joint rotation.

In summary, our main contributions are as follows:
• A real-time (more than 60 FPS) motion capture DNN approach
that can be run on an embedded computer is proposed.

• Adesign of the regression network architecture for the position of
key joints with human shape inputs is introduced.
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• A special inverse kinematic solver based on the human kinematic
tree is designed to help the model solve the joints’ rotation in the
current frame.

Results
In this section, we present our experimental results. First, we compare
our results with those of previous methods. Second, we perform
ablation comparisons to determine whether the addition of our var-
ious submodules is necessary. Finally,we show thedemoof ourmodel.

Datasets and metrics
We mainly use the AMASS dataset43 and the DIP-IMU30 dataset. The
AMASS only provides human motion information, while DIP-IMU
additionally provides true sensor measurement values. Since the
TotalCapture44 dataset does not provide human-related information
during recording, it cannot be effectively used to verify the perfor-
mance of our model. Therefore, we did not consider this dataset. The
AMASS dataset contains 500 subjects, over 3000 min, and over
10,000 actions. The DIP-IMU dataset includes 10 subjects and more
than 50 sets of actions. In the AMASS dataset, ground truth is obtained
through optical markers, while in the DIP dataset, ground truth is
iteratively optimized based on the output from dense sensors. The
dataset provides real-axis-angle parameters for SMPL. With the SMPL
skeleton and blend weights, it is possible to calculate the positions of
the SMPL joints and mesh vertices. We collect the β values (the shape
parameters of the SMPL human bodymodel) of various human bodies
in the SMPL model from the AMASS dataset. Then, we estimate the
value of the body shape parameter β for the DIP-IMU human recorded
according to the sex and height information and trained the model
based on this information.

We use the following metrics to evaluate our method. The
reconstruction metrics include the following: (1) SIP Error (SIP)

measures the mean orientation error of the upper arm and legs in the
body coordinate system in degrees. (2) Angle Error (Ang)measures the
mean angle error of the 15 key joints in the body coordinate system in
degrees. (3) Position error (Pos) measures themean Euclidean distance
error of the joint positions in the body coordinate system in cm. (4)
Jitter (the second derivative of velocity, km/s3)45 represents the motion
smoothness performance of the model; the lower it is, the smoother
andmore authentic it is. (5) Aang is the same angle evaluationmethod
as Transpose35, which takes the 22 joints of the whole body into
account and considers the rotation of noncritical joints to be con-
sistent with the ground truth, and the real rotations of the SMPL joints
directly provided by the dataset. (6)Mesh represents themean value of
the vertex error in cm. The deployment metrics include the following:
(7) The time-cost per frame (TPF) measures the mean running time of
each frame in ms and can be used to evaluate the model running
efficiency. (8) MEM is the GPU memory occupation of the model.
(9) Usg is the usage of the GPU. (10) Latency is the time gap between
the model output and the input of the same frame. (11) FPS (frames
per second) count the frames per second.

The TPF is tested on a graphic station, while other deployment
metrics are tested on a TX2 NX card. For these metrics except FPS,
lower values are better. It is worth noting that Transpose uses data of
the future IMUreadings as input to themodel, while TIP uses data from
the future frames for filtering. Therefore, their latency is longer than
the inference time.

On the graphics workstations, all methods were tested using
PyTorch 1.8 and CUDA 10.2. On the embedded computer TX2NX, the
tests were conducted using Jetpack, PyTorch 1.8, and CUDA 10.2.

Comparisons
Since our method uses unidirectional RNNs, there is no difference
between the offline results and the online results ("offline" refers to

Fig. 1 | IllustrationofFIP. FIP introduces several bodyparameters that are easy tomeasurewhenperforming pose estimations, and then reconstructs thewholebodypose
from 6 IMUs. Importantly, FIP can run at 65 fps with a latency of 15 ms on an embedded computer.
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non-real-time post-processing of data, while “online" refers to real-
time processing). We compare our method with previous 6-sensor-
based real-time tracking methods including DIP30, Transpose35,
PIP37and TIP36 based on the online situation and their weights are
provided by open source projects in their GitHub. Due to the use of an
old version of TensorFlow in the open-sourced code of DIP, which is
inconsistent with other methods, we did not deploy it on the embed-
ded device. Since PIP only uses the CPU during inference, we did not
compare its deploymentmetricson aGPUof the embedded computer.

As shown in Table 1, our method leads by a large margin in terms
of the angle-related metrics. After simple calculations on the data in
Table 1, it can be seen that even when facing the optimization-based
method PIP, our approach still outperforms by 5% on SIP and Ang, and
leads by 13% on Aang. Ourmethod alsomaintains a 5%margin with the
best approach PIP in terms of the Mesh and position accuracy. This is
likely due to the optimization of the joint accelerations performed by
PIP.However, ourmethod isnot goodenoughwith regards to Jitter. On
one hand, this may be due to the inherent jitter present in the ground
truth. On the other hand, it could be attributed to the dynamic opti-
mization of accelerations performed by PIP.

Regarding the deployment performance, our method is sig-
nificantly better thanPIP. The timecost is reduced to20%of that of PIP.
Furthermore, ourmethodobtains lower latency andhigher frame rates
on embedded computers. Sinceweno longer need future information,
the latency is reduced to 12% of that of Transpose and TIP. Moreover,
our method can still run at more than 60 fps on the embedded
terminal, which allows formany potential application scenarios for our
method. As shown in Table 2, ourGPUusage rate is lower, whichmeans
that the device can allocate more computing resources for other
functions. In addition, our occupancy has less float (only ±5%), and it
can run more stably on the device.

We compared the distribution of the position and angular-related
errors, as shown in Fig. 2. The joints error distribution (Fig. 2a) shows
that 75 % of the errors of our method are less than 7.09 cm, which is
better than Transpose’s 8.14 cm and DIP’s 9.75 cm. The mesh error
distribution, as shown in Fig. 2b, shows that 75 % of the errors of our
method are less than 7.46 cm, which is the best value among all
models. From another two distribution plots (Fig. 2c, d), it is evident
that FIP shows a peak value for the corresponding error closest to 0,
and the peak is also higher. This indicates that FIP achieves angular
errors concentrated within a narrower range compared to other
methods, resulting in improved reconstruction outcomes. At the 75th
percentile, FIP consistently performs the best. In terms of the Aang
error, FIP outperforms the second-best method (PIP) by 11%, and in
terms of the Ang error, FIP marginally surpasses PIP as well.

To qualitatively demonstrate the effectiveness of our method, we
selected several actions to compareourmethodandothermethods, as
shown in Fig. 3. From (a) and (b), it can be observed that our result
presents themost real reconstruction of the upper body, especially the
angle between the arm and torso compared to other methods. Espe-
cially in (b), it can be seen that PIP reconstructs the pose with a slight
forward tilt, and TIP fails to reconstruct the leg pose accurately, while

our method is closest to the ground truth. Compared with Transpose,
it can be seen from the side view of (d), (e), and (g) that our recon-
struction of the upper body inclination is closer to the ground truth.
The upper body reconstructed by Transpose always tends to lean
forward, while ours is straighter. This is likely because wemodeled the
upper and lower bodies separately. Since Transpose models the body
uniformly, the reconstruction of the upper body is more affected by
the movements of the lower body. The lower body carries a high
proportion of sensors but a low proportion of joints, so it may impact
the reconstruction of the upper body, leading to a negative effect.

For more detailed comparison results, please refer to Supple-
mentary Tab. 1 and Supplementary Tab. 2.

Ablation study
We performed ablation experiments on the key submodules to show
that the addition of our modules is effective, as shown in Table 3.

The most effective improvement is the human shape input. To
verify the effect of inputting the human shape, we removed the ske-
leton input to the IK solver and half body regressors and retrained the
pipeline ("no shape input" in Table 3), which causes an approximately
23% drop in the position accuracy. To meet the conditions of the
kinematic inverse solution module based on just a single frame, we
retrained aMulti-Layer perceptron (MLP) as a kinematic inverse solver
for comparison ("MLP IK solver" in Table 3)46,47. The result shows that
the adoption of the tree-like inverse solver reduces the average posi-
tion error by 21%. To compare the effect of the shared model, we
changed the integral model to input five sensors at the same time and
output five position increments and retrained the pipeline ("no shared
model" in Table 3). The results show that by sharing the same integral
network for different sensors, not only is the number of parameters
reduced, but the position reconstruction accuracy is improved by
approximately 12%. As we added supervision on the SMPL skeleton
parameters, to validate this setting, we compared it with the unsu-
pervised case ("no skeleton supvision" in Table 3). The result shows
that the supervision of the skeleton improves the position accuracy by
an 8% and the SIP by 10%.

Finally, we set the shape parameters of SMPL to zero to obtain the
average body parameters of the input (the height, arm length, and leg
length) to compare the reconstruction effect of the body parameters
on the model ("average shape" in Table 3). The results show that the
measurements of the body parameters impact the reconstruction
accuracy by approximately 5%.

Table 1 | Comparison of the performance metrics

Method Reconstruction Metrics Deployment Metrics

SIP (deg) Ang (deg) Aang (deg) Pos (cm) Mesh (cm) Jitter (km/s3) TPF (ms) Latency (ms) FPS

DIP 17.85 15.47 16.05 6.65 9.46 2.77 – – –

Transpose 16.69 11.30 8.86 5.80 7.34 0.61 10.6 120 27

PIP 15.02 10.54 8.73 4.80 5.95 0.27 13.3 76 13

TIP 15.40 10.78 8.95 5.03 6.33 0.97 6.5 127 23

FIP(Ours) 14.37 10.06 7.72 5.09 6.24 1.74 2.7 15 65

Bold denotes the best performance value for each metric.

Table 2 | Comparison of the deployment metrics on a GPU of
the embedded computer

Method MEM (Mb) Usg (%)

Transpose 732 60 (±10)

TIP 910 50 (±8)

FIP(Ours) 763 30 (±5)

Bold denotes the best performance value for each metric.

Article https://doi.org/10.1038/s41467-024-46662-5

Nature Communications |         (2024) 15:2423 4



In summary, the addition of all modules is valid.

Application
As shown in Fig. 4a,webuilt our live demowithNoitomsensors and the
Unity platform. We presented the reconstruction of some motions
(Fig. 4b). The live demo showcases the effectiveness of our method
with regard to reconstructing human motions. Both our testing code
and live demo are provided in the supplementary materials. For more
action demonstrations, please refer to Supplementary Movie 1.

Discussion
The experimental results show that our method significantly reduces
the computation time per frame to 3 ms on a typical personal com-
puter (PC), indicating a remarkable improvement in computing effi-
ciency. This achievement enables the deployment of the model on
mobile terminals with limited computational capabilities. As a result,
the motion capture algorithm no longer requires a PC for calculation,
and instead, the PConly needs to receive the calculated posedata. This
advancement holds promising applications in real-time motion

capture scenarios involving multiple individuals. For instance, the
models could be utilized to create digital twins of vast scenes or
develop virtual multiplayer interactive games. The enhanced com-
puting efficiency provides the possibility for the practical and wide-
spread adoption of our method in various real-world applications.

However, thismethod still has some limitations. First, FIP relies on
only six sensors, which prevents it from accurately estimating finger
movements, wrist rotations, toe rotations and ankle rotations, despite
their significance in motion analysis. To capture these actions in
practical applications, additional devices such as data gloves are
required. Second, the reconstruction results, as observed from quan-
titative metrics or demos, may not meet the demands for high preci-
sion in certain scenarios, such as joint medical analysis or skeleton
animations. However, it is important to note that FIP still serves as a
lightweight model that is suitable for a wide range of motion capture
scenarios. Specifically, it can be applied in fields such as gaming and
digital twinning. FIP’s advantage lies in its ease of integration into
wearable devices, such as VR/AR headset, enabling it to fulfill the
motion capture needs of mobile platforms. Third, FIP lacks translation

Fig. 2 | Violin plots showing the errors of different methods. In each violin, the
three dashed lines from bottom to top represent the 25% percentile, 50% percen-
tile, and 75%percentile, respectively. Panel (a) is thedistributionof PositionError of
the joints. The 75% percentile from left to right are 9.76cm, 8.14cm, 6.63cm,
6.85cm, and 7.09cm. Panel (b) represents the distribution of Mesh Error. The 75%

percentile from left to right are 11.85cm, 8.91cm, 7.63cm, 7.76cm, and7.46cm. Panel
(c) denotes the distribution of Aang Error, where the 75% percentile from left to
right are 20.80∘, 11.49∘, 10.80∘, 10.83∘, and 9.72∘. And (d) is the distribution of Angle
Error, where the 75% percentile from left to right are 20.37∘, 15.16∘, 13.44∘, 13.62∘,
and 13.40∘.
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estimation compared toother similarmethods likeTranspose, PIP, and
TIP, necessitating the use of alternative approaches to supplement
translation information, such as human gait estimation or high-
precision localization techniques like Simultaneous Localization and
Mapping (SLAM).

In response to the aforementioned limitations, there are two
primary directions for future work:

1. Enhancing the reconstruction accuracy: One approach is to
continue improving the precision of the reconstruction by incorpor-
ating optimization designs similar to PIP or exploring alternative
optimization strategies. Another possibility is to consider introducing
additional types of sensors to capture more comprehensive informa-
tion regarding joint movements or rotations. For example, using AR
glasses aligned with the global coordinate system, and the global
positions of other parts (such as the wrist) can be visually located.

2. Introducing root translation estimation: While we attempt to
estimate a person’s position using human gait in the video demon-
stration, it is important to note that this method is not inherently
precise, and errors can accumulate over time. Therefore, it would be
beneficial to explore the integration of more accurate positioning
techniques such as SLAM, which can be integrated into VR/AR head-
sets to provide more reliable and absolute positioning information.

Methods
We use 6 inertial sensors to estimate the motion of the human body
in real time. The layout scheme is shown in Fig. 1, which is consistent

with the schemes of DIP30, Transpose35, PIP37, and TIP36. The sensors
are worn on the LAnkle, RAnkle, LWrist, RWrist, Head, and Pelvis
nodes. We call the five nodes, except the pelvis node, leaf nodes
below, while the pelvis is called the root node. Our method is based
on thebody coordinate system, as in Fig. 1. Theorigin is located at the
root node, with the positive z-axis pointing forward, the positive
x-axis pointing to the left, and the positive y-axis pointing upward.
However, in the calculation process, we also use the global coordi-
nate system, which does not move with the person’s activity. Gen-
erally, its origin and axes coincide with the initial body coordinate
system of the first frame.

The overall system pipeline is shown in Fig. 5. The input of the
system is the 4 parameters (height, arm length, leg length, and sex)
roughly measured from the human body and the normalized data of
the IMUs (the data normalization process is explained in Section
“Implementation details"), including the acceleration and rotation of
the IMUs. The output is the rotation of the 15 joints excluding the
ankles, wrists, and root node. The overall flow of Fast Inertial Poser
(FIP) and our state-of-art kinematic inverse solver are introduced as
follows.

System input and output
We use the nodes of the SMPL model42 to describe the joints of the
body; therefore, node and joint are equivalent in the expression
below. SMPL is currently a widely used human mesh model, based
on which the open-source data are very abundant (such as the
AMASS dataset43). We use the skeleton of the SMPL model as our
human kinematics inference framework. The skeleton decomposes
the whole body into 24 key nodes. It sets the root node at the pelvis,
4 nodes are used to represent a leg, 3 nodes are used to represent
the spine, 2 nodes are used to represent a side of the chest and
shoulders, 3 nodes are used to represent an arm, and 2 nodes are
used to represent the neck through the head. Our human kinematics
refer to the SMPL kinematics tree. The node numbers are shown
in Fig. 6a.

We do not consider rotations of hands and feet. Therefore, in our
study, we do not consider the rotations of Nodes 7, 8, 10, 11, 20, 21, 22,
and 23.Moreover, the root node is providedby the sensor signal, sowe
only regress the rotation of the remaining 15 nodes.

System input. In the inference process, the inputs are body
parameters hp 2 R4. Considering the acceleration and rotation in the
body coordinate system, acceleration vector and flattened rotation
matrix from normalized IMU data are concatenated to obtain the
related input x0 2 R12 × J ( J = 6 here). During training, the first frame
pose in the training segment ri 2 R15 × 9, which represents the initial
pose, needs to be input into the model.

System output. During training, rotation of the 15 nodes and the
positions of 19 nodes are output for supervision. During inference,
positions are no longer output.

Fig. 3 | Motion reconstruction of different methods. Panels (a)–(h) represent
some actions selected from the test set. The yellow color represents the recon-
struction results obtained from Transpose, the blue color represents the recon-
struction results obtained from Physical Inertial Poser (PIP), the purple color
represents the reconstruction results obtained from Transformer Inertial Poser
(TIP), the white color represents the reconstruction results obtained from Fast
Inertial Poser (FIP), and the green color represents the Ground Truth (GT).

Table 3 | Comparison of the improvements caused by each
component

Method SIP (deg) Ang (deg) Pos (cm)

Change of the different
module

No shape input 17.79 11.58 6.30

MLP IK solver 16.73 11.35 6.20

No shared model 16.05 10.61 5.71

No skeleton
supvision

15.78 10.47 5.48

Final fixed model Average shape 15.11 10.53 5.25

FIP(Ours) 14.37 10.06 5.09

Bold denotes the best performance value for each metric.
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Key ideas
To design the structure, initially, we consider that the outputs of
sensors are highly dependent on the human body shape, as shown in
the factor graph inFig. 7.P represents the real pose of the humanbody,
ξ represents the observation, and z represents the shape of the human
body. The observations are jointly determined by the body shape and
the real pose. Moreover, the body shape does not change over time,
while the true pose changes.

When two people with very different body shapes perform the
samemovements, the distancesmoved by the sensors will be different
due to the inconsistency in the segment dimensions of the two people.

Since the elapsed time is the same, it is easy to infer that the accel-
erometers will output different results. Therefore, it is necessary to
take thehumanbody shape information into considerationwhenusing
sparse IMU learning-based methods to estimate human poses. In
addition, in contrast to the method of directly estimating the joint
positions using sensor input, we use the method of estimating the leaf
nodes’ movement increment to estimate the positions of the leaf
nodes at different times.

Generally, the proportions of most human bodies are similar.
From a biological point of view, the sex is often the main factor that
lead to differences in body proportions. Therefore, we include the sex

Fig. 5 | Pipline of fast inertial poser. There are three input items: (1) body mea-
surement parameters; (2) initial pose; (3) IMU data. The body measurements are
input into the T-pose Regressor to obtain the approximate human skeleton. The
Leaf Regressor output the leaf node positions at the initial moment by the input of
initial rotation and regressed skeleton. Shared Integral Regressor models the dis-
placement increment of a leaf node by normalized IMU data. Then we add it with
the initial leaf nodeposition toobtain the leaf nodeposition at the currentmoment.

The leaf nodes are divided into upper body leaf nodes (wrists and head) and lower
body leaf nodes (ankles). We perform separate upper body nodes regression and
lower body nodes regression to obtain the node positions of the whole body. The
node positions of the whole body and the approximate limb segment length of the
human body are input into the Inverse Kinematic Solver to obtain rotation of the
whole body nodes. The locations, rotations and skeleton are supervised during
training.

Fig. 4 | Application demo. Panel (a) is an illustration of the live demo and we used the Noitom sensors and the Unity platform to reconstruct humanmotion in real time.
Panel (b) is a reconstruction of real motion and we listed the reconstruction results of several common actions.
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as a necessary physical parameter. In addition to the sex, we select
three other physical quantities that are easy to measure: height, arm
length, and leg length, as shown in Fig. 1 (where arm length ismeasured
from the wrist to the armpit, and leg length is from the ankle to
the hip).

Pipeline
Figure 5 shows the pipeline of FIP. We introduce the workflow of our
model below. The RNN described below refers to the unidirectional
RNN with LSTM cells48.

The humanbody shape parameters are used to predict the human
skeleton, which is involved in both the forward and inverse kinematic
processes during movement. Therefore, when designing the network
architecture, we predict the skeleton and incorporate it into relevant
quantities. For example, after predicting the skeleton, we combine it
with other information, such as inferring the initial state positions
through the forward kinematic process and feeding them into the
inverse solver.

Before introducing the details, Supplementary Fig. 1 shows the
basic MLP module we use in the pipeline.

With the input of the body parameters, the T-pose regressor
outputs the human skeleton h0 2 R57 (Supplementary Fig. 2).

We concatenated h0 and the initial rotation ri to obtain x1 2 R192 and
input it into anMLP toobtain theposition of the leaf nodes at the initial
moment.

Supplementary Fig. 3 shows the structure of the shared integral
regressor. We used a shared weights RNN called the shared integral
regressor, which regresses the leaf node positions at different frames.
This regressor is used to simulate the displacement integration pro-
cess with IMU noise. The input of the regressor is the data of a single
sensor xs 2 R12, which means that different sensors share the same
integral regressor to obtain the displacement increment of the node.
We added the increment with the initial position to obtain the leaf
node positions pleaf.

Then, we use the RNN to regress all body node positions. We
divide the whole body into the upper and lower body parts from the
root node. The lower body only includes the 6 nodes of the legs, and
the rest of the nodes belong to the upper body. Furthermore, since the
kinematic chains of the upper body and the lower body are completely
independent, we designed the regressors of the upper body and the
lower body into two independent RNNs when designing the network
architecture. We also divide the leaf node positions by upper body
nodes (including wrists and head) and lower body nodes (ankles).
Then, we encode the concatenation of the orientation of the sensors,
positions of the upper/lower body nodes, and the human parameter-
embedded vector, which is input into the corresponding RNN to
obtain the positions of the half body nodes. For the upper and lower
body,weuse independentMLPencoders. In the experiment,we set the
embedded vector’s dimension to 128. Then, as shown in Supplemen-
tary Fig. 4 we merge the upper and lower body nodes to obtain the
node positions of the whole body pall.

We inputpall andh0 into the kinematic inverse solver toobtain the
rotation of the whole body nodes. During training, we supervise the
skeleton, rotations and positions.

Tree-like Inverse Kinematic Solver
The process of inverse kinematics in Euclidean space is non-
differentiable. This means that if we use traditional inverse kine-
matics methods to supervise joint rotations, the gradients cannot
propagate backward to the trained network parameters, making the
model untrainable. It is necessary to use a differentiable model to

Fig. 6 | The SMPL skeleton.Panel (a) is the skeletonof the SMPL,which is extracted
from the SMPLmesh model. Panel (b) is the human kinematic tree of SMPL. In (b),
the color red represents the rootnode,while yellow represent the leaf nodes,which

attach the sensors. We call the nodes 3 layers away from the root node outside
nodes, and the nodes within 3 layers are called inside nodes.

Fig. 7 | Factor graph of the observation process. p represents the real pose of the
humanbody, ξ represents theobservation, and z represents the shapeof the human
body. The observations are jointly determined by thebody shape and the real pose,
moreover the body shape does not change over time while the true pose changes.
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simulate the inverse kinematic process. Although there are such
models (46,47), most of these models use a simple MLP for estimation,
and they are not customized for this motion capture method. There-
fore, they are not accurate enough, as shown by the ablation
experiments.

Since the kinematic inverse solution is originally a static process, it
is closer to physical reality that the model does not depend on time
series. To make better use of the human motion tree information, we
design a high-precision kinematics inverse solver. The structure is
shown in Supplementary Fig. 5. In fact, the human kinematic and
inverse process can be expressed by the following equations:

pj =pj�1 +
Yj�1

root

Ri + 1
i

 !
� bj ð1Þ

Rj = f ðΩðRjoint ,pjointÞ∪ fpleaf ,pjgjparent = j,skeleton =hÞ ð2Þ

Wedefine a kinematic chain as a chain formedbynodes,which are
traversed from the root node in a deep-first search manner to the leaf
node. For example, (Pelvis-Spine1-Spine2-Spine3-Neck-Head) repre-
sents a kinematic chain passing through the neck in SMPL.

Eq. (1) represents the forward inference process of kinematics. pj

represents the position of the jth node; Ri + 1
i represents the rotation

from the ith node to the (i+1)th node on the chain; and bj represents the
relative position of pj−1 to pj at Tpose. h is the skeleton parameter of
the SMPL model, which is a 19 × 3 matrix composed of the relative
positions of each node under T-pose, and bj∈h. Eq. (2) represents
the kinematic inverseprocess starting froma leaf node.Rj indicates the
rotation of the jth node in the body coordinate system. skeleton
represents the skeleton of the human body, which is composed of the
relative positions of different nodes of the whole body.
Ω Rjoint ,pjoint

� �
jparent = j represents the position and rotation of the

nodes after the jth node on a kinematic chain in the body coordinate
system. pleaf represents the position of the leaf node in the body
coordinate system on the motion chain.

Taking the kinematic chain (Pelvis-Spine1-Spine2-Spine3-Neck-
Head) as an example, before we begin to solve the rotation angle of
node Spine1, through the reverse inference from the Head node, we
obtain the rotation and positions of the Spine2, Spine3, and Neck
nodes and the position of the Head node.

Actually, we can derive Eq. (2) from Eq. (1). In Eq. (3),
< pj+1 − pj, bj > is the angle between the 2 vectors (which can
be obtained by the cosine law). Mat( ⋅ ) means converting the
angle to a rotation matrix. In addition, bj∈ skeleton. Thus, when

we progress down the chain toward the root node, we can find
that pj, Rj are added to Ω(Rjoint, Pjoint) one by one. Therefore, we
can conclude that before calculating Rj, information regarding
the derivative joints by the jth joint (including the rotation and
positions) can be obtained (Ω(Rjoint, Pjoint)). In addition, as Eq. (3),
Pj = pj needs to be included. Thus far, it can be seen that it is
reasonable to design our Inverse Kinematic (IK) solver by this
equation.

Rj =
Yj

root

Ri+ 1
i =Matð<pj + 1 � pj ,bj >Þ ð3Þ

The design of our inverse solver refers to the human kinematic
tree, which is shown in Fig. 6b. In the figure, red represents the root
node, while yellow represents a leaf node, that is, the six nodes of the
worn sensor. We call the nodes 3 layers away from the root node
outside nodes and the nodes within 3 layers inside nodes. Since we do
not consider the motion of hands and feet, we only consider the
positions of the 19 nodes in the graph except the root node.We do not
consider the rotation of the ankle and wrist, so we only consider the
rotation angles of 15 nodes in total.

From Eq. (2), we further relax the condition. We consider that the
nodes’ information in the same layer on the kinematic tree is equiva-
lent; e.g. the information carried by LCollor, Neck, and RCollar is
equivalent. Our model of the process is shown in Eq. (4).

[
j2levelðiÞfRjg= f ðΩ0ðRj ,Pjj j 2 belowðiÞÞ∪ fPi,Pleaf gjlevelðiÞ, skeleton=hÞ ð4Þ

⋃j∈level(i){Rj} represents the set of rotationmatrices of all nodes at
the ith layer. Ω0ðRj ,Pjjj 2 belowðiÞÞ represents the information of all
nonleaf nodes below the ith layer (the leaf is below the root). Pi,Pleaf

represents the set of positions of all nodes at the ith layer alongwith the
positions of all corresponding leaf nodes. Since leaf nodes are dis-
tributed at different levels in themotion tree, the nodes of interest are
divided into two parts at level(3): outside nodes and inside nodes. We
use the reverse order regressionmethod to return from the bottom of
the tree upward. When regressing the outside nodes, we only use the
information of the leaf nodes of the upper body. We introduce the
information of the other two leaf nodes of the lower body when
regressing the inside nodes. For each layer, we use an MLP as the
regressor.

Box 1 shows the algorithm flow of the submodule (including the
inside nodes and outside nodes) of the Inverse Kinematic solver.

In the algorithm, level( ⋅ ) represents a certain level on the kine-
matic tree. Regarding inside nodes, level(leaf) refers to the level cor-
responding to the ankle, while level(divide) corresponds to the layer in
which the Pelvis is located, which is 0. Moreover, rk refers to the lower
body IMU orientation and rotation of all outside nodes. Regarding
outside nodes, level(leaf) refers to the level corresponding to thewrist,
while level(divide) corresponds to the layer in which spine3 is located,
which is 3. Additionally rk refers to the upper-body IMU orientation. f (i)

is the regressor (MLP) of the ith layer. ri represents the rotation infor-
mation of the ith layer node (utilizing 6D rotation continuous repre-
sentation method). We use the concatenate operator to join new
information to the set Ω0ðRj ,Pjjj 2 belowðiÞÞ.

Ethical statement
This work is approved by the Science and Technology Ethics Com-
mittee, Tsinghua University.

The authors affirm that human research participants provided
informed consent for the publication of the images in Figs. 1, 4.

In the demos and illustrations presented in this paper, the parti-
cipants are two 24-year-old males, all of whom are authors of this
paper. Informed consent has been obtained. Since the demos in this
paper are for demonstration purposes only, gender and number of

BOX 1

Submodule of the Inverse
Kinematic Solver
Input: outside/inside nodes’ positions x(0), known nodes’ orientation
rk, outside/inside bones of predicted T-pose bsub

Output: orientation of outside/inside nodes.
1. x = concatenate[hsub, x(0), rk]
2. i = level(leaf)
3. y = empty queue
4. While i > level(devide) do: {

ri−1 = f(i)(x)
x = concatenate[x, ri−1]
i = i − 1
y = concatenate[y, ri−1] }

5. output y
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participants are not considered. The remaining experimental results
are based on datasets provided by open sources.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The test data and checkpoint generated in this study have been
deposited in the Figshare database under accession code 10.6084/
m9.figshare.2528273249. Source data are provided with this paper.

Code availability
The test code of FIP can be accessed from github50: https://github.
com/bachongyou/FIPinference.
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