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Predicting multiple observations in
complex systems through low-dimensional
embeddings

Tao Wu 1, Xiangyun Gao 2,3 , Feng An 4 , Xiaotian Sun2, Haizhong An2,3,
Zhen Su 5,6, Shraddha Gupta 5,7, Jianxi Gao 8,9 & Jürgen Kurths 5,7

Forecasting all components in complex systems is an open and challenging
task, possibly due to high dimensionality and undesirable predictors. We
bridge this gapbyproposing a data-driven andmodel-free framework, namely,
feature-and-reconstructedmanifoldmapping (FRMM), which is a combination
of feature embedding and delay embedding. For a high-dimensional dynami-
cal system, FRMM finds its topologically equivalent manifolds with low
dimensions from feature embedding and delay embedding and then sets the
low-dimensional feature manifold as a generalized predictor to achieve pre-
dictions of all components. The substantial potential of FRMM is shown for
both representative models and real-world data involving Indian monsoon,
electroencephalogram (EEG) signals, foreign exchange market, and traffic
speed in Los Angeles Country. FRMM overcomes the curse of dimensionality
and finds a generalized predictor, and thus has potential for applications in
many other real-world systems.

Prediction of future states of a complex dynamical system is a chal-
lenging task across various disciplines1–3. System details are often
unknown, and only their time series data are accessible. Therefore, a
variety of data-driven techniques are designed for the prediction
task4,5, including traditional statistical models (e.g., autoregressive
integrated moving average (ARIMA))6, state space-based methods
(e.g., sequential locally weighted global linear maps (S-maps)7 and
multiview embedding (MVE))8, machine learning algorithms (e.g.,
support vector machine (SVM)9, long short-term memory (LSTM)10,
and reservoir computing (RC)11,12, and state-of-the-art combination
frameworks (e.g., multitask learning-based Gaussian process regres-
sion machine (MT-GPRM)13, randomly distribution embedding
(RDE)14 and autoreservoir neural network (ARNN)15). These advanced
approaches have shown potential for several significant tasks, e.g.,

one-step and multistep ahead predictions of a target time series
variable16.

Despite considerable efforts in the study of prediction tasks in
complex systems, it is still unsolved to design a generalized framework
for the predictions of all components in a complex system. Since real-
world systems often consist of many interconnected units, e.g., mul-
tiple spatiotemporal observations in climate systems17 and thousands
of functionally connected neurons in the brain18, they therefore output
a large number of time series variables, and the interactions between
these variables intrinsically contribute to the dynamical evolution of a
complex system. A practical way to predict complex systems (espe-
cially for high-dimensional systems), as an approximation, is to study
the dynamics of partial units, e.g., representative observations19.
However, identifying such representative variables remains a
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challenging task. Moreover, one should be cautious to ignore those
‘unimportant variables’, in which small perturbationsmay be amplified
and propagated to all components, resulting in heavy changes in sys-
tembehaviors (known as cascading effects)20,21. Instead, the capacity to
predict the future states of all components can help to better estimate
the future behavior of a complex system. However, many existing
approaches present typical limitations for this task. (a) The uncertainty
of the predictor, whichmeans that for a target variable, the predictors
are often selected empirically22, e.g., several target-related observa-
tions. If regarding all the remaining variables as predictors, some
redundant information may negatively affect the performance (e.g.,
noise and irrelevant variables to the target variable15), especially for
high-dimensional real-world systems8. (b) The uncertainty of the pre-
dictive model, which means that for different targets, some approa-
ches may train different models (e.g., the predictive models for y1 and
y2 are completely independent)23,24. TheremayneedNmodels for anN-
dimensional system, leading to a high computational cost. (c) The
challenge in forecasting multiple observations typically results in ver-
ifying methods over only a single or possibly few observations13,14,23.
Therefore, designing a unified and reliable framework to forecast all
components in complex systems is still an open and challenging issue.

In this work, we develop a data-driven andmodel-free framework
by a combination of manifold learning and delay embedding, namely,
feature-to-reconstructed manifold mapping (FRMM). The FRMM fra-
mework yields reliable predictions for all components via a general-
ized and practical predictor, i.e., the system’s low-dimensional
representation from manifold learning (feature embedding). The the-
oretical foundation of the FRMM is based on the ground truth that
high-dimensional systems often contain redundant information and
that their essential dynamicsor structures canbe characterizedby low-
dimensional representations25–27, e.g., the meaningful structure of a
4096-dimensional image (64 pixels by 64 pixels) can be characterized
in a three-dimensional manifold with two pose variables and an azi-
muthal lighting angle28. These low-dimensional representations can be
sufficiently identified from two powerful techniques: feature embed-
ding and delay embedding. (a) Feature embedding finds a low-
dimensional representation by preserving the geometric features (e.g.,
nearest neighbor) of the original system as much as possible25. (b)
Delay embedding reconstructs an isomorphic structure with the

original system from a single time series29. Given that low-dimensional
representations (in different coordinates) from two approaches show
isomorphic structures with the original system. This enables predic-
tion tasks by one-to-one mapping between two low-dimensional
representations. Additionally, in a dynamical system, each time series
variable can reconstruct a low-dimensional representation via delay
embedding30. Therefore, the low-dimensional representation from
feature embedding can be practically selected as a generalized pre-
dictor to potentially identify the future dynamics of all components in
complex systems.

Results
Low-dimensional representation from delay embedding
According to Takens’ embedding theory, it is possible to reconstruct a
low-dimensional attractor by a single time series from a high-
dimensional dynamical system30. Particularly, for an N-dimensional
system M, one can reconstruct a topologically isomorphic manifold
Mxi

(namely, reconstructed manifold) from every time series xiðtÞ
within the system (i= 1,2, � � � ,N, t = 1,2, � � � ,L, L is the length of the ser-
ies), and each state point on Mxi

is represented as
~XiðtÞ= ðxiðtÞ,xiðt + τÞ, � � � ,xiðt + ðE � 1ÞτÞÞ, where E is the embedding
dimension and τ is the time lag. For example, the attractors of the
3-dimensional Lorenz system and Rössler system are reconstructed in
2-dimensional space from individual time series (Fig. 1a, b, d, e).

Mxi
has an isomorphic topological structure with the original

systemM. It indicates that for every state point X ðtÞ onM, one can find
a corresponding state point ~XiðtÞ on Mxi

through a smooth mapping
φi. According to Takens30, φi is a one-to-one mapping, we therefore
identify a corresponding state pointX ðtÞ onM for every ~XiðtÞ onMxi

via
the inversemappingφ�1ð~XiðtÞÞ. These processes can be represented as
(1).

φi : M ! Mxi
,φiðX ðtÞÞ= ~XiðtÞ,φi

�1ð~XiðtÞÞ=X ðtÞ, ð1Þ

where X ðtÞ= ðx1ðtÞ,x2ðtÞ, � � � ,xNðtÞÞ and X ðtÞ 2 M,~XiðtÞ 2 Mxi
.

Low-dimensional representation from feature embedding
Delay embedding can reconstruct low-dimensional representations
of the original systems. Additionally, such low-dimensional

Fig. 1 | Low-dimensional embeddings of complex systems. The dynamical
structure of the 3-dimensional Lorenz system (a) is represented in 2-dimensional
space via delay embedding (b) (from time series x, whereE = 2,τ = 10) and feature
embedding (c) (i.e., diffusion map algorithm). Analogously, one can find

2-dimensional representations (e and f) of the 3-dimensional Rössler system (d).
Evenwith additive noise, one can also find their low-dimensional embeddings (cf. SI
Appendix Fig. S1).
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representations can be obtained from manifold learning algorithms.
For example, based on the diffusion map algorithm31,32, we find
2-dimensional representations that show equivalent structures with
the 3-dimensional Lorenz and Rössler systems (Fig. 1c, f). These tech-
niques embed a high-dimensional system in a low-dimensional space
by retaining the essential geometric features (e.g., the neighboring
points in high-dimensional space are also adjacent in the low-
dimensional representations) (feature embedding) of the original
system. Since the embedding is a one-to-one mapping31, it can be
written as (2)

ϕ : M ! M0,ϕðX ðtÞÞ= Y ðtÞ,ϕ�1ðY ðtÞÞ=X ðtÞ, ð2Þ

where M0 represents an E-dimensional manifold (namely, feature
manifold), and Y ðtÞ 2 M0,X ðtÞ 2 M. Real-world systems often show
diverse dynamical structures and geometry features, and five
algorithms are selected alternatively to identify feature embedding,
i.e., isometric feature mapping (ISOMAP)28, locally linear embedding
(LLE)33, Laplacian34, diffusionmap31, and local tangent space alignment
(LTSA)35. More details are provided in Methods.

Prediction via mapping between low-dimensional
representations
Throughdelay embedding and featureembedding, a high-dimensional
system is represented by its two low-dimensional manifolds: the
reconstructed manifold (Mx) and the feature manifold (M0). This
indicates a one-to-one mapping between the feature manifold and the
reconstructedmanifold. Then, for every state point Y ðtÞ onM0, we can
find its corresponding state point ~XiðtÞ on Mxi

by a smooth mapping
(e.g., ψi).

ψi : M0 ! Mxi
,ψiðY ðtÞÞ= ~XiðtÞ,i= 1,2, � � � ,N, ð3Þ

where ψiðxÞ=φiϕ
�1ðxÞ(see Eqs. (1) and (2)).

Note that ~XiðtÞ= ðxiðtÞ,xiðt + τÞ, � � � ,xiðt + ðE � 1ÞτÞÞ, we deduce a
spatiotemporal transformation from state points onM0 to a temporal
series (final component in ~XiðtÞ):

ψ
_

iðy1ðtÞ,y2ðtÞ, � � � ,yE ðtÞÞ= xiðt + ðE � 1ÞτÞ,i= 1,2, � � � ,N,t = 1,2, � � � ,L, ð4Þ

where ðy1ðtÞ,y2ðtÞ, � � � ,yE ðtÞÞ 2 M0 and xiðt + ðE � 1ÞτÞ 2 ~XiðtÞ 2 Mxi
.

When t = L, it yields atmostðE � 1Þτ-forward dynamics of each variable
xiðtÞ once ψ

_

i is identified (more details of ψ
_

i are provided inMethods).
In this work, we employ the classical Gaussian process regression to
train every ψ

_

i (cf. SI Appendix Chapter 1.3)
36. To guarantee robustness,

we validate the performance by randomly dividing the observed series
into a training set and a test set (i.e., cross-validation). Twowidely used
metrics are employed to measure the performance, i.e., the Pearson
correlation between observed values and predicted values (ρ) and the
normalized root mean square error (RMSE) (normalized by the stan-
dard deviation of input series)15. The main architecture of FRMM is
given in Fig. 2.

Performance of FRMM on model systems
To illustrate themechanism of the FRMM framework, we start with the
benchmark Lorenz system15. For the 3-dimensional ordinary Lorenz
system (see Methods), the FRMM first identifies its 2-dimensional
manifolds (i.e., feature manifold and reconstructed manifold) via fea-
ture embedding and delay embedding (Fig. 1a–c). Both feature mani-
folds and reconstructed manifolds show isomorphic structures with
the original system, which indicates an isomorphism between the
feature manifold and reconstructed manifold. Then, the feature
manifold can be utilized as a generalized predictor for the predictions
of three units. According to the generic cross-validation (see Meth-
ods), we validate the performance by randomly selecting 50% of the

data as training samples, and the others are test samples. Since the
embedding dimension and time lag are E = 2 and τ = 10, FRMM yields
reliable 10-step (T = ðE � 1Þτ) ahead predictions for all units, where the
average ρ reaches 0.91 and the average error remains at a low level
(RMSE =0:38). Still, FRMM achieves accurate 10-step-ahead predic-
tions for all units in the Rössler system (SI Appendix Fig. S2).

To further evaluate the FRMM framework in high-dimensional
systems, we select the 90-dimensional coupled Lorenz system as a
benchmark (see Methods)14. Traditional regression-based predictions
encounter the “curse of dimensionality”. Some neural network-based
frameworks set all the observations as input, leading to relatively high
computational costs. Due to the sensitivity of initial states as well as
complex nonlinear dynamics between units, predicting all compo-
nents is indeed a challenging task. Our FRMM framework embeds the
90-dimensional Lorenz system into a relatively lower space (E = 11) via
feature embedding and delay embedding and sets the feature mani-
fold as a generalized predictor to find the future states of all compo-
nents (Fig. 3d–f). FRMM performs reliably in that all the ρ values are
higher than 0.6 and all the errors are lower than 0.8 (Fig. 3f). The
average ρ reaches 0.74, and the average RMSE is 0.6.

Real-world systems are often influenced by various external fac-
tors, and they may behave with time-dependent dynamics, e.g., the
couplings among components are not constant but time-varying. For
this case, we evaluate the FRMM by setting the coupling in the 90-
dimensional Lorenz system to be increased by 0.2 after ten time
intervals (see Methods)15. FRMM remains reliable with an average ρ of
0.73 and RMSE of 0.63 (Fig. 3g–i).

Performance of FRMM on real-world systems
To illustrate the FRMM in real-world systems, we use several bench-
mark samples across different disciplines, including climate systems,
neuroscience, financial systems, and traffic systems (details of all
datasets are provided in SI Appendix Chapter 1.2). a) For the climate
system, we consider the Indian monsoon, which is a typical phenom-
enon that generates dramatic influences on India’s agriculture and
economy37. Skillful ahead prediction of this phenomenon is of
importance.However, it remains a challenging task due to the complex
spatial-temporal interactions among multiple observations. To this
end, we select the lower-level (850hPa) zonal daily wind component
from region IMI2 (70E-90E, 20N-30N), provided on a spatial grid with a
resolution of 10 × 1038. Wind speeds interact spatially and form a 231-
dimensional subsystem. The FRMM performs reliable 20-day forward
predictions for all observations, and the average ρ and RMSE are 0.86
and 0.41, respectively (Fig. 4a–c and Supplementary Fig. S3). Addi-
tionally, the FRMM is certified by monthly observations in the same
region (SI Appendix Fig. S4).

b) In neuroscience, electroencephalogram (EEG) signals have
been extensively used to study the underlying mechanisms of the
human brain as well as some typical diseases39. Therefore, ahead pre-
dictions of EEG signals are expected to deliver efficient early warnings
for related diseases. EEG signals are often captured from different
regions in the brain and show spatial-temporal dynamics. To test
FRMM, we utilize a 64-dimensional subsystem that consists of EEG
signal series from 64 channels from a healthy participant40. By setting
the low-dimensional (E = 5) feature manifold of the system as a gen-
eralized predictor, we achieve accurate 20-second ahead predictions
for all signals, where the average ρ and RMSE are 0.92 and 0.42
(Fig. 4d–f and Supplementary Fig. S5).

c) Financial systems are typically complex systems influenced
by numerous internal and external factors via various channels,
resulting in high uncertainty and instability, which in turn makes
prediction a difficult and challenging task41. We start with a 70-
dimensional subsystem from the foreign exchange market, which
includes the daily closing prices of 70 currencies against the US
dollar. FRMM performs accurate 20-day-ahead predictions for all
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observations, where the average ρ and RMSE are 0.89 and 0.41
(Fig. 4g–i and Supplementary Fig. S6). In addition, the FRMM out-
puts reliable predictions of 46 stock indices from global stock
markets; see SI Appendix Fig. S7.

d) Finally, we demonstrate the FRMM in a 207-dimensional traffic
system, which consists of the traffic speeds collected from 207 loop
detectors in Los Angeles County. Forecasting the time evolution of this
traffic system is a challenging task due to the complex spatial and

temporal dependencies among the elements of the system42. Our
FRMMachieves 10-step aheadpredictions (ρ≥0:6) for 86% (179) of the
components, where the average ρ and RMSE are 0.78 and 0.68 (the
average accuracies for all components are 0.73 and 0.7) (Fig. 4j–l and
Supplementary Fig. S8). As reported in Fig. 4l, the FRMM exhibits
relatively poor performance for a few components, whose time series
involve many abrupt changes, like tipping points, possibly caused by
rush hours or accidents.

Fig. 2 | Sketch of FRMM framework. To forecast all components in an N-dimen-
sional system (a), we find its E-dimensional representations from delay embedding
(b) and feature embedding (c). Thus, an N-dimensional dynamical system M is
represented by two isomorphic low-dimensional manifolds (i.e., feature manifold
M0 and reconstructedmanifoldMxi

). The foundation of an isomorphism suggests a

one-to-one mapping between feature manifold M0 and reconstructed manifold
Mxi

. Then, it is possible to find a mapping ψ
_

i(i = 1,2, � � � ,N) from the feature mani-
fold M0 to the final coordinate of the reconstructed manifold Mxi

. Therefore, the
feature manifold M0 can be utilized as a generalized predictor to find the future
dynamics (purple elements) of all components in complex systems (d).
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Discussion
Robustness tests
Generally, a predictive model performs better with longer train-
ing samples and shorter test samples, and the performance
decreases sharply when training short samples but testing long
samples. Our FRMM performs robustly even when inputting a
short training sample (10% (140)) and verifying on a longer test
sample (90% (1260)), where the average ρ and RMSE are 0.69 and
0.75 (Fig. 5a, Supplementary Figs. S10 and S11). In addition, the
FRMM is robust with deteriorating noise (Fig. 5b and Supple-
mentary Fig. S12). For the length of input data, the FRMM also
outputs reliable predictions with short input data (Fig. 5c). For
the predicted step, the FRMM can find at most ðE � 1Þτ steps.
Theoretically, each τ can be employed to reconstruct an iso-
morphic attractor if the observed series is long enough30. Often,
only limited data are accessible, leading to poor reconstruction
with an even larger τ. Therefore, our framework is unable to make

long-term predictions. Despite this, our framework achieves at
most 30-step-ahead predictions for all components in the 90-
dimensional ordinary Lorenz system (Fig. 5d).

Remark on feature embedding
Identifying the low-dimensional feature manifold is critical for
our prediction. However, embedding a false feature manifold
(which has an inequivalent topology to the original system) may
result in poor prediction due to the one-to-one mapping not
being maintained between the feature manifold and the recon-
structed manifold. For example, LLE and Laplacian fail to identify
the 2-dimensional feature manifold of the 3-dimensional Lorenz
system, resulting in poor predictions (variable z) by adding them
to the FRMM framework (Fig. 6a, b). Conversely, despite the
diffusion map algorithm, ISOMAP and LTSA also output a reliable
feature manifold of the original attractor and could be used to
perform accurate predictions for all variables by substituting the

Fig. 3 |Model systems. a–cThe performances of the 3-dimensional Lorenz system.
d–f The performances of the 90-dimensional coupled Lorenz system, where the
prediction accuracies of all 90 components are distributed in f, in which the red
dotted line shows the average values of ρ and RMSE. g–i The predictions of the 90-
dimensional coupled Lorenz system with time-varying dynamics. The results

demonstrate that the FRMM framework can output reliable multistep ahead pre-
dictions for all components in the Lorenz system. Note:We validate the accuracyby
randomly selecting 50% of the series as a training sample (green shaded area), and
the others are test samples. k represents the randomly selected k-th data. STD
represents the standard deviation of the observed series.
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diffusion map in the FRMM framework (Fig. 6c, d). However, the
diffusion map outperforms ISOMAP and LTSA. Due to the diver-
sity of dynamic structures in various real-world systems and the
lack of sufficient details, only from their time series, there is no
golden rule to select an optimal feature embedding algorithm
(More discussions are given in SI Appendix Chapter 1.7).

Nevertheless, the five powerful techniques in this work make
sense in many high-dimensional systems.

Comparison with traditional methods
Many existing predictive models perform well when training on long
samples and verifying on short samples, but the performances often

Fig. 4 | Performance in real-world datasets. The predictions of daily wind speed
(m/s) (a–c), per second EEG signal (d–f), daily exchange rate (g–i), and traffic speed
(5-minute interval) (j–l). By randomly selecting 50% of the data as a test sample, the

FRMM is shown reliable for accurate multistep predictions in representative real-
world systems, where the predicted horizons are T = 20 (a–i) and T = 10(j–l).
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decrease sharplywith short training samples and long test samples.We
first compare the robustness of the length of training and test samples
with some traditional methods (e.g., ARIMA6, MVE8, SVM9, LSTM10,
RC11) and several advanced delay embedding-based frameworks (e.g.,
ARNN15, RDE14, MT-GPRM13. As depicted in Fig. 7, ARIMA fails to predict
variable z in the Lorenz system even when training on long samples,
whereas the other methods predict it accurately. Although the per-
formance decreases as the training sample length decreases and the
test sample length increases, FRMM always remains relatively robust
compared to othermethods. Second, we compare the performance of
our FRMM with the aforementioned methods across different data-
sets. The results indicate that FRMMyields relatively better predictions
(Table 1). In summary, FRMM is shown more reliable for the predic-
tions of all components in complex systems.

Final remark on FRMM framework
Our data-driven and model-free framework (FRMM) has been illu-
strated by both representative models and real-world systems, and
it has several advantages. First, FRMM performs predictions by
mapping between low-dimensional representations, which is well-
grounded in theory that the topological structure of a high-
dimensional dynamical system can be theoretically characterized
in low-dimensional space from delay embedding and feature
embedding. Second, for the uncertainties of the predictor and
predictive model, FRMM sets the feature manifold as a generalized
predictor to find future states of all components, and Gaussian
process regression is utilized as a fixed tool to train all mappings
between embedded manifolds. Third, many existing predictive

models directly train and fit relations between time series from a
system, and they may perform poorly due to the inconstant corre-
lations estimated from time series43 (the fitted parameters in a
model are often time-varying). Instead, FRMM finds the mapping
between low-dimensional representations of a system, and this
mapping is inherently supported. In summary, FRMM overcomes
the curse of dimensionality, has higher interpretability, and shows
potential to be applied in various fields.

Gaussian process regression is applied to find the mapping
between the feature manifold and the reconstructed manifold. We
need to note that this mapping can be also trained by some neural
network algorithms, e.g., ARNN utilizes reservoir computing to train a
mapping from the original attractor to the delay attractor. Despite the
satisfactory performance of neural networks, they often rely on suffi-
cient and rather large training samples.Besides, there remainunknown
hidden details as black-box characters inside of some artificial neural
networks. More importantly, the trade-offs between accuracy, cost,
and interpretability are needed to be balanced in practical applica-
tions. On this basis, it seems more satisfactory to integrate Gaussian
process regression in our FRMM framework.

FRMM is developed based on a popular framework, namely spa-
tiotemporal information (STI) transformation44. Several advanced STI-
based methods (e.g., MT-GPRM13, RDE14, and ARNN15) have been pro-
posed to predict various complex systems. FRMM shows individual
characteristics and meaningful improvements comparing with many
existing STI-based methods. We clarify them from three aspects,
including the prediction task, the architecture, and the theoretical
foundation.

Fig. 5 | Robustness tests. We conduct tests of length of training sample (a),
additive noise (b), length of input series (c), and predicted step (d). The 90-
dimensional ordinary Lorenz system is used here, and the performance of all
components is distributed as violins. FRMM performs better with longer training
samples and shorter test samples, it remains reliable when training short samples
but testing long samples (a). Given a target variable, FRMM can achieve multistep

ahead predictions, but remains challenging for even longer horizons (d). Overall,
the results demonstrate that the FRMM framework is robust for several funda-
mental factors. η represents the proportion of randomly selected training samples.
As with cross-validation, the longer the training sample is, the shorter the test
sample. σ represents the strength of additive white noise. L is the length of the
observed series. T denotes the predicted step.
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For the prediction task, it is still unsolved for the predictions of all
components in complex systems. Though some existing STI-based
frameworks have the potential to address this issue, their abilities are
often certifiedonpartial components andnot fully tested by all units in
complex systems. Note that verifying a predictive model on fewer
observations of complex systems may be risky. Take the generic
3-dimensional Lorenz system as an example (Eq. (16)), it is possible to
predict variables x and y through a linear regression model, but this
model fails to predict variable z45. It is uncritical to conclude that a
linear regression model can predict the Lorenz system. In this direc-
tion, FRMM is faithful and exhibits higher potential for the predictions
of all components in complex systems.

For the architecture, the main difference between FRMM and
other STI-based frameworks is the selection of predictor. Some STI-
based frameworks set the original system as the fixed predictor, e.g.,
MT-GPRM, while some frameworks may use different predictors for
different targets, e.g., for each target variable, ARNN finds several

highly related components as predictors. FRMM focuses on system’s
fundamental dynamics and sets the system’s low-dimensional feature
manifold as a fixed and generalized predictor, which gives an efficient
predictor when predicting different components in complex systems.

For the theoretical foundation, many existing STI-based fra-
meworks create the STI equation by non-delay embedding and
delay embedding, which originates from that a complex system
can be approximately represented by different coordinates.
Generally, the non-delay embedding of complex systems can be
approximated in a space with either low or high dimension. (e.g.,
MT-GPRM sets all selected observations as a representation of
original systems, RDE finds non-delay embedding by randomly
selecting several observations). The theoretical foundation of
FRMM is based on a well-accepted report that a high-dimensional
system often has redundant information, and the system’s fun-
damental dynamics (e.g., the topology of complex systems) are
restored in low-dimensional manifolds31–35. FRMM framework

Fig. 6 | Performance with other feature embedding techniques. Several repre-
sentative algorithms are considered, including LLE (a), Laplacian (b), ISOMAP (c),
and LTSA (d). LLE and Laplacian algorithms fail to find faithful low-dimensional
representations of Lorenz attractor, resulting in poor performance for some
components (e.g., variable z). While LTSA and ISOMAP preserve the fundamental

geometry of the original attractor, FRMM yields reliable predictions for all com-
ponents. Several algorithms can be utilized for feature embedding in the
3-dimensional Lorenz system, and an integration of Diffusion map performs the
best predictions among them (Fig. 3a).
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focuses on low-dimensional dynamics of complex systems, and
these low-dimensional dynamics are identified by feature
embedding and delay embedding. The feature embedding is
conducted by powerful manifold learning algorithms, and these
methods can automatically extract and restore the fundamental
topology of the original system in a low-dimensional space. Thus,
FRMM shows different theoretical foundations with existing STI-
based frameworks. Additionally, identifying the fundamental
dynamics of a high-dimensional system theoretically helps to
reduce the negative impacts of redundant information in a high-
dimensional system, and will be beneficial for better predictions.
These are also supported by the relatively higher performance
and robustness of FRMM in many real-world datasets (Table 1
and Fig. 7).

However, like other STI-based frameworks, FRMM fails to predict
different components synchronously. In other words, for each target
variable, one needs to train a suitable mapping. Additionally, FRMM
also has limitations for situations in which a system experiences

abrupt, rapid, and even irreversible transitions (known as tipping
points)46,47. The behavior of a system shifts between contrasting states,
and the historical rules are often not held when a system crosses the
threshold, leading to poor predictions of our framework. The phe-
nomenon of critical transitions, often caused by diverse external fac-
tors, is reported innumerous real-world systems.Despite this shortfall,
the FRMM framework also inspires to identify the tipping points of a
system, e.g., the occurrence of poor performance may indicate an
underlying shift in the system.

Methods
FRMM framework
Given an N-dimensional system with time series
xiðtÞ(i= 1,2, � � � ,N,t = 1,2, � � � ,L), we aim to predict all units within the
system. For this task, the main structure of our FRMM framework is
listed as follows:

(1) For each target variable xiðtÞ, we estimate the embedding
dimension E (cf. SI Appendix Chapter 3.3) and time lag τ based on the
false nearest neighbor algorithm and mutual information function,
respectively48,49. Then, this approach allows for reconstructing an
isomorphic manifoldMxi

in an E-dimensional space (E is usually much
smaller than N). The reconstructed manifold Mxi

is given as

Mxi
=

xið1Þ xið1 + τÞ � � � xið1 + ðE � 1ÞτÞ
..
. ..

. � � � ..
.

xiðhÞ xiðh+ τÞ � � � xiðLÞ
..
.

xiðLÞ
..
.

xiðL+ τÞ
� � �
� � �

..

.

xiðL+ ðE � 1ÞτÞ

2
666666664

3
777777775
, ð5Þ

where L is the length of the series and h = L� ðE � 1Þτ. Note that the
elements from xið1Þ to xiðLÞ are observed values from the original
system, others (xiðL+ τÞ, � � � ,xiðL+ ðE � 1ÞτÞ) are unknown, and our goal
is to predict them. According to Takens, each time series variable can
be used to reconstruct an E-dimensional manifold30, which gives the
fundamental basis for predicting all components in complex systems.

(2) Moreover, the low-dimensional manifolds for the system can
also be identified by preserving their fundamental geometric features
(feature embedding). In this work, we provide several techniques to
find low-dimensional representations for the systems, e.g., isometric
feature mapping (ISOMAP), locally linear embedding (LLE), Laplacian,
diffusion map, and local tangent space alignment (LTSA), since real-
world systems often behave with different dynamical structures and
have various geometric features.

We select LLE as an example to clarify the main idea of low-
dimensional embedding. Given an N-dimensional dimensional system
with observed vectors Xi = ðx1i,x2i, � � � ,xNiÞ, we approximate each point

Table 1 | Comparison of performance with several classic approaches

Real-world dataset Metric Method

FRMM ARNN RDE MVE SVM LTSM RC MT-GPRM ARIMA

Wind speed ρ
RMSE

0.86
0.41

0.88
0.51

0.61
0.79

0.52
0.97

0.45
0.88

0.61
0.85

0.67
0.7

0.83
0.52

0.12
0.89

EEG signal ρ
RMSE

0.89
0.6

0.68
0.74

0.51
0.79

0.45
1.03

0.34
0.91

0.38
0.82

0.56
0.89

0.61
0.87

0.05
1.07

Exchange rate ρ
RMSE

0.89
0.41

0.81
0.63

0.66
0.85

0.61
0.89

0.42
0.8

0.51
0.92

0.67
0.84

0.84
0.44

0.23
0.98

Traffic speed ρ
RMSE

0.73
0.7

0.67
0.82

0.56
0.91

0.42
1.01

0.17
0.94

0.31
0.97

0.53
0.96

0.7
0.68

-0.18
1.02

Note:Wecompare the average performance for all components in these systems,where 50%of the observed series are used as test samples (cross-validation). Two accuracymetrics are employed,
including ρ (Pearson correlation between predicted values and observed values, see the number in the first row for eachdataset) andRMSE (Normalized by the standard deviation of the input series,
see the number in the second row for eachdataset). All the datasets are the same to those in themain experiments in Results. All simulations are operated inMatlab 2018a, with the exception ofMVE
prediction, which is conducted using package “rEDM’”, in R.

Fig. 7 | Comparison of robustness with classic predictive models concerning
the length of the training sample, including ARIMA, SVM, MVE, LSTM, RC,
ARNN, RDE, and MT-GPRM. We compare the robustness of the one-step ahead
prediction of variable z from the 3-dimensional Lorenz system. Many methods
show reliable predictions when inputting long training samples, while our FRMM
remains robust when training on short samples and verifying on long samples. η
gives the proportion of the training sample.
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by a linear function of its K nearest neighbors (e.g.,K =8).

~Xi =
XN

i= 1

wijX j ,
X
j

wij = 1, ð6Þ

wherewij measures the weight between the ith point and jth point. To
find the optimal set ofweightsW

_

= ðw_ijÞ, weminimize the loss function

W
_

= arg min
XN

i = 1

Xi �
XN

j = 1

wijX j

�����

�����
2

: ð7Þ

We expect the local geometry in the original space to be preserved in
their low-dimensional manifold. Therefore, we fix the matrixW

_

= ðw_ijÞ
and find the low-dimensional embedding by solving

Y
_

= argmin
Y

XN

i = 1

Y i �
XN

j = 1

w
_

ijY j

�����

�����
2

, ð8Þ

where Y i represents the points in the low-dimensionalmanifold. Then,
the bottom E nonzero eigenvectors (from Eq. (8)) provide the low-
dimensional embedding M0

M0 =

y1ð1Þ � � � yE ð1Þ
..
. . .

. ..
.

y1ðLÞ . . . yE ðLÞ

2
664

3
775, ð9Þ

where yðtÞ 2 Y i. Consequently, each N-dimensional observation Xi is
mapped to an E-dimensional point Y i.

(3) An N-dimensional system is embedded into an E-dimensional
space from two different approaches, which then suggests a one-to-
one mapping between Mxi

and M0.

ψi : M0 ! Mxi
,ψiðY ðtÞÞ= ~XiðtÞ,i= 1,2, � � � ,N, ð10Þ

where Y ðtÞ 2 M0,~XiðtÞ 2 Mxi
. From Eq. (10), we infer
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ð11Þ

Since aone-to-onemapping between the featuremanifold and the
reconstructed manifold is held, it is possible to train a mapping from
the feature manifold to each coordinate of the reconstructed mani-
fold. In particular, for longer horizon predictions, we aim to find the
mapping from the feature manifold to the final coordinate of the
reconstructed manifold (i.e., xðt + ðE � 1ÞτÞ,t = 1,2, � � � ,L). These pro-
cesses can be also explained mathematically, as follows.

Based on Eq. (11), we deduce the form (12)
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In Eq. (12), ϕ
_

i can be easily obtained by the transform (13)
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According to Eqs. (11) and (12), we deduce a form (14)

ψ
_

i
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where ψ
_

iðxÞ=ϕ
_

iψiðxÞ. Equation (14) suggests a mapping from the fea-
ture manifold to the final coordinate of the reconstructed manifold.

All the elements onM0 (see the leftmatrix in Eq. (14)) are obtained
via manifold learning algorithms, whereas partial components on Mxi
are unknown, i.e., xiðL+ τÞ, � � � ,xiðL+ ðE � 1ÞτÞ(see the right matrix in
Eq. (14)), and they represent the future dynamics of the variable xiðtÞ.
Onceψ

_

i is identified, one canfind atmost ðE � 1Þτ-forwarddynamicsof
a selected variable xiðtÞ.

In a dynamical system, each time series variable can be used to
reconstruct a low-dimensional embedding (i.e., Mxi

, where
i= 1,2, � � � ,N). This approach thus enables the construction of N map-
pings (i.e.,ψ

_

i,i= 1,2, � � � ,N) fromM0 to thefinal coordinate ofMxi
, which

yieldsmultisteppredictions for all units inhigh-dimensional dynamical
systems. In this work, we use the Gaussian process regression algo-
rithm to identify every ψ

_

i.
(4) We validate the performance by randomly dividing the

observed series (xið1 + ðE � 1ÞτÞ,xið2 + ðE � 1ÞτÞ, � � � ,xiðLÞ) into a training
set and a test set (i.e., cross-validation). The correlation between the
observed values and predicted values (ρ) and the normalized root
mean square error (RMSE) are applied to measure the performance.

ρ=
covðx,~xÞ
ηxη~x

,RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

P ðx � ~xÞ2
q

ηx
, ð15Þ

where x and ~x are the original and predicted data, respectively. ηx

represents the standard deviation of the series x.

Benchmark model systems
The coupled Lorenz system is defined as Eq. (16), where the ith
(i= 1,2, � � � ,N) subsystem is coupled with the (i−1) subsystem via c. To
make the system closed, we set i−1 as N for i = 1.

_xi = σðtÞðyi � xiÞ+ cxi�1,
_yi =axi � yi � xizi,
_zi =bzi + xiyi,

ð16Þ

whereσðtÞ is the time-varying parameter. a and b are set to be generic
values, i.e., a=28,b= � 8=3.

For the time-invariant case (σðtÞ � 10), Eq. (16) depicts an ordinary
Lorenz system. Particularly, we obtain a 3-dimensional Lorenz system
when N = 1 and c=0. We define a 90-dimensional coupled Lorenz
system when N =30 and c=0:1.

For the time-varying case, we set σðtÞ to be increased (from an
initial value of 10) by 0.2 after every ten time intervals,
i.e., σðtÞ= 10+0:2ðtj10Þ.
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Togenerate thediscrete data, we set the initial state as0.1, and the
output series has a length of 1500. Thefirst 100data points are ignored
to avoid transient dynamics. We embed the 3-dimensional ordinary
Lorenz system into a 2-dimensional space, where E =2,τ = 10. For the
90-dimensional ordinary and time-varying Lorenz systems, the
embedding dimension and time lag are E = 11 and τ = 1, respectively.
The diffusion map algorithm is used to find their low-dimensional
representations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The details of real-world datasets are listed in SI Appendix Chapter 1.2.
All real-world datasets are available at https://github.com/wt1234wt/
FRMM-framework. The details of datasets from model systems are
given in Methods.

Code availability
The related codes are available at https://github.com/wt1234wt/
FRMM-framework.
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