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Universal control of a bosonic mode via
drive-activated native cubic interactions
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Linear bosonic modes offer a hardware-efficient alternative for quantum
information processing but require access to some nonlinearity for universal
control. The lack of nonlinearity in photonics has led to encoded
measurement-based quantum computing, which relies on linear operations
but requires access to resourceful (’nonlinear’) quantum states, such as cubic
phase states. In contrast, superconducting microwave circuits offer engi-
neerable nonlinearities but suffer from static Kerr nonlinearity. Here, we
demonstrate universal control of a bosonic mode composed of a super-
conducting nonlinear asymmetric inductive element (SNAIL) resonator,
enabled by native nonlinearities in the SNAIL element. We suppress static
nonlinearities by operating the SNAIL in the vicinity of its Kerr-free point and
dynamically activate nonlinearities up to third order by fast flux pulses. We
experimentally realize a universal set of generalized squeezing operations, as
well as the cubic phase gate, and exploit them to deterministically prepare a
cubic phase state in 60 ns. Our results initiate the experimental field of poly-
nomial quantum computing, in the continuous-variables notion originally
introduced by Lloyd and Braunstein.

Quantum information processing relies on the capability to operate
quantum superpositions between several quantum states in a large
system. A mainstream approach to quantum computing is based on
ensembles of coupled two-level systems1,2. However, an alternative
approach is to utilize bosonic modes3–5, also called continuous-
variables (CV) modes. Each bosonic mode directly gives access to a
large Hilbert space of quantum states, which could be used to redun-
dantly encode and protect quantum information from errors in a
hardware-efficient manner3,6–10, or, in principle, implement CV quan-
tum computing11. However, to operate a CV mode, it is crucial to
introduce a nonlinearity that allows one to universally manipulate the
superpositions of the quantum states4.

On the photonics platform, the main obstacle to quantum com-
puting is the weakness of the accessible nonlinearities (relative to the

intrinsic losses) in optical crystals. A common strategy in photonics is,
therefore, to use readily accessible Gaussian operations such as
squeezers and beamsplitters in combination with non-Gaussian mea-
surements, such as those performed by single photon detectors12,13.
One approach to universal control is to utilize resourceful non-
Gaussian input states14–16, such as the cubic phase state, to realize non-
Gaussian gates by gate teleportation3,17.

In contrast to the challenges in photonics, nonlinearities for CV
modes in superconducting circuits are readily available, originating
from Josephson junctions that act as nonlinear, low-loss inductive
elements18. These CV modes can be constituted by superconducting
cavities weakly (dispersively) coupled to a qubit providing universal
controllability19–22. For the superconducting modes, the problem
compared to the photonic domain is reversed since the linear CV
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modes inherit a static, always-on Kerr nonlinearity from the hybridi-
zation with the Josephson junction23, which limits the fidelity of
operations. Weakening the dispersive interaction reduces the inher-
ited nonlinearity but also leads to slower interactions which are typi-
cally on the order of a microsecond21,22. Furthermore, despite
considerable advances in superconducting qubits, the variety of noise
channels introduced by the ancilla control qubit still limits the system
performance9,24.

However, a strength of superconducting devices is the possibility
of tailoring and in situ tuning the nonlinearities with the external
magnetic flux through superconducting loops. Especially by arranging
Josephson junctions into an asymmetric loop as in a superconducting
nonlinear asymmetric inductive element (SNAIL)25, the Josephson
potential becomes asymmetric. Hence, suitable tuning of the external
flux enables the cancellation of the static Kerr nonlinearity while
maintaining a strong third-order nonlinearity, making the SNAIL useful
in quantum amplifiers26,27 and in reducing the static interaction in
qubits28 and linear couplers29.

In this paper, wedemonstrate universal control of a bosonicmode
in a superconducting circuit comprising a planar resonator terminated
by a SNAIL30 without an ancilla control qubit. The nonlinear controll-
ability of the CV mode instead originates from intrinsic nonlinearities
within the bosonic mode, which primarily manifests themselves when
driven. Hence, different nonlinear interactions are turned on only
when certain drive pulses are applied (Fig. 1a). These nonlinearities are
realized by embedding a SNAIL into the bosonic mode resonator itself
(Fig. 1b, c). By flux and charge driving the SNAIL-terminated resonator,
we activate Gaussian and non-Gaussian (nonlinear) interactions to
implement fast universal quantum gates within tens of nanoseconds.
In contrast to previously demonstrated bosonic gate sets20,22, the gate
set implemented here is a natively polynomial set, including the non-
Gaussian cubic gate. We thereby implement a universal gate set in the

notion of CV quantum computing inspired by the original proposal by
Lloyd and Braunstein11. Furthermore, by leveraging the native cubic
gate, we experimentally generate a cubic phase state with enhanced
speed and fidelity compared to our previous work21 in 3D cavities.

Results
Bosonic mode with drive-activated nonlinearities
We implement our device on a superconducting planar architecture
fabricated with conventional lithography techniques and measured at
~10mK in a dilution refrigerator (seeMethods). We realize the bosonic
mode with drive-activated nonlinearities by terminating a λ/4 reso-
nator with a SNAIL element at its current anti-node (micrograph in
Fig. 1d). A transmon qubit31 is dispersively coupled to the bosonic
mode aswell as to a readout resonator to performWigner tomography
of the bosonic state20. Crucially, the qubit does not participate in the
control of thebosonicmode. Importantly, the SNAIL element alters the
boundary condition of the otherwise linear mode and thereby intro-
duces the nonlinearities that will be utilized for the control. The flux
tunability of the SNAIL potential results in a nonlinear frequency tun-
ing of themodewith respect to the externalmagneticfield through the
SNAIL flux loop, asmeasured via the cavity Ramsey protocol32 (Fig. 1e).

The nonlinear Hamiltonian of the SNAIL-terminated resonator30,
driven by charge and flux, can be expanded around the minimum of
the potential well and takes the form

Ĥ=_=ω0â
yâ+ ξðtÞ ây + â

� �
+
X1
n= 1

gdc
n ðϕdc

e Þ+ gac
n ðϕdc

e Þϕac
e f ðtÞ

� �
ây + â
� �n ð1Þ

where gdc
1 = gdc

2 =0 and with frequency ω0, bosonic creation operator
ây, charge drive amplitude ξ(t), and linear/nonlinear coefficients gj

i for

Fig. 1 | Bosonic mode with drive-activated nonlinearities. a Idealized circuit
schematic. In the undriven state (open black symbol), the resonator behaves as a
harmonic oscillator, characterized by its inductance L and capacitance C. Manip-
ulation of the quantum states is achieved by driving the resonator with flux ϕe(t),
which activates the (otherwise off-resonant) intrinsic nonlinearities. Different pulse
compositions engage (closed orange symbol) a variety of interactions denoted by
the switchable, purely nonlinear junction element. b Schematic of our circuit rea-
lization consisting of a SNAIL-terminated λ/4 coplanar waveguide resonator, fol-
lowing and adopting figure from ref. 30. c Schematic of the SNAIL element with
n = 3 Josephson junctionswith Josephson energy EJ and asymmetry factorβ.d False-

coloredmicrographof the full device layout. The SNAIL-resonator is equippedwith
a charge and a flux drive line and dispersively coupled to a transmon qubit with a
readout resonator. (inset) Close-up of the SNAIL element with three large Joseph-
son junctions on one armand a single junction on the other arm. e SNAIL-resonator
frequency tuning vs static flux. The solid line is the fittedmodel taking into account
the relevant microscopic parameters (see Methods). f Tuning of resonator non-
linearities vs static flux; fourth order (left axis) and third order (right axis). Effective
Kerr K(1) and gac

3 nonlinearities are predicted by the model fitted to the frequency
tuning. The bosonic mode with drive-activated nonlinearities is realized and
operated at the Kerr-free point marked with a star.
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i 2 N and j spanning both static dc terms as well as flux ac compo-
nents, which depend on the static flux ϕdc

e =Φdc
e =Φ0, Φ0 = h/2e. The

flux drive field is constituted by the flux amplitudeϕac
e and normalized

pulse shape f(t), where maxðf ðtÞÞ= 1. By fitting the microscopic para-
meters of the static components (see Methods) to the measured
nonlinear tuning of the frequency as a function of static magnetic flux
(Fig. 1e), we predict the strengths of the nonlinearities gj

i (Fig. 1f). The
predicted effective Kerr is validatedbymeasuring the samevia the out-
and-in protocol (seeMethods). All fitted and characterized parameters
are summarized in a table in the Supplementary Table 1.

Importantly, the magnitudes of the effective static Kerr non-
linearities are strongly suppressed atfluxϕdc

e =0:3930, creating a Kerr-
free region for phase space coordinates ∣α∣ ≲ 1.5 (see Methods). This
cancellation is a key feature of the SNAIL, which is possible due to its
asymmetric design allowing for the cancellation of one arbitrary order
in the Taylor expansion of the potential25. Therefore, we choose this
(close to) Kerr-free point as the operating point of our device, char-
acterized by a resonant frequency ω0/2π = 4.158GHz, energy relaxa-
tion time T1 = 28μs, and cubic nonlinearity gac

3 =2π ∼ � 10MHz. Hence,
when no drives are applied, the resonator behaves approximately as a
harmonic oscillator.We achieve quantum control of the cavity state by
sending microwave pulses to on-chip flux and charge lines. By judi-
ciously choosing the frequencies and composition of the driving pul-
ses, we activate a range of linear and nonlinear interactions, as
demonstrated below.

Universal interactions via flux driving
The notion of universality introduced by Lloyd and Braunstein for
continuous-variable systems11 requires a set of Gaussian gates and at
least one non-Gaussian gate, which can be chosen arbitrarily among
the polynomials of degree three or higher in the quadratures of the
bosonic modes. Hence, we experimentally obtain a universal gate set

by flux driving the SNAIL in such a way that each gate consists of a
single monochromatic pulse at a multiple of the resonator frequency.
We demonstrate the gate set by flux pumping the SNAIL at one, two,
and three times the resonance frequencyω0, which resonantly engage
the displacement, squeezing (Fig. 2a–c) and trisqueezing33 (Fig. 2d–f)
interactions, respectively. Together with the trivial rotation, these
interactions constitute the universal generalized-squeezing gate set

R̂ðθÞ= e�iθâyâ ð2Þ

D̂ðαÞ= eαây�α*â ð3Þ

Ŝðζ Þ= eðζ ây2�ζ *â2Þ=2 ð4Þ

T̂ sðτÞ= eτâ
y3�τ*â3

: ð5Þ

with rotation R̂ðθÞ by an angle θ, displacement D̂ðαÞ, squeezing S(ζ) and
trisqueezing Ts(τ), where the complex parameters α, ζ, and τ describe
themagnitude and phase of the operations. Themagnitude of α, ζ, and
τ are to first order proportional to the Hamiltonian parameters gac

1 , gac
2

and gac
3 in Eq. (1), respectively (see Methods). The ability to engage

these processes from Eq. (1) can be intuitively understood by the drive
field f ðtÞ / cosðnω0tÞ, resonantly capturing interactions ân and âyn at
different orders n. Crucially, the trisqueezing interaction is non-
Gaussian, promoting the otherwise Gaussian gate set to a universal
gate set. By engaging the trisqueezing gate, we produce the non-
gaussian Wigner-negative15 trisqueezed state (Fig. 2e). The quantum
states are measured by direct Wigner tomography via the dispersively
coupled spectator qubit. The squeezing and trisqueezing levels can be
enhanced until ~9 and ~0.8 dB, respectively, abovewhich the simulated

Fig. 2 | Universal control of the SNAIL-resonator achieved by monochromatic
fluxpulses.Results are shown for squeezing (toppanels) and trisqueezing (bottom
panels). A 20ns 2ω0 pulse parametrically activates the squeezing interaction and
squeezes the cavity vacuum state to ζ = −0.99 (−8.63 dB). The resulting Wigner
state is fittedwith a pure squeezed state (a) via theWigner overlap to themeasured
state (b). c Increasing squeezing levelwith flux pulse amplitude. Pulse duration also
increases the squeezing level but is here fixed to 40ns. Data points are obtained by

fitting themeasuredWigner functions to the corresponding pure states viaWigner
overlap. Simulated state squeezing level (solid) and fidelity (dashed). Similarly, a
60 ns 3ω0 flux pulse activates the trisqueezing interaction, which trisqueezes the
cavity vacuum state into a Wigner negative trisqueezed state fitted (d) and mea-
sured (e) with τ = −0.13. f Increasing trisqueezing level analogous to the
squeezing case.
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fidelities start to drop because of higher-order nonlinearities.
Furthermore, these flux-activated gates are executed within tens of
nanoseconds. This is to be contrasted with bosonic gates assisted by a
dispersively coupled qubit, such as selective number-dependent
arbitrary phase (SNAP) gates20,21 or optimal control pulses34, which
are 10–100 times slower due to the weakness of the dispersive
interaction.

We emphasize that the gates demonstrated in Fig. 2 are per-
formed by driving flux tones, whereas experimental demonstrations
for superconducting 3D modes often are limited to charge driving
because of the difficulty to bring ac-flux fields into the super-
conducting cavities35. This enables us to use interactions via both
the linear charge and parametric flux paradigm to tailor a variety of
gates (see Methods for illustrative diagrams). As an example, a
trisqueezing gate could, in principle, be performed solely with
charge driving at ωd = 3ω0 in the presence of a gdc

4 interaction term.
But this interaction also triggers a static Kerr effect. Tuning the
system to reach the Kerr-free-flux point is not beneficial in this
context, as it also cancels the amplitude of trisqueezing gate. By
contrast, the use of a parametric drive gac

3 does provide the tris-
queezing gate at the Kerr free point without any residual interaction
when idling. Similarly, each gac

n in Eq. (1) allows one to activate an n-
photon process by flux driving resonantly at nω0, with greatly
suppressed unwanted static effects.

Demonstration of the cubic phase gate
Following the proposal by Hillmann et al.30, we utilize simultaneous
flux and charge drives to natively implement the cubic phase gate
(Fig. 3),

ĈðγÞ= eiγ
ây + âffiffi

2
p

� �3

ð6Þ

with cubicity parameter γ. The cubic interaction contains the cross
terms proportional to âyâ2 and ây2â, which distinguishes it from the
trisqueezing gate. To activate the full cubic interaction (Fig. 3a), we,
therefore, simultaneously apply a 3ω0-flux pulse which captures the
trisqueezing interaction, and a 1ω0-flux pulse capturing the cross
terms. However, since the 1ω0-flux pulse also engages direct dis-
placement, we concurrently apply a 1ω0-charge pulse to cancel the
linear displacement. Since the displacement interaction is much
stronger than the cross interaction (gac

1 =gac
3 ≈ 2100), the cubic phase

gate requires precise experimental calibrations to balance the timing,
strength, and angles of the drive pulses (see Methods).

Finally, we combine the squeezing gate with the cubic gate to
deterministically generate a cubic phase state from the vacuum state.
We generate the resourceful36 cubic phase state ∣ζ ,γ

�
= ĈðγÞŜðζ Þ∣0i

from the vacuum state ∣0i by first applying a 20 ns squeezing gate
followed by a 40ns cubic gate. This sequence results in a cubic phase
state (Fig. 3b, c) characterized by ζ = −0.61 (corresponding to 5.3 dB of
squeezing) and γ =0.11. The fidelity to the closest pure cubic phase
state is estimated to be 92 % from generative adversarial neural net-
work reconstruction37 (see Methods). Importantly, the cubicity of the
cubic phase state showcased in this study can be continuously
increased by simply employing a longer cubic gate. Being able to
enhance the cubicity via the cubic gate is in striking contrast to the
prior demonstration of a cubic phase state21, in which selective-
number arbitrary phase (SNAP) and displacement gates had to be re-
optimized for every new cubicity value.

Discussion
We construct an error analysis using numerical simulations to
examine the factors that restrict the performance of cubic phase
state generation (seeMethods). The analysis reveals that the fidelity
of the generated state is primarily limited by the coherence time of
the SNAIL resonator (T *

2 = 2:8μs dominated by 1/f noise, see Meth-
ods), followed by residual thermal population in the SNAIL-
resonator (nth = 2.4%). By contrast, simulations indicate that the
higher-order corrections gdc

5 and gdc
6 have a very limited influence

on the fidelity of the produced cubic phase state, whereas they
become a dominant source of error for larger states. In future rea-
lizations, the flux sensitivity of the SNAIL at the operational Kerr-
free point could potentially be improved by optimizing the SNAIL
parameters29 without compromising the strengths of the desired
nonlinearities. Another alternative is to optimize the tradeoffs in an
ATS element38. An improved fabrication process is expected
to extend the cavity lifetime39. The thermal population could be
further lowered by improving the filtering of the flux line (see
Supplementary Note 1). A single SNAIL could be replaced by an array
of m SNAILs, for which higher-order nonlinearities at order n are
suppressed as gn(t) ~m1−n. Care must be taken to ensure the homo-
geneity of both the SNAILs within the array and the flux applied to
each SNAIL. Simulations also indicate that there is room to drive the
device harder before other unwanted nonlinear effects occur. Fas-
ter gates could then be obtained by removing the hardware lim-
itations that prevented us from further increasing the amplitude of
the driving tones in the present experiment. Finally, we observe a
systematic flux drift in the data batches of the cubic phase state. The
drift manifests itself as a tilting cubic phase state, which we ascribe
to the system drifting away from the Kerr-free point. Hence, we
expect more frequent system calibration to improve the state
generation performance.

In conclusion, we have experimentally demonstrated a poly-
nomial gate set for a bosonic mode in the notion proposed by Lloyd

Fig. 3 | Experimental demonstration of the cubic gate by generation of a cubic
phase state in 60ns. a Pulse sequence. First, we apply a squeezing gate to the
vacuum by a 20 ns 2ω0 flux pulse and then a cubic gate constituted by a 3ω0

flux pulse, a 1ω0 flux pulse and a counteracting 1ω0 charge pulse, at the
same time, for 40 ns. b Fitted and c measured Wigner function of the

generated cubic phase state with squeezing ζ = − 0.61(5.3 dB) and cubicity
γ = 0.11 and a residual displacement α = − 0.090 + i0.025. d Line cut of the
Wigner function in (c) at ReðαÞ=0: experimental data (symbols) with 1 std.
dev. error bars, and corresponding theory prediction for the state in (b)
(solid line).
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and Braunstein11. Hence, our platform initiates the field of continuous-
variable-noisy intermediate-scale quantum (CV-NISQ) polynomial
quantum computing40 and simulations41. We envision utilizing the
SNAIL-resonator as a specialized computational unit interfacing with
longer-lived bosonic modes (for example, via beamsplitter
interactions29), either to rapidlypreparehighly nonclassical states or to
execute highly nonlinear gates. In addition, our demonstration of a
strong, native trisqueezing gate spurs the question of how continuous-
variable algorithms could directly benefit from such a resource. The
tunable nonlinearities in the SNAIL-resonator further allow for
switching its functionality in situ to operate in the Kerr-cat regime42–44

and even investigate higher order time crystals45,46. Another direction
would be to combine the intrinsic polynomial interactions with the
control offered by an ancilla qubit via optimized selective number-
dependent arbitrary phase gates21 or full optimal control20. Finally, if
the fast progress on efficient microwave-to-optics transducers47 con-
tinues, one can envision upconverting cubic phase states produced on
themicrowave platform to optical frequencies. That is, generating the
resource states required for fault-tolerant, measurement-based quan-
tum computing on a hybrid superconducting-photonics platform.

Methods
Estimating microscopic parameters
The Hamiltonian used to represent the SNAIL resonator in Eq. (1) is
written in terms of parameters ω0, gac

i and gdc
i . It would be difficult to

extract a value from each of them independently. Instead, we express
them as functions of a few relevant microscopic parameters of the
underlying circuit, which are obtained all at once by fitting the
ω0 = f(ϕe) experimental data. We now describe these microscopic
parameters.

The SNAIL element is described in Fig. 1d. We denote φ the
superconducting phase at one of its node, the other being grounded. If
we assume our probing frequency negligible compared to the plasma
frequencies of the SNAIL junction array, we canmodel it as a nonlinear
potential imposed on φ:

UðφÞ= � EJ β cosðφÞ+n cos
ϕe � φ

n

� �� �
, ð7Þ

where ϕe is the external flux piercing the SNAIL loop (from now on,
ℏ = 2e = 1). The potential minimum φm is given by β sinðφmÞ=
sinððϕe � φmÞ=nÞ. Expanding U around this minimum as a Taylor
expansion,U =

P1
n= 2 φ

ndnU=dφnðφmÞ=n!. All terms are non-vanishing,
contrary to what would happen for a SQUID element.

The bare resonator (without the SNAIL) is characterized by
its lowest mode frequency ω∞ and impedance Z. The quadratic
term in the Taylor expansion will act like a boundary inductor,
shifting the resonance frequency to ω0. The SNAIL flux is expan-
ded in the resonator creation/annihilation operators as
φ̂=Φðây + âÞ, with proportionality factor Φ, such that the reso-
nator Hamiltonian reads

Ĥ =ω0â
yâ+

X1
n= 3

Φn

n!
nUφφmðây + âÞn: ð8Þ

See Supplementary Note 2 for expressions of ω0 and Φ as func-
tions of the microscopic parameters. ω0 is measured via a Ramsey
interference protocol. It is fitted against our microscopic model
with 5 free parameters, β, ω∞, Z/EJ, and external flux calibration
with a linear model, ϕdc

e =Vdc=Vdc
0 +ϕdc

offset, with voltage Vdc applied
to the flux source, voltage corresponding to one flux quanta Vdc

0

and the flux offset ϕdc
offset. The fitted curve is represented in Fig. 1e,

and the fit parameter values are given in Supplementary Table 1.
EJ is obtained independently by normal state resistance
measurement.

AC and DC nonlinear terms
The external flux is modulated around its DC value as
ϕeðtÞ=ϕdc

e +ϕac
e f ðtÞ cosðωdtÞ, where f(t) is a slowly varying pulse

envelope with max f ðtÞ= 1, which drives the system. Accordingly, we
separate the coefficients in Eq. (8) in their DC and AC parts.We expand
the Hamiltonian coefficients at first order around ϕdc

e (assuming
ϕac

e ≪ 1) and obtain Eq. (1), where gdc
1 = gdc

2 =0 and

gdc
n = EJ

Φn

n!
∂nU
∂φn

����
ϕdce
φm

, gac
n = EJ

Φn

n!
∂

∂ϕe

∂nU
∂φn

����
ϕdce
φm

: ð9Þ

Expressions for the derivatives can be evaluated explicitly. Note that
nonlinear coefficients gdc

n and gac
n are completely determined by pre-

viously fitted parameters ω∞, α, Z, and EJ, as done in Fig. 1f.

Numerical simulations
We systematically compare the performances of our experimental
systemwith numerical simulations of its dynamics. The simulations are
done with the QuTiP48Python library, using time integration of the
Lindblad equation of motion. We include all drives with their pulse
shapes as nonlinear terms up to order 6 in Eq. (1), energy relaxation,
and dephasing, all according to the numerical values obtained from
experimental data summarized in Supplementary Table 1. We assume
the initial cavity state and the environment to be in thermal equili-
brium at 50mK, a value obtained by measuring the residual excited
population of the SNAIL resonator. These simulations are used in
Fig. 2c, f, where they provide a theory to experiment agreement
beyond the linear regime at weak drive.

Kerr-free point
The rotating wave approximation (RWA) is a customary method to
study driven nonlinear oscillators49, which neglects fast rotating terms
in the oscillator frame. Themethod canbe systematically extended in a
perturbative expansion in gn/ω0

50–52. In the absence of driving, the
effective Hamiltonian contains only number-conserving terms:

Ĥeff = ðωr � ω0Þâyâ+
X1
n= 1

K ðnÞ

n + 1
âynân, ð10Þ

whereωr is the renormalizedoscillator frequency,K(1) accounts forKerr
effect, and the K(n>1) for higher order effects. Their perturbative
expressions are given in Fig. 4. AllK(n) are static interactions that cannot
be turned off. We illustrate their influence on short timescales by
considering the evolution of a coherent state ∣ai centered on
�a= ah ∣â∣ai. Using a semi-classical approximation, exact for coherent
states, and that ∣a∣2 is a constant of motion, �a rotates at the rate

arg �aðtÞ= � ωr +
X1
n= 1

K ðnÞjaj2n
 !

t: ð11Þ

The ∣a∣2 dependence implies that a superposition of coherent states
will deform under free evolution. This clearly undermines our control
of the system. Themain feature of the SNAIL dipole is the possibility to
tune the K(n) coefficients via ϕdc

e . We make use of this control knob to
cancel the static nonlinearity, at least in the ∣α∣2≲ 1 region, by impos-
ing K ð1Þðϕdc

e Þ=0.
We experimentally locate this Kerr-free flux point by the out-and-

back protocol9, in which we monitor the drift angle θ of a coherent
state of amplitude a under a t = 100ns free evolution. To do so, we
select the θ value thatmaximizes the vacuum overlap of the state after
free evolution and displacement by�jaj expð�iθÞ, as sketched in Fig. 5
(inset). The free evolution time, here t = 100 ns, is chosen short enough
so that the state stays close to a coherent state. Each displacement
pulse lasts 10 ns. The result, shown in Fig. 5, demonstrates a Kerr-free
zone in phase space expanding up to ∣a∣ ≃ 1.5 for ϕe/Φ0 = 0.393. By
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fitting the drift angle using Eq. (11), we obtain the experimental value of
K(1) plotted in Fig. 1f, which agrees with the perturbative expansion
prediction, calculated from gdc

n which values were obtained indepen-
dently from the fitting procedure described above.

Calibration of effective drive strengths
When driving the system, the RWA approach is still valid, but non-
number conserving terms appear in the effective Hamiltonian:

�iTĤeff,drive = αây +
ζ
2
ây2 + τây3 + . . .

� �
� h:c:, ð12Þ

which correspond to displacement, squeezing, and trisqueezing
respectively. Their expression in terms of elementary processes is
given in Fig. 4. The effective gate time T =

R t
0 f ðτÞdτ where t is the total

gate time and f(τ) is the pulse shape. Note that the diagrams represent

each process’ resonance condition: ωd =ω0 for displacement, 2ω0 for
squeezing, and 3ω0 for trisqueezing.

Since the different drive lines have different amplification,
attenuation, and potentially unwanted reflectance, it is necessary to
calibrate the drive amplitudes ϕac

e independently at each frequency
multiple.Wemeasureα, ζor τ viaWigner tomography after fluxdriving
at the corresponding frequency for a range of flux-pulse voltage
amplitudes Vac. The measurement settings are replicated in simula-
tions and the linear scaling factor V0 to match the corresponding flux
amplitude ϕac

e =V ac=V0 is fitted for each measurement of α, ζ or τ,
respectively, as shown in Fig. 2c, f. Note that the simulation and the
experiment still match beyond the linear regime at low ϕac

e . This cali-
bration is especially crucial to match the amplitude of the 1ω0 and 3ω0

in the cubic state protocol below.

Experimental cubic phase state calibration
Experimental generation of the cubic phase gate requires a precise
experimental tune-up to balance the timing, strength, and angles of
the drive pulses. All pulses in this work are produced by direct digital
synthesis in the Presto platform53 up to 9 GHz. The 3ω0 pulse at
12.5 GHz is produced by combining the output from two Presto ports
in a physical mixer. Hence, we have full phase control of all pulses.
The cubic gate, expðiγððây + âÞ=

ffiffiffi
2

p
Þ3Þ, contains terms resonant at 3ω0

aswell as cross terms like ây2â requiring a drive at 1ω0. To activate the
interactions with equal strength, the effective drive amplitudes ϕac

e

are calibrated according to the procedure in the previous section.
However, such a 1ω0 flux drive also triggers a displacement via gac

1 . It
can be counterbalanced by charge driving, also at 1ω0, with opposite
phase and equal amplitude. This cancellation must be carefully rea-
lized, since gac

1 =gac
3 ≈ 2100, a small misalignment would generate a

significant displacement, well outside the Kerr-free zone. The
amplitudes of the drives at 1ω0 are first calibrated separately for
charge and flux by displacing the vacuum with different amplitudes.
We then fit the corresponding Poissonian distributions obtained by
probing the qubit with a Fock-0 selective π-pulses to obtain indivi-
dual amplitude scalings for the flux and charge drives. We then
characterize the timing of the two 1ω pulses down to ~100ps, by
utilizing the digital delay of the arbitrary waveform generator (see
Supplementary Note 3 for details). Finally, we finetune the angle and
magnitude of the flux drive such that under both drives, the vacuum
stays undisplaced. Angles of the squeezing and trisqueezing drives
are calibrated by applying each process separately and fitting the
angle of the resulting Wigner states. With all amplitudes, angles, and
timings calibrated, we apply the gate sequence of the main text to
generate the cubic phase state.

Error analysis
Measurements and simulations (as described above) are made to
obtain the infidelity analysis presented in Fig. 6, where each bar cor-
responds to a case with a certain infidelity channel removed. The
infidelity in each case is defined as the infidelity with respect to the
ideal cubic state whose ζ and γ parameters maximize fidelity to the
simulated state. The error budget is found to be non-additive and
nonlinear. For example, setting gn = 0, n ≥ 5 does reduce the infidelity if
both thermal and dephasing are eliminated first. Note that gdc

3 and gdc
4

also generate contributions on higher orders. The error bar of the
measured infidelity is obtained by dividing the data into 11 chron-
ological batches (each >1 h of averaging), reconstructing each batch,
and calculating the fidelity with respect to the best fit for all averaged
batches. Part of the measured infidelity is found to originate from the
drift of the system which is observed as a slightly tilting cubic phase
state when the system slightly deviates from the Kerr-free point. Note
that the slow drift of the dc-flux offset is not considered in the simu-
lation but is an important factor in the difference between the col-
lected data batches.

Fig. 4 | Perturbative expansions of static and driven nonlinear processes. Each
term is represented by a representative diagram, in spirit of51,58,59, which aids in
exhausting all contributions. A vertex with n straight legs represents gn. An extra
wavy line indicates ac (driven) terms. Incoming (resp. outgoing) straight line
represents â (resp. ây) in the represented process, which must conserve energy
between drive, incoming and outgoing photons to be resonant. T represents the
effective gate duration.

Fig. 5 | Calibration of the Kerr-free operation point. Drift angle measured as a
function of ∣α∣, for severalϕdc

e values after 100 ns free evolution. Solid lines indicate
fits according to Eq. (11), and stars indicate the measured drifted angles. (inset)
Sketch of the drift angle measure protocol. The vacuum is displaced by ∣α∣ and
freely evolves, accumulating a phase θ (pink). We then search for the displacement
that maximizes overlap with the vacuum state (blue), whose angle is θ.
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Dephasing noise
The main source of decoherence for our system is flux noise, which
induces fluctuations in the resonator frequency, and thus dephasing.
According to this noise mechanism, the T2 time should strongly
depend on the ω0 dependence w.r.t. ϕe. Following

54,55, we assume the
flux noise power spectrum to be composed of a 1/f part and a broad-
band part, Sϕe

ðωÞ=2πA1=f =ω+ Sbb, which lead to

1
T2

=
1

2T 1
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logð2ÞA1=f

q dω0

dϕe
+ Sbb

dω0

dϕe

� �2

: ð13Þ

The fit to experimental data (see values in Supplementary Table 1) in
Fig. 7 shows good agreement with this model. One notes the existence
of sweet spots protected from dephasing at ϕe = 0 and 1/2. Since they
do not coincidewith the Kerr free flux point found atϕe≃0.3930, they
cannot be exploited in our current device. Optimizing the sweet spot
position to enhance T2 is a promising avenue to enhance the fidelity of
any operation.

Device fabrication
The device is fabricated from e-beam evaporated Aluminium on a
330μm thick C-axis sapphire. The large features are patterned with an
optical lithography and followed by a wet etch. The junctions are
added with e-beam lithography and attached to the base layer with a
separate patch layer56. The SNAIL has three junctions in series in one
arm and one single junction in the other arm. The junctions are

fabricated with a variation of the Manhattan technique that allows for
arbitrarily large junctions57. Based on a room temperature resistance
measurement of similar junctions, the critical current of a large junc-
tion is 434 nA, while it is 46 nA for the small junction giving an asym-
metry factor β =0.106, close to the fitted value of 0.097.

Data availability
TheWigner and spectroscopy data acquired in this study are available
in the Figshare database under the accession code https://doi.org/10.
6084/m9.figshare.25029041.
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