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A foundational assumption of quantum error correction theory is that quan-
tum gates can be scaled to large processors without exceeding the error-
threshold for fault tolerance. Two major challenges that could become fun-
damental roadblocks are manufacturing high-performance quantum hard-
ware and engineering a control system that can reach its performance limits.
The control challenge of scaling quantumgates from small to large processors
without degrading performance often maps to non-convex, high-constraint,
and time-dynamic control optimization over an exponentially expanding
configuration space. Here we report on a control optimization strategy that
can scalably overcome the complexity of such problems.Wedemonstrate it by
choreographing the frequency trajectories of 68 frequency-tunable super-
conducting qubits to execute single- and two-qubit gates while mitigating
computational errors. When combined with a comprehensive model of phy-
sical errors across our processor, the strategy suppresses physical error rates
by ~3.7× compared with the case of no optimization. Furthermore, it is pro-
jected to achieve a similar performance advantage on a distance-23 surface
code logical qubit with 1057 physical qubits. Our control optimization strategy
solves a generic scaling challenge in a way that can be adapted to a variety of
quantum operations, algorithms, and computing architectures.

Superconducting quantum processors have demonstrated elements of
surface code quantum error correction1–6 establishing themselves as
promising candidates for fault-tolerant quantum computing. None-
theless, imperfections in hardware and control introduce physical
errors that corrupt quantum information7 and could limit scalability.
Even if a large enough quantum processor with a high enough perfor-
mance limit to implement error correction can be manufactured, there
is no guarantee that a control strategy will be able to reach that limit.

Frequency-tunable architectures4,8–19 are uniquely positioned to
mitigate computational errors since most physical error mechanisms
are frequency dependent20–31 (Fig. 1a–d). However, to leverage this
architectural feature, qubit frequency trajectories must be choreo-
graphed over quantum algorithms to simultaneously execute quan-
tum operations while mitigating errors.

Choreographing frequency trajectories is a complex optimization
problem due to engineered and parasitic interactions among
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computational elements27 and their environment22,26,29, hardware32 and
control28 inhomogeneities, performance fluctuations26,33, and compe-
tition between errormechanisms.Mathematically, the problem is non-
convex, highly constrained, time-dynamic, and expands exponentially
with processor size.

Past research into overcoming these complexities employed fre-
quencypartitioning strategies that either faced difficulties scalingwith
realistic hardware imperfections34,35 or whose scalability is not well
understood4,13,17,36. To overcome the limitations of these strategies, we
proposed the Snake optimizer37,38 and employed an early version in
past reports39–48. However, an optimization strategy has not been
developed around it, it has not been rigorously benchmarked, and
large enoughprocessors to investigate its scalability haveonly recently
become available. Whether high-performance configurations exist at
scale and whether they can be quickly discovered and stabilized are
open questions.

Here we address these questions by developing a control opti-
mization strategy around Snake that can scalably overcome the com-
plexity of problems like frequency optimization within the high
performance, high stability, and low runtime requirements of an
industrial system. The strategy introduces generic frameworks for
building processor-scale optimization models, training them for var-
ious quantum algorithms, and adapting to their unique optimization
landscapes via Snake. This flexible approach canbe applied to a variety
of quantum operations, algorithms, and architectures. We believe it
will be an important element in scaling quantum control and realizing
commercially valuable quantum computations.

We investigate the prospects of this strategy for optimizing
quantum gates for error correction in superconducting qubits. We
demonstrate that it strongly suppresses physical error rates,
approaching the surface code threshold for fault tolerance on our
processor with tens of qubits. To pave the way towards much larger
processors, we demonstrate Snake “healing” and “stitching”, which
were designed to stabilize performance over long timescales and
geometrically parallelize optimization. Finally, we introduce a simula-
tion environment that emulates our quantum computing stack and
combine it with optimization, healing, and stitching to project the
scalability of our strategy towards thousands of qubits.

Results
Quantum hardware
Our hardware platform is a Sycamore processor6 with N = 68
frequency-tunable transmon qubits on a two-dimensional lattice.
Engineered tunable coupling exists between 109 nearest-
neighbors49,50. We configure our control system and processor to
execute the surface code gate set, which includes single-qubit XY
rotations (SQ) and two-qubit controlled-Z (CZ) gates10 (Supplementary
Note 1). SQ gates are implemented viamicrowave pulses resonant with
qubits’ respective ∣0i $ ∣1i idle frequencies (fi for qubit qi executing
SQi). CZ gates are implemented by sweeping neighboring qubits into
∣11i $ ∣02i resonance near respective interaction frequencies (fij for
qubits qi and qj executingCZij) and actuating their couplers. TheN = 68
idle and ~ 2N = 109 interaction frequencies—which constitute one fre-
quency configuration F with dimension ~ 3N = ∣F∣ = 177—parameterize
qubit frequency trajectories, which we seek to optimize.

Performance benchmark
We evaluate the performance of frequency configurations via the
parallel two-qubit cross-entropy benchmarking algorithm (CZXEB, see
Supplementary Note 6)39,51. CZXEB executes cycles of parallel SQ gates
followed by parallel CZ gates, benchmarking them in a context
representative of many quantum algorithms. Most relevant to this
study is that CZXEB reflects the structure of the surface code’s parity
checks and has empirically served as a valuable performance proxy of
logical error6. The processed output of CZXEB is the benchmark

distribution ec, in which each value is one qubit pair’s average error per
cycle ec,ij, which includes error contributions from respective SQi, SQj,
and CZij gates. Benchmarks are generally not normally distributed
across a processor and are thus reported via percentiles as
50:0%ð97:5�50Þ%

ð2:5�50Þ% and plotted as quantile boxplots. The wide range from
2.5% to 97.5% is the distribution spread, which spans ± 2σ standard
deviations for normally distributed data.

Optimization model
We approach frequency optimization as a model-based problem. In
turn, we must define an algorithm error estimator E that is repre-
sentative of the performance of the target quantum algorithm A at the
optimizable frequency configuration F (Fig. 1d). This problem is hard
because the estimatormust be fast for scalability, predictive for scaling
projections, and physical formetrology investigations.We introduce a
flexible framework forovercoming these competing requirements that
can be adapted to define the optimization landscapes of a variety of
quantum operations, algorithms, and architectures.

Our framework corresponds to the decomposition
E(F∣A,D) =∑g∈A∑m∈Mwg,m(A)ϵg,m(Fg,m∣D) where the sums are over all
gates g∈A and known physical error mechanisms m∈M. ϵg,m are
algorithm-independent error components that depend on some sub-
set of frequencies Fg,m⊆ F and can be computed from relevant char-
acterization data D (Supplementary Note 2 and 3). wg,m are algorithm-
dependent weights that capture algorithmic context via training on
benchmarks that are sufficiently representative of A. Defining the
estimator thus maps to defining the target quantum algorithm, the
algorithm-independent error components, and then training the
algorithm-dependent weights.

We set our target quantum algorithm to CZXEB to gear the esti-
mator towards the surface code’s parity checks. Furthermore, since
CZXEB is also our benchmarking algorithm, we can associate the
performance of optimized frequency configurations with our optimi-
zation strategy. We then define error components corresponding to
dephasing23–25, relaxation23,26,30,31, stray coupling27, and frequency-pulse
distortion28 over qubit frequency trajectories. The relevant character-
ization data include qubit flux-sensitivity spectra, energy-relaxation
rate spectra, parasitic stray coupling parameters, and pulse distortion
parameters,which aremeasuredprior tooptimization. Finally, we train
the weights via a protocol52 that we developed specifically to reduce
the risk of overfitting (SupplementaryNote 4). It constrainsweights via
homogeneity and symmetry assumptions and then leverages the fre-
quency tunability of our architecture to train them on single- and two-
qubit gate benchmarks taken in configurations of variable complexity.

The resulting algorithm error estimator represents a compre-
hensive understanding of physical errors across our processor. It spans
~4 × 104 error components, only has 16 trainable weights for the full
processor, and is trained and tested on ~6500 benchmarks. Despite its
scale, it can still be evaluated ~ 100 times/s on a desktop. Furthermore,
it can predict CZXEB cycle errors in the wide range ~3–40× 10−3 within
two factors of experimental uncertainty (Supplementary Note 4). In
total, the estimator fulfils our speed, predictivity, and physicality
requirements.

Optimization strategy
Finding an optimized frequency configuration from the algorithm
error estimatormaps to solving F * = argminFE. This problem is hard for
several reasons. First, all ∣F∣ ~ 3N idle and interaction frequencies are
interdependent due to engineered and parasitic interactions between
nearest and next-nearest neighbor qubits. Second, the estimator has
numerous local minima since most error mechanisms and hardware
constraints compete, and since it is built from noisy characterization
data. Finally, there are ~k∣F∣ ~ k3N possible configurations, where k is the
number of options per frequency, as constrained by hardware and
control specifications and inhomogeneities. In total, the problem is

Article https://doi.org/10.1038/s41467-024-46623-y

Nature Communications |         (2024) 15:2442 2



highly-constrained, non-convex, and expands exponentially with pro-
cessor size. We developed the Snake optimizer38 to scalably overcome
the complexity of control optimization problems like frequency
optimization.

Snake implements a graph-based algorithm thatmaps the variable
frequency configuration F onto a graph and then launches an optimi-
zation thread from some seed frequency (Fig. 1e, f). It then finds all
unoptimized frequencies FS within a neighborhood whose size is
bounded by the scope parameter S, and constructs the Snake esti-
mator ES. ES contains all terms in E that depend only on FS, which serve
as optimization variables, and previously optimized frequencies F *

that are algorithmically relevant F *∩A, which serve as fixed con-
straints. Snake then solves F *

S = argminFS
ES, updates F

*, traverses, and
repeats until all frequencies have been optimized. Frequency config-
urations are typically optimized frommultiple seeds in parallel and the
one that minimizes the algorithm error estimator is benchmarked.

Snake’s favorable scaling properties are derived from the scope S,
which tunes the greediness of its optimization between the local and
global limits38. By tuning the scope within 1≤ S≤ Smax, we can bound
the number of frequencies optimized at each traversal step to
1 ≤ ∣FS∣ ≤ ∣F∣, where ∣FS∣ ~ S2 and Smax ∼

ffiffiffiffiffiffiffi

3N
p

(Fig. 1e). In turn, we can split
one complex ~3N-dimensional problem over ~k3N configurations into
~3N/S2 simpler ~S2-dimensional problems over ∼ kS2 configurations
each. Such splitting terminates at S = 1, where Snake optimizes ~3N
1-dimensional problems over ~ k1 configurations each. Importantly, the
intermediate dimensional problems with S< Smax are exponentially
smaller than the global problem and independent of processor size.

Snake is not expected to discover globally optimal configurations.
However, if it can find sufficiently performant configurations for the
target quantum algorithm — for example with errors below the fault-
tolerance threshold3—it will solve the scaling complexity problem.
Namely, wewill not be facedwith an exponentially expanding problem
as our processors scale, but linearly more problems with bounded
configuration spaces. Furthermore, since Snake’s seed strategy, tra-
versal strategy, inner-loop optimizer, and scope are highly configur-
able (Supplementary Note 5), it should be adaptable to overcome
similar scaling complexities in other control problems and hardware.

Validating performance
To experimentally investigate whether Snake can actually find perfor-
mant frequency configurations at some intermediate dimension, we
optimize our processor at scopes ranging from S = 1 (177 1D local pro-
blems) to S= Smax (one 177D global problem) and benchmark CZXEB.
We evaluate configurations by comparing their benchmarks against
three performance standards (Fig. 2a). First, the baseline standard
references benchmarks taken in a random frequency configuration,
which establishes the average performance of the hardware and control
systemwithout frequency optimization (ec = 16:7

+267:1
�10:6 × 10�3 atN =68).

Second, the outlier standard references a constant cycle error, above
which gates are considered performance outliers (ec = 15.0 × 10−3 for all
N). Third, the crossover standard references published benchmarks
from the same processor that reached the surface code’s crossover
regime, which approaches the error correction threshold
(ec =6:2

+7:6
�2:5 × 10�3 at N =49)3,6. This standard establishes what we

consider high performance, while recognizing that much higher per-
formance will be necessary to implement error correction in practice.

The wide performance gap between the baseline and crossover
standards is closed via frequency optimization (Fig. 2b). Namely,
intermediate dimensional optimization (2 ≤ S ≤ 4) approaches the
crossover standard (ec = 7:2

+ 19:9
�2:5 × 10�3 in ~130 s at S = 2) while sup-

pressing performance outliers, with < 10% of gates above the outlier
standard and <0.5% failing calibrations, which prevent benchmarking.
However, local (ec =9:8

+231:8
�6:0 × 10�3 in ~6 s at S = 1) and global

(ec = 10:8
+145:0
�5:7 × 10�3 in ~6500 s at S= Smax) optimization only mar-

ginally outperform the baseline standard. The optimal scope is S = 4
(≤21D optimization), but we default to S = 2 (≤5D optimization), which
offers a better balance between performance and runtime (Supple-
mentary Note 5). Next, we interpret.

First, the fact that we see performance variations between con-
figurations illustrates that poor frequency choices cannot be com-
pensated for by other components of our control system and that
optimization is critical. Second, the fact that local optimization
underperforms illustrates that frequency optimization is a non-local
problem and that tradeoffs between gates must be considered. Third,
the fact that global optimization underperforms even after an hour of
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Fig. 1 | Frequency optimization. aOur quantum processor with N = 68 frequency-
tunable superconducting transmon qubits represented as a graph. Nodes are
qubits (e.g., black dot) and edges are engineered interactions between them (e.g.,
blue and green bars). b A quantum algorithm (A) comprising single- and two-qubit
gates with one qubit (qj) distinguished. c Corresponding qubit frequency trajec-
tories (F), parameterized by single-qubit idle (fj for qubit qj) and two-qubit inter-
action (fij for qi and qj) frequencies. Quantum computational errors depend
strongly on frequency trajectories since most physical error mechanisms are fre-
quency dependent (red dots are non-exhaustive examples). Namely, pulse distor-
tion errors (1) increase with larger frequency excursions. Relaxation errors (2)
increase near relaxation hotspots, for example due to two-level-system defects
(TLS, horizontal resonance). Stray coupling errors (3) increase near frequency

collisions between coupled computational elements. Dephasing errors (4) increase
towards lower frequencies, where qubit flux-sensitivity grows. d We leverage our
understanding of physical error mechanisms (M) to estimate the algorithm’s error
(E) and then optimize it with respect to qubit frequency trajectories. eWe employ
the Snake optimizer, which can solve optimization problems at an arbitrary
dimension (D), controlled by the scope parameter (S). These graphs show possible
idle (nodes) and interaction (edges) frequency optimization variables (blue) at one
Snake optimization step for scopes ranging from S= Smax (global limit, ∣F∣D opti-
mization) to S = 1 (local limit, 1D optimization). f Snake optimization threads
(progress horizontally) for three scopes (increase downwards). Snake’s high con-
figurability enables it to scalably overcome frequency optimization complexity and
be adapted to a variety of quantum operations, algorithms, and architectures.
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searching illustrates the difficulty of navigating the configuration
space even on our relatively small processor. Finally, the fact that
relatively low intermediate dimensions found the most performant
configurations is consistent with relatively local engineered and
parasitic interactions and suggests that Snake can navigate our archi-
tecture’s configuration space in a way that should scale to larger
processors.

Stabilizing performance
Stabilizing performant configurations is as difficult and important as
finding them.Namely, a processor’s optimization landscape constantly
evolves and performance outliers emerge on timescales ranging from
seconds to months, with the most catastrophic due to TLS defects
fluctuating into the path of qubit frequency trajectories26,33. Unfortu-
nately, even a low percentage of outliers can significantly degrade the
performance of a quantum algorithm6. However, re-optimizing all
gates of a processor when a low percentage of outliers are detected is
unscalable from a runtime perspective and introduces the risk of
degrading performant gates.

By design, Snake healing can surgically re-optimize outliers,
nominally much faster than full re-optimization, and without degrad-
ing performant gates38. To investigate the viability of healing, we heal

all configurations generated by the variable-scope experiment descri-
bed above (Fig. 2c–e), targetting poorly performing gates (Supple-
mentary Note 8). From the perspective of stability, the progressively
worse configurations emulate the performance of our processor over
progressively longer timescales following optimization. Healing sup-
presses outliers by ~48% averaged over configurations, typically runs
>10 × faster than full reoptimization, and rarely degrades performant
gates. Furthermore, heals can be applied repetitively and parallelized
for sufficiently sparse outliers. These results demonstrate the viability
of healing for scalably suppressing outliers to stabilize performance.

Impact of metrology
We now consider the impact of the algorithm error estimator’s com-
position on Snake’s performance. In particular, the dephasing,
relaxation, stray coupling, and pulse distortion error componentsmay
be interpreted as distinct error mitigation strategies that can be acti-
vated independently. To isolate their impact and to understand their
interplay, we progressively activate them in all combinations, opti-
mize, and benchmark CZXEB (Fig. 3a).

To build intuition for the impact of each errormitigation strategy,
we inspect frequency configurations optimized with only one mitiga-
tion strategy activated (Fig. 3b). Most are visually structured, with
inhomogeneities arising from fabrication imperfections in the pro-
cessor’s parameters. Dephasing mitigation biases qubits towards their
maximum frequencies, where flux sensitivity vanishes9. Relaxation
mitigation biases qubits away from relaxation hotspots driven by
coupling to the control9 and readout circuitry22,53, packaging
environment29, and random TLS defects26. Stray-coupling mitigation
disperses qubits to avoid frequency collisions between parasitically
coupled gates27. Finally, pulse-distortion mitigation biases idles
towards a multi-layered checkerboard, with neighbors at one of two
symmetric ∣11i $ ∣02i CZ resonances10, and interactions towards
resonance between the idles, to minimize frequency excursions. The
inversion of frequencies at the eastern edges of the processor was
triggered by fabrication imperfections that broke the symmetry
between CZ resonances. This observation highlights non-trivial inter-
play between error mitigation and hardware inhomogeneities.

Interestingly, while some of thesemitigation strategies alonemay
find performant configurations at the scale of several qubits, none of
them substantially outperform the random baseline configuration at
the scale of our processor. As we progressively activate mitigation
strategies, competition between error mechanisms causes frequency
configurations lose visual structure, while performance approaches
the crossover standard. Analyzing error contributions in optimized
configurations, we confirm that activating mitigation strategies selec-
tively and effectively suppresses their corresponding error compo-
nents, while only weakly impacting others (Supplementary Note 8).
These results support our interpretation of error components as error
mitigation strategies and that our optimizer can effectively reconcile
their competition and suppress them. More generally, they highlight
the importance of error metrology on the performance of our opti-
mization strategy.

Performance scalability
We are finally ready to investigate Snake’s scalability. To do so, we
conduct a scaling experiment that may be valuable for evaluating the
prospects of any quantum hardware and control system. Namely, we
optimize, heal, and benchmark hundreds of configurations of our
processor ranging in size from N = 2 to 68 (Fig. 4a). As before, we
reference the crossover standard.However, we nowreferencemultiple
baseline standards that correspond to unoptimized random config-
urations of variable size. Despite the irregular shapes of some config-
urations, we find surprisingly clear scaling trends.

CZXEB benchmarks grow and then saturate in both optimized
and unoptimized configurations. Furthermore, mean cycle errors are
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Fig. 2 | Optimization and healing performance. a CZXEB cycle error benchmarks
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random baseline (red), outlier (orange diamond), and crossover (green) perfor-
mance standards used to evaluate frequency configurations and our optimization
strategy. Each box shows the 2.5, 25, 50, 75, and 97.5th percentiles and mean (see
annotations on the baseline). The standards' means are extended across panels for
comparison. b Benchmarks for configurations optimized at different scopes (S)
ranging from S = 1 (local limit, 1D optimization) to S= Smax (global limit, ∣F∣D opti-
mization). Intermediate dimensional optimization (2 ≤ S ≤ 4) outperforms both
local and global optimization, finding configurations near the crossover standard.
S = 4 (≤21D optimization) performs best, with the lowest mean error, but S = 2 (≤5D
optimization) offers a better balance between performance and runtime, and is set
as our default. c Benchmarks for each configuration in (b) after healing, which
significantly suppresses performance outliers. Each box in (a), (b), and (c) corre-
sponds to a distinct configuration.dBenchmark heatmaps illustrating optimization
and (e) healing of targeted gates in the S = 5 (≤29D optimization) configuration.
Each hexagon corresponds to the cycle error for one pair (ec,ij). Performant gates
are blue, outliers are red, and unoptimized and targeted gates are gray.
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well-represented by the model hecðNÞi= esat � escale expð�N=NsatÞ,
where Nsat is the qubit saturation constant, escale is the error penalty in
scaling gates from small to large systems, and esat is the saturated
error. Fitting this model to the empirical benchmarks, we find that
optimized configurations saturate near the crossover standard, with
best-fit parameters Nsat = 22 ± 10( ± 1σ), escale = 3.1 ± 0.4 × 10−3, and
esat = 7.5 ± 0.4 × 10−3.

To estimate Snake’s performance advantage, we make several
comparisons. From the empirical benchmarks, we compare the mean
cycle errors hebasec i=hesnakec i in isolation (N = 2) and in parallel at scale
(N = 68), which are 3.1 ± 0.5 and 6.4 ± 1.0, respectively. Remarkably, the
optimized N = 68 configuration outperforms unoptimized N = 2 con-
figurations by 2.3 ± 0.4×. Furthermore, the optimized N = 68 config-
uration has a ~ 40 × narrower benchmark distribution spread than the
unoptimized N = 68 configuration. From the saturation model, we
compare the scaling penalty ebasescale=e

snake
scale and the saturated cycle errors

ebasesat =esnakesat , which are 5.6 ± 1.8 and 3.7 ± 0.7, respectively. These com-
parisons illustrate that Snake achieves a significant performance
advantage to N = 68.

To investigate Snake’s future scalability, we simulate much larger
processors than thosemanufactured to date. To do so, we developed a
generative model that can generate simulated processors of arbitrary
size and connectivity with simulated characterization data that are
nearly indistinguishable from our processor54. We generate simulated
processors ranging in size from N = 17 to 1057, with connectivity cor-
responding to distance-3 to 23 surface code logical qubits (d = 3 to 23
with N = 2d2 − 1)55. We optimize simulated processors exactly like our
processor and predict CZXEB benchmarks via our estimator (Supple-
mentary Note 7). Simulated benchmarks reproduce the saturation
trends seen in experiment, building trust in our simulation environ-
ment and results (Fig. 4b). Furthermore, they project that Snake’s
performance advantage should scale to a d = 23 logical qubit
with N = 1057.

Runtime scalability
Despite the promising performance outlook, practically scaling to
thousands of qubits will require Snake to be geometrically parallelized.
Namely, even though optimization runtimes scale nearly linearly with
processor size (~3.6 ± 0.1 s added per qubit at S = 2), N = 1057 threads

take ~1.4 h. This exceeds our runtime budget of 0.5 h (Supplementary
Note 5), which was chosen for compatibility with operating large
surface codes.

By design, Snake stitching can split a processor into R disjoint
regions, optimize them in parallel, and stitch configurations38. Stitch-
ing leads optimization runtimes to scale sub-linearly with processor
size, which should enable scalability towardsN ~ 104 with R = 128within
our runtime budget in principle (Supplementary Note 5). In practice,
however, stitching risks amplifying outliers at seams, where
Snake must reconcile constraints between independently optimized
configurations.

To investigate the viability of stitching, we stitch and heal our
N = 68 processor with R = 2 (Fig. 4c) as well as an N = 1057 (d = 23)
simulated processor with R = 4 (Fig. 4d). We chose convenient stitch
geometries, but believe they will ultimately need to be optimized
(Supplementary Note 8). Experimental data are limited, but outliers
are not amplified at seams and stitched configurations perform as well
as their unstitched counterparts (ec =6:4

+4:4
�1:8 × 10�3 for N = 68 and

ec =6:3
+4:3
�2:9 × 10�3 for N = 1057). Finally, we note that stitching the

d = 23 logical qubit with R = 4 is equivalent to stitching four d = 11
logical qubits into a 4-logical-qubit processor55, which illustrates how
larger surface codes may be optimized.

Discussion
We introduced a control optimization strategy that combines generic
frameworks for building, training, and navigating the optimization
landscapes presented by a variety of quantum operations, algorithms,
and architectures. It offers a significant performance advantage for
quantum gates on our superconducting quantum processor with tens
of qubits, approaching the surface code threshold for fault tolerance,
and shows promise for scalability towards logical qubits with thou-
sands of qubits. A recent demonstration of error suppression in a
scaled-up surface code logical qubit6 enabled by this strategy under-
scores its potential.

Elements of our strategy have also been employed to optimize
quantum operations including measurement56 and SWAP gates40, and
quantum algorithms for optimization40, metrology41,42, simulation43–47,
and beyond classical computation39,48. The strategy should also
find value in quantum hardware beyond superconducting circuits20,
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which face control challenges with similar scaling complexities.
Choreographing the trajectories of electrons in quantum dots57–59,
shuttled ions in ion traps60–62, or neutral atoms in reconfigurable atom
arrays63,64 are promising applications (Supplementary Note 3) that are
of contemporary interest.

Looking towards commercially valuable quantum computa-
tions, significant challenges remain. The larger and more perfor-
mant processors that are necessary to implement them will be
susceptible to error mechanisms that are currently irrelevant or yet
to be discovered. Furthermore, we expect that stabilizing perfor-
mance over long computations that may span days65 will present
significant hurdles. Towards that end, Snake’s model-based
approach can leverage historical characterization data to forecast
and optimize around failures before they happen66,67. Finally, even
though we expect that model-based optimization will remain critical
for injecting metrological discoveries into control optimization for
the foreseeable future, Snake can also deploy model-free

reinforcement learning agents68–70, which may reduce the burden of
developing performance estimators (Supplementary Note 5). The
techniques presented here should complement the numerous other
control, hardware, and algorithm advancements necessary to realize
commercial quantum applications.

Data availability
The minimum dataset necessary to interpret, verify, and extend the
research in this article is available in Supplementary Tables 1–5.
Additional data are available from the corresponding author upon
request.

Code availability
The mathematical algorithm underlying the Snake optimizer and the
pseudo code necessary to implement it are available in ref. 38.
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