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Dislocation Majorana bound states in
iron-based superconductors

Lun-Hui Hu 1,2,3 & Rui-Xing Zhang 1,2,4

We show that lattice dislocations of topological iron-based superconductors
such as FeTe1−xSex will intrinsically trap non-Abelian Majorana quasiparticles,
in the absence of any external magnetic field. Our theory is motivated by the
recent experimental observations of normal-state weak topology and surface
magnetism that coexist with superconductivity in FeTe1−xSex, the combination
of which naturally achieves an emergent second-order topological super-
conductivity in a two-dimensional subsystem spanned by screw or edge dis-
locations. This exemplifies a new embedded higher-order topological phase in
class D, where Majorana zero modes appear around the “corners” of a low-
dimensional embedded subsystem, instead of those of the full crystal. A nes-
ted domain wall theory is developed to understand the origin of these defect
Majorana zero modes. When the surface magnetism is absent, we further find
that s± pairing symmetry itself is capable of inducing a different type of class-
DIII embedded higher-order topology with defect-bound Majorana Kramers
pairs. We also provide detailed discussions on the real-world material candi-
dates for our proposals, including FeTe1−xSex, LiFeAs, β-PdBi2, and hetero-
structures of bismuth, etc. Our work establishes lattice defects as a new venue
to achieve high-temperature topological quantum information processing.

Crystals of quantum materials are rarely perfect in the real world.
While it appears natural to always suppress lattice disorders and pur-
sue crystals of a higher purity, defectiveness in topological quantum
materials often binds exotic massless quasiparticles that hold great
promise for future electronics. A prototypical example is the famous
Jackiw-Rebbi problem1 and its condensed matter realization in
polyacetylene2, where zero-energy fermionic modes are trapped by
the domain wall defects of a one-dimensional (1D) dimerized atomic
chain. Since then, gapless electronic or Majorana zero modes have
been established in lattice or order-parameter defects of various
topological phases, including weak and crystalline topological insula-
tors (TIs)3–7, topological superconductors (TSCs)8–15, and topological
semimetals16,17, etc. For example, locally irremovable lattice topologi-
cal defects such as screw/edge dislocations can trap 1D helical bound
states in 3D weak TIs, providing an intriguing bridge between lattice
and electronic topologies. Experimental evidence for dislocation-

trapped electronic modes has been reported in Bi1−xSbx
18 and

bismuth19, both of which are known to be weak TI candidates. Similar
phenomena, if exist in superconductors (SC), would lead to a new
mechanism of enabling Majorana modes. Indeed, previous theoretical
studies have discussed this intriguing possibility of dislocation
Majorana bound states (dMBSs) in p-wave topological
superconductors20–22. However, due to the scarcity of realistic candi-
date p-wave systems, we are not aware of any experimental progress
along the search for dMBSs.

Recent years have also witnessed a Majorana revolution in the
high-Tc topological iron-based superconductors (tFeSCs), including
FeTe1−xSex

23–25, (Li,Fe)OHFeSe26, LiFeAs27–29, etc. Notably, the topology
of tFeSCs only lies in their normal states30, that a band inversion at the
Z point generates both a nontrivialZ2 electronic band topology and a
helical Dirac surface state31,32. Below the critical temperature Tc, a
nodeless pairing gap is developed for both bulk and surface states,
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wiping out all normal-state topological physics around the Fermi
energy. Despite the bulk-state triviality, striking evidence of Majorana
signals has been extensively reported in superconducting vortices23–29,
atomic vacancies33, and magnetic adatoms34,35. While the vortex
Majorana signals in tFeSCs are usually believed to arise from the Fu-
Kanemechanism36–38, origins of the vacancy/impurity-related zero-bias
peaks are still under debate39–44. Noting that vacancies and add-on
impurities are both locally removable and point-like, one may also
wonder if extended irremovable lattice defects such as dislocations or
disclinations could invoke any interesting field-free topological phy-
sics in tFeSCs.

Our main finding in this work is that screw or edge dislocations
can naturally bind 0D Majorana zero modes in tFeSCs and similar
superconducting systems, in the absence of any external magnetic
field. Noting that a pair of dislocations, aswell as the 2D “cutting plane”
attached to them, can be viewed as an effective 2D subsystem
embedded in a 3D crystal, the four dislocation Majorana bound states
manifest as “corner” Majorana modes for this 2D subsystem, one at
each corner. Therefore, ourmechanism exemplifies an unprecedented
Majoranamechanismthat is basedon the second-order topologyof 2D
subsystems, which is in sharp contrast with earlier proposals on vor-
tex/vacancy Majorana modes enabled by the first-order topology for
1D subsystems (i.e., vortex/vacancy lines). We thus dub this new phase
“embedded second-order topological phase” (ET2).

ET2 in tFeSCs is completely driven by the normal-state
topology31,32, screw dislocations45, and surface magnetism M that
coexists with superconductivity46–49, all of which have been experi-
mentally observed in FeTe1−xSex. In particular, we show that dMBSs
emerge once the dislocation Burgers vector b = (bx, by, bz) satisfies
bz ≡ 1mod 2, as a result of nested mass domains for surface Dirac fer-
mions. Remarkably, this ET2 condition is a natural outcome of a less
recognized weak topological index ν = (0, 0, 1) of tFeSCs. Therefore,
our theory is directly applicable to other weak-index-carrying super-
conducting topologicalmaterials, such as β-Bi2Pd

50.We further discuss
the impact of s±-wave pairing symmetry on our recipe, and find it
capable of inducing a new type of class DIII ET2 with dislocation
Majorana Kramers pairs (dMKPs), in the absence of any surface mag-
netism. Promising real-world material candidates and experimental
signatures are also discussed.

Results
Dislocation Majorana bound states
We start by deriving the key result in our work, the recipe for dMBSs in
tFeSCs, with the help of a nested domain wall approach. This con-
struction scheme bears a resemblance to the “Dirac hierarchy” dis-
cussed in the previous literature51–57. We then proceed to discuss
boundary conditions of dislocation-induced cutting plane and find
that a 0D dMBS can be “inflated” to a 1D “hinge” chiral Majorana fer-
mion under certain circumstances. Nonetheless, each corner of the
cutting plane will always host a single zero-energy mode. This directly
leads to the concept of embedded higher-order topological phase ET2.

Let us first provide somemotivations for our recipe. To trap a 0D
bound state in a 3D system, one can start from a 3D gapless quasi-
particle (e.g., massless Dirac fermion) and further constrain its degrees
of freedom (d.o.f.) in all three spatial directions. This “dimensional
reduction” procedure can be feasibly achieved by decorating the Dirac
fermion with a hierarchical set ofZ2 mass domains, with each domain
effectively reducing the dimension of the gapless state by one. For
example, the 2D gapless surface (i.e., a 2-fold Dirac fermion) of a 3D TI
can be viewed as a domain wall-bound state for a 3D massive Dirac
fermion, with the TI bulk and the outside vacuum carrying opposite
Diracmasses, respectively. A second SC/magnetismdomain for the 2D
surface Dirac fermion further reduces the gapless d.o.f. to 1D, i.e.,
leading to a 1D chiral Majorana domain-wall mode58,59. To eventually
achieve a 0D Majorana mode, it requires a third Z2-type mass domain

wall. We will show that, under certain circumstances, lattice domains
introduced by screw/edge dislocations can serve asmass domains and
thus contribute the last piece of the jigsaw puzzle. This approach is
thus dubbed a nested domain wall construction for defect MBSs.

Another key motivation is from the material side. Recent experi-
mental breakthroughs have revealed hidden topological Dirac surface
states for several high-Tc iron-based SCs31,32. Among these tFeSC can-
didates, FeTe1−xSex is of particular interest to us, as it additionally
harbors surface ferromagnetism that coexists with bulk super-
conductivity below its superconducting Tc ~ 14.5 K46–49. Furthermore,
screw dislocations for FeTe1−xSex can be generated in a highly con-
trollablemanner during the growthprocess45. Therefore, it is natural to
expect FeTe1−xSex to be a wonderful playground for studying a new
lattice topological defect-based Majorana platform in the absence of
any external magnetic field. A possible recipe for Majorana bound
states will be extremely helpful in diagnosing the topological
situation here.

We now derive the topological condition of defect MBSs for
tFeSCs. Our starting point is a 3DTRITIwith bulk isotropic s-wave spin-
singlet superconductivity. The normal-state topology is indicated by a
strong Z2 topological index ν0 and a set of weak Z2 indices
ν = (ν1, ν2, ν3)

36. In particular, ν0 = 0 (ν0 = 1) dictates an even (odd)
number of Dirac surface states, while the values of weak indices ν1,2,3
decide the momentum-space locations of the surface states. The bulk
s-wave SC, however, necessarily spoils the normal-state topology by
introducing an isotropic SC gap δSC to all Dirac surfaces through a
“self-proximity” effect. Motivated by FeTe1−xSex, we further introduce
surface magnetism δM to both the top and bottom (001) surfaces of
our TI system. The explicit type of magnetism is flexible as long as it
can act as amass term for the Dirac surface state and further competes
with the surface SC. Since the side surfaces are magnetism-free, when

jδMj> jδSCj, ð1Þ

a SC/magnetism domain emerges around the edges between top/
bottom and side surfaces. This condition thus generates a 1D chiral
Majorana mode around both top and bottom surfaces, i.e., a chiral
Majorana hinge mode. We emphasize that the chiral Majorana hinge
mode here is a result of 2D surface topology alone, that the top and
bottom surfaces both feature a BdG Chern number of jCj= 1. The 3D
bulk topology will not be altered and thus remains trivial throughout
the surface magnetism decoration.

Our last ingredient, the lattice dislocations, is intuitively a “gluing
fault”when combining two identical copies of our setup. For example,
as schematically shown in Fig. 1a, the screw dislocations are formed
when the left parts of the two crystals are combined perfectly, while
the right parts mismatch with each other by a displacement vector b =
(0,0,1), i.e., the Burgers vector. While a screw or an edge dislocation
appears one-dimensional, it must be attached to a 2D cutting plane Pc

that only terminates at either another dislocation to form a dislocation
dipole or the crystal boundary. An example of a cutting plane is
highlighted by the orange line in Fig. 1a.

To explore the fate of chiral Majorana hinge modes during the
gluing process, it is helpful to fold the top surfaces of the two to-be-
glued crystals as shown in Fig. 1b. Then the previous interfacial pro-
blem is mapped to a 2D bilayer system in the y-z plane, with each layer
hosting a TI surface state. Distribution of δM and δSC are shown in
Fig. 1c. The domain wall will bind a pair of counterpropagating chiral
Majorana modes as denoted by the green and red arrows in Fig. 1c.
Combining the two crystals is equivalent to introducing an interlayer
coupling t for only the bottom parts of the bilayer, i.e., the previous
side surfaces, which will also couple the oppositely propagating
Majoranamodes and gap themout. However, the interlayermass term
for theMajorana fermionswill obtain a phase factor eiπb⋅ν, following the
side Dirac surface states3. In the presence of a lattice dislocation, the
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cutting plane [i.e., orange region in Fig. 1c] features a finite Burgers
vector b, while the purple region has a zero Burgers vector because of
the perfect latticematching. Assuming the dislocation at y = 0,wehave
the mass term

tðyÞ= t0 y<0,

t0e
iπb�ν y>0:

�
ð2Þ

Crucially, when

b � ν = 1mod2, ð3Þ

we have t(y) = t0sgn(y). Namely, when Eq. (3) is fulfilled, the chiral
Majorana pair at the SC/magnetism domain experiences an additional
mass domain due to the dislocation-induced lattice mismatch. This
exactly resembles a 1D Jackiw-Rebbi problem and further results in a
Majorana zero mode (MZM) localized around the defect core, as shown
in Fig. 1e, completing the final part of our nested domain wall
construction for defect MBSs. Similar nested domains will simulta-
neously show up for the dislocation core at the bottom surface and the
other two corners of the cutting plane. This is how both Eq. (1) and Eq.
(3) together serve as a sufficient topological condition for defect MZMs.

In Supplementary Note 1, we have developed an analytical theory
for the dMBS, following the nested domain wall construction. In par-
ticular, we find that the in-plane localization length of the dMBS
wavefunction yields a simple relation,

ξMZM / vD

jδMj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2
SC +μ2

q : ð4Þ

Here vD is the velocity of theDirac fermion, andμdenotes the chemical
potential for theDirac point. Increasing either vDor δSC enhances ξMZM,

while the effect of δM is exactly the opposite. We have further com-
pared the above analytical understanding with numerical studies of
ξMZM and an excellent agreement has been found.

Boundary conditions & Majorana inflation
Geometrically, a dislocation-induced cutting planePc can terminate at
either a crystal surface or another dislocation, leading to two see-
mingly different yet equivalent boundary conditions. For example, we
can start from a dislocation dipole (i.e., a pair of dislocation lines) and
moveone dislocation towards the crystal side surface. This expandsPc

until the dislocation hits the side surface and further merges with it.
This process is reversible and thus transforms the aforementioned
boundary conditions from one to another. Note that the shape of Pc

could be variable in a realistic system since it can be viewed as a
deformable membrane with a pair of fixed edges (i.e., the
dislocations)60. Nonetheless, it is easy to see that the fate of dMBSs is
solely determined by the conditions identified in the previous section,
and is thus independent of the geometric details of Pc.

In Fig. 2a, we schematically show the distributions of Majorana
modes for the dislocation-dipole geometry. Each of the four disloca-
tion cores will bind one MZM denoted by the quasiparticle operators
γi = γ

y
i with i∈ {1, 2, 3, 4}. In the cylindrical geometry shown in Fig. 2a,

the chiralMajorana hingemodes always feature a finite-size gap that is
inversely proportional to the cylinder radius61, as shown in Fig. 2b. This
gap is a manifestation of the anti-periodic boundary condition of 1D
Majorana modes and can be removed by updating the boundary
condition to a periodic one with a π-flux insertion. Thus, despite their
chiral Majorana dispersions, the hinges do not carry any strictly zero-
energy mode when they enclose a dislocation dipole.

Becauseof thisfinite-sizehingegap,when thedefectMZMmerges
with the hinge Majorana modes as shown in Fig. 2c, its zero-energy
nature remains. This is because a zeromode can only be spoiled while

0
⋅0

(a) (b)

(f)(e)(d)

(c)

M > SC

= 0

SC > 0, M = 0

= ( )

Fig. 1 | Nested domain wall theory for the class-D embedded second-order
topological phase (ET2). a A single screw dislocation with a Burgers vector
b = (0, 0, 1) along with other key ingredients for ET2: weak Z2 index in the normal
state, bulk SC, and surface magnetism. In (b), we cut the crystal in halves fol-
lowing the orange cutting plane in (a), which leads to two disjoint magnetism-
gapped top surfaces and two SC-gapped side surfaces. Further folding the top
surfaces following the trajectory arrows leads to the “bilayer” configurations of
Dirac surface states in (c). The competition between magnetism (M) and SC leads
to a pair of counterpropagating 1D Majorana modes once δM> δSC. In (d), we glue

everything together to restore the crystal, and the introduction of a dislocation
decorates the intersurface hopping between Dirac particles on the orange cutting
planewith a phase factor of eiπb⋅ν. This gaps out theMajoranamodes in a nontrivial
way shown in (e), which can bemapped to a 1D Jackiw-Rebbi domain wall problem
and results in a localized Majorana zero mode at the surface dislocation core.
We carry out a numerical simulation of a pair of screw dislocations for FeTe1−xSex
on a 28 × 28 × 28 lattice. Four zero-energy modes are found and their spatial
wavefunctions are found to be localized around each dislocation core, as
shown in (f).
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interacting with another zero mode. Numerically, we find that the
defect MZM eventually merges with the 1D chiral hinge mode, making
the hinge harbor a 1D zero-energy state at k =0, as schematically
shown in Fig. 2d. Therefore, the corner-localized 0D MZMs of ET2 can
be inflated to 1D zero modes by simply changing the terminations of
the cutting plane Pc. Notably, this inflation process is reversible, and
one can similarly “condense” a 1D zero mode into a 0D dMBS by
recovering the dislocation dipole.

Embedded higher-order topology
The fact that dMBSs are “corner”Majoranamodes of the cutting plane
motivates us to define a higher-order topology62–66 for the dislocation-
spanned subsystem. In particular,

Definition 1. An embedded nth-order topology (dubbed ETn) is defined by
the presence of (d − n)-dimensional gapless boundary of a d-dimensional
subsystem, which is further embedded in a D-dimensional bulk system
with D > d > n >0.

Thus, ETn is a higher-order generalization of the “embedded
topology”proposed in refs. 67,68. Our recipe for dMBSs featuresD = 3,
d = 2, and n = 2, which thus corresponds to a class D ET2 phase by
definition.

Finally, it is instructive to review, clarify, and summarize the topo-
logical physics at each level of our dMBS recipe, which is illustrated in
Table 1. First, we require the normal state of a target system to carry a
nontrivial weak Z2 index, e.g., νz= 1. In contrast, the bulk super-
conducting ground state is topologically trivial as a consequence of the
spin-singlet s-wave pairing that is considered. When the surface mag-
netism kicks in, the superconducting surface states now carry a non-
trivial 2D class-D topology, further leading to the dMBSs at the surface
dislocation cores. Therefore, our theory for dMBSs is based on a trivial
bulk SC with a nontrivial normal state and is thus distinct from previous
proposals where the bulk TSC physics is a necessary ingredient.

Model Hamiltonian
In this section, we provide a minimal lattice model for FeTe1−xSex to
demonstrate the above ET2 recipe. Bulk superconductivity and surface

Table 1 | Summary of topological physics at each level of the dMBS theory in general s-wave superconductors

Normal state Bulk SC states Surface SC states Dislocations

Dimension 3D 3D 2D 2D

Symmetry Class AII DIII D D

Topology weak index trivial BdG Chern number ET2

Origins band inversions s-wave singlet pairing Eq. (1) Eq. (1) and Eq. (3)

Boundary Physics Dirac surface states none chiral Majorana hinge modes dMBSs

SC superconductor, ET2 embedded second-order topological phase, dMBSs dislocation Majorana bound states.

Fig. 2 | “Inflation” of a Majorana mode from 0D to 1D. a A schematic of a dis-
location dipole and its associated dislocationMajorana bound states (dMBSs). The
surface Chern number enforces a pair of 1D chiral Majorana modes circulating the
top/bottom surface. The chiral Majorana modes yield a finite-size energy gap, as
schematically shown in (b). When the cutting plane terminates at the sample

boundary shown in (c), the two dMBSs γ2,4 move to the hinges and merge with the
chiral hinge modes, decorating each 1D chiral mode with a zero-energy state, as
shown in (d). Notably, the total number of zero-energyMajoranamodes remains to
be four while evolving from (a) to (c).

Article https://doi.org/10.1038/s41467-024-46618-9

Nature Communications |         (2024) 15:2337 4



ferromagnetism (FM) are also included in our model setup. By ana-
lyzing the competition of SC and FM for the Dirac surface states, we
map out a surface topological phase diagram to discuss when Eq. (1)
will be fulfilled. This can be directly translated to a condition for ET2 to
emerge in FeTe1−xSex, which we verify through explicit screw disloca-
tion simulations for our minimal model.

Our minimal Bogoliubov-de Gennes (BdG) Hamiltonian for
FeTe1−xSex is

HBdGðkÞ=
H0ðkÞ � μ ΔðkÞ

ΔyðkÞ �H*
0ð�kÞ+μ

 !
, ð5Þ

where the normal-state Hamiltonian H0 = vðsin kyΓ1 � sin kxΓ2 +
sinkzΓ4Þ+mðkÞΓ5. The Γmatrices are Γ1 = σx⊗ sx, Γ2 = σx⊗ sy, Γ3 = σx⊗
sz, Γ4 = σy⊗ s0, Γ5 = σz⊗ s0, where s0,x,y,z and σ0,x,y,z are Pauli matrices
for spin and orbital d.o.f., respectively. Here mðkÞ=m0 �
m1ðcos kx + cos kyÞ �m2 cos kz and μ is the chemical potential. We
choose v = 1,m0 = − 4,m1 = − 2,m2 = 1 to ensure a single topological
band inversion at Z69,70, leading to ν0 = 1 and ν = (0, 0, 1). This well
matches the low-energy topological band ordering of FeTe1−xSex. To
introduce superconductivity, we adopt a spin-singlet extended s-wave
pairing for our model, where the pairing matrix ΔðkÞ= ½Δ0 +
Δ1ðcos kx + cos kyÞ�ðiσ0 � syÞ. Here Δ0 (Δ1) is the on-site (nearest-
neighbor) intra-orbital pairing strength.

Finally, following the experimental observations of FeTe1−xSex in
refs. 46,47,49, we introduce uniform surface ferromagnetism to both
top and bottom (001) surfaces in a finite-size slab geometry, with Nz

layers stacked along ẑ direction. HFM = f ðzÞ½g1σ0 + g2σz � � ðs �MÞ with
f ðzÞ= δz,1 + δz,Nz

for a lattice layer index z = 1, 2, . . . ,Nz. Here δz,i is the
Kronecker delta function, M denotes the surface magnetization, and
g1 ± g2 are the effective isotropic Landé g-factor for the two orbitals
involved in our model. We take g1 = 0.5 and g2 = 0.2 in our numerical
simulations throughout this work. More discussions on the experi-
mental aspects of FeTe1−xSex and other candidate materials will be
presented later.

Surface topological phase diagram: condition for dMBSs &
partial fermi surface
The first step to realize dMBSs or class-D ET2 is to identify the concrete
condition to achieve Eq. (1) for our systemby studying the competition
betweenmagnetismand superconductivity on the (001) surfaces. Note
that the (001) Dirac surface state is localized around �Γ, the center of
the surface Brillouin zone (BZ). As a result, the surface state will
develop an isotropic pairing gap from the self-proximity effect70,
irrespective of the s± nature of Δ(k). The s± pairing will only play a role
for ET2 when the surface magnetism is absent (i.e., for symmetry class
DIII), which will be discussed later. For FeTe1−xSex and its class D ET2

physics, we can simplify the pairing term to an on-site s-wave type by
setting Δ1 = 0.

We further remark that the surfaceDirac fermionhas a continuous
rotation symmetry around the z-axis in the low-energy limit. There-
fore, the effect of a general FM configurationM = (Mx,My,Mz) is always
equivalent to thatofM0 = ð0,Mk,Mz Þ up to a coordinate transformation,
where Mk =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x +M
2
y

q
. Without loss of generality, we thus consider

M = (0,My,Mz), and the surface Hamiltonian reads,

Hsurf = vF ðkxτzsy � kyτ0sxÞ � μτzs0
+Δ0τysy +Σyτ0sy +Σzτzsz ,

ð6Þ

where s and τ represent spin and particle-hole degree of freedom,
respectively. vF is the surface Fermi velocity. Up to the first-order
perturbation approximation, Σy ≈ g1My and Σz ≈ g1Mz are the Zeeman
energies69. Notably, the condition of Eq. (1) is primarily concernedwith
the gap structures at �Γ. We thus find that E�Γ = ±

ffiffiffiffiffiffiffiffiffiffiffi
μ2 +Δ2

0

p
±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σy

2 +Σz
2

p
. If we

add back Σx ≈ g1Mx, then the surface gap closing condition is

μ2 +Δ2
0 =Σ

2 with Σ = (Σx, Σy, Σz). It is then easy to check that the ET2

condition of Eq. (1) now becomes

jΣj>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 +Δ2

0

q
, ð7Þ

which coincides with the condition for the Dirac surface states to carry
a BdG Chern number jCj= 1. This nontrivial C accounts for the chiral
Majorana hingemodes in Fig. 1c, a crucial step to complete the nested
domain wall configuration for achieving ET2. According to Eq. (3), a
pair of screw or edge dislocations featuring an odd bz will span a 2D
cutting planewith classD ET2. Given the existenceof suchdislocations,
Eq. (7) now serves as the ET2 condition for FeTe1−xSex.

On the other hand, a large in-planeM is capable of inducing partial
Fermi surface (PFS) in a superconducting TI71,72. As shown in Fig. 3c, d,
PFS occurs when some surface quasi-particle bands cross zero energy
to form metal-like band patterns. While the formation of PFS is irre-
levant to our target ET2 physics, however, it can coexist with ET2 and
thus contributes an important part of our surfacephasediagram. As an
intuitive example, we considerM = (0,My, 0) and find the dispersion of
Hsurf at ky =0 is EαβðkxÞ=αΣy + β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvF kx�αμÞ2 +Δ2

0

p
with α, β = ± . For αβ <0,

Eαβ has two zero-energy solutions at kx = k
ð± Þ
α , with

kð± Þ
α =

1
vF

αμ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2
y � Δ2

0

q� �
: ð8Þ

Therefore, when ∣Σy∣ ≥ ∣Δ0∣, E+− =0 and E−+ = 0 lead to four kx solutions
that form two sets of partial Fermi surfaces. Thanks to the rotation
symmetry of Dirac surface Hamiltonian, we expect this PFS condition
to be generalized to

jΣkj≥ jΔ0j forMz =0, ð9Þ

where Σ∥ = g1M∥. Combining Eq. (7) with Eq. (9), we conclude that with
∣Mz∣≪M∥, increasing M∥ will always first drive the formation of PFS
(M∥ ≈ ∣Δ0∣) before ET2 phase is achieved (Mk =

ffiffiffiffiffiffiffiffiffiffiffi
Δ2
0 + μ2

p
).

The above analytical results are in excellent agreement with our
numerical surface topological phase diagram in Fig. 3a. This My–Mz

phase diagram is essentially an energy-gap mapping of surface BdG
spectrum for Eq. (5) in a thick slab geometry along ẑ direction, where
we take μ =Δ0 = 0.2. The color in this logarithmic plot is a measure of
the energy gap of the lowest BdG band, and in particular, regions
colored in white feature a vanishing BdG gap, i.e., either a topological
phase transition or a PFS phase. Our analytical condition of ET2 (black
dashed line) in Eq. (7) matches perfectly with the numerical finding in
Fig. 3a. In addition, Eq. (9) predicts a criticalMðcÞ

y =ΣðcÞ
k =g1 =Δ0=g1 = 0:4,

also agreeing with numerically-mapped boundary of PFS phase at
Mz =0. As shown in Fig. 3a, PFS survives untilMz reaches a critical value
of ~0.4, and it is generally absent when Mz >M∥. Importantly, PFS
coexists with ET2 most of the time in the phase diagram. So we expect
that in a large M∥ system, an observation of PFS will serve as a pro-
mising indicator for ET2 in the system. However, it is also possible for
the dMBS to interact with the gapless background of PFS, making it
easier to hybridize with another Majorana mode at a neighboring
dislocation.

In Fig. 3b, we further study the effect of chemical potential μ on
the formation of ET2. For a small μ, the topological phase boundary
separating ET2 and the trivial phase is well captured by the dashed
guideline predicted by Eq. (7). Notably, the phaseboundary undergoes
a sudden turn at μ ~ 0.7 and starts to deviate from the analytical results.
This is because the bulk-band physics is getting more involved as μ
grows, and thus our effective surface theory is no longer expected to
faithfully describe the phase boundary of ET2.
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Numerical simulation of dMBSs
To confirm the ET2 phase, we consider to place our minimal model for
FeTe1−xSex on a 28 × 28 × 28 lattice. Periodic boundary conditions are
considered for both x and y directions of the lattice cube to eliminate
possible unwanted hingemodes in our simulations. Out-of-plane FM is
considered for both the top and bottom layers of the lattice cube,
following HFM. We further decorate our lattice system with a pair of
screw dislocations with a Burgers vector b = (0, 0, 1). The dislocation
dipole spans a 2D cutting plane Pc that is parallel to the y–z plane. In
principle, one can consider a pair of edge dislocations instead, as long
as their Burgers vectors satisfy

bz � 1 mod2: ð10Þ

As the FM is gradually turned on, the (001) surface gaps close and
reopen in our cubic geometry following Fig. 3a, after which four zero-
energy modes show up in the energy spectrum. In Fig. 1f, we visualize
the spatial distribution of the zero-mode wavefunctions in the cubic
geometry and find each of the four surface dislocation cores is trap-
ping one of the zero modes. These dislocation-bound Majorana zero
modes are exactly the defining boundary signature of ET2 in our
system.

s±-wave pairing & class DIII ET2

For tFeSC candidates such as FeTe1−xSex and LiFeAs, the bulk s± pairing
as described byΔ(k) is supported by experimental observations73–75. In
particular,Δ1 ≠0 is crucial for enabling a relativeπ-phase difference for
the local superconductivity orders of the Γ andM pockets. As we have
discussed, in the above ET2 recipe, it is the competition between SC
and FM, rather than the explicit SC pairing type, that is crucial for

enabling the dislocation Majorana bound states. In this section, we
show that s± pairing is indeed important for achieving a new class of
time-reversal-invariant ET2 in symmetry class DIII, but only when the
surface FM is absent.

Our new recipe for class DIII ET2 is motivated by the deep con-
nection between hinge Majorana modes and ET2, as revealed in the
nested domain wall picture. Even in the absence of surface FM, a bulk
s± pairing itself is capable of inducing a pairing mass domain for Dirac
fermions living on the top (bottom) and side surfaces. As a result, the
inter-surface hingewill harbor a pair of 1D helicalMajoranamodes that
respect time-reversal symmetry70. As shown in Fig. 4, we can now fol-
low a “cut and glue” procedure to reveal the dislocation physics. Cut-
ting the crystal nowyields twopairsof helicalMajoranamodes trapped
to the top hinges of the two smaller crystals [as shown in Fig. 4a, b], as
well as another twopairs bound to the bottomhinges.Whengluing the
crystal back together, a dislocation will introduce a π-phase domain to
the inter-hinge binding term following Eq. (2), which will now trap a
Kramers pair of Majorana zero modes around each of the surface
dislocation core.

Wenowprovide a lattice simulation to verify the existence of class
DIII ET2 with our minimal model of FeTe1−xSex in Eq. (5). We adopt the
same model parameters of Fig. 1f, with no surface FM assumed and an
additional update ofΔ0 = −0.85 andΔ1 = 0.5 to emphasize the effect of
s± pairing. Note that the s± condition for tFeSCs with Δ(Γ)Δ(M) < 0 is
generally achieved when ∣Δ0∣ < 2∣Δ1∣. The energy spectrum for the
system is calculated for a 36 × 36 × 20 lattice geometry, with a pair of
screw dislocations placed in the y-z plane. As shown in Fig. 4c, eight
Majorana modes (orange circles) show up in the energy spectrum that
are well separated from other higher-energy states. The small energy
splitting for the Majorana modes is due to the finite-size effect of the

Fig. 3 | Surface topological phase diagram and partial Fermi surface. Surface
topological phasediagrams as a functionof (My,Mz) and (Mz,μ) are shown in (a) and
(b). The darker the blue color is, the larger the surface energy gap is. The region
colored in white has no energy gap and could indicate the existence of either a

surface topological phase transition or a partial Fermi surface (PFS). Note that
embedded second-order topological phase (ET2) and PFS can coexist. cThe surface
spectrum of a PFS along kx with (My,Mz) = (0.5, 0.05). An example of the surface
spectrum with coexisting ET2 and PFS is shown in (d) with (My,Mz) = (0.9, 0.05).

Article https://doi.org/10.1038/s41467-024-46618-9

Nature Communications |         (2024) 15:2337 6



cubic geometry. By plotting the Majorana wavefunctions in the real
space,wefind in Fig. 4d that each surfacedislocation core nowharbors
a pair of Majorana modes, which unambiguously demonstrates the
existence of class DIII ET2 trapped by the lattice dislocations.

Material candidates
In this section, we will discuss material candidates that can harbor ET2

physics in both class D and class DIII. We will focus on the tFeSCs,
especially FeTe1−xSex and LiFeAs, and further discuss their experi-
mental relevance. However, ET2 is not a privilege of tFeSCs and can in
principle exist in other superconducting systems as well. We will dis-
cuss β-PdBi2 as such an example. A brief summary of candidate sys-
tems can be found in Table 2.

FeTe1−xSex. As discussed above, FeTe1−xSex naturally combines all
necessary ingredients of our class D ET2 recipe and manifests itself as
perhaps themost promising platform for dMBSs. Thanks to the recent
extensive experimental studies on both the normal-state topology and
high-temperature superconductivity of FeTe1−xSex

30–32, we are capable
of discussing its ET2 possibility quantitatively.

Evidence of surface magnetism in FeTe1−xSex has been experi-
mentally established by a variety of measurement approaches, as
summarized in Table 3. For example, an angle-resolved photoemission
spectroscopy (ARPES) study in ref. 46 reveals a direct surface gap of ~8
meV exactly at the surface Dirac point, in addition to the surface SC
gap at the Fermi level. The spoiling of the Kramers degeneracy of the
Dirac surface state happens even above the superconducting transi-
tion temperature Tc, directly implying the breaking of time-reversal
symmetry. Even though other more complex scenarios such as time-
reversal-broken superconductivity is in principle possible76,77, a most
straightforward interpretation of this magnetic gap would be the
development of out-of-plane FMorder on the surface. Similar evidence

of surface FM has also been detected by the nanoscale quantum sen-
sing of magnetic flux by nitrogen vacancy (NV) centers47, where the
magnetization is reported to feature an in-plane component as well. In
a recent transport measurement, a coexistence of in-plane magneti-
zation and superconductivity has also been observed in van der Waals
Josephson junctions fabricated with Fe(Te,Se)78.

Earlier experimental studies31 further reveal a surface super-
conductingorder ofΔ0 ~ 2meVanda chemical potential ofμ ~ 4.4meV,
in addition to Σz ~ 4 meV. Considering the condition in Eq. (7), ET2

phase can be achievedwith either (i) a slight electrondoping to reduce
μ, or (ii) an enhancement of surface FM. Notably, engineering surface
FM could be more experimentally accessible. For example, neutron

Fig. 4 | Time-reversal-invariant embedded second-order topological phase
(ET2) driven by an extended s-wave pairing with (Δ0,Δ1) = (−0.85, 0.5). a and
b illustrate a nested domain wall construction similar to that in Fig. 1. Two pairs of
helicalMajoranamodesnow showup, the gluing ofwhich leads to aKramerspair of
Majorana bound states at each dislocation core. c The energy spectrum of a

36× 36× 20 lattice with a dislocation dipole that supports eight Majorana zero
modes. By plotting the spatial wavefunction distribution of these Majorana modes
in (d), we numerically confirm that each dislocation core binds one Majorana
Kramers pair.

Table 2 | Candidate materials for embedded second-order
topological phases (ET2)

Materials SCing Tc Z2 Index Bound State

FeTe0.55Se0.45 14.5 K (1; 0, 0, 1) MZM

LiFeAs 17 K (1; 0, 0, 1) MKP

(Li,Fe)OHFeSe 41 K (1; 0, 0, 0) N/A

β-PdBi2 5.3 K (1; 0, 0, 1) MZM

Candidates with dislocationMajorana zeromodes (MZMs) or Majorana Kramers pairs (MKPs) can
realize an ET2 of class D or DIII. (Li,Fe)OHFeSe is not expected to carry any ET2 physics.

Table 3 | Summary of experiments on the surface magnetism
in FeTe1−xSex with ARPES46,48 and NV center47

Probe Mag. type Orientation Surf. Gap

ARPES FM ẑ ~ 8 meV

NV Center FM x̂-ẑ N/A
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scattering measurements have revealed that a single interstitial Fe
impurity can induce magnetic Friedel-like oscillation involving > 50
neighboring Fe sites79. As a result, an interstitial Fe impurity on the
surface is capable of generating a local magnetic patch with Σz ~ 10
meV80, which is large enough to enable ET2. Although interstitial Fe
impurities could naturally exist during sample growth, they can also be
deposited to the sample surface as adatoms81. This provides us with a
highly controlled approach to enhance the surface FM of general
tFeSCs.

Remarkably, for FeTe1−xSex films epitaxially grown with pulsed
laser deposition (PLD), the formation of screw dislocations can be
feasibly controlled by simply tuning the deposition rate45. In particular,
samples grown at a low deposition rate generally feature spiral-like
surface morphology that encodes a screw dislocation with a Burgers
vector of b = (0, 0, 1). This thus contributes the last key ingredient for
materializing dMBSs in FeTe1−xSex at zero magnetic fields.

In Supplementary Note 2, we have numerically explored the ET2

condition for FeTe0.55Se0.45 based on an eight-band k ⋅p model37 that
reproduces the low-energy band structures of first-principles calcula-
tions. Remarkably, the surface topological phase diagram based on
this realisticmodel is in excellent agreement with Fig. 3b. This not only
proves the power of our minimal model approach, but also offers
quantitative guidance for the experimental search of both dMBS
and PFS.

Other Fe-based superconductors. Besides FeTe1−xSex, evidences of
Dirac surface states and vortex Majorana modes have also been found
in other tFeSCs such as LiFeAs27–29 and (Li,Fe)OHFeSe26. We first note
that the topological band physics in (Li,Fe)OHFeSe ismainly attributed
to the band inversion at Γ, thus leaving the system with zero weak
indices.We thereforedo not expect (Li,Fe)OHFeSe to carry ET2 physics
proposed in this work. A similar conclusion could be reached for
CaKFe4As4, whose normal-state band inversion also happens at Γ due
to a band folding effect82.

The band structure of LiFeAs resembles that of FeTe1−xSex and
features a weak-index vector ν = (0, 0, 1).Whilewe are not aware of any
surfacemagnetism for LiFeAs, evidence of s± pairinghasbeen reported
in earlier ARPES measurements83. This would make LiFeAs a good
platform to host class DIII ET2 and the associated defect Majorana
Kramers pairs.

β-PdBi2, bismuth, and beyond. Just like FeTe1−xSex, β-PdBi2
50 features

both a single band inversion at Z and intrinsic SC with a transition
temperature of Tc = 5.3 K. By evaporating Cr atoms on Bi-terminated
surface of β-PdBi2, scanning tunneling microscopy (STM) technique
canorganizeCr atoms into amagnetic lattice that competeswith SCon
the surface84. In particular, both FM and anti-FM can be achieved by
simply adjusting the lattice constant of the Cr adatoms. Therefore, we
expect our ET2 results on FeTe1−xSex to be directly applicable to β-
PdBi2 as well.

ET2 can also be achieved in an extrinsic manner by assembling all
the necessary elements in a heterostructure. For example, candidates
of weak topological insulators carrying Z2 indices
(ν0; ν1, ν2, ν3) = (0; 0, 0, 1) have been experimentally established in a
plethora of Bi-related materials, including BiTe85, Bi2TeI

86, Bi4I4
87, and

ZrTe5
88 etc. While these candidates are non-superconducting, one can

design an ABC “trilayer” structure by growing a thin film of the above
weak TIs on some superconducting substrates and further depositing
another ferromagnetic layer on top. When a lattice screw dislocation
with b = (0, 0, 1) occurs, the dMBSs should appear when Eq. (1) is
satisfied.

Interestingly, the dMBSs for weak TIs with a trivial ν0 = 0 can be
interpreted without exploiting the nested domain wall picture. This is
because the dislocations-spanned cutting plane in a 3D weak TI with
ν = (0, 0, 1) effectively hosts an “embedded” quantum spin Hall (QSH)

phase, as experimentally confirmed in ref. 89. Namely, there exists a
closed loop of 1D gapless helical electrons circulating the boundary of
the cutting plane, thanks to the fact that the (001) surfaces are gapped.
Should bulk SC and surface FM be simultaneously present, every two
neighboring edges of this embedded QSH will be gapped differently,
leading to “corner” MZMs90. However, this neat picture breaks down
when ν0 ≠0 and the (001) surface becomes gapless, as for the case in
FTS. Notably, our theory of nested domain wall holds independent of
the value of ν0, and it thus offers a more generalized perspective to
comprehend the origin of dMBSs.

We further note that a similar structure has been successfully
fabricated for Bi(111) grown on an Nb(110) substrate, of which a fer-
romagnetic Fe cluster is placed on top91. Notably, the topological
nature of Bi is disputable because of the tiny energy gap at L point,
and Bi is believed to be either a higher-order topological insulator
with trivial Z2 indices or a strong topological insulator with
(ν0, ν1, ν2, ν3) = (1; 1, 1, 1). Interestingly, the latter scenario is recently
supported by the observation of helical electron modes bound to a
screw dislocation via an STM study19. These experimental progresses
have together establishedBi as another promisingplatform for dMBSs.

Experimental detection
Signatures of ET2 for the above material candidates can be feasibly
revealed by mapping out the local density of states (LDOS) around
lattice dislocations in experiments with the state-of-the-art STM tech-
nique. In this section, we numerically simulate the LDOS signals of
dislocation-trapped Majorana modes for our minimal Hamiltonian in
Eq. (5) using the iterative Green function method92. The geometry we
considered involves an in-plane 20 × 40 lattice with a pair of screw
dislocations embedded in the y–z place, sitting symmetrically around
the z-axis at (x, y) = (10, 20). The spatial distance of the dislocations is
denoted as δrd. After sufficient iteration steps, the LDOS on the top
(001) surface is Dðr,EÞ= � 1

π Im ½Gsurf ðr,EÞ�, where Gsurf ðr,EÞ is the sur-
face Green function. This simulated LDOS signal can be directly com-
pared with ultra-low-temperature STM data in future experiments.

When δrd is much greater than the Majorana localization length
lM ~ 3, the hybridization between neighboring defect Majorana modes
is negligible, as shown in Fig. 5a. We then expect each dislocation to
carry a sharp LDOS peak at the zero bias, as numerically confirmed in
Fig. 5b. Moving away from the dislocation core, the peak intensity
gradually drops to zero without any further splitting, implying the
existence of a single zero-energy mode. Meanwhile, we carry out a
similar simulation with δrd ∼OðlMÞ, where the dMBSs hybridize
strongly [Fig. 5c]. We similarly check the LDOS data near the bottom
dislocation core and find the absence of any zero-bias peak in Fig. 5d.
Instead, a double-peak structure emerges, indicating the annihilation
of the dMBSs. As for FeTe1−xSex, we expect lM to be of the order of the
superconducting coherence length ξSC ~ 5 nm, similar to that of vortex
Majorana modes23. This sets a crucial length scale for δrd, that only
when δrd≫ ξSC will a clear experimental Majorana signal be expected.

We now remark on several phenomenological distinctions
between defect and vortex Majorana modes. First, a quantum vortex
always traps finite-energy Caroli-de Gennes-Matricon (CdGM) states
inside the SC gap, which can introduce Majorana-like signals near the
zero energy and further complicate interpretations of experimental
data. As for ET2, however, we do expect the dislocation core to carry
fewer or even no subgap states besides the dMBS, as shown in our
numerical simulations. This “cleanliness” of the zero-bias signal of ET2

is ascribed to the Jackiw-Rebbi nature of dMBS, which can significantly
enhance the unambiguity of future experiments on relevant topics.

In the weak-pairing limit, the spatial distribution of a Majorana
wavefunction should inherit the symmetry pattern of the local
Hamiltonian in the normal state. Since a quantum vortex is usually
rotational invariant, we thus expect the wavefunction of a vortex MBS
to be circularly symmetric in general11,93, unless an extra symmetry-
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breaking effect such as uniaxial strain or vortex-line tilting occurs. On
the other hand, the LDOS profile of a dMBS is naturally anisotropic,
since the geometry of a screw dislocation explicitly breaks the in-plane
mirror symmetryof theunderlying lattice, agreeingwith our numerical
simulations in Fig. 5. This pattern of dMBSs should be accessible via
STM measurements.

Because of the known inhomogeneity of FeTe1−xSex samples, it is
possible that local magnetic patches, instead of a uniform FM order,
will appear on a real-world sample surface48. Motivated by this fact, we
numerically test the fate of dMBSs in the presence of spatially fluctu-
ating magnetic configurations. In particular, we couple the uniform
ferromagnetic order Mz with a spatially random perturbationeMðrÞ 2 ½�ΔM ,ΔM �. Upon disorder averaging, dMBSs are found to be
extremely resilient against moderately strong magnetic disorders,
especially whenΔM < 3Mz. We provide a detailed discussion of disorder
effects in Supplementary Note 3.

We further notice that applying a ẑ-directional magnetic field can
facilitate the creation of ET2 phase by enhancing the magnetic gap, at
the price of introducing additional SC vortex physics. While our dMBS
is immune to an applied magnetic field, ref. 80 predicts that the field-
induced SC vortices living inside themagnetic patch do not harbor any
vortex Majorana modes, and are thus dubbed “empty vortices”. With
suchanexternalmagneticfield,we thus expect thedMBS to contribute
the only zero-bias peak signal to an STM scanning inside a local FM
patch, and it will be further surrounded by a set of “satellite” empty
vortices with no Majorana signal. This unique phenomenon, if
observed, will serve as rather compelling experimental evidence
for ET2.

Discussion
In summary, we have proposed a new magnetic-field-free mechan-
ism to trap non-Abelian Majorana zero modes with lattice disloca-
tions in 3D s-wave superconductors with a trivial bulk-state topology
at the BdG level. We further establish iron-based superconductors
such as FeTe1−xSex as an ideal venue to realize dMBSs. This exotic
defect Majorana physics manifests as an exemplar of an embedded
higher-order topology, paving the way for exploring emergent
subsystem topological physics. Notably, our recipe for dMBS is
beyond tFeSCs and it further provides theoretical guidance to
experimentally design and achieve dMBSs in other weak-index-
carrying material systems such as β-PdBi2. Given the remarkable
capabilities of manipulating both the screw dislocations and surface

magnetism in FeTe1−xSex that have been reported in the literature,
we believe that our proposal of dislocation Majorana physics will
soon be experimentally realizable.

We further note that the ET2 uncovered in this work is “extrinsic”,
in the sense that the dMBS cannot be characterized by a 2D bulk
topological invariant of the subsystem. An intrinsic ET2 phase should
be symmetry-protectedand is robust against anyperturbations thatdo
not close the local gap in the cutting plane. Recently, a relevant dis-
cussion in non-superconducting systems has been reported94, where
an inversion-protected ET2 phase occurs as a response to the bulk
higher-order topology. Given that TSCs are scarce in nature, it is thus
highly desirable to explore whether intrinsic ET2 phase or symmetry-
protected dMBSs can emerge in a class-D or class-DIII topologically
trivial superconductor. We leave this intriguing direction for
future works.

Methods
Here we present the analytical derivation of the localization length
ξMZM of 0D dislocationMajorana bound states. This is presented in Eq.
(4), namely, ξMZM / vD=ðjδMj �

ffiffiffiffiffiffiffiffiffiffiffiffi
δ2
SC +μ2

p
Þ. For the detailed calculations,

please refer to the Supplementary Note (1. A). We only outline the key
steps here.

Step 1—For the topological surface state, we obtain the localized
mode near z =0boundary between sample (z > =0) and vacuum (z <0)

ψ"ðzÞ=2ce�Az sinðBzÞ∣ϕ�
�� ∣ "�, ð11aÞ

ψ#ðzÞ=2ce�Az sinðBzÞ∣ϕ�
�� ∣ #�: ð11bÞ

where jcj=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðA2 +B2Þ=ð2A2 +B2Þ

q
is the normalization factor with

A = vD/(2m2) and B=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0zm2 � v2

p
. The spinor part provides the

basis for Dirac surface states, f∣ϕ�
�� ∣ "�,∣ϕ�

�� ∣ #�g, where
σx ∣ϕ±

�
= ± ∣ϕ±

�
leads to ∣ϕ+

�
= ð1,1ÞT=

ffiffiffi
2

p
and ∣ϕ�

�
= ð1,� 1ÞT=

ffiffiffi
2

p
.

Thus, the surface state Hamiltonian up to linear k order,

Hsurf = vDðkxsy � kysxÞ: ð12Þ

Here s are Pauli matrices for the spin degree of freedom. The
localization length for the surface state is given by ξsurf = 1/
A = 2m2/vD, which indicates that a smaller spin-orbit coupling (vD)
corresponds to a larger localization length. In Supplementary

Fig. 5 | Simulated surface local density of states (LDOS) patterns of dislocation
Majorana bound states (dMBSs). a The zero-energy top surface LDOS of two
dMBSs that are far away, with each dislocation core trapping a well-defined zero
mode. The inset is a zoom-in plot around the dislocation core, which clearly shows
the spatial anisotropy of the Majorana wavefunction. By doing a line cut across the

dislocation following the green reference line, energy-dependent LDOS plots at
each site are shown in (b), which shows a sharp zero-energy LDOS peak. The two
circles on the horizontal axis indicate the position of the surface magnetic gap.
When the two dislocations are brought together in (c), the zero-energy LDOS peak
splits due to Majorana hybridizations, as shown in (d).
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Note 2. A, we numerically find that the localization length of the
Dirac surface state in FeTe0.5Se0.5 is about 30 layers (~18 nm). This
localization length is much larger than the typical scale observed
in Bi2Se3 and Bi2Te3 (~3 nm), as the spin-orbit coupling strength in
FeTe0.5Se0.5 is smaller. Therefore, the FeTe0.5Se0.5 sample should
be at least 60 layers in thickness along (001) direction, in order to
observe the predicted dislocation MBS signals.

Step 2—On the surface of the sample, ferromagnetism coexists
with bulk superconductivity in FeTe0.5Se0.5. Therefore, the BdG
Hamiltonian for the top surface of the sample can be expressed as

HBdG = vDðkysyγz � kxsxγ0Þ � μs0γz
+ δMszγz + δSCsyγy,

ð13Þ

where γ are Pauli matrices for the particle-hole degree of freedom.
Without loss of generality, we consider δM>0 and δSC. The gap
closing occurs at μ2 + δ2

SC = δ
2
M, and topological gap is given by

Δtopo = δM �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + δSC

p
. For the topological phase of the sample

surface, the boundary zero-mode solution for HBdGðkx =0,� i∂yÞ is

ψðyÞ=aeð�δM + δSCÞy=vD ∣ϕ+

�
, ð14Þ

where a is the normalization factor and the spinor part is
∣ϕ+

�
= ð1,� i,� i,1ÞT=2. The eigenstate ∣ϕ+

�
of the chiral symmetry syγz

satisfies syγz ∣ϕ+

�
= � ∣ϕ+

�
, and it is also an eigenstate of the particle-

hole symmetry s0γxK with s0γxK ∣ϕ+

�
= i∣ϕ+

�
. Additionally, ∣ϕ+

�
is an

eigenstate of the kx term, which leads to the 1D chiral Majorana mode
dispersion along the 1D “hinge” of the sample surface. In particular,
〈ϕ+∣kxsyγz∣ϕ+〉 = kx.

Step 3—We next solve the dislocation MZM by introducing a pair
of dislocation lines into the system. As discussed in Fig. 1 of the main
text, the dislocation lines are oriented along the z-direction. The pro-
cess involves two key steps.

• Cut the sample into two parts by the cutting plane expanded by
this pair of dislocation lines, as illustrated in Supplementary Fig. 1c
[see the dashed rectangle]. The 1D chiral Majorana mode is also
divided into two parts, and near the touching edges, those two 1D
chiral modes propagate along different directions due to the C2z

symmetry [see Supplementary Fig. 1d].
• Glue two 1D chiral modes by restoring the lattice, as illustrated in
Supplementary Fig. 1e.

As a result, we can construct an efficient two-by-two Hamiltonian that
consists of two 1D chiral modes propagating in opposite directions,
which are

ψRðyÞ / eð�δM + δSCÞy=vD ð1,� i,� i,1ÞT , ð15aÞ

ψLðyÞ / eðδM�δSCÞy=vD ð1,i,i,1ÞT : ð15bÞ

This gives rise to

Hdis = vDkxτz + Im ½tc�τy + Re ½tc�τx , ð16Þ

where the inter-edge coupling tc is due to the direct hopping
(vDkysxγ0→ − ivD∂ysxγ0),

tc≈
Z Δy

�Δy

dyhϕRjsxγ0jϕLi× eð�δM + δSCÞy=vD
�

½�ivD∂y�eðδM�δSCÞy=vD
�
/ �ivD

δM � δSC

vD
= � iðδM � δSCÞ:

ð17Þ

Please also note that, in the absence of dislocation pairs, tc is a con-
stant; however, its sign varies depending on the position in the case of
a dislocation3. For instance, these twodislocation lines are separated in
real space and are located at (Ncx,Ncy, z = 1)→ (Ncx,Ncy, z =Nz) [line 1]
and (Ncx+Δx,Ncy, z = 1)→ (Ncx+Δx,Ncy, z =Nz) [line 2]. The in-plane
distance between these two dislocation lines is denoted by Δx.
Subsequently, we obtain

tc =
�iðMz � Δ0Þ for x ≤Ncx or x ≥Ncx +Δx ,

iðMz � Δ0Þ forNcx ≥ x ≤Ncx +Δx :

�
ð18Þ

The hopping term for spin-orbit coupling acquires a π phase
accumulation when circling the dislocation, which accounts for the
minus sign. Consequently, tc serves as the mass term for the two 1D
chiral Majorana modes, and its sign reverses. This leads to the
formation of a 1D domain wall along the line connecting the two
dislocation lines. A 0D MZM, referred to as the dislocation MBS in the
main text, naturally emerges.

Data availability
The datasets generated during this study are available upon request.

Code availability
The custom codes generated during this study are available upon
request.
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