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Expected and unexpected effects after
systemic inhibition of Hippo transcriptional
output in cancer

Isabel Baroja 1,2, Nikolaos C. Kyriakidis 3, Georg Halder 4 &
Iván M. Moya 1,4

Hyperactivation of YAP/TAZ, the Hippo pathway downstream effectors, is
common in human cancer. The requirement of YAP/TAZ for cancer cell sur-
vival in preclinical models, prompted the development of pharmacological
inhibitors that suppress their transcriptional activity. However, systemic YAP/
TAZ inhibition may sometimes have unpredictable patient outcomes, with
limited or even adverse effects because YAP/TAZ action is not simply tumor
promoting but also tumor suppressive in some cell types. Here, we review the
role of the Hippo pathway in distinct tumor cell populations, discuss the
impact of inhibiting Hippo output on tumor growth, and examine current
developments in YAP/TAZ inhibitors.

The Hippo pathway is a signal transduction pathway (Box 1A) that has
emerged as a potential target to treat a variety of cancers. This is
because the Hippo pathway is widely deregulated in cancer cells and is
associated with poor prognosis in different types of human cancer1,2.
Mutations in Hippo pathway components, such as amplifications of
YAP or loss of function mutations in NF2, LATS1, and LATS2, are fre-
quently present in many cancer types1,2. However, hyperactivation of
YAP/TAZ in cancer is present at much higher frequency than this,
probably caused by non-genetic mechanisms1,2. Hippo pathway
deregulation leads to nuclear localization and hyperactivation of YAP
and TAZ, which promote tumor growth by driving a transcriptional
program that induces cancer cell plasticity, resistance to cellular
stresses, avoidance of immune surveillance, and metastatic behavior
(Box 1B)1,2. Genetic experiments in human cancer cells and in mouse
cancer models showed that YAP/TAZ activity is often required for
tumor initiation and progression1,2. Thus, YAP/TAZ are attractive tar-
gets for cancer therapy because they are required for the development
of different types of cancer in many organs.

Several small molecule inhibitors that block the function of the
YAP/TAZ-TEAD transcription factor complexes were recently devel-
oped and some of them are currently being tested in clinical trials for
cancer therapy. YAP/TAZ-TEAD inhibition triggered tumor regression
in preclinical mouse models for mesothelioma3–7 and first data report

clinical benefits for mesothelioma patients and patients with NF2
mutant sarcoma: ION537 (NCT04659096), VT3989 (NCT04665206),
IK-930 88 NCT05228015) and IAG933 (NCT04857372). It is expected
that YAP/TAZ-TEAD inhibition also eliminates cancers with driver
mutations in Hippo pathway components such as mesothelioma,
meningioma, renal cell carcinoma and cholangiocarcinoma and can-
cers where YAP/TAZ are hyperactivated but that do not have driver
mutations in Hippo pathway components1,2,8. However, while it is
expected that YAP/TAZ-TEAD inhibitors may offer broad therapeutic
opportunities, it is currently not known whether patients without dri-
ver mutations in Hippo pathway components will benefit from YAP/
TAZ-TEAD inhibitor treatment. In fact, predicting the effects of sys-
temic YAP/TAZ-TEAD inhibition by a small molecule inhibitor is not
trivial. Systemic inhibition blocks YAP/TAZ not only in tumor cells but
in all cells of the body, whichmay trigger outcomes that are not simply
predicted from genetic experiments where YAP/TAZ-TEAD were spe-
cifically inactivated in tumor cells. For example, if YAP/TAZ are
required for a tumor-suppressing activity in tumor-associated cells,
then systemic YAP/TAZ-TEAD inhibition may promote tumor growth
even if YAP/TAZ are active in tumor cells. In this article, we review our
current understanding of the role of the Hippo pathway in distinct
tumor and tumor-associated cells and discuss potential challenges and
outcomes of systemic YAP/TAZ-TEAD inhibition.
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BOX 1

The Hippo signaling pathway
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The Hippo pathway is a signal transduction pathway that inte-
grates extra- and intracellular signals into transcriptional programs
thatmodulate cell fate, function, and survival95,96.A At the core of the
Hippo pathway is a kinase cascade composed of the mammalian
Ste20-like kinases 1 and 2 (MST1 and MST2), the mitogen-activated
protein kinase 4 (MAPK4) family, the large tumor suppressor kinases 1
and 2 (LATS1 and LATS2), the homologous Yes-associated protein
(YAP) and transcriptional co-activator with PDZ-binding motif (TAZ),
and the TEA domain family of transcription factors (TEAD1-4). Acti-
vation of the Hippo pathway inhibits the transcriptional output of the
pathway and depends on the phosphorylation of the core Hippo
kinases, MST1/2, and LATS1/2. When MST1-2/MAPK4 are active, they
phosphorylate and activate the LATS kinases, which in turn phos-
phorylate and inactivate YAP and TAZ. The MST1/2 autopho-
sphorylation can be repressed by the STRIPAK–SLMAP protein
phosphatase 2 A (PP2A) complex. MST1/2 are also activated by TAO
kinases, whereas LATS1/2 can also be phosphorylated by MAP4Ks.
Activation of LATS1/2 induces the phosphorylation of YAP and TAZ
and inhibits their transcription co-activator function. Phosphorylated
YAP/TAZ are exported from the nucleus and degraded in the cyto-
plasm or sequestered at cellular junctions. In contrast, when the core
kinases are inactive, YAP and TAZ translocate into the nucleus where

they act as transcriptional co-activators by binding to TEAD and other
transcription factors and regulate the expression of target genes. The
activity of the core components of the Hippo pathway is regulated by
multiple mechanisms, such as mechanical forces and integrin sig-
naling from the extracellular matrix (ECM) that modulate the actin
cytoskeleton; mechanisms involved in establishing apical-basal cell
polarity, including the Crumbs complex and the aPKC–PAR complex;
the use of scaffolding proteins located at cell junctions such as
angiomotin (AMOT), neurofibromin 2 (NF2; also known as Merlin),
kidney and brain protein (KIBRA; also known as WWC1), AJUBA, and
zonula occludens (ZO) proteins; and receptor tyrosine kinases (RTKs)
and G protein-coupled receptors (GPCRs) that act at the cell surface.
Also, Hippo pathway components can interact with components of
other pathways, such as the WNT signaling pathway, where the β-
Catenin destruction complex associates with YAP/TAZ that are then
targeted for β-TrCP-mediated degradation. In addition, metabolic
inputs are relayed to Hippo signaling via AMP-activated protein
kinase (AMPK). B YAP and TAZ regulate target genes that drive
diverse processes depending on the cell type where they are acti-
vated. P, phosphorylation; RASSF, RAS association domain family;
Ub, ubiquitylation.
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YAP/TAZ-TEAD as promoters of tumor growth
Activated YAP/TAZ are often promoters of tumor growth, and may do
so in three different ways: First, YAP/TAZ may activate genes that
promote cell proliferation, survival andother cancer hallmarks directly
in cancer cells (Fig. 1A). Second, YAP/TAZ target genes may non-cell
autonomously activate pro-tumoral functions in non-cancer cells, such
as immune cells, and endothelial cells (Fig.1B). Third, activationof YAP/
TAZ in non-cancer cells may modulate their behavior to suport tumor
growth (Fig. 2A, B). Inhibition of YAP/TAZ-TEAD in all these cases will
cause tumor regression by blocking tumor promoting functions in
cancer cells and non-cancer cells.

Tumor-promoting functions of YAP/TAZ in cancer cells
Deregulation of the Hippo pathway has been observed in a variety of
human cancers. Genetic inactivation of Yap/Taz strongly reduces the
number of tumors inmousemodels for liver cancer, colorectal cancer,
non-small-cell lung cancer, breast cancer, gastric cancer, pancreatic
adenocarcinoma, and glioblastoma1,2. In those cancers, hyperactiva-
tion of YAP and TAZ induces a transcriptional program that includes
target genes involved in cell cycle progression, DNA repair, cell sur-
vival, and cell migration. Key target genes include CDK1 and CCND1,
which direct cell cycle progression, and synthesis and repair of DNA9;
c-MYC, which promotes tumor initiation and progression10; SOX2,
which confers cancer stem cell traits11; AXL, BIRC5 and BCL2, which
promote cancer cell survival and metastasis12,13; CCN1 (CYR61), which
regulates cell proliferation and angiogenesis14;CCN2 (connective tissue
growth factor, CTGF), which regulates cell adhesion and migration15;
and CDH2 (N-CADHERIN), SNAI1 and SNAI2, (SLUG) which promote
metastatic potential and induce epithelial-to-mesenchymal
transition16. These and other YAP/TAZ target genes promote cancer

development and position theHippo pathway as a prime candidate for
targeted therapy against cancer. Thus, inhibiting YAP/TAZ may sup-
press those cancer cell traits and cause tumor regression.

YAP/TAZ in cancer cells induces pro-tumoral immune cell
activity
YAP/TAZ activity in cancer cells can indirectly promote tumor growth
by modifying the action of immune cells present in the tumor micro-
environment, whichcanbe coerced tonurture cancer cells (Fig.1B). For
example, the expression of YAP/TAZ in liver, colon andprostate cancer
cells affected the recruitment and polarization of immunosuppressive
M2 macrophages17–19. In the mouse liver, activation of YAP/TAZ in
hepatocytes by deletion ofMst1 andMst2 or by overexpression of Yap
caused liver inflammation and promoted macrophage infiltration in
addition to their classic effects of inducing hepatocyte proliferation
and liver cancer18–20. Mechanistically, YAP/TAZ drive the expression o
Ccl2, which encodes for monocyte chemoattractant protein 1 (MCP1)
and Csf1, wich encodes for colony stimulating factor 1 (CSF1). These
signaling proteins trigger the infiltration of macrophages with mixed
M1 and M2 phenotypes, which boosted immune cell evasion, clonal
expansion, and tumor growth. In addition, YAP/TAZ activation in
human cancer cells facilitated the evasion of adaptative immunity by
promoting T-cell exhaustion through inducing PD-L1 expression
(Fig.1B)21,22. Collectively, these studies indicate that the tumor-
promoting effect of YAP/TAZ activation in cancer cells includes the
induction of signaling molecules that modulate the behavior of
immune cells and generate a tumor-promoting environment. Thus, in
addition to the direct effects on cancer cells, inhibition of YAP/TAZ-
TEAD may indirectly enhance the antitumoral surveillance activity of
different immune cells.
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Fig. 1 | Tumor promoting functions of YAP/TAZ in cancer cells. A YAP and TAZ
are frequently activated in cancer cells, where they exert tumor promoting func-
tions. Inmost types of cancer cells, their activationpromotes cancer progressionby
stimulating cell proliferation, survival, and migration. B YAP/TAZ activation in
cancer cells can also promote tumor growth by non-cell autonomouslymodulating
the activity of tumor associated cells. YAP and TAZ in cancer cell can indirectly
suppress the differentiation and activation of cytotoxic T-cells cells and the
recruitment and differentiation immune suppressive cells such as Treg and tumor-

associated M2-like macrophages by regulating the expression of immune mod-
ulatory signaling proteins. Also, YAP and TAZ activation in cancer cells promotes
the expression of pro-angiogenic factors, such as VEGF, leading to the formation of
new blood vessels that supply nutrients and oxygen to the growing tumor. Thus,
tumor growth is orchestrated by cell autonomous and non-cell autonomous effects
of YAP/TAZ in cancer cells. PD1, ProgrammedCell Death 1; PD-L1, Programmed Cell
Death 1 Ligand 1.
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Activation of YAP/TAZ in cancer cells recruits endothelial cells
Tumor growth relies on proper vascularization for the delivery of
oxygen and nutrients. YAP/TAZ promotes angiogenesis and tumor
growth by inducing the expression of vascular endothelial growth
factor (VEGFA) and other genes encoding for secreted pro-angiogenic
factors in hypoxic cancer cells (Fig.1B)23. Knockdown of YAP in renal
carcinoma cells decreased the levels of VEGF expression, which
resulted in poor recruitment of endothelial cells in vitro and low
induction of tumor angiogenesis in vivo24. Therefore, inhibiting YAP/
TAZ-TEAD in cancer cells dampens paracrine pro-angiogenic signaling
and presents a strategy to suppress the formation of new blood ves-
sels. This may be clinically important because targeting VEGF and its
receptors has limited therapeutic efficacy, since the most common
anti-VEGF drug (bevacizumab) blocks the binding of VEGF to receptor
tyrosine kinases (VEGFRs) but not to its alternative coreceptors Neu-
ropilin 1 and 2 (NRP1/2), which can transduce VEGF signaling in the
absence of VEGFR25,26. Thus, inhibiting YAP/TAZ-TEAD offers the pos-
sibility to reduce VEGF production and signaling without needing to
inhibit several redundant VEGF receptors.

Tumor-promoting function of YAP/TAZ in macrophages
M2macrophages suppress immune clearance, stimulate angiogenesis,
and promote cancer cell proliferation. Experimental YAP/TAZ activa-
tion in human macrophages induced a pro-tumor M2-like phenotype
(Fig.2A)27. Thus, YAP activation increased the expression of M2-
associated markers such as IL-10, TG, mFB1, and VEGFA but decreased
the M1marker IL1B28. Conversely, silencing YAP expression in cultured
human monocytic cells, which are undifferentiated macrophage pre-
cursor cells, reduced the levels of the M2 markers interleukin 4 (IL-4),
transforming growth factor B, β1 (TGFB), and chitinase-like protein
Ym2 (CHIA), while it increased the expression of nitric oxide synthase
(NOS2), which is a M1 marker29. Interestingly, cancer cells can activate
YAP in macrophages to enhance their microenvironment: triple-
negative human breast cancer cells caused the activation of YAP in
co-cultured macrophages, which in turn induced M2 polarization that
then promoted cancer cell metastasis and decreasedmouse survival in
xenograft models28. Therefore, inhibition of YAP/TAZ activity in mac-
rophages and their precursors may promote M1-like macrophage
polarization anddampen tumorgrowth by activating their antitumoral
activity.

YAP activation in T-cells inhibits adaptive immunity
Inhibition of YAP can affect tumor growth by influencing the devel-
opment and function of different types of T-cells (Fig.2A). First, YAP
(but not TAZ) is required for the activation, differentiation, and
effector function of regulatory T-cells (Treg)30,31. Tregs are a specia-
lized subpopulation of T-cells that suppress immune responses and
inhibit T-cell proliferation and antitumor immunity. Deletion of Yap in
mouse Tregs reduced Acvr1c expression and the effectiveness of
ACVR1C protein in suppressing the proliferation and function of naïve
CD4+ T-cells, indicating that YAP promotes the immune suppressive
function of Tregs31,32. Second, high levels of YAP in T-cells is correlated
with decreased survival in diverse human cancers because YAP inhibits
cytotoxic T-cell differentiation and induces a dysfunctional or
exhausted state33. Deletion of YAP in human cultured CD8+ T-cells
enhanced their cytotoxic activity and their ability to kill OVA-expres-
sing melanoma tumor cells (B16F10)30, and deletion of Yap in mouse
effector T-cells induced T-cell activation, differentiation and enhanced
their ability to infiltrate and eliminate highly immunosuppressive
melanoma and Lewis lung carcinomas33. Mechanistically, Yap deletion
caused the upregulation of beta-lymphocyte-induced maturation
protein 1 (BLIMP1), which is an inducer of terminal T-cell differentia-
tion, and elevated the production of interferon gamma (IFNγ) and
tumor necrosis factor alpha (TNFα) which cause anti-tumor effects34.
Thus, systemically inhibiting YAP-TEAD may enhance the antitumoral

function of T-cells while blocking the immune-suppressing effect of
Tregs30,31.

YAP/TAZ activation in fibroblasts promotes tumor growth
Cancer-associated fibroblasts (CAFs) are active components of the
tumor microenvironment that can promote tumor growth by remo-
deling the extracellular matrix and by modulating angiogenesis,
immune cell function, cancer cell metastasis, proliferation, and drug
resistance. YAP plays a key role in the conversion of quiescent fibro-
blasts into activated fibroblasts in various normal and malignant
tissues35,36. In the liver, resident fibroblasts, so-called stellate cells, have
lowYAP/TAZ activity, but require YAP/TAZ activation to transition into
an activated, pro-fibrotic and pro-inflammatory state in chronic liver
disease37. Analogously, in breast and prostate cancer tissues, activated
fibroblasts show strong nuclear YAP, while YAP localizes to the cyto-
plasm in quiescent and inactivated fibroblasts35,36.

Experimental YAP/TAZ activation in fibroblasts is sufficient
to promote a stiffer and pro-fibrotic microenvironment that potenti-
ates tumor growth. Overexpression of human YAP in mouse fibro-
blasts induced the expression of the pro-fibrotic mediator genes
Interleukin 11 IL11, Connective tissue growth factor (CTGF), Cysteine-rich
angiogenic inducer 61 (CYR61), COL1A1 (collagen) and LAMA1 (laminin),
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Fig. 2 | Tumor promoting functions of YAP/TAZ activity in tumor-
associated cells. A YAP and TAZ can induce tumor growth by promoting the
recruitment and differentiation of immune suppressive cells such as tumor-
associated M2-like macrophages and Tregs or by inhibiting the differentiation and
activation of cytotoxic T-cells. B YAP and TAZ activation in endothelial cells sti-
mulates their migration and proliferation, which is required for tumor angiogen-
esis. Therefore, inhibiting YAP and TAZ in endothelial cells could potentially
decrease tumor growth by reducing tumor angiogenesis, which would deplete the
supply of nutrients and oxygen to the tumor. Treg, regulatory T-cell.

Perspective https://doi.org/10.1038/s41467-024-46531-1

Nature Communications |         (2024) 15:2700 4



and intracellular regulators of the cytoskeleton, such as smooth mus-
cle actin (ACTA2), diaphanous related formin 3 (DIAPH3), anillin actin
binding protein (ANLN) and myosin light chain 2 and 9 (MYL2/9)35. The
cumulative action of these genes results in the activation of fibroblast
and in the stiffening of the surrounding matrix. When YAP-activated
fibroblasts were xenotransplanted together with prostate cancer cells
into mice, cancer cells proliferated more and tumors grew larger than
in mice where cancer cells were xenotransplanted alone or with
fibroblasts where YAP expression was silenced by shRNA36. Similarly, in
subcutaneous xenograft models of colorectal cancer, downregulation
of the upstream component of the Hippo pathway MOB1A in CAFs,
activated YAP/TAZ in CAFs, which in turn promoted cancer cell pro-
liferation and tumor growth38. In contrast, experimental depletion of
YAP in CAFs by siRNA knockdown in mouse models of human breast
cancer and squamous cell carcinoma reduced their ability to form
fibrous collagen networks, induce angiogenesis, and promote tumor
growth and metastasis35. Thus, YAP activation in CAFs is a general
feature of diverse cancers. Therefore, systemic inhibition of YAP may
block CAF activation, reduce the stiffness of the tumor micro-
environment, and non-cell autonomously restrict the proliferation and
survival of a variety of cancer cells.

YAP/TAZ activation in endothelial cells drive angiogenesis
YAP/TAZ are required in endothelial cells for the development of new
blood vessels in normal and malignant tissues (Fig. 2B)39–41. In the
developing vasculature of themouse retina, for example, YAP and TAZ
are expressed in all endothelial cells, but are mainly activated at the
angiogenic front, the zone of the retina where new vessels form39–41.
Once activated in endothelial cells, YAP/TAZ drive the expression of
target genes that promote endothelial cell proliferation, cell adhesion,
migration, and cytoskeleton remodeling40,42. VEGF is a major inducer
of angiogenesis, and it signals through VEGF receptors (VEGFR) that
activate YAP/TAZ transcriptional activity and endothelial cell
sprouting40,42. Interestingly,VEGFA is a YAP-target gene in cancer cells24

and experimental activation of YAP in mouse endothelial cells of
transplanted Lewis lung carcinoma promoted tumor growth and
progression by enhancing angiogenesis and tumor cell invasion42.
Therefore, YAP induces angiogenesis by two mechanisms: First, YAP
activation in cancer cells induces the production of VEGF (Fig.1B) and
second, YAP activation in endothelial cells triggers angiogenesis
(Fig.2B). The central role of YAP/TAZ for the activation and function of
VEGF signalinghighlights thepotential of targetingYAP/TAZactivity to
modulate normal and tumor angiogenesis.

Tumor growth in mouse models depends on the activation of
YAP/TAZ in endothelial cells and the induction of tumor
angiogenesis42–44. For example, pharmacological inhibition of YAP/
TAZ-TEAD function by Verteporfin suppressed in vitro angiogenesis in
coculture assays of humanendothelial cellswith esophageal squamous
carcinoma cells44 or with pancreatic ductal adenocarcinoma cells43. In
vivo, deletion of Yap/Taz or Tead1,2,4 in endothelial cells stunted
vascular growth in mice40,45. In cancer, inhibition of YAP/TAZ with
Verteporfin or genetic ablation of Yap/Taz in endothelial cells reduced
vessel density and tumor progression in mouse models of colorectal
cancer and melanoma46. Similarly, Verteporfin suppressed angiogen-
esis and vasculogenic mimicry in xenograft models of pancreatic
ductal adenocarcinoma via suppressing Angpt2, Mmp2, Cdh5, and
Acta2 expression43. Thus, systemic inhibition of YAP/TAZ can target
tumor endothelial cells and may be a promising therapeutic approach
for treating several types of cancer.

Current YAP/TAZ inhibitors mainly target the binding of YAP/TAZ
to TEAD; yet, in addition, or in parallel to TEAD proteins45, the pro-
angiogenic function of YAP/TAZ are mediated by binding to signal
transducer and activator of transcription 3 (STAT3)42,46,47. YAP/TAZ can
form large complexes with STAT3, TEAD, and AP-1 in other cell types48,
yet whether YAP/TAZ bind to STAT3 and TEAD independently or

whether all these proteins form a large complex in endothelial cells is
not known. However, genetic ablation of mouse Stat3 in endothelial
cells inhibited tumor angiogenesis and the growth of colorectal cancer
and melanoma in mice, thus phenocopying the effects of Yap/Taz
deletion46. Therefore, the individual deletion of any of these genes
resulted in similar phenotypes in endothelial cells, implying that YAP/
TAZ, TEADandSTAT3 collaboratively induce angiogenicgrowth. Thus,
while current inhibitors blocking YAP/TAZ-TEAD function might be
effective against tumor angiogenesis, a more potent inhibition of
tumor angiogenesis may be achieved by blocking complex formation
between YAP/TAZ, AP1, and STAT3.

Altogether, the studies presented in this section illustrate that
YAP/TAZ can not only promote tumor growth and cancer progression
when they are activated in cancer cells but alsowhen they are activated
in diverse cancer associated cell types. These results imply that sys-
temic inhibition of YAP/TAZ in all cells may cause more dramatic anti-
tumor effects thanwould be predicted based on effects when YAP/TAZ
were specifically deleted in cancer cells or another cell population. For
example, it is conceivable that systemic YAP/TAZ inhibitionmay cause
regression of tumors for which YAP/TAZ deletion in tumor cells spe-
cifically had no effect on tumor growth.

YAP/TAZ as suppressors of tumor growth
In contrast to the examples discussed above, in this section, we discuss
cases where YAP/TAZ act as tumor suppressors and where their sys-
temic inhibition may promote tumor growth.

Tumor suppressing functions of YAP/TAZ in cancer cells
While YAP and TAZ typically promote the proliferation of cancer cells
and tumor growth, there are cases in breast, prostate, lung, and colon
cancers, where their activation in cancer cells suppresses cell pro-
liferation and survival (Fig. 3A)49–53. In luminal breast cancer, for
instance, high levels of YAP expression are correlated with better
patient survival due to YAP-induced cell death54. Hyperactivation of
YAP in cultured MCF7 cells, an ER+ luminal-like breast cancer cell line,
induced the expression of the pro-apoptotic genes encoding for
PUMA, BAX and p53AIP149, and experimental hyperactivation of YAP in
ER+ breast tumors in vivo inhibited the ERα transcriptional program
and caused cell death50,54. Similarly, in patient-derived xenografts and
mouse models of primary and metastatic colon cancer, the experi-
mental hyperactivation of YAP in cancer cells suppressed tumor
growth even when WNT signaling was constitutively activated by the
deletion of Apc (Fig.3A)52,53. Such tumor suppressor effects of YAP/TAZ
were not limited to solid malignancies as YAP/TAZ activation in mye-
loma, lymphoma, and leukemia caused cellular stress that triggered
DNA damage and induced apoptosis55,56.

These examples indicate that inhibiting YAP/TAZ activity in some
cancers may promote tumor growth rather than cause tumor regres-
sion. Indeed, loss of YAP in human colorectal cancer cells is correlated
with increased cancer cell proliferation, the development of higher-
grade tumors, and worse patient prognosis52,53. Similarly, YAP and TAZ
are often inactivated in hematological cancer cells due to gene dele-
tions or transcriptional and posttranscriptional repression
mechanisms55,56. In mouse models of xenotransplanted human breast
cancer cells, the genetic inactivation of YAP/TAZ reduced the survival
of mice and promoted tumor growth and progression50.Altogether,
these findings suggest that YAP/TAZ may restrain tumor growth in
some cancers, and that inhibition of YAP/TAZ-TEAD could worsen
some patient outcomes.

YAP/TAZ activate antitumoral immune surveillance
High YAP/TAZ activity in cancer cells can induce tumor suppressing
immune surveillance in some contexts (Fig.3B). Activation of YAP/TAZ
by loss of the Hippo pathway kinases Lats1 and Lats2 in tumor cells of
different murine syngeneic tumor models of melanoma, head and
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neck carcinoma, and breast cancer enhanced anti-tumor immune
responses that lead to cancer cell elimination57. This was because the
activation of YAP/TAZ induced the secretion of extracellular vesicles
that mobilized the innate immune system to mount a strong anti-
tumor response (Fig.3B)57. Such extracellular vesicles, known as exo-
somes, were loadedwith nucleic-acids from cancer cells and induced a
type I interferon response in cytotoxic T-cells and B-cells by activation
of the endogenous nucleic-acid-sensing pathways through Toll-like
receptor signaling57. Interestingly, YAP/TAZ activation by Lats1/2
deletion not only led to the elimination of existing tumors but induced
a long-lasting recognition of tumor cells by the adaptive immune
system57. Thus, YAP/TAZ activation in cancer cells induced a persistent
“vaccine-like” anti-tumor immunogenic response that protected mice
from subsequent tumor outgrowths57. This implies that inhibiting YAP/
TAZ-TEAD in some cancers driven by Hippo pathway mutations may
potentially enhance tumor growth by reducing their immunogenicity.
However, thismay not be a problem if the immune systemwas already
trained before the start of the treatment.

Tumor suppressing functions of YAP/TAZ in immune cells
Inhibiting YAP/TAZ-TEAD can favor tumor growth by suppressing
neutrophil and T-cell anti-cancer activities58,59. Experimental hyper-
activation of YAP/TAZ in mouse neutrophils induced their differ-
entiation into tumor specific CD54+ neutrophils which suppressed
refractory gastric cancer58. Conversely, deletion of Yap/Taz in neu-
trophils impaired their differentiation into CD54+ tumor specific
neutrophils and reduced their antitumor activity, leading to

accelerated gastric cancer progression58. Similarly, TAZ plays a role in
the polarization of immune suppressive regulatory T-cells (Treg cells)
in mice. Endogenous or experimental activation of TAZ in naïve
CD4 + T-helper cells inhibited their differentiation into Treg cells but
promoted the development of Th17 cells, a subtype of proin-
flammatory effector helper T-cells (Fig. 4A)59. Thus, this function of
TAZ is tumor suppressive as it activates immune surveillance (Fig.4A).
Mechanistically, TAZ activated the Th17-specifying transcription factor
RORrγT and promoted the proteasomal degradation of the Treg
master regulator FOXP359. Thus, TAZ promotes the differentiation of
Th17 cells at the expense of Treg cells. Notably, the Th17-inducing
function of TAZ is independent of the canonical Hippo pathway tran-
scription factors TEAD1-4: overexpression of TEAD1 acted antag-
onistically by sequestering TAZ and preventing the binding to RORγT
and FOXP3, thereby enabling excessive Treg cell differentiation59.
Because downregulation of TAZ activity is sufficient to increase the
number of Treg cells in mice59, systemic inhibition of TAZ may pro-
mote tumor growth by suppressing antitumor immunity responses.

Tumor suppressing functions of YAP/TAZ in peritumoral cells
Normal cells can activate an endogenous antitumorigenic defense
mechanism, known as cell competition, which can restrain tumor
development by direct competition between normal and malignant
cells (Fig.4B)60,61. Cell competition refers to the phenomenon whereby
“fitter” cells (also known as winner cells) cause the elimination of
neighboring “weaker” or abnormal cells (also known as loser cells). In
normal tissues this increases the overall health of the tissue by elim-
inating weak, damaged, or premalignant cells and replacing themwith
healthier normal cells. However, malignant cells can hijack this
mechanism which then promotes tumor growth and survival at the
expense of adjacent normal cells (Fig.4B)60,61. The relative level of YAP/
TAZ between cells is a factor that determines whether a cell becomes a
winner or loser: cells expressing higher levels of YAP/TAZ become
winner cells while cells expressing relatively lower levels become loser
cells62. Thus, activation of YAP/TAZ in cancer cells increases their
relative fitness and drives tumor growth. Interestingly, normal hepa-
tocytes surrounding liver tumors in mice activated YAP/TAZ, which
elevated their competitiveness and restrained tumor growth62. This
endogenous activation of YAP/TAZ in normal hepatocytes was not
sufficient to halt the growth of liver tumors, but enough to restrain
tumor growth because deletion of Yap/Taz in normal hepatocytes
surrounding liver tumors exacerbated tumor growth62. Conversely,
experimental hyperactivation of YAP/TAZ in peritumoral hepatocytes
by knockout of Lats1/2 or by conditional overexpression of YAP, trig-
gered the elimination of early liver tumors and melanoma-derived
metastases in the mouse liver62. Importantly, the survival of those
tumor cells depended on the relative activity of YAP and TAZ in tumor
cells versus surrounding parenchymal cells because deletion of Yap/
Taz specifically in tumor cells suppressed tumor growth, but simulta-
neousdeletionofYap/Taz in tumor cells andparenchymal hepatocytes
abolished cell competition and permitted tumor growth62. While it is
not yet known whether similar tumor suppressor mechanisms take
place in humans, human peritumoral hepatocytes also activate YAP in
the presence of liver cancer but not in normal livers62. It is thus likely
that cell competition is also relevant for the development of liver
cancer in humans. Similar mechanisms may also operate in other
organs such as the pancreas and brain63,64. In the pancreas, RasV12

expressing cells can be apically extruded from the epithelium through
cell competition with surrounding normal cells63, while in the brain
differential expression of YAP in glioma cells leads to clonal dom-
inanceof tumor cells expressing higher levels of YAP and the induction
of apoptosis in cells expressing lower levels of YAP64. These findings
imply that, in some cases, systemic inhibition of YAP/TAZ-TEAD may
dampen tumor suppressive cell competition thereby elevating tumor
cell fitness and viability.
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Fig. 3 | Tumor suppressive functions of YAP/TAZ in cancer cells. A YAP/TAZ
activation in cancer cells can also cell autonomously trigger tumor suppression.
This is because in some types of cancers, such as breast, colon and hematological
cancers, YAP/TAZ activation induces cancer cell death. B YAP/TAZ activation in
cancer cells can inhibit tumor growth by non-cell autonomously activating tumor
suppressive T-cells. This isbecauseYAP/TAZ activation in cancer cellspromotes the
production and secretion of exosomes that stimulate antigen presenting cells and
activate T-cells in the tumor microenvironment.
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Strategies for YAP/TAZ-TEAD inhibition in cancer
therapy
Several strategies are being pursued to inhibit YAP/TAZ function,
including the development of small molecule and RNAi-based inhibi-
tors (Fig. 5)6,8,65. The first generation of YAP/TAZ inhibitors, such as
Verteporfin, aimed at blocking the binding of YAP/TAZ to TEAD1-4,
their canonical transcription factors65. However, Verteporfin and other
inhibitors suchas celastrol andnarciclasine, aremulti-target drugs that
affect other non-YAP mediated processes such as autophagy and TNF
signaling66–68. A new generation of TEAD inhibitors competitively bind
to a conserved hydrophobic palmitate-binding pocket in TEAD
proteins6,8,65. TEAD proteins auto-S-palmitoylate69, and blocking this
activity causes TEAD protein instability and prevents their interaction
with YAP/TAZ thereby reducing the transcriptional output of the
Hippo pathway8,65. Another new class of small molecule YAP/TAZ
inhibitors is based on a dihydrobenzofurane scaffold and directly
inhibit the protein-protein interaction between YAP/TAZ and TEAD by
binding to theΩ-loop pocket of TEADs65. Finally, Ionis Pharmaceuticals
uses antisense oligonucleotide technology to deplete YAP mRNA
(NCT04659096). Preclinical tests showed that some of these newer
YAP/TAZ-TEAD inhibitors have good target specificity, cell penetra-
tion, and toxicity profiles, making them candidates for clinical testing.
Which of these different approaches shows the best efficacy for cancer
treatment is not yet known and may be different for different types of
cancers or cancers with different mutations.

Targeting Hippo pathway mutant cancers
One of the key hurdles in the use of inhibitors against YAP/TAZ-TEAD
in cancer therapy lies in identifying the specific types of cancer that
respond to YAP/TAZ-TEAD inhibition. Patients with tumors that are
driven by YAP/TAZ activation due to mutations in Hippo pathway
components may be the most suitable candidates for treatment with
YAP/TAZ-TEAD inhibitors. A cancer with a high frequency of muta-
tional YAP/TAZ-TEAD activation ismalignant pleuralmesothelioma, an
asbestos-induced lung tumor where forty percent of patients have
deletions or loss-of-function mutations in LATS1, NF2, RASSF1, or
SAV170. Importantly, mesothelioma cells are addicted to YAP/TAZ-
TEAD activity for cell proliferation and survival and thus sensitive to
YAP/TAZ-TEAD inhibitors71. Treating mouse models for mesothelioma
based on human cell line xenografts or genetically induced orthotopic
mesothelioma with YAP/TAZ-TEAD inhibitors caused tumor
regression2–7,72–76. However, tumor elimination was generally not
complete and tumor regrowth was observed in cases that reported
longer term treatment72,77. The mechanism by which mesothelioma
cells become resistant to the YAP/TAZ-TEAD inhibitors is not yet
known. These data show efficacy against mesothelioma but indicate
that amonotherapymay not be sufficient to cause significant and long-
lasting clinical benefit.

Phase 1 clinical trials are currently assessing different YAP/TAZ-
TEAD inhibitors in patients with mesothelioma and other cancers
harboring NF2/LATS1/LATS2-mutations and tumors with functional
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Fig. 4 | Anti-tumor functions ofYAP/TAZ innon-cancer cells. A TAZ activation in
naïve T-cells potentiates the differentiation and function of effector T-cells, leading
to cancer cell elimination. B YAP and TAZ elevate the fitness of cells in cell com-
petition, a process by which cells within a tissue compete for survival and growth.
Higher levels of YAP/TAZ activation confer a selective advantage to cells (“winner”
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tumorigenesis, while lower levels of YAP/TAZ activation reduce the competitive
potential of cells and turn them into “loser” cells. Depending on the levels of YAP/
TAZ activation, both tumor cells or normal surrounding cells can acquire either
winner or loser phenotypes. Therefore, the tumor promoting and the tumor sup-
pressing functions of YAP/TAZ in cell competition thus depend on the specific
context and the cellular compartment in which they are activated.
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YAP/TAZ fusions or otherwise elevated YAP/TAZ levels (Fig.5). Vivace
therapeutics recently reported the first clinical data of using their YAP/
TAZ-TEAD inhibitor VT-3989 (ClinicalTrials Identifier: NCT04665206)
in patients with mesothelioma and other cancers with mutations in
NF273. They observed a partial response in 7 of 69 patients with
refractory solid tumors (43 with mesothelioma, 9 with meningioma,
and 17 with other solid tumors), while the rest showed stable disease.
From those 7 responders, 6 had refractory mesothelioma (two NF2
mutant, three NF2 wild type and one unknown) and 1 had an NF2
mutant sarcoma. These results are encouraging and demonstrate
efficacy against a cancer that is otherwise difficult to treat. Another
YAP/TAZ-TEAD inhibitor in clinical trial is IK-930 from Ikena (Clin-
icalTrials Identifier: NCT05228015). This trial is aimed at testing the
safety, tolerability, pharmacokinetics, pharmacodynamics, and anti-
tumor activity of IK-930 in patients with mesothelioma. An antisense

oligonucleotide from Ionis Pharmaceuticals to target YAP mRNA is in
Phase 1 trial in patientswith neoplasmsor advanced primary, recurrent
or metastatic solid tumors (ClinicalTrials Identifier: NCT04659096). A
Phase 2 study involves dose expansion in patients with molecularly
selected advanced solid tumors. Ionis’ preclinical data demonstrated
efficacy in inhibiting the proliferation of xenograftmodels of head and
neck tumors, hepatocellular carcinoma, epidermoid carcinoma, and
squamous cell carcinoma78. Thus, the preclinical data and the first data
from these clinical trials show promising results with mesothelioma
and other cancers.

Non-Hippo pathway mutant cancers
Akeyquestion indevelopingYAP/TAZ inhibitors is towhat extent YAP/
TAZ-TEAD inhibition can show clinical benefit in patients with tumors
that are not driven by mutations in Hippo pathway components and
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how to identify responding patients. YAP/TAZ are hyperactivated in
various cancers, but it is largely unknown whether such cancer cells
require YAP/TAZ for their survival or other cancer cell phenotypes. To
address this, it will be important to test the efficacy of YAP/TAZ-TEAD
inhibitors in various preclinical cancer models of YAP/TAZ-activated
tumors that bear and do not bear Hippo pathway mutations. Extra-
polating from the discussion in the previous section, however, simply
measuring the effect of YAP/TAZ-TEAD inhibitors on cell proliferation
in 2D or even 3Dmonocultures of cancer cells may not reliably predict
efficacy in cancer patients. Rather, preclinical efficacy testing may
require animal models that recapitulate the diversity of cancer asso-
ciated cell types and cell-cell interactions like cell competition. Profil-
ing of different cancers treated with YAP/TAZ-TEAD inhibitors may
then uncover signaling pathways and cell states that correlate with
YAP/TAZ activation andmore importantlywith their sensitivity to YAP/
TAZ-TEAD inhibition. Such molecular characterization may identify
potential biomarkers and genetic signatures that can predict the
therapeutic response of YAP/TAZ-TEAD inhibitors and guide patient
stratification.

Combination therapy and drug resistance
Emerging evidence shows that YAP/TAZ activation contributes to
therapy resistance in cancer cells through various mechanisms79. In
human pancreatic ductal adenocarcinoma, YAP/TEAD2 complex with
E2F in response to loss of oncogenic RAS signaling and induce cell
proliferation and survival80. In melanoma mutant for BRAF and KRAS,
YAP/TAZ activity promotes resistance to EGFR, KRASG12C, and MEK
inhibitors79. YAP can promote lung cancer cell survival and therapy
resistance by activating the expression of MRAS, which can reactivate
MAPK signaling in the absence of KRAS G12C signaling81. YAP/TAZ can
also promote drug resistanceby inducing the expression of drug efflux
transporters, such as ABCG2 and MDR1, which allow lung cancer cells
to pump harmful substances to the extracellular space, thus reducing
the efficacy of the therapeutic drug82. In addition, YAP can also com-
pensate for the absence of KRAS by converging with the transcription
factor FOS to drive the KRAS-mediated transcriptional program in
colon cancer83. Thus, combination therapies with YAP/TAZ-TEAD
inhibitorsmay increase the efficacyof targeted and chemotherapies by
reducing therapy resistance. YAP/TEAD signaling can also induce a
senescence-like dormant state that allows cancer cells to resist the
effect of different inhibitors, such as EGFR/MEK inhibitors84. These
dormant cells are known as cancer persister cells, and are a sub-
population of resistant cancer cells capable of surviving initial targeted
or chemotherapy treatment by entering into a dormant state and
giving rise to recurrent disease85. YAP/TAZ canpromote a persister cell
state by activating a transcriptional program that reprograms cancer
cells into a transient progenitor cell state characterized by p21
expression and reduced proliferation86,87. At least in some cases,
pharmacological inhibition of YAP/TEAD can deplete dormant cells by
inducing apoptosis84. However, the function of YAP/TAZ in persister
cell biology is complex andmight be context dependent: some studies
indicate that YAP/TAZ activation maintains cells in a persister
state84,86,87, while others show that YAP/TAZ activation is crucial for
persister cell survival and proliferation upon resuming the cell
cycle88,89. Nevertheless, even though the role of YAP/TAZ in persister
and dormant cell fate is an emerging area of investigation, these
findings present the intriguing possibility that inhibiting YAP/TAZ-
TEAD activity may prevent cancer recurrence. Most importantly, these
findings imply that combination therapies with YAP/TAZ-TEAD inhi-
bitors may increase the efficacy of targeted and chemotherapies by
reducing therapy resistance.

YAP/TAZ-TEAD inhibitors and immunotherapy
YAP/TAZ-TEAD inhibition holds promise to enhance the efficacy of
immune checkpoint inhibitors for cancer treatment. Inhibiting YAP/

TAZ-TEAD can reduce the expression of immune checkpoint proteins,
such as PD-L1, in cancer cells thereby diminishing immune evasion and
enhancing T-cell anticancer function90,91. This may particularly benefit
the treatment of patientswith “hot” tumors, which already have immune
cell infiltration, by making them even more responsive to immune
checkpoint inhibition. Moreover, in “cold” tumors, which are char-
acterized by poor immunogenicity, YAP/TAZ-TEAD inhibition may
increase the expression of major histocompatibility complex (MHC)
molecules, essential for presenting tumor antigens to adaptive immune
cells and initiating an antigen-specific anti-tumor immune response92.
Consequently, YAP/TAZ-TEAD inhibition may convert immune cold
tumors into amore immune-responsive state, potentially boosting their
sensitivity to immune checkpoint inhibitors and other immu-
notherapies. Moreover, the effects of YAP/TAZ-TEAD inhibition may
cooperate in activating T-cell function because their inhibition blocks
the tumor-protecting function of Treg cells30,31. However, Inhibiting YAP/
TAZ-TEAD may also suppress neutrophil anti-cancer activities59. Further
research is necessary to fully understand the benefits and limitations of
combining immune therapy with YAP/TAZ-TEAD inhibition and to
identify optimal treatment strategies for specific cancer types. None-
theless, targeting YAP/TAZ activity represents a promising avenue for
inducing T-cell activation and infiltration in poorly immunogenic
tumors to enhance the effectiveness of immune therapy.

Challenges for YAP/TAZ-TEAD inhibition in cancer
therapy
Tumor suppression versus tumor promotion
One of the major challenges in predicting the treatment effects of
systemic YAP/TAZ-TEAD inhibition lies in our inability to predict the
net effect on tumors of inhibiting their tumor-promoting and tumor-
suppressing functions in different cellular compartments. In some
cases, systemically inhibiting YAP/TAZ in cancer and associated cells
may synergistically attack cancer cells for example by inhibiting a cell
proliferation function of YAP/TAZ in cancer cells6,65 and by activating
tumor suppressive cytotoxic T-cells30,31,33,34. However, in other cases,
systemic YAP/TAZ-TEAD inhibition may trigger opposing effects in
different cellular compartments, making outcome prediction chal-
lenging. For example, the deletion of Yap/Taz in cancer cells of mouse
models for hepatocellular carcinoma caused complete tumor regres-
sion but the deletion of Yap/Taz in peritumoral hepatocytes enhanced
tumor growth62. Surprisingly, tumors were still able to growwhen Yap/
Taz were simultaneously deleted in tumor cells and peritumoral
hepatocytes. This example shows that it cannot naively be assumed
that a cell-autonomous dependence of cancer cells on YAP/TAZ for
their survival automatically translates into therapeutic efficacy when
YAP/TAZ are systemically inhibited. Consequently, testing the effects
of systemic YAP/TAZ inhibition and inhibition in different cellular
compartments is crucial to determine safety, efficacy, and optimal
strategies to employ YAP/TAZ-TEAD inhibitors for cancer treatment.

Predicting efficacy
How can we better predict outcomes and identify patients who will
benefit from YAP/TAZ-TEAD inhibition? Various approaches, such as
genomic and transcriptional profiling, functional xenograft assays, and
biomarker identification, can assist in stratifying potential patients.
However, these methods have limitations when identifying suitable
candidates. While genomic and transcriptional profiling can reveal
YAP/TAZ activation in cancer cells, it may overlook activation in
remote cells with anti-tumoral functions targeted by the inhibitors but
not sampledbybiopsies. Additionally, identifying effective biomarkers
for patient stratification is challenging because YAP/TAZ activation in
both tumor and non-tumor cells may drive similar gene signatures,
regardless of their pro- or anti-tumor characteristics. Patient-derived
xenograft assays (PDX) are considered the gold standard for pre-
clinical studies, yet their prognostic ability for YAP/TAZ-TEAD
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inhibitors is limiteddue to the absence of immune cells and an artificial
tumor microenvironment, which play significant roles in YAP/TAZ’s
pro- and anti-tumoral functions. Hence, clinical trials should integrate
data from these preclinical methods with comprehensive patient
profiling to establish correlations between treatment response, patient
characteristics, and potential predictive factors. Such integrated
approaches can refine prediction and stratification strategies for the
effective use of YAP/TAZ-TEAD inhibitors in cancer therapy.

Adverse side-effects
Finally, while targeting the Hippo pathway for cancer therapy holds
promise, the normal functions of YAP and TAZ in adult tissue home-
ostasis pose concerns for potential side effects of systemic YAP/TAZ-
TEAD inhibition. One major problem may be the potential damage to
the kidney. Loss-of-function experiments in mice showed that deletion
of Yap in podocytes resulted in progressive renal failure due to
increased apoptosis and gradual podocyte depletion93 Thus, YAP/TAZ-
TEAD inhibition per se may pose risks but maybe more importantly, it
may also compound the risk of renal failure for patients undergoing
standard of care therapy. For example, radiation and chemotherapy can
induce kidney damage and this damage may be exacerbated by YAP/
TAZ-TEAD inhibition93. Also, patients with compromised immune sys-
tems might experience exacerbated immunosuppression due to YAP/
TAZ’s immune regulatory roles. In addition, YAP/TAZ inhibition might
disrupt the delicate balance between tissue turnover, repair and func-
tion, leading to impaired organ function or regenerative capacity94. For
instance, radiation and chemotherapy can deplete intestinal stem cells
and cause intestine injury and YAP/TAZ-TEAD inhibition might exacer-
bate intestinal damage due to the requirement of YAP for stem cell
renewal and intestine regeneration94. Thus, these examples show that
careful consideration is essential when using YAP/TAZ inhibitors, espe-
cially in patients with multifaceted medical conditions.

Outlook, and future perspectives
While targeting the Hippo pathway as an anticancer therapeutic shows
immense promise, it is not without challenges. An increasing body of
experimental and clinical work suggest that patients suffering from
several types of cancers may benefit from YAP/TAZ-TEAD inhibition.
However, beyond tumors with mutations in Hippo pathway compo-
nents, it is not clear which other human cancers may respond to YAP/
TAZ-TEAD inhibitors. Fortunately, growing evidence support the idea
that YAP activation promotes therapy resistance in various types of
cancer. Thus, combination therapies using YAP/TAZ-TEAD inhibitors
with other standard-of-care drugs may overcome therapy resistance.
Therefore, in light of the potential benefits, we anticipate that systemic
YAP/TAZ-TEAD inhibition will lead to the development of novel and
increasingly effective pharmacological approaches.
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