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Effective light cone and digital quantum
simulation of interacting bosons

Tomotaka Kuwahara 1,2,3 , Tan Van Vu 1 & Keiji Saito4

The speed limit of information propagation is one of the most fundamental
features in non-equilibriumphysics. The region of information propagation by
finite-time dynamics is approximately restricted inside the effective light cone
that is formulated by the Lieb-Robinson bound. To date, extensive studies
have been conducted to identify the shape of effective light cones in most
experimentally relevant many-body systems. However, the Lieb-Robinson
bound in the interacting boson systems, one of the most ubiquitous quantum
systems in nature, has remained a critical open problem for a long time. This
study reveals a tight effective light cone to limit the information propagation
in interacting bosons, where the shape of the effective light cone depends on
the spatial dimension. To achieve it, we prove that the speed for bosons to
clump together is finite, which in turn leads to the error guarantee of the boson
number truncation at each site. Furthermore, we applied the method to pro-
vide a provably efficient algorithm for simulating the interacting boson sys-
tems. The results of this study settle the notoriously challenging problem and
provide the foundation for elucidating the complexity of many-body boson
systems.

Causality is a fundamental principle in physics and imposes the strict
prohibition of information propagation outside light cones. The non-
relativistic analog of causality was established by Lieb and Robinson1,
who proved the existence of the effective light cone. The amount of
information outside the light cone decays exponentially with the dis-
tance. The recent experimental developments have allowed one to
directly observe such effective light cones in various experimental
setups2–4. The Lieb-Robinson bound provides a fundamental and uni-
versal speed limit (that is, the Lieb-Robinson velocity) for non-
equilibrium structures in real-time evolutions. Furthermore, the Lieb-
Robinson bound also offers critical insights into the steady states and
spectral properties of the systems using the Fourier transformation. In
the past decades, the Lieb-Robinson bound has found diverse appli-
cations in interdisciplinary fields, such as the area law of
entanglement5,6, quasi-adiabatic continuation7, fluctuation theorem
for pure quantum states8, clustering theorems for correlation
functions9–11, tensor-network based classical simulation of many-body

systems12,13, optimal circuit complexity of quantumdynamics14, sample
complexity of quantum Hamiltonian learning15, and quantum infor-
mation scrambling16. Owing to these crucial applications, the Lieb-
Robinson bound has become a central topic in the field of quantum
many-body physics.

Lieb and Robinson argued that the speed of information propa-
gation is finitely bounded; that is, the effective light cone is linear with
time. One might have a naive expectation that this is true in generic
quantummany-body systems. However, to justify such an intuition, we
must assume the following conditions: (a) the interactions are short-
range, and (b) the strength of interactions is finitely bound. Under-
standing the breakdown of the two above-mentioned conditions is
inevitable for comprehensively describing the information propaga-
tion in all experimentally relevant quantum many-body systems. The
breakdown of condition (a) should be easy to imagine. Under long-
range interactions, the information propagates immediately to an
arbitrarily distant point, causing one to intuitively assume that the

Received: 8 January 2023

Accepted: 29 February 2024

Check for updates

1Analytical quantum complexity RIKENHakubi Research Team, RIKENCenter for QuantumComputing (RQC),Wako, Saitama 351-0198, Japan. 2RIKENCluster
for Pioneering Research (CPR), Wako, Saitama 351-0198, Japan. 3PRESTO, Japan Science and Technology (JST), Kawaguchi, Saitama 332-0012, Japan.
4Department of Physics, Kyoto University, Kyoto 606-8502, Japan. e-mail: tomotaka.kuwahara@riken.jp

Nature Communications |         (2024) 15:2520 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1612-3940
http://orcid.org/0000-0002-1612-3940
http://orcid.org/0000-0002-1612-3940
http://orcid.org/0000-0002-1612-3940
http://orcid.org/0000-0002-1612-3940
http://orcid.org/0000-0001-8184-9433
http://orcid.org/0000-0001-8184-9433
http://orcid.org/0000-0001-8184-9433
http://orcid.org/0000-0001-8184-9433
http://orcid.org/0000-0001-8184-9433
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46501-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46501-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46501-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46501-7&domain=pdf
mailto:tomotaka.kuwahara@riken.jp


effective light cone may no longer be linear17. Nevertheless, if the
interaction decays polynomially with distance, it indicates the exis-
tence of a non-trivial effective light cone that depends on the decay
rate of the interaction strength. The Lieb-Robinson bound for long-
range interacting systems has been unraveled significantly in the past
decade18–24.

Conversely, the influence of the breakdown of the condition (b)
has still been elusive. Considering the Lieb-Robinson velocity is
roughly proportional to the interaction strength10,25, we can no longer
obtain any meaningful effective light cone without condition (b).
Unfortunately, such quantum systems typically appear in quantum
many-body physics because the representative examples include
quantum boson Hamiltonians, which describe the atomic, molecular,
and optical systems. In the absence of boson-boson interactions, one
can derive the Lieb-Robinson bound with a linear light cone26,27. In
contrast, boson-boson interactions exponentially accelerate trans-
mitting information signals28. In quantum boson systems on a lattice,
an arbitrary number of bosons can gather at one location, and the on-
site energy can become arbitrarily large, resulting in unlimited Lieb-
Robinson velocity. However, to date, there is no general established
method to avoid the unboundedness of the local energy. When ana-
lyzing the systems,wemust truncate the boson number at each site up
to a finite number. Although practical simulations often adopt this
heuristic prescription, the obtained results are always associated with
some uncontrolled uncertainty. Therefore, themost pressing question
is what can happen if we consider the dynamics in unconditional ways.
The elucidation is crucial in the digital quantum simulation of boson
systems with an efficiency guarantee.

As mentioned above, general boson systems inherently cause
information propagation with unlimited speed, forcing one to restrict
themselves to specific classes of interacting boson systems. The most
important class is the Bose-Hubbardmodel, which is a minimal model
comprising essential physics for cold atoms in optical lattices (see
Refs. 29–31 for other boson models). In recent studies, cold atom
setups have attracted significant attention as a promising platform for
programmable quantum simulators32–36. Thus far, various researchers
have explored this model in theoretical37–42 and experimental
ways2,43,44. Considering the Lieb-Robinson bound in the Bose-Hubbard
type model, we must treat the following primary targets separately: i)
transport of boson particles45,46 and ii) information propagation47–50.
The former characterizes the migration speed of boson particles,
whereas the latter captures the propagation of all information. Rele-
vant to the first issue i), Schuch, Harrison, Osborne, and Eisert brought
the first breakthrough45 by considering the diffusion of the initially
concentrated bosons in the vacuum and ensured that the bosons have
a finite propagation speed. The generalization of the result has been a
challenging problem for over a decade. Recently, the initial setup has
been relaxed to general states while assuming a macroscopic number
of boson transport46. On the second issue ii), Ref. 47 derived the Lieb-
Robinson velocity that was proportional to the square root of the total
number of bosons. Therefore, the result provides a qualitatively better
bound, whereas the velocity is still infinitely large in the thermo-
dynamic limit. Assuming the initial state is steady and has a small
number of bosons in each site, it has been proved that the effective
light cone is linearwith time48,49. Although these studies have advanced
the understanding of the speed limit of Bose-Hubbard-type models,
the results’ application ranges are limited to specific setups, such as
the steady initial state (see Ref. 50 for another example). Until now, we
are far from the long-sought goal of characterizing the optimal forms
of the effective light cones for the speed of i) and ii) under the con-
dition that arbitrary time-dependent tunings of the Hamiltonian are
allowed.

In this article, we overcome various difficulties and solve the
problem in general setups. We treat arbitrary time-dependent Bose-
Hubbard-type Hamiltonians in arbitrary dimensions starting from a

non-steady initial state. Such a setup is most natural in physics and
crucial in estimating the gate complexity of digital quantum simulation
of interacting boson systems. Figure 1 summarizes the main results,
providing qualitatively optimal effective light cones for both the
transport of boson particles and information propagation. As a critical
difference between bosons and fermions (or spin models), we have
clarified that the acceleration of information propagation can occur in
high dimensions. Furthermore, as a practical application, we develop a
gate complexity for efficiency-guaranteed digital quantum simulations
of interacting bosons based on theHaah-Hastings-Kothari-Low (HHKL)
algorithm14.

Results
Speed limit on boson transport
We consider a quantum systemon aD-dimensional lattice (graph)with
Λ set for all sites. For an arbitrary subset X⊆Λ, we denote the number
of sites in X by ∣X∣, that is, the system size is expressed as ∣Λ∣. We define
bi and by

i as the bosonic annihilation and creation operators at the site
i∈Λ, respectively. We focus on the Bose-Hubbard type Hamiltonian in
the form of

H =
X
hi, ji

Ji, jðbib
y
j +h:c:Þ+V ð1Þ

with jJi, j j≤�J and V : = f fn̂igi2Λ
� �

, where ∑〈i, j〉 is the summation for all
pairs of the adjacent sites {i, j} on the lattice and f fn̂igi2Λ

� �
is an

appropriate function of the boson number operators fn̂igi2Λ with
n̂i =b

y
i bi. The constraints on the function f fn̂igi2Λ

� �
depend on the

specific problemsunder consideration. These constraints are explicitly
detailed in the statements of ourmain Results 1–3. In Result 1, there are
no restrictions on f ðfn̂igi2ΛÞ; in other words, arbitrary long-range
boson-boson couplings are allowed. Result 2 requires a finite
interaction length, but no additional constraints. In Result 3, alongside
a finite interaction length, we assume that the form of the function is
polynomial. Furthermore, similar to the Lieb-Robinson bound in spin/
fermion systems, all our results are applicable to Hamiltonians with
arbitrary time dependences. Although any time-dependences are
allowed for Results 1 and 2, we need an additional condition on the
norm of the derivative as in Ineq. (36) for the proof of Result 3.

Fig. 1 | Illustrationof the effective light cones.Herein,wedescribe the interacting
bosons by the Bose-Hubbard typeHamiltonian (1).We first consider how fast boson
particles move to distant regions, as shown in Fig. 2. The light cone for the boson
particle transport is proved to be almost linear up to logarithmic corrections
(denoted by the blue shaded line), as shown in Result 1. Conversely, if we consider
the propagation of the full information (see also Fig. 3), the speed can be much
faster than the particle transport. The effective light cone is proved to be poly-
nomial with time, and the exponent is equal to the space dimension D (denoted by
the orange shaded line), where themathematical form of the Lieb-Robinson bound
is given in Result 2. We can explicitly construct a protocol to achieve the light cone
using dynamics with time-dependent Bose-Hubbard typeHamiltonians (see Fig. 4).
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We denote the subset Hamiltonian supported on X⊂Λ by HX,
which picks up all the interactions included in X. The time evolution of
an operator O by the Hamiltonian HX is expressed as
OðHX ,tÞ : = eiHX tOe�iHX t . In particular, we denote O(H, t) by O(t) for
simplicity.

We first focus on how fast the bosons spread from a region X⊂Λ
to the outside (see also Fig. 2) by adopting the notation of the exten-
ded subset X [r] by length r as

X ½r� := fi 2 Λjdi,X ≤ rg, ð2Þ

where di,X is the distance between the subset X and the site i. When X is
given by one site (i.e., X = {i}), i[r] simply denotes the ball region cen-
tered at the site i. We here consider the time evolution of the boson
number operator n̂X :=

P
i2X n̂i. We prove that the higher order

moment for boson number operator n̂X ðtÞ
� �s is upper-bounded by

n̂s
X ½R� with an exponentially decaying error with R, i.e.,
n̂X ðtÞ
� �s � n̂s

X ½R� + e
�ΩðR=tÞ. Throughout this study, we use the notation

O1⪯O2 that means tr σðO2 �O1Þ
� �

≥0 for an arbitrary quantum state σ.
Our first result is roughly described by the following statement:

Result 1. Let us consider arbitrary boson-boson interactions V in Eq. (1)
without any assumptions on the function f. For R≥ c0t log t, the time-
evolution n̂X ðtÞ satisfies the operator inequality of

½n̂X ðtÞ�s � n̂X ½R� + δn̂X ½R� + c2ts
h is

,

where δn̂X ½R� = e
�c1R=t

P
j2Λe

�c01dj,X ½R� n̂j and fc0,c1,c01,c2g are the constants
of Oð1Þ. The operator δn̂X ½R� is as small as e−Ω(R/t) if there are not many
bosons around the region X [R]. We can apply this theorem to a wide
range of setups. Interestingly, it holds for systems with arbitrary long-
range boson-boson interactions, such as the Coulomb interaction.
Moreover, we can also apply the theorem for imaginary time
evolution n̂X ðitÞ= e�tHn̂X e

tH .

From the theorem, we can see that the speed of the boson
transport from one region to another is almost constant; at most, it
grows logarithmically with time. This theorem gives a complete gen-
eralization of the result in Ref. 45, which discusses the boson transport
for initial states that all the bosons are concentrated in a particular
region. If an initial state has a finite number of bosons at each site, the
probability distribution for the number of bosons still decays expo-
nentially after a time evolution. Herein, the decay form is determined
by Result 1. The estimation provides critical information for simulating
the quantum boson systems with guaranteed precision (see Result 3).

Lastly, we notice that Result 1 does not imply that the operator
n̂X ðtÞ is approximated onto region X [R]; that is, we cannot ensure
n̂X ðtÞ≈ n̂X ðHX ½R�,tÞ= eiHX ½R� tOe�iHX ½R� t as in (4). For example, if we con-
sider a phase operator ein̂X , the influence can propagate acceleratingly
(see below for an explicit example).

Lieb-Robinson bound
We next consider the approximation of the time-evolved operator
OX0

ðtÞ by OðHX0 ½R�,tÞ using the subset Hamiltonian HX0 ½R� (see Fig. 3),
whereOX0

is an arbitrary operator. Regarding the Holevo capacity, the
approximation error characterizes all the information that propagates
outside the region X0[R]25. In the following, as a natural setup, we
consider an arbitrary initial state with low-boson density condition:

trðρ0n̂
s
i Þ≤

1
e

b0

e
sκ

� �s

, ð3Þ

where b0 and κ (≥1) are the constants ofOð1Þ. From this condition, the
boson number distribution at each site decays (sub)-exponentially at
the initial time. The simplest example is the Mott state, where a finite
fixed number of bosons sit on each site. We emphasize that without
assuming any conditions for the boson number, there is no speed limit
for general information propagation. More precisely, the speed of
information propagation is directly proportional to the number of
bosons at local sites41. This underscores why the low-boson-density
condition is the minimal assumption required to establish a mean-
ingful Lieb-Robinson bound. This point also makes a clear difference
between the information propagation and the particle transport, in
which no conditions are imposed for initial states in Result 1.

Under the condition (3), we can prove the following statement:

Fig. 2 | Setup of the boson particle transport. We consider a boson number
operator n̂X on a region X, where Λ is the total system. After time t, the bosons
initially concentrated on X spread outside the region at a certain speed. Assuming
there are no bosons outside X at the initial time (i.e., t =0), the boson particle
transport is known to have a finite speed45; that is, it is approximately restricted in a
region X[R] with R ≈ t (enclosed by the blue shaded line). Result 1 generalizes the
result to arbitrary initial states up to a logarithmic correction. The result plays a
crucial role in truncating the boson numbers at each site after time evolution while
guaranteeing the desired precision.

Fig. 3 | Setup of information propagation. We consider an operator OX0
sup-

ported on the subset X0 and approximate the time-evolved operator OX0
ðtÞ onto

the extended region X0[R] (enclosed by the orange shaded line). Additionally, we
assume that the boson number distribution at each site is sub-exponentially sup-
pressed for an initial state, as in Eq. (3). Then, as long as R≥ tDpolylogðtÞ, the
approximationerror betweenOX0

ðtÞbyOðHX0 ½R�,tÞdecays sub-exponentiallywithR.
The effective light cone for the information propagation grows polynomially with
time as R ≈ t D.
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Result 2. Let us assume that the range of boson-boson interactions V is
finite in Eq. (1). Then, for an arbitrary operatorOX0

(kOX0
k= 1), the time

evolutionOX0
ðtÞ is well approximated by using the subset Hamiltonian

on X0[R] with the error of

OX0
ðtÞ � OX0

ðHX0 ½R�,tÞ
h i

ρ0

��� ���
1
≤ e�CðR=tDÞ

1
κD , ð4Þ

for R≥ tDpolylogðtÞ, where �k k1 is the trace norm and C is an Oð1Þ
constant.

The bound (4) tells us that any operator spreading is approxi-
mated by a local operator on X0[R] with the accuracy of the right-hand
side. It rigorously bounds any information propagation. A crucial
observation here is that the propagation speed accelerates depending
on the spatial dimensions, which is a stark difference from fermionic
lattice systems.

The accelerated information propagation can be interpreted
physically as follows. According to Ref. 41, the velocity of information
propagation is directly proportional to the number of bosons at local
sites in the presence of boson-boson interactions. Consequently, if
dynamic processes cause an increase in boson concentrations within
specific one-dimensional regions, the boson density in that 1D region
will rise over time. As a result, information propagation on this 1D
“information path” experiences acceleration. This phenomenon is
specific to high-dimensional systems. In one-dimensional systems, if
bosons concentrate in a specific region, the surrounding areas exhibit
sparse boson densities, preventing persistent acceleration.

Optimality of the effective light cone
As discussed in Result 2, the bound on the speed of information pro-
pagation is proportional to t D−1. Herein, we show that the obtained
upper bound is qualitatively tight by explicitly developing time evo-
lution to achieve the bound. As the initial state, we consider the Mott
state with only one boson at each site. The protocol comprises the
following two steps.
1. First, we set the path of the information propagation. We trans-

port the bosons such that they are collected on the path. Here, the
path is given by the one-dimensional ladder [see Fig. 4 (a)].

2. Then, we encode the qubits on the ladder and realize the CNOT
gate by using two-body interactions and boson hopping [see
Fig. 4 (b)].

We here consider the first step. Let us consider two nearest neighbor
sites i1 and i2 where the state is given by ∣Nii1 � ∣1ii2 . We denote the
Fock state on the site i by ∣mii withm the boson number. Our task is to
move the bosons on the site i1 to the site i2, that is,

∣Nii1 � ∣1ii2 ! ∣0ii1 � ∣N + 1ii2 :

Such a transformation is realized by combining the free-boson
Hamiltonian and Bose-Hubbard Hamiltonian, and the necessary time
is inversely proportional to the hopping amplitude of the bosons�J (see
theMethod section). Therefore, based on the time evolution of t/2, we
can concentrate the bosons in a region within a distance of ð�JtÞ from
the boson path. The boson number at one site on the boson path is
now proportional to ð�JtÞD�1

. Herein, we denote the quantum state on
the boson path by

N‘
j = 1∣�nt ,�nt

	
j with �nt / ð�JtÞD�1. Here, ℓ represents the

total length of the information path.
In the second step, we encode the quantum states ∣�nt ,�nt

	
j and

∣�nt � 1,�nt + 1
	
j on the jth row by ∣1ij and ∣0ij, respectively, to prove that

the time required to implement the controlled-NOT (CNOT) gate is at
most Oðt�D+ 1Þ. By using appropriate two-body interactions between
the (j − 1)th row and jth row, no boson hopping is observed on the jth
row when the (j − 1)th row is given by ∣�nt ,�ntij; however, there exists
boson hopping on the jth row when the (j − 1)th row is given by
∣�nt � 1,�nt + 1

	
j . One can control the boson-boson interactions such that

only the hopping between ∣�nt ,�ntij $ ∣�nt � 1,�nt + 1ij occurs. We thus
realize the CNOT operation on the information path (see the Method
section), where the sufficient time required to realize it is proportional
to 1=ð�J�ntÞ / 1=ð�JDtD�1Þ. Therefore, in half of the total time t/2, we can
implement ð�JtÞD pieces of the CNOT gates, which allows us to propa-
gate the information from one site to another as long as the distance
between these sites is smaller than ð�JtÞD.

One can demonstrate that the number of CNOT operations is
directly linked to the distance of the operator spread, following the
discussion in Ref. 25. To illustrate this, consider two types of

Fig. 4 | Outline of the proposed protocol to achieve the fastest information
transfer by interacting with boson systems. a Schematic picture of information
transfer. In the initial state, one boson sits at each site. In the first half, we transport
the boson particles to a particular one-dimensional region called the information
path. The path is now given by a ladder (denoted by the purple-shaded region).
Considering the speedof the boson transport isfinite,we accumulate the bosons in
the region within a distance of ð�JtÞ from the path. Therefore, the number of bosons
�nt at each site on the path is proportional to ð�JtÞD�1

(in the pictureD = 2). Afterward,
we switch off the boson hopping and isolate the information path so that the

bosons cannot escape from the path. b Encoding qubits and CNOT operation. The
speed of the information propagation is proportional to �nt . By encoding the qubit
on the jth row as ∣�nt ,�nt

	
j ! ∣1ij and ∣�nt � 1,�nt + 1

	
j ! ∣0ij , we can implement the

CNOT operation by appropriately choosing boson-boson interactions. If the state
on the (j − 1)th row is given by ∣0ij�1, there is no boson hopping between the two
sites on the jth row. In contrast, if the state on the (j − 1)th row is given by ∣1ij�1,
there exists a boson hopping. Herein, the hopping rate of one boson is amplifiedby
�nt times, and hence, the transition time from ∣0ij to ∣1ij is proportional to 1=�nt . This
enables us to implement the CNOT operation in the time of 1=�nt .
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operations: flipping or non-flipping the endmost qubit on the infor-
mation path at the time t/2, where the boson concentration has been
over. For simplicty, we here prepare the quantum state on the infor-
mation path so that it can be given by the product state |0⟩⊗ℓ instead
of |1⟩⊗ℓ. By flipping the endmost qubit to ∣1i,m-sequential CNOT
operations transform the state to ∣1i�m∣0i�‘�m, while without flipping,
the state remains unchanged ∣0i�‘. By encoding classical information
as flipping (=0) or non-flipping (=1) of the endmost qubit, one can
transmit 1 bit of information through the sequence of CNOT opera-
tions. The connection between Holevo capacity and operator
spreading25 implies that this process necessarily induces the operator
spreading of the flipping unitary on the endmost qubit in the Heisen-
berg picture. Thus, �J

D
tD CNOT operations during the time t achieves

the Lieb-Robinson velocity of �J
D
tD�1. This accelerating information

propagationmust be clearly distinguished fromboson transportwith a
constant velocity, as in Result 1.

We finally discuss a comparison with the mechanism proposed
by Eisert and Gross28. In their model, the Hamiltonian effectively
amplifies the hopping of bosons, with hopping amplitudes directly
proportional to their positions. In contrast, our mechanism relies
on dynamically adjusting the local boson numbers. The crucial
aspect is that, in the presence of boson-boson interactions, the
speed of information propagation is enhanced by the local boson
numbers.

Provably efficient digital quantum simulation
In the final application, we consider the quantum simulation of time
evolution and estimate the sufficient number of quantum gates that
implement the bosonic time evolution e−iHt acting on an initial state ρ0.
In detail, we prove the following statement:

Result 3. Let us assume that the boson-boson interactions in
V = f fn̂igi2Λ

� �
are finite in length, and the function f fn̂igi2Λ

� �
is given by

a polynomial with limited degrees and coefficients. For an arbitrary
initial state ρ0 with the condition (3), the number of elementary
quantum gates for implementing e−iHtρ0eiHt up to an error ϵ is at most

jΛjtD+ 1polylogðjΛjt=ϵÞ, ð5Þ

with the depth of the circuit tD+ 1polylogðjΛjt=ϵÞ, where the error is
given in terms of the trace norm. Note that ∣Λ∣ is the number of sites in
the total system.

We extend the Haah-Hastings-Kothari-Low (HHKL) algorithm14 to
the interacting bosons. Before going to the algorithm, we truncate the
boson number at each site up to �q. We define �Π�q as the projection onto
the eigenspaceof the bosonnumber operators fn̂igi2Λ with eigenvalues
smaller than or equal to �q. Then, we consider the time evolution by the
effective Hamiltonian �Π�qH �Π�q. In the following, for an arbitrary
operator O, we denote the projected operator �Π�qO�Π�q by ~O for sim-
plicity. Assuming low-bosondensity (3), Result 1 gives theupper bound
of the approximation error of

��ρ0ðtÞ � ρ0ð~H,tÞ
��
1 ≤ jΛje

�c3 �q=ðt log tÞD
� �1=κ

: ð6Þ

Therefore, to achieve the error of ϵ, we need to choose
as �q= ðt log tÞDlogκðjΛj=ϵÞ= tDpolylogðjΛjt=ϵÞ.

In the algorithm, we first adopt the interaction picture of the time
evolution:

e�i~Ht = e�i~VtT e�i
R t

0
~H0ð~V ,xÞdx : ð7Þ

First, the time evolution by ~V is decomposed to OðjΛjÞ pieces of the
local time evolution, considering the interaction terms in V commute

with each other. Second, we implement the time evolution for the

time-dependent Hamiltonian ~H0ð~V ,xÞ. The Hamiltonian ~H0ð~V ,xÞ
contains interaction terms like ei~Vx~bi

~b
y
j e

�i~Vx , which has a bounded

normbyOð�qÞ and is described by anOð1Þ sparsematrix. Herein, we say
that an operatorO is d sparse if it has at most d nonzero entries in any
row or column. Moreover, the norm of the derivative

kdðei~Vx~bi
~b
y
j e

�i~VxÞ=dxk is upper-bounded by polyð�qÞ owing to the

assumption for f fn̂igi2Λ
� �

.

Therefore, the problem is equivalent to implementing the time
evolution of the Hamiltonian with the following three properties: (i)
the norms of the local interaction terms are upper-bounded by Oð�qÞ,
(ii) the interaction terms aredescribedbyOð1Þ sparsematrices, and (iii)
the time derivative of the local interactions has a norm of polyð�qÞ at
most. Such cases can be treated by simply combining the previous
works in Refs. 14 and51. As shown in the Method section, the total
number of elementary circuits is atmost ðjΛjt�qÞpolylogðjΛjt�q=ϵÞ, which
reduces to (5) by applying �q= tDpolylogðjΛjt=ϵÞ.

Discussion
Our study clarified the qualitatively tight Lieb-Robinson light cone for
systems with the Bose-Hubbard type Hamiltonian. Still, we have var-
ious improvements to implement in future works. First, the obtained
bounds incorporate logarithmic corrections, but there is a possibility
of their removal through a refinement of the current analyses. Cur-
rently, it does not seem to be a straightforward problem to remove
them using our existing techniques. A possible starting point to
achieve this is to consider the difference between average values as
tr½ðOX0

ðtÞ �OX0
ðHX0 ½R�,tÞÞρ0� instead of the trace norm

kðOX0
ðtÞ � OX0

ðHX0 ½R�,tÞÞρ0k1. While this quantity may not capture the
propagation of total information, a significantly stronger bound can be
proven in one-dimensional systems, where the light cone form strictly
follows a linear form with time49. Through the refinement and com-
bination of existing techniques, there is a possibility of eliminating the
logarithmic corrections in our current bound in future studies. Sec-
ond, although acceleration of the information propagation is possible,
there are particular cases where the linear light cone is rigorously
proved48,49. Therefore, by appropriately avoiding the acceleration
mechanism depicted in our protocol, we can possibly establish a
broader class that retains the linear light cone. Third, it is an interesting
open question to seek the possibility of improving the current gate
complexity jΛjtD+ 1polylogðjΛjt=ϵÞ and clarify the optimal gate com-
plexity to simulate the quantum dynamics. We hope a more simplified
technique may appear for implementing these improvements, con-
sidering the current proof techniques are rather complicated.

Other directions include generalizing the current results beyond
the Bose-Hubbard type Hamiltonian (1). As a straightforward exten-
sion, it is intriguing to investigate under what conditions boson-boson
interactions like bi1

bi2
by
i3
by
i4
can lead to information propagationwith a

limited speed. In this scenario, relying solely on the low-boson-density
condition proves insufficient for regulating the speed of information
propagation (cf. Ref. 52). Still, such an extension has practical impor-
tance. For example, when applying the quasi-adiabatic continuation
technique7 to the Bose-Hubbard typemodels, wemust derive the Lieb-
Robinson bound for the quasi-adiabatic continuation operator, which
is no longer given by the form of Eq. (1). We expect that our newer
techniques will be helpful in developing interacting boson systems
where the effective light cone is at most polynomial with time.

Finally, it is intriguing to experimentally or numerically observe
the supersonic propagation of quantum signals using a mechanism
similar to that illustrated in Fig. 4. In our protocol, we employed highly
artificial boson-boson interactions. Then, a significant open problem is
whether acceleration can occur even under time-independent

Article https://doi.org/10.1038/s41467-024-46501-7

Nature Communications |         (2024) 15:2520 5



Hamiltonians. We anticipate that the boson transport in the initial step
can be achieved by reversing the time evolution (see Supplementary
Note 11). As for the second step in the protocol, Ref. 41 has already
noted that the group velocity of the propagation front of correlations
is proportional to the boson number at each site. Hence, we believe
that the proposed acceleration mechanism can be realized within the
current experimental setups.

Methods
Outline of the proof for Result 1
Throughout the proof, we denote Oð1Þ as an arbitrary finite combina-
tion of the fundamental parameters, which are detailed in Supple-
mentary Table 1.

First, we present several key ideas to proveResult 1 by considering
½n̂X ðtÞ�s with s = 1 for simplicity. By refining the technique in Ref. 45, we
begin with the following statement (Supplementary Subtheorem 1):

n̂X ðτÞ � n̂X + cτ,1D̂X + cτ,2, ð8Þ

with D̂X : =
P

i2∂X
P

j2Λe
�di, j n̂j , where cτ,1 and cτ,2 are the constants that

grow exponentially with τ, that is, cτ,1,cτ,2 = e
OðτÞ. We define ∂X as the

surface region of the subset X, that is, ∂X = fi 2 X jdi,Xc = 1g: From the
definition, the operator D̂X is roughly given by the boson number
operator around the surface region of X with an exponential tail (see
Fig. 5). In the inequality (8), the coefficients cτ,1, cτ,2 grow exponentially
with τ, and hence the inequality becomes meaningless for large τ,
which has been the main bottleneck in45.

The key technique to overcome the above-mentioned difficulty is
the connection of the short-time evolution e−iHτ with τ a constant of
Oð1Þ, which has played an important role in the previous works22,48,53.
We first refine the upper bound (8) to

n̂X ðτÞ � n̂X ½‘� + e
�Ωð‘Þ + cτ,2: ð9Þ

If the above inequality holds, by iteratively connecting the short-time
evolution (t/τ) times, we obtain

n̂X ðtÞ � n̂X ½ðt=τÞ‘� +
t
τ

e�Ωð‘Þ + cτ,2
� �

, ð10Þ

which yields the desired inequality in Result 1 for s = 1 by choosing
R = (t/τ)ℓ (or ℓ = τR/t).

Then, we aim to derive the bound (9) using the inequality (8).
However, the derivation is not straightforward because the inequality
n̂X + cτ,1D̂X + cτ,2 � n̂X ½‘� + e

�Ωð‘Þ + cτ,2 does not hold in general. For
example, let us consider a quantum state ρ such that all bosons con-
centrate on ∂X (see Fig. 5). Then, we have

trðρD̂X Þ / tr ρn̂X

� �
, ð11Þ

which makes tr½ρðn̂X + cτ,1D̂X Þ�= ½1 +Ωð1Þ�tr ρn̂X

� �
. Therefore, connect-

ing the time evolution (t/τ) times yields an exponential term
½1 +Ωð1Þ�t=τ . To avoid such exponential growth, we first upper-bound
n̂X ðτÞ � n̂X ½‘�ðτÞ for∀ τ > 0 as a trivial bound, where ℓ (≥0) can be
arbitrarily chosen. Then, we use the inequality (8) to obtain

n̂X ðτÞ � n̂X ½‘�ðτÞ � n̂X ½‘� + cτ,1D̂X ½‘� + cτ,2:

The point here is that D̂X ½‘� is localized around the surface of
X [ℓ] with an exponentially decaying tail. Using the above operator
inequality, we can resolve the drawback in Eq. (11) that originates
from the concentration around the boundary ∂X. Here, for the
quantum state ρ which has the boson concentration on the region
∂X, we have

trðρD̂X ½‘�Þ≈ e�Ωð‘Þtr ρn̂X

� �
instead of Eq. (11). Therefore, the contribution from the operator D̂X ½‘�
is exponentially small with the length ℓ.

From the above discussion, to derive a meaningful upper bound
for short-time evolution, we need to consider

min
r:0≤ r ≤ ‘

tr ρ n̂X ½r� + cτ,1D̂X ½r� + cτ,2

 �h i

ð12Þ

for an arbitrary quantum state ρ, which also gives an upper bound of
tr½ρn̂X ðτÞ�. We cannot solve the optimization problem (12) in general
but ensure the existence of r∈ [0, ℓ] that satisfies the following
inequality (see Supplementary Lemma 13 and Supplementary Propo-
sition 16):

n̂X ðτÞ � n̂X ½‘� + cτ,1δ‘ðn̂X ½‘� + D̂X ½‘�Þ+ cτ,2, ð13Þ

where δℓ decays exponentially with ℓ, i.e., δℓ = e−Ω(ℓ), and we define
D̂X ½‘� =

P
j2X ½‘�ce

�3dj,X ½‘�=4n̂j . The inequality (13) is given in the formof the
desired inequality (9), which also yields the upper bound (10) (Sup-
plementary Theorem 1). More precisely, the iterative use of the
inequality (13) yields an additional coefficient ð1 + cτ,1δ‘Þt=τ to the first
term n̂X ½ðt=τÞ‘� in (10). We need the condition R≥ c0t log t (or ‘ / logðtÞ)
to ensure ð1 + cτ,1δ‘Þt=τ≲1 + cτ,1tδ‘. Therefore, we prove the main
inequality in Result 1.

For a general sthmoment, we apply similar analyses to the case of
s = 1. As a remark, we cannot simply obtain ½n̂X ðτÞ�s �
ðn̂X + cτ,1D̂X + cτ,2Þ

s
from the inequality (8) because O1⪯O2 does not

implyOs
1 � Os

2 in general. Instead, we obtained the following modified
upper bound:

½n̂X ðτÞ�s � n̂X + cτ,1D̂X + cτ,2s
� �s

: ð14Þ

Then, we consider a similar procedure to the optimization problem
(12) and obtain an analogous inequality to (13) (Supplementary Pro-
position 18). This allows us to connect the short-time evolution to
derive Result 1 for general s.

Fig. 5 | Time evolution of boson number operator. A short-time evolution of
n̂X ðτÞ is bounded fromaboveby n̂X + cτ,1D̂X + cτ,2. The influenceof D̂X exponentially
decays with the distance from the surface region ∂X (denoted by the blue shaded
region). The contributionof D̂X maybe fatal in someclasses of the initial states. If all
bosons concentrate on ∂X in an initial state ρ,trðρD̂X Þ can be as large as trðρn̂X Þ.
However, by considering the time evolution of n̂X ½‘�ðτÞ, the contribution by the
bosons on ∂X is exponentially small with ℓ in the operator D̂X ½‘�. Thismotivates us to
consider the minimization problem (12) for all choices of X[r] (0≤r≤ℓ) to derive the
upper bound (13).

Article https://doi.org/10.1038/s41467-024-46501-7

Nature Communications |         (2024) 15:2520 6



Non-acceleration of Boson transport
Here, we demonstrate that the protocol in Fig. 4 cannot induce the
acceleration of boson transport. While this protocol enables the
transformation

ðby
i Þ

m
∣M1

	! ðby
j Þ

m
∣M1

	 ð15Þ

as long as di, j≲ t D (where ∣M1i is the Mott state with one boson at each
site), this process does not imply genuine particle transport due to the
indistinguishability of bosons. In the first place, even without the Fig. 4
protocol, the transformation (15) can be achieved in a constant time
for arbitrary distances (see Fig. 6). To characterize particle transport, it
is essential to ensure that the increasedbosons indeedoriginate froma
distant region. This can be achieved in the following cases:
1. If trðρðtÞn̂X Þ> trðρn̂X ½R�Þ, we can ensure that a part of the increase in

boson number comes from the region X[R]c, achieving particle
transport over a distance R.

2. Bymaking target bosonsdistinguishable fromothers (e.g., bosons
with the spin degree of freedom), particle transport can be clearly
defined.Thefirst case is addressed in Result 1, wherewe establish a
finite speed. In the second case, we also prove the finite speed of
transport by slightly generalizing Result 1. In this case, the
Hamiltonian should be generalized to

H =
X
σ

X
hi, ji

Ji, jðbi,σb
y
j,σ +h:c:Þ+ f fn̂i,σgi2Λ,σ


 �
:

Then, the same operator inequality as in Result 1 holds for n̂X ,σðtÞ for
corresponding spin degrees σ.

In the context of this discussion, a more phenomenological
explanation to ensure the finite velocity of boson transport is through
the particle current. The particle current operator Ĵ i,i + 1 between the
sites i and i + 1 is defined as

Ĵ i,i + 1 : = Jðibib
y
i+ 1 + h.c. Þ, ð16Þ

where we consider a one-dimensional system for simplicity, and the
free Hamiltonian is H0 =

P
iJðbib

y
i+ 1 + h.c. Þ. Usually, the current is

defined as the product of particle density and velocity, giving the
speed of particle velocity as

vtransport ∼
Ĵ i,i+ 1

n̂i + n̂i+ 1

�����
�����≤ 2J, ð17Þ

where we use the operator inequality of jĴ i,i + 1j � 2Jðn̂i + n̂i+ 1Þ from
jbib

y
i + 1j � n̂i + n̂i+ 1 (see Supplementary Equation 459). Although it is

non-trivial to derive our Result 1 only from this discussion, it provides a
simple picture ofwhy the speed of particle transport has a finite speed.

Outline of the proof for Result 2: simpler but looser bound
Herein, we show how to derive the Lieb-Robinson bound with the
effective light cone of R∝ tD for information propagation. The number
of bosons created by the operatorOX0

, say q0, is assumed to be anOð1Þ
constant for simplicity. In SupplementaryNotes 7, 8, 9, and 10,we treat
generic q0, and the obtained Lieb-Robinson bounds depend on q0 (see
Supplementary Theorems 2,3, and 4). Before going to the tight Lieb-
Robinson bound, we show the derivation of a looser light cone by
using the truncation of the boson number as in Ref. 48, which gives
R∝ tD+1 (Supplementary Theorem 2). By applying Result 1 with X = {i},
the time evolution of the boson number operator n̂i is roughly upper-
bounded by the boson number on the ball region i[ℓt], that is, n̂i½‘t �,
where ‘t =Oðt log tÞ, andwe ignored the non-leading terms. Therefore,
if an initial state ρ0 has afinite number of bosons at each site, the upper
bound of the sth moment after a time evolution can be given as

tr ρ0ðtÞn̂s
i

� �
≲ tr ρ0n̂

s
i½‘t �

h i
/ ‘Dt s

κ
� �s

, ð18Þ

where we use the condition (3) in the second inequality. The above
inequality characterizes the boson concentration by the time evolu-
tion to ensure that the probability distribution of the boson number
decays subexponentially

tr ρ0ðtÞΠi, ≥ x

� �
≲ e� x=‘Dtð Þ1=κ , ð19Þ

where Πi,≥ x is the projection onto the eigenspace of n̂i with the
eigenvalues larger than or equal to x. Therefore, we expect that the
boson number at each site can be truncated up toOð‘Dt Þ= tDpolylogðtÞ
with guaranteed efficiency.

When deriving the Lieb-Robinson bound, we adopt the projection
�ΠL,�q (L⊆Λ) such that

�ΠL,�q : =
Y
i2L

Πi,≤ �q: ð20Þ

This truncates the boson number at each site in the region L up to �q.
Therefore, the Hamiltonian �ΠL,�qH �ΠL,�q has a finitely bounded energy
in the region L under the projection. The problem is whether we can
approximate the exact dynamics e−iHt by using the effective Hamil-
tonian as e�i�ΠL,�qH �ΠL,�q t . Generally, the error between them is not
upper-bounded unless we impose some restrictions on the initial
state ρ0. Under the condition (3) of the low-boson density, the
inequality (19) indicates that the dynamics may be well-
approximated by �ΠL,�qH �ΠL,�q as long as �q≫ ‘Dt . Indeed, we can prove
the following error bound similar to (6) (Supplementary Proposi-
tion 30):

OX0
ðtÞ �OX0

ð�ΠL,�qH �ΠL,�q,tÞ

 �

ρ0

��� ���
1
≤ jLje�c3 �q=ðt log tÞD

� �1=κ
: ð21Þ

Following the analyses in Ref. 48, we only have to truncate the boson
number in the region X0[R], that is, L = X0[R], to estimate the
error kðOX0

ðtÞ � OX0
ðHX ½R�,tÞÞρ0k1.

For the effective Hamiltonian �ΠL,�qH �ΠL,�q, the Lieb-Robinson velo-
city is proportional to �q, and hence, if �qt≲R, we can ensure that the
time-evolved operator OX0

ð�ΠL,�qH �ΠL,�q,tÞ is well-approximated in the
region X0[R] (Supplementary Lemma 35). Therefore, by choosing �q /
R=t (see Supplementary Equation 527 for the explicit choice) in (21),
the Lieb-Robinson bound is derived as follows:

OX0
ðtÞ �OX0

ðHX ½R�,tÞ

 �

ρ0

��� ���
1
≤ exp �c

R

tðt log tÞD

 !1=κ

+ logðjX0½R�jÞ
2
4

3
5:

ð22Þ

Fig. 6 | Transformation from by
1 ∣M1

	
to by

n∣M1

	
(a). This process is equivalent to

one hopping from left to right of all bosons (b), where the left-end two sites and the
right-end two sites are merged into one site, respectively. Then, this process takes
time of Oð1Þ for arbitrarily long 1D chains.
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This gives the effective light cone in the form of R = tD+ 1polylogðtÞ.

Outline of the proof for Result 2: optimal light cone
To refine the bound (22), we must utilize the fact that the boson
number at each site cannot be as large as OðtDÞ simultaneously (see
Fig. 7). FromResult 1, after time evolution, the boson number operator
n̂i0 ½‘t � in the ball region i0[ℓt] is roughly upper-bounded by that in the
extended ball region i0[2ℓt] with ‘t =Oðt log tÞ. We thus obtain

n̂i0 ½‘t �ðtÞ
ji0½‘t �j

≲
n̂i0 ½2‘t �
ji0½‘t �j

=
n̂i0 ½2‘t �
ji0½2‘t �j

� ji0½2‘t �jji0½‘t �j
: ð23Þ

Considering ∣i0[2ℓt]∣/∣i0[ℓt]∣ is upper-bounded by theOð1Þ constant, the
average bosonnumber in the region i0[ℓt] is still constant as long as the
initial state satisfies hn̂i0 ½2‘t �i=ji0½2‘t �j=Oð1Þ. We can ensure that the
average local energy is upper-bounded by a constant value from the
upper bound on the average number of bosons. This inspires a feeling
of hope to derive a constant Lieb-Robinson velocity. Unfortunately,
such an intuition does not hold, considering bosons clump together to
make an information path with high boson density, as shown in Fig. 4.
In such a path, up to Oð‘D�1

t Þ, bosons sit on the sites simultaneously.
Therefore, our task is to prove that the fastest information propaga-
tion occurs when bosons clump onto a one-dimensional region.

To address the aforementioned point, we need to consider cases
where the interaction strengths in a Hamiltonian depend on the loca-
tions. In the standard Lieb-Robinson bound, the Lieb-Robinson velo-
city is proportional to the maximum local energy9,10. However, this
estimation is insufficient when deriving the bosonic Lieb-Robinson
bound, as the local energy depends on the boson number at the local
site and can be as large asOðtDÞ; our current goal is to derive the Lieb-
Robinson velocity as tD−1.

For this purpose, we consider a general Hamiltonian in the formof
H =∑Z⊂ΛhZ with the additional constraint:

1
m

Xm
j = 1

hZj

��� ���≤ �g0

m
+ �g1 ð8m 2 NÞ, ð24Þ

where fhZj
gm
j = 1

are arbitrary interaction terms acting on subsets fZjgmj = 1,
respectively. Roughly speaking, the parameter �g0 corresponds to the

maximum local energy on one site, and �g1 is the average local energy
onone site. Under the above condition, each interaction termhZhas an
upper bound of �g0 + �g1. Thus, the standard Lieb-Robinson bound gives
a Lieb-Robinson velocity of Oð�g0 + �g1Þ, which can be unfavorable if �g0

is large. Through refined analyses, we can prove that the improved
Lieb-Robinson velocity depends on the distance as Oð�g0=RÞ+Oð�g1Þ,
eventually becoming Oð�g1Þ for sufficiently large R (Supplementary
Lemma 42). To apply this technique to the boson systems, we may
come up with an idea to perform site-dependent boson number
truncation instead of the uniform truncation �ΠL,�q in Eq. (20). For
example, we consider a projection as

�ΠL,q : =
Y
i2L

Πi,≤qi
, q : = fqigi2L: ð25Þ

By the projection, the effective Hamiltonian �ΠL,qH �ΠL,q satisfies a
similar condition to (24).

The primary challenge arises from the inability to obtain an
accurate approximation for dynamics using the effective Hamiltonian
�ΠL,qH �ΠL,q for a specific choice of q. This challenge is rooted in the
superposition of quantum states with diverse boson configurations.
For instance, consider a quantum state ∣ψ

	
represented as the super-

position of two states, ∣ψ1

	
and ∣ψ2

	
, where �ΠL,q1

∣ψ1

	
= ∣ψ1

	
and

�ΠL,q2
∣ψ2

	
= ∣ψ2

	
. Then, time evolution with the effective Hamiltonian

�ΠL,q1
H �ΠL,q1

provides a reliable approximation for e�iHt ∣ψ1

	
but not for

e�iHt ∣ψ2

	
. Conversely, time evolution with �ΠL,q2

H �ΠL,q2
gives a good

approximation for e�iHt ∣ψ2

	
but not for e�iHt ∣ψ1

	
. Thus, a specific

boson number truncation using �ΠL,q cannot be applied uniformly to all
superposed states. It is necessary to consider different boson number
truncations depending on the boson configuration of the superposed
states, as discussed in Supplementary Note 8A.

To resolve the problem, we utilize the connection of short-time
unitary evolution22,48,53. Let τ be a unit of time that is appropriately
chosen afterward. If we can obtain the approximation error of

OX ðτÞ �OX ðHX ½‘�,τÞ
h i

ρ0ðt1Þ
��� ���

1
ð26Þ

for arbitrary OX with X⊆ X0[R] and t1≤t, we can connect the approx-
imation to obtain the desired error bound
k½OX0

ðtÞ � OX0
ðHX ½R�,tÞ�ρ0ðtÞk1 (see Supplementary Equation 764). For

sufficiently small τ, the time-evolved state approximatelypreserves the
initial boson distribution.

To estimate the norm (26), we consider a set of projection fPsgMs = 1
such that

PM
s = 1 Ps = 1, each of which constraints the boson number on

the sites. By using them, we upper-bound the norm (26) by

XM
s = 1

OX ðτÞ � OX ðHX ½‘�,τÞ
h i

Ps

��� ��� � Psρ0ðt1Þ
�� ��

1: ð27Þ

Therefore, although the state ρ0(t1) includes various boson number
configurations, we can separately treat them. Because the summation
(27) increases with the number of projections M, we need to select a
minimal set of fPsgMs = 1 to achieve our goal. The choice of the projec-
tions is rather technical (see Supplementary Note 9B).

Now, the short-time evolution does not drastically change the
original bosonnumber distribution.Hence,weperformboson number
truncation �ΠL,q with qi roughly determined based on the initial boson
number around the site i.

Fig. 7 | Average of the bosonnumber ona region i0[ℓt] with ‘t =Oðt logðtÞÞ. Even
if bosons can concentrate on a few sites, the average number of bosons on one site
is upper-boundedby a constant, as in (23). The local energy associatedwith one site
is roughly proportional to the boson number on the site; hence, the average of the
local energy is finitely bounded. However, if bosons concentrate onto a one-
dimensional region (enclosed by the red dashed line), they induce an acceleration
of information propagation (also see Fig. 4).
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In conclusion, we can derive the following upper bound (see
Supplementary Proposition 45):

OX ðτÞ �OX ðHX ½‘�,τÞ
h i

ρ0ðt1Þ
��� ���

1
≲e�ðQ=‘DÞ1=κ +

τQ logðqÞ
‘2

� �‘
, ð28Þ

where Q is an arbitrary control parameter. By choosing Q and τ
appropriately and connecting the short-time evolution, we can prove
the main statement (4) (see Supplementary Equations 769, 773, and
774 of Supplementary Note 9B). As a final remark, in the case of one-
dimensional systems, we cannot utilize the original unitary connection
technique22,48,53 and have to utilize a refined version (see Supplemen-
tary Note 10).

Realization of the CNOT operation
In the protocol to achieve the information propagation in Fig. 4, we
need to implement the following two operations that involve two and
four sites, respectively.

∣N,1i $ ∣0,N + 1i, ð29Þ

and

∣�nt ,�nt

	� ∣�nt ,�nt

	$ ∣�nt ,�nt

	� ∣�nt � 1,�nt + 1
	
,

∣�nt � 1,�nt + 1
	� ∣�nt ,�nt

	! ∣�nt � 1,�nt + 1
	� ∣�nt ,�nt

	
,

∣�nt � 1,�nt + 1
	� ∣�nt � 1,�nt + 1

	
! ∣�nt � 1,�nt + 1

	� ∣�nt � 1,�nt + 1
	
,

ð30Þ

where we denote the product state ∣1i � ∣Ni by ∣1,Ni for simplicity. We
also label the four sites as 1, 2, 3 and 4.

To achieve the operation (29), we first transform ∣N,1i ! ∣1,Ni,
which is achieved by the free boson Hamiltonian, that is,
H0 = Jðby

1b2 + h:c:Þ (J ≤�J). Second, to transform ∣1,Ni ! ∣0,N + 1i, we use
the Bose-Hubbard Hamiltonian as

H =H0 +hn̂2 � Un̂2
2, h= ð2N + 1ÞU: ð31Þ

By letting V =hn̂2 � Un̂2
2, we get 1,Nh ∣V ∣1,Ni=

0,N + 1h ∣V ∣0,N + 1i=UNðN + 1Þ and j,N + 1� j
�

∣V ∣j,N + 1� j
	

≤UNðN + 1Þ � 2U for∀ j∈ [2,N+ 1]. In the limit of U→∞, the time evo-
lution e�iHt ∣1,Ni is described by the superposition of the two states of
∣1,Ni and ∣0,N + 1i. Therefore, we achieve the transformation ∣1,Ni !
∣0,N + 1i within a time proportional to J −1.

The second operation (30) is constructed by the following
Hamiltonian

H =H0 +hðn̂2 � n̂1Þn̂3 +Uðn̂3n̂4 + n̂4 � �ntÞ, ð32Þ

where we choose h to be infinitely large. Owing to the term hðn̂2 �
n̂1Þn̂3 (h→∞), the hopping between the site 3 and4 cannot occur unless
the number of bosons on sites 1 and 2 are equal. Therefore, we achieve
the second and the third operations in (30). Next, we denote
V =hðn̂2 � n̂1Þn̂3 +Uðn̂3n̂4 + n̂4 � �ntÞ. For an arbitrary state as
∣�nt ,�nt

	� ∣�nt � j,�nt + j
	
, the eigenvalue of V is given by

�nt ,�nt ,�nt � j,�nt + j
�

∣V ∣�nt ,�nt ,�nt � j,�nt + j
	
=U �n2

t � j2 + j

 �

: ð33Þ

Then, the eigenvalue has the same value only for j =0 and j = 1, whereas
the other eigenvalues are separated from each other by a width larger
than or equal to 2U. Therefore, by lettingU→∞, the first operation (30)
can be realized by following the same process as described for (29).

Gate complexity for quantum simulation
We here derive the gate complexity to simulate the time evolution by
~H0ð~V ,xÞ in Eq. (7). The technique herein is similar to the one in Ref. 54,

which analyzes the quantum simulation for the Bose-Hubbard model
with a sufficiently small bosondensity. Under the decomposition of Eq.
(7), we must consider the class of time-dependent Hamiltonians as

Ht =
X
Z�Λ

ht,Z , ð34Þ

where each interaction term fht,Z gZ�Λ is given by the form of
ei~Vt~bi

~b
y
j e

�i~Vt . Here, ht,Z satisfies

max
i2Λ

X
Z :Z3i

ht,Z

�� ��≤ g =Oð�qÞ, ð35Þ

and

dht,Z

dt

����
���� ≤ g 0 =polyð�qÞ, ð36Þ

where �q is defined by the boson number truncation as in (6). Addi-
tionally, the local Hilbert space on one site has a dimension of �q+ 1,
whereas the matrix representing ht,Z is d sparse matrix with d =Oð1Þ;
that is, it has at most d nonzero elements in any row or column.

Now, we consider the subset Hamiltonian ht,L on an arbitrary
subset L, defined as

Ht,L =
X
Z�L

ht,Z : ð37Þ

Then, we consider the gate complexity to simulate the dynamics

ULð0 ! τÞ : = T e�i
R τ

0
Ht,Ldt , which has been thoroughly investigated51,55.

TheHilbert space on the subset L has dimensions of ð�q+ 1ÞjLj, and hence,
the number of qubits to represent the Hilbert space is given by
jLjlog2ð�q+ 1Þ. Additionally, HL(t) is given by an OðdLÞ sparse matrix,
where dL =d ×OðjLjÞ. Therefore, by employing Theorem 2.1 in Ref. 51,
the gate complexity for simulating UL(0→ τ) up to an error ϵ is upper-
bounded by

~τ logð~τ=ϵÞ log½ð~τ + ~τ0Þ=ϵ�
log logð~τ=ϵÞ jLjlog2ð�q+ 1Þ ð38Þ

with ~τ : =d2
LgjLjτ and ~τ0 : =d2

Lg
0jLjτ. By using the inequalities (35) and

(36) and dL =OðjLjÞ, the above quantity reduces to the form of

τ�qjLj4log2ðτ�qjLj=ϵÞ logð�qÞ: ð39Þ

In the following, we consider the Haah-Hastings-Kothari-Low
algorithm14 to the time evolution of the total systemΛ, that is,UΛ(0→ t)
by splitting the total time t into m0≔ t/Δt pieces and choosing Δt as
Oð1=�qÞ. Then, we decompose the total system into blocks fBsg�ns = 1, i.e.,
Λ=

S�n
s = 1 Bs, where each block has the size of ℓ (see Fig. 8). We then

approximate

UΛð0 ! tÞ= T e�i
R t

0
Hxdx ≈U1U2 � � �Um0

, ð40Þ

where Uj is an approximation for the dynamics from (j − 1)Δt to jΔt as
follows:

Uj =
Y
s:odd

Uj,Bs,s + 1

Y�n�1

s = 2

Uy
j,Bs

Y
s:even

Uj,Bs,s + 1
: ð41Þ

Herein, we define Bs,s+1≔Bs∪Bs+1 and define Uj,L (L⊆Λ) as

Uj,L : = T e
�i
R jΔt

ðj�1ÞΔt Hx,Ldx : ð42Þ

Article https://doi.org/10.1038/s41467-024-46501-7

Nature Communications |         (2024) 15:2520 9



From Ref. 14, the approximation error of the decomposition (40) is
given as

UΛð0 ! tÞ � U1U2 � � �Um0

��� ���≲jΛj t
Δt

e�μ‘+ vgΔt , ð43Þ

whereμ and v are the constants ofOð1Þ. Due toΔt =Oð1=�qÞ and g =Oð�qÞ
from (35), we have gΔt =Oð1Þ; therefore, by choosing ‘= logðjΛjt=ϵÞ,
we ensure that the error (43) is <ϵ.

We now have all the ingredients to estimate the gate complexity.
From the estimation (39), eachunitaryoperatorUj,Bs

was implemented
with a gate complexity of

jBsj4log2ðjBsj=ϵÞ logð�qÞ, ð44Þ

whereweuseΔt�q=Oð1Þ. The number of theunitary operators ofUj,Bs
is

proportional to

jΛj
jBsj

� t
Δt

: ð45Þ

Therefore, by combining the estimations of (44) and (45), the gate
complexity implements fUj,Bs

g
j,s

is given by

t‘3DjΛj
Δt

log2ð‘D=ϵÞ logð�qÞ= jΛjt�q � polylogðjΛjt�q=ϵÞ,

where we use Δt =Oð1=�qÞ and jBsj=Oð‘DÞ. We obtained the same esti-
mation when implementing fUj,Bs,s + 1

g
j,s
. Therefore, we obtain the

desired gate complexity to implement the unitary operator UΛ(0→ t).

Data availability
Data sharing does not apply to this paper, as no datasets were gener-
ated or analyzed during the current study.
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