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Hermitian and non-Hermitian topology from
photon-mediated interactions

Federico Roccati 1 , Miguel Bello 2,3, Zongping Gong2,3,4,5,
Masahito Ueda6,7,8, Francesco Ciccarello 9,10, Aurélia Chenu 1 &
Angelo Carollo 9

As light can mediate interactions between atoms in a photonic environment,
engineering it for endowing the photon-mediated Hamiltonian with desired
features, like robustness against disorder, is crucial in quantum research. We
provide general theorems on the topology of photon-mediated interactions in
terms of both Hermitian and non-Hermitian topological invariants, unveiling
the phenomena of topological preservation and reversal, and revealing a
system-bath topological correspondence. Depending on theHermiticity of the
environment and the parity of the spatial dimension, the atomic and photonic
topological invariants turn out to be equal or opposite. Consequently, the
emergence of atomic and photonic topological boundary modes with oppo-
site group velocities in two-dimensional Hermitian topological systems is
established. Owing to its general applicability, our results can guide the design
of topological systems.

The study of topological phases and related phenomena, including
edge states protected against disorder, dates back to the 1980s when
the quantum Hall effect was discovered1. Since then, the field of
topological phases of matter has expanded considerably and is now a
prominent topic in contemporary condensed matter physics2,3 and
photonics4,5. This rapid growth was also prompted by the demand for
quantum technologies that are immune to disorder and detrimental
environmental interactions6. Currently, within the context of non-
Hermitian physics, a rapidly expanding research field encompassing
photonics, condensed matter, and ultracold atoms, topological
invariants form a new paradigm under intense investigation7,8.

Despite considerable research efforts in the fields of solid-state
physics and photonics, the exploration of topological effects in
quantum optics—and especially atom–photon interactions—remains
in an early stage. Some theoretical and experimental studies used
topologically protected photonic edgemodes as channels facilitating

unidirectional emission9,10, excitation/quantum state transfer
between quantum emitters11–14 and multi-mode entanglement
generation15. Notably, for a photonic Su–Schrieffer–Heeger (SSH)
model, it was predicted that an atom, being a quantum zero-
dimensional defect, can seed dressed bound states that are topolo-
gically protected16; the essential properties and occurrence criteria
for such topological dressed states were then derived on a general
basis17. Specific investigations on topological dressed states were
performed in other photonic analogs of prototypical topological
models, such as the Harper–Hofstadter18,19, the Haldane model17,19, as
well as lossy systems exhibiting non-Hermitian topology20,21. Fur-
thermore, the use of atomic emission properties was proposed to
sense topological phases22. Such investigations were motivated by
recent technological advances to fabricate photonic lattices with
engineered properties (large periodic one-dimensional (1D) or two-
dimensional (2D) arrangements of coupled cavities/resonators) and
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to coherently couple them to a set of controllable atoms/quantum
emitters. For example, there have been several demonstrations in
various experimental platforms such as ultracold atoms23, circuit
quantum electrodynamics24–28, and coupled-resonator optical
waveguides29. In these setups, the photonic lattice acts as an artifi-
cially engineered bath, or environment, for the quantum emitters as
their decay rate into the lattice guided modes is larger than their
decay rate in free space30,31.

Here, a fundamental question remains unanswered: do atoms
coupled to a photonic bath with known topological properties inherit
any of those topological properties? If so, how are the symmetry class
and topological phase of the atoms related to those of the field?

To address this issue, we adopt the standard Altland–Zirnbauer
classification of topological insulators32 and consider a general model
consisting of a photonic lattice weakly coupled to a periodic
arrangement of two-level emitters, such that the total system is
translationally invariant (with a unit cell potentially larger than that of
thebareengineeredbath), see Fig. 1A.Weobtain general results linking
the photonic and atomic topological invariants. On the basis of the
bulk–edge correspondence in the Hermitian case33, we reveal the
relationship between photonic and atomic boundary modes under
open boundary conditions, and the relationship between skin modes
or more general bulk anomalous dynamics in the non-Hermitian
case34,35. The key results of this system–bath topological correspon-
dence are summarized in Table 1.

Results
System–bath topological correspondence
Photons in theseengineeredphotonic baths canmediate second-order
interactions between atoms; this interaction can be described by an
effective many-body atomic Hamiltonian16 in the commonly studied
regime of weak-coupling and Markovian dynamics. We investigated
the topological properties of the latter Hamiltonian and demonstrated
that they depend on the detuning between the atomic frequency and
mean photonic frequency (typically located in the middle of the cen-
tral photonic bandgap).

In the following we detail the type of systems to which our theory
is applicable. Tobeprecise,wedistinguishbetweenphotonicmodesof
the engineered bath and those of the surrounding space. Coupling to
the latter can be modeled through non-Hermitian Hamiltonians, both
for the engineered bath and the quantum emitters. We may also
neglect the surrounding environmental modes and use Hermitian
Hamiltonians instead, assuming that the emitters couple more
strongly to the engineered photonic bath modes36,37. Thus, the whole

system is modeled by the Hamiltonian Ĥ = Ĥe + Ĥp + Ĥint. The free

atomic Hamiltonian can be written as Ĥe =ωe
P

nσ̂
y
nσ̂n, where

σ̂n = jginhej. Under periodic boundary conditions, the bare photonic
Hamiltonian can be expressed in terms of bath modes with a definite

quasimomentum k as Ĥp =
P

k2BZÂ
y
kHpðkÞÂk, where BZ represents the

first Brillouin zone, Â
y
k = ðây

k,1, . . . , â
y
k,Nb

Þ, âk,s ‘s are the bosonic annihi-

lation operators of the field’s normal modes, and HpðkÞ is the Nb ×Nb

Bloch Hamiltonian matrix (see Methods). We denote the bare reso-
nator frequency asω0 whichwe choose to be the reference energy, i.e.,
we setω0 =0. According to the standard rotating-wave approximation,
the interaction between quantum emitters (QEs) and the field is
described by the last term of the total Hamiltonian

Ĥint =
PNc

n= 1

PNb
s = 1 gsðσ̂y

nsâns +H:c:Þ. Here, âns is the real-space annihi-
lation operator of the resonator located in the nth unit cell, belonging
to the s-sublattice s = 1, . . . ,Nb

� �
, and Nc is the total number of unit

cells. The atomic operator, σ̂ns, in Ĥint has two indices to specify the
resonator to which it is coupled. The coupling strength gs satisfies
gs = g if a QE is coupled to the resonator âns, and is set to zero other-
wise. Note that gs is independent on the cell index n, ensuring trans-
lational invariance.

Figure 1A presents a specific instance of the studied setup. It
consists of two-level quantum emitters,Ne in total, with a ground state
jgi and an excited state jei, which are separated by the Bohr frequency
ωe. The QEs are locally coupled to a translationally invariant photonic
lattice implemented by coupled single-mode resonators. The lattice

Fig. 1 | Setup. A Two-level quantum emitters (blue spheres) coupled to an engi-
neered photonic bath (lattice with red spheres). The full light-atom system is
translationally invariant. For concreteness, the figure shows a specific 2D example
with two emitters per unit cell (light shaded area). Note how, in this case, the bare
photonic lattice has a smaller unit cell (dark shaded area). Important parameters of
the model are the emitter transition frequency ωe and the light-matter coupling
strength g. In the single-excitation sector, dissipation and decoherence due to
coupling to uncontrolled environmental modes (wiggly arrows) can be modeled
through the use of non-Hermitian Hamiltonians. B Engineered bath spectrum.

Depending on the geometry and parameters of the system, one ormore (Hermitian
or non-Hermitian) photonic bandgaps can emerge, i.e., photons of frequency
within certain ranges cannot propagate through the engineered bath. C Emitter-
emitter, bath-mediated interactions. If the emitters are spectrally tuned to one of
the bandgaps (as shown in B), and weakly coupled to the environment, such that
the spectral distanceΔ to the nearest photonic bands is larger than the light-matter
coupling, the bath degrees of freedom can be traced out, leading to effective
exchange interactions among the emitters.
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unit cell contains Nb resonators. Hence, there are (generally) as many
sublattices as photonic bands.

We consider anemitter arrangementwith a spatial period equal to
or greater than that of the photonic lattice that is translationally
invariant. This is a translationally-invariant setup, featuring no ran-
domness (in the position of the emitters) whatsoever.

In the Markovian regime, the degrees of freedom of the bath can
be traced out. When the emitters’ frequency ωe lies within a photonic
bandgap and the coupling constant g is small (smaller than the spectral
distance between ωe and the photonic bands), the photonic lattice
then induces effective coherent interactions between the emitters,
described by an effective atomic Hamiltonian Ĥa ∼ Ĥe + g

2Ĝp ωe

� �
(see

Methods), where the latter is the resolvent operator of the bath38,39,
see Fig. 1.

We established a system–bath topological correspondence by
relating the topological properties of the bare bath and those of the
system dressed by the bath. At resonance, ωe =ω0, both the photonic
and the effective emitters’ Hamiltonians possess identical symmetries
(see below). In addition, when the system and bath have the same
number of degrees of freedom (i.e., gs = g for all s), we reveal the
topological preservation and reversal based on the Altland–Zirnbauer
(AZ) classification32. Specifically, the topological invariants νaðpÞ of ĤaðpÞ
are related to each other as follows:

νa =
νp forZ2 phases;

νpð�1ÞD+ h forZphases:

(
ð1Þ

Here, D is the spatial dimension, and h is 1ð0Þ if Ĥp is (non-)Her-
mitian and belongs to the (non-)Hermitian AZ (AZ and AZy) classes. In
theZ phases, the system preserves or reverses the integer topological
invariant of the bath depending on the dimension and Hermiticity. By
contrast,Z2-protected bath phases are always inherited by the system.
The proof of Eq. 1 is provided in Methods.

In addition, this result conforms to the known Hermitian–non-
Hermitian correspondence35. The boundary mode of a D+ 1 dimen-
sional Hermitian topological system characterized by the topological
invariant ν can bemapped into aD-dimensional non-Hermitian system
on a closedmanifold, with an identical topological invariant. In fact, we
demonstrate that topological preservation (reversal), i.e., νa = νp
ðνa = � νpÞ, occurs in bothD + 1 dimensional Hermitian systems as well
as in D-dimensional non-Hermitian ones (Table 1).

The topological correspondence we found holds in the case of
one emitter per resonator, namely gs = g for all s. In the case where
there are fewer emitters than resonators (gs =0 for some s), this gen-
eral correspondence does not hold anymore, cf. Supplementary
Information.

We note that (i) our result is not limited to quantum optical sys-
tems, but holds for any open quantum system satisfying the same
conditions, (ii) the photonic bath Hamiltonian can be fully general, as
long as it can be written in Bloch form (see above). Also, it is important
to note that the topological invariants we discuss correspond to non-
interacting models, and therefore, for the atomic subsystem they only
classify the single-particle/linear regime. In this sense, our results are
also applicable or could be extended to classical systems (e.g.,

topological mechanical/acoustic systems). We now proceed illustrat-
ing one exampleof topological preservation and reversal in each of the
four possible cases (Hermitian/non-Hermitian and odd/even spatial
dimension). The proofs are detailed in Methods.

Topological preservation and reversal
The Bloch Hamiltonian of the entire system is

HðkÞ= ωeI gI

gI HpðkÞ

" #
, ð2Þ

where I is the Nb-dimensional identity matrix. Remarkably, the entire
atom–light Hamiltonian is topologically trivial (see Methods). The
effective atomic Hamiltonian is obtained using the standard pertur-
bation theory up to the second order (see Methods) as

HaðkÞ=ωe +
g2

ωe � HpðkÞ
: ð3Þ

The real space form, Ĥa, is recovered using the inverse Fourier
transform.

Depending on the spatial dimension, the symmetries, and whe-
ther the photonic Hamiltonian is Hermitian or not, we discovered that
the topology of this effective system can either be preserved or
reversed at least for the fundamental symmetry classes. Here, we
present the general results for the Hermitian and non-Hermitian cases
as summarized in Table 1, together with representative examples.

First we consider theHermitian case. Altland andZirnbauer32 were
the first to identify the 10 fundamental symmetry classes (AZ classes).
The topological classification of Hermitian noninteracting systems
(insulators and superconductors) was subsequently developed on the
basis of their classification40,41. Only five of these symmetry classes are
relevant for the number-conserving Hamiltonians5, (see Supplemen-
tary Table S1). The classification is based on time–reversal symmetry
(TRS or equivalently T), particle–hole symmetry (PHS or equivalently
C), and chiral symmetry (S)5,32,33. Their explicit effect on the Bloch
Hamiltonian HðkÞ is given by THðkÞT�1 =Hð�kÞ, CHðkÞC�1 = � Hð�kÞ
and SHðkÞS�1 = � HðkÞ, respectively.

Both T and C are antiunitary operators, i.e., T =UTRSK and
C =UPHSK , where UTRS and UPHS are unitaries and K denotes complex
conjugation. By applying these to HaðkÞ, one can show that TRS is
never broken in the following sense: HaðkÞ has TRS if and only ifHpðkÞ
has TRS for any atomic frequency ωe (provided that it lies within a
bandgap of Ĥp). In turn, PHS, and therefore chiral symmetry33, can be
broken. Indeed, for ωe =ω0 =0, HaðkÞ has PHS if and only if HpðkÞ has
PHS, the same holding for chiral symmetry.

Conversely, in the absence of photonic symmetries, no new
symmetry can be generated at the atomic level whatever the value
of ωe.

This demonstrates that, on resonance ωe =ω0 =
�

0), Ĥa and Ĥp

belong to the same symmetry class; off resonance, the following
transitions of symmetry classes occur when going from Ĥp to
Ĥa : AIII ! A, BDI ! AI and D ! A (we refer to the standard termi-
nology of AZ classes, see Supplementary Table S1). Topologically dis-
tinct phases within the same symmetry class are characterized by
different values of the topological invariant (e.g., Zak phase, Chern
number, and Chern–Simons invariants), which we generally denote as
νl , with l =p,a that refer to the photonic and atomic Hamiltonians,
respectively. According to the bulk–edge correspondence, νl repre-
sents the number of edge modes in the system under open boundary
conditions, where the trivial phase has a topological invariant equal to
zero33.

To ensure that the PHS and chiral symmetry are inherited, we
focus on the case ωe =ω0 =0, such that HaðkÞ= � g2HpðkÞ�1.

Table 1 | System-bath topological correspondence

Spatial dimension Hermitian topology Non-Hermitian topology

1D νa = νp νa =�νp

2D νa =�νp νa = νp

3D νa = νp νa =�νp

Main results of this study. If the system and bath degrees of freedom are equal, the system
topology is either preserved ðνa = νpÞ or reversed ðνa =�νpÞ with respect to the bath topology,

according to Eq. (1). OnlyZ phases are included in the table, as topology is always preserved for
Z2 phases.
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Our main observation is that Hermitian topology is preserved
ðνa = νpÞ forZ2 phases in all spatial dimensions and forZ phases in odd
dimensions (in particular 1D and 3D). Instead, Z phases in even
dimensions undergo a topological reversal ðνa = � νpÞ (proof given in
Methods). Remarkably, the topological reversal has direct observable
consequences on the basis of the bulk–boundary correspondence, as
we discuss later on.

As a minimal example of 1D Hermitian topological preservation,
we consider the case of QEs coupled to a Su–Schrieffer–Heeger (SSH)
lattice (Fig. 2), whose Hamiltonian is

Ĥp =
X
n

ðvây
n,1ân,2 +wây

n,2ân+ 1,1Þ+H:c:: ð4Þ

This model belongs to the BDI class, admitting Z phases16. Our
hypothesis ωe =ω0 =0 entails that the effective Hamiltonian between
QEs preserves the chiral symmetry, and therefore, the same topology
as the underlying photonic lattice based on our results, see Table 1.
This is confirmed by the bulk–edge correspondence. In fact, when Ĥa

is subject to open boundary conditions, which is indeed the case for a
finite array of QEs in a larger periodic photonic SSH lattice, the effec-
tive atomic Hamiltonian supports topological edge states in the non-
trivial phase despite the high connectivity of the mediated
interactions.

The Hermitian reversal of topology occurs in two dimensions. We
consider QEs coupled to a photonic 2D Chern insulator described by
theQi–Wu–Zhang (QWZ)model42 (classA) to illustrate its implications.
For this bipartite lattice (featuring two sublattices), the Bloch Hamil-
tonian HpðkÞ is

HQWZ kð Þ= J sin kx

� �
τx + J sinðkyÞτy + J u+ cos kx

� �
+ cosðkyÞ

h i
τz , ð5Þ

where τα ðα 2 fx,y,zgÞ are the Pauli matrices and the two fictitious
spin states correspond to the two sublattices. The system is in the
nontrivial phase whenever 0<juj<2. Assuming open boundary condi-
tions along the x-direction only, the system then supports
chiral photonic boundarymodes propagating along y, in onedirection

in one boundary and in the opposite direction in the other
boundary. In this case, based on Table 1, topological reversal occurs so
that the photonic and atomic Chern numbers have opposite sign,
resulting in atomic boundary modes featuring atomic excitations that
travel with opposite group velocity compared to their photonic
counterparts. This is indeed the casewhen considering a finite array of
QEs in the x direction, see Fig. 3. When the set of QEs is deeply
embedded in the photonic bulk, each photonic boundary mode has a
corresponding atomic mode with opposite chirality on the same
boundary.

We consider now the non-Hermitian case. The number of funda-
mental symmetry classes increases from 10 (AZ classes) to 38
(Bernard–LeClair classes) when the Hamiltonians are allowed to be
non-Hermitian43,44. Here, we focus only on a subclass of the latter
that by definition generalizes the former. In particular, complex con-
jugation is no longer equivalent to transposition, which is a significant
difference. The non-Hermitian equivalent of theHermitian symmetries
yield the following constraints for the non-Hermitian AZ classes
UTRSH

*ðkÞU�1
TRS =Hð�kÞ, UPHSH

TðkÞU�1
PHS = � Hð�kÞ, and SHyðkÞS�1 =

�HðkÞ 44, where *, T, and † represent complex conjugate, transpose,
and Hermitian conjugate, respectively.

Furthermore, there are the non-Hermitian AZy classes44, for which
the symmetry constraints are UTRSH

TðkÞU�1
TRS =Hð�kÞ, UPHSH

*

ðkÞU�1
PHS = � Hð�kÞ and SHyðkÞS�1 = � HðkÞ.
According to35, the topological classification of a Hermitian AZ

class in D dimensions coincides with that of a non-Hermitian AZ ðAZyÞ
class in D + 1 ðD� 1Þ dimensions. This Hermitian–non-Hermitian cor-
respondence is entirely consistent with the topological preservation
and reversal found in this work.

For the non-Hermitian AZ and AZy classes, we find that the non-
Hermitian topology is always maintained with the exception of Z
phases in odd dimensions, where topological reversal occurs (see
Methods). Here, we discuss two case studies illustrating the non-
Hermitian topological reversal and preservation. We recall that the
only requirement on ωe is that it does not belong to the photonic
spectrum.

Topological reversal has non-trivial consequences for 1D systems
such as those considered in20,45. The topological origin of the largely

Fig. 2 | Hermitian topological preservation. A Scheme of the photonic
Su–Schrieffer–Heeger (SSH) latticewith staggered v andw couplings. The coupling
strength between each quantum emitter and each resonator is g. B A sketch of the
mediated emitters’ Hamiltonian Ĥa is shown in purple (where the multiple links
highlight its high connectivity). Open boundary conditions for the atomic system
are obtained by removing quantum emitters, but leaving the photonic lattice
unaffected (hence it remains translationally invariant). C Modulus of the wave
function of the photonic edge states withN = 60 resonators (top), and atomic edge
states with Ne =44 emitters (bottom) coupled to a periodic SSH lattice with N

resonators (top) and d =8 sites. The resonators are numbered in increasing order
including both types (1 and 2, cf. Equation 4) of resonators. Atomic open boundary
conditions are obtained by removing 2d quantum emitters (outer violet stripes)
while maintaining the periodic photonic structure. Atomic edge states are mostly
localized on the first and last sites (notice the logarithmic scale). The nonzero
amplitudeon the remaining sites is a finite-size effect. The insets show the photonic
and atomic energy spectra under open boundary conditions in units of v. Para-
meters: w= 1:5v,g =0:1v, and ωe =0.
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investigated 1D non-Hermitian skin effect34,46 is a point gap spectrum
characterized by a nontrivial winding number ν. The sign of ν can in
general be related to the boundary on which the skin states
accumulate.

In addition, there exist more complex symmetry-protected var-
iants, such as the TRSy-protected Z2 skin effect in34. This provides an
example in which the spectral winding always disappears, but a non-
trivialZ2 number indicates thepresence of two skinmodes localized at
both boundaries. Notwithstanding, a nonzero winding number is
characteristic of nonreciprocal models and typically results from the
combination of a broken TRS and dissipation47.

When occurring, the topological reversal ensures that photonic
skin states on one edge correspond to atomic skin states on the
opposite edge.

Similar to21, we consider a photonic Hatano–Nelson 1D array with
nonreciprocal right JR = Jð1 + δÞ and left JL = Jð1� δÞ couplings, and
uniform local dissipation γ =2δJ

Ĥp =
X
n

JRâ
y
n + 1ân + JLâ

y
nân+ 1 � iγay

nân ð6Þ

with QEs coupled to all resonators. Since only one resonator is present
per unit cell, we drop the sublattice index in this discussion. Under
open boundary conditions, the photonic skin modes accumulate on
the right for δ>0. The atomic periodic system possesses reversed
topology (opposite windings), and therefore, its skin modes accumu-
late to the left (Fig. 4).

The topology may be preserved in non-Hermitian cases as well.
Consider a 2D chiral symmetric non-Hermitian photonic bath as an
example. This system resembles the gapless surface states of three-
dimensional chiral topological insulators48,49 from the perspective of
the Hermitian–non-Hermitian correspondence35. Accordingly, it can
be characterized by the net chiral charge of Dirac cones above the base
energy. In our configuration, this is equal to ωe and is constrained by
chiral symmetry to be entirely imaginary. We considered the model
examined in35:

Hp kð Þ= J sin kx

� �
τx + J sin ky

� �
τy + iJ 2 cos kx

� �
+ cos ky

� �
� 3

� �
I2, ð7Þ

where I2 is the two-dimensional identity matrix. Its complex spectrum
is shown in Fig. 5A. Withωe chosen as�iJ, the topological invariant is 1

because there exists a single Dirac cone with a positive chiral charge
located above ωe. The corresponding effective Hamiltonian for the
emitters can then be derived from Eq. 3. Its spectrum is shown in
Fig. 5B. The same reasoning yields a topological invariant of 1 for the
emitters’ Hamiltonian, indicating that the topology is preserved.

Discussion
The above results introduce a fundamental topological reversal/pre-
servation principle that predicts, in a universal way, the occurrence of
both Hermitian and non-Hermitian topological phases of emitters
effectively interacting via photon exchange. Besides its conceptual
importance, our theory provides a general model-independent recipe
to engineer topological phases, which can be carried out in a variety of
experimental scenarios ranging from superconducting circuits and
quantum optical platforms to classical oscillators and nanophotonics.
Indeed, arrays of coupled superconducting resonators represent a
tunable and flexible platform to implement topological photonic lat-
tices, as it was recently demonstrated16,26, in which case the emitters
can well be implemented by superconducting resonators themselves
or superconducting qubits. In addition, several recent works have
demonstrated the non-Hermitianwinding topology and the associated
skin effect in setups such as robotic metamaterials50, acoustic
platforms51, and topolelectrical circuits52 (the latter in higher dimen-
sions as well). All these setups are perfectly suited to probe the topo-
logical correspondence that we unveil, and the reversed non-
Hermitian skin effect in 1D in particular.

Of course, in any physical implementation, coupling to unwanted
environmental modes is inevitable, resulting in some amount of pho-
ton loss in both the emitters and the engineered bath. As a con-
sequence, the single-particle eigenstates that we have discussed will
acquire a lifetime. To observe some nontrivial dynamics this lifetime
should be larger than the characteristic timescale of the bath-mediated
interactions ð∼ J=g2Þ. This requirement could be relaxed in the Her-
mitian case by post-selecting the measurements where the number of
excitations is conserved. We note that the dynamics produced by the
kind of bath-mediated interactions we consider have already been
observed in experiments53.

The general principle we provide predicts the topological prop-
erties of the emitters’ Hamiltonian based solely on the topological
properties of the photonic bath, its Hermitian/non-Hermitian nature,
and its dimensionality. This system-bath topological correspondence

A B

Fig. 3 | Hermitian topological reversal. A Quantum emitters (green spheres)
coupled to a QWZ 2D photonic lattice (yellow plane); see Eq. (5). Photonic open
boundary conditions are imposedonly in the x direction. Here,d is the thickness (in
photonic unit cells) of the outer stripes separating the photonic and atomic
boundaries; it interpolates between the case of a system full of emitters ðd =0Þ, and
that of a finite array of quantum emitters in a finite but larger translationally
invariant array of resonators along the x direction ðd≫0Þ, at fixed y. We emphasize
that when d is sufficiently large the topological properties do not depend on it
anymore. B Energy spectrum of the full system. Emitters are coupled to the

photonic bath, except for two stripes of size d along its edges. Top row: photonic
spectrum. Bottom row: zoom in of the top one, displaying the atomic spectrum.
The colors denote the degree of localization in the x direction according to the
legend (bottom left). The triviality of the full light–matter system is evident from
the absence of in-gap edge states (leftmost plot, d =0). The effects of the topolo-
gical reversal are apparent for large d (rightmost plot): at each boundary the
photonic and atomic boundarymodes have opposite group velocities. Parameters:
L= 50 unit cells in the x direction, u = 1:2, ωe =0 and g =0:1J.
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sheds a new light on the emergence of exotic nonreciprocal interac-
tionsmediated by nonreciprocal 1D photonic baths observed in recent
studies20,21,45. To showcase the effectiveness of our theory, we have
considered 1D and 2D Hermitian and non-Hermitian models, thereby
unveiling theoccurrenceof remarkable effects on the basis of the bulk-
edge correspondence. For example, in a 2D Hermitian system, topo-
logical reversal enforces atomic edgemodes featuring opposite group
velocity compared to the photonic edge modes.

Our general classification requires that the system and the bath
have the same number of degrees of freedom. By breaking this con-
dition, we were able to show a rich variety of interesting cases (see
Supplementary Information) which go beyond our topological corre-
spondence principle. We thus provide a general criterion and funda-
mental hindsight that set down a cornerstone for the design of
topological systems immersed in topological/non-topological Hermi-
tian/non-Hermitian environments.

Methods
Photonic Hamiltonian
The photonic Hamiltonian in real space is

Ĥp =
XNc

n,m= 1

XNb

s,s0 = 1

hrn,sjĤpjrn+m,s
0iây

nsân +m,s0 , ð8Þ

where Nc is the number of unit cells, jrn,si= ây
nsjvaci, and the closure

relation is 1p =
P

n,sjrn,sihrn,sj. Because of translational invariance, the
couplings are independent of the cell position, i.e.,
hrn,sjĤpjrn+m,s

0i= hr0,sjĤpjrm,s0i.
Assuming periodic boundary conditions and using the

closure relation 1p =
P

k,sjk,sihk,sj, where jk,si= ây
ksjvaci, and

hrn, s jk, s0i= δss0e
�ik�rn=

ffiffiffiffiffiffi
Nc

p
, we have âns =

P
k2BZe

�ik�rn âks=
ffiffiffiffiffiffi
Nc

p
.

Thus, the photonic Hamiltonian of the periodic lattice is obtained as

Ĥp =
X
k2BZ

XNb

s,s0 = 1

hr0, sjĤpjrn, s0i e�ik�rn ây
ksâks0 : ð9Þ

Fig. 5 | Non-Hermitian topological preservation. A Spectrum of the 2D chiral
symmetric non-Hermitian photonic lattice20 (blue) and spectrum of the coupled
emitters (red) obtained from Eq. (3) (B) is a magnified image of (A). The dots show
the Dirac cones with either ð+ Þ or ð�Þ chiral charge. Each photonic Dirac cone
above (below) ωe is mapped to an atomic Dirac cone above (below) ωe with the

same chiral charge according to Eq. (3). The topological preservation follows from
the fact that the topological invariant is equal to the total chiral charge above ωe.
Dark-shaded areas are swiped twice as k varies in the BZ. Parameters: ωe = � iJ
and g =0:5J.

Fig. 4 | Non-Hermitian topological reversal. AAbare photonic 1DHatano–Nelson
model, Eq. 6 with N = 20 resonators, where photonic skin states accumulate on the
right edge ( JR>JL). When emitters are coupled to the same photonic lattice, under
periodic boundary conditions, the atomic skin states accumulate on the left edge
(B). Both figures show the normalized average of all skin modes ψi

�� �
, i.e.,P

ijhn jψiij2, with jni being the state where the photon (excitation) is located at the
nth resonator (atom). Atomic open boundary conditions, inducing the skin effect,
are obtained by removing 2d = 10 quantum emitters (outed violet stripes) while
maintaining the periodic photonic structure. The inset in A shows the photonic
(blue) and atomic (red) complex spectrum under periodic boundary conditions in
units of J. The inset in B shows a magnified view of the inset in A. We find opposite
windings, witnessing the topological reversal. The vertical dashed orange axis is
ReE =Reωe. The dashed black circle centered at ωe indicates the strength of the
atom–photon interaction g (the radius). This is highlighted because the reversal in
1D can be described by a circular inversion with respect to this circle57. Parameters:
δ =0:5, g =0:5J, and ωe = � iJ.
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By introducing the vector operator Â
y
k = ðây

k,1, . . . , â
y
k,Nb

Þ and
denoting the matrix elements ½HpðkÞ�ss0 =

P
nhr0,sjĤpjrn,s0ie�ik�rn

Eq. (9) can be rewritten as Ĥp =
P

k2BZÂ
y
kHpðkÞÂk, cf. Results section.

Effective Mediated Hamiltonian
Consider the atomic frequencyωe to be shifted byΔ from thephotonic
continuum. If the atom–photon coupling g is weak so that g=Δ≪1, it is
possible to adiabatically eliminate the photonic bath and derive an
effective photon-mediated atomic Hamiltonian Ĥa

54,55: The explicit
expression for the case of one emitter per resonator is

Ĥa = Ĥe +
X
nm

X
ss0

hns,ms0 σ̂
y
nsσ̂ms0 , ð10Þ

where

hns,ms0 = g
2hrm,s0jĜpðωeÞjrn,si, ð11Þ

Ĝp zð Þ= z � Ĥp

� ��1
is the Green’s function of the bare photonic

Hamiltonian, and jrm,si is the state with one excitation in the sth
resonator of themth unit cell of the photonic lattice. The double index
in the atomic operators specifies both the cell ðn,mÞ and sublattice
s,s0ð Þ the emitter is coupled to.

As Ĥp is translationally invariant, so is its resolvent operator38 and

rm Ĝp ωe

� ���� ���rnD E
=

1
N

X
k2BZ

eik� rm�rnð Þ
ωe � HpðkÞ

, ð12Þ

where hrmjĜpðωeÞjrni is the Nb ×Nb matrix in the sublattice space.
Therefore, the atomic Hamiltonian can be written in Bloch form as
Ĥa =

P
k2BZ Ŝ

y
kHaðkÞŜk, where Ŝ

y
k = ðσ̂y

k1, . . . ,σ̂
y
kNb

Þ,HaðkÞ is the Bloch
Hamiltonian as in Eq. 3 and σ̂ks =

P
n e

ik�rn σ̂ns=
ffiffiffiffi
N

p
, with rn being the

atomic operator position in real space21.When there are fewer emitters
than resonators that are still arranged so as to preserve translational
invariance, one can repeat the above arguments with a small mod-
ification: the indices s and s0 in Eq. 11 belong only to the sublattices
coupled to quantum emitters. This directly leads to the insertion of a
projection operator in Eq. 12 cf. Supplementary Information.

Triviality of the full atom-light Hamiltonian
Here, we prove that the entire atom–light Hamiltonian in Eq. (2) is
topologically trivial. Its spectrum and eigenstates can be computed
analytically as follows. Suppose Uk is the unitary that diagonalizes
HpðkÞ,Uy

kHpðkÞUk =diag ω1ðkÞ,ω2ðkÞ, . . . ,ωNðkÞ
� � � ΛðkÞ. Then,

I2 � Uk

� �yHðkÞ I2 � Uk

� �
=

ωeI gI

gI ΛðkÞ

	 

: ð13Þ

Thus, for each band of the bare bath, ωjðkÞ, there are two bands

ω± ,j kð Þ= ½ωe +ωj kð Þ�=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ωe � ωjðkÞ�2=4+ g2

q
, which are the eigenva-

lues of HjðkÞ= ½ωe +ωj kð Þ�I=2 + ½ωe � ωj kð Þ�τz=2+ gτx .
The corresponding eigenvectors are jv± ,jðkÞi� jujðkÞi, where

jujðkÞi is the eigenstate ofHpðkÞwith eigenvalueωjðkÞ, while jv± ,jðkÞi is
the eigenstate of HjðkÞ with eigenvalue ω± ,jðkÞ. Note that regardless
the value of ωe, as long as it lies in the gap of the spectrum of the bare
bath, half of the spectrum is above it and half below it, i.e.,
ω�,jðkÞ<ωe<ω+ ,jðkÞ for all j and k. If we now consider the bands below
ωe and compute the topological invariant, we can consider instead
the topologically equivalent Hamiltonian H = I � 2PðkÞ, where
PðkÞ=Pj jujðkÞihujðkÞj � j�ih � j= I � j � ih � j, with a constant j � i;
therefore dH =0, so Chn =0, cf. Equation (20) below.

For chiral systems in odd dimensions, the Bloch Hamiltonian of
the bath can be written as33

HpðkÞ=
0 QpðkÞ

Qy
pðkÞ 0

" #
, ð14Þ

withQpðkÞ being a suitable matrix. Then, the Bloch Hamiltonian of the
bath with emitters ωe =0

� �
can also be written in the same block-off-

diagonal form with

QðkÞ= QpðkÞ gI

gI 0

	 

: ð15Þ

Note that the inverse is given by

QðkÞ�1 =
0 g�1I

g�1I �g�2QpðkÞ

" #
: ð16Þ

Thus,

Q�1dQ=
X
j

0 0

g�1∂jQ 0

" #
dkj ð17Þ

As a consequence, Tr½ðQ�1dQÞ2n+ 1�=0, so ν2n + 1 =0, cf. Eq. (19).
Finally, we provide an alternative proof showing that the entire

system is trivial without referring to any formulas of topological
invariants. Equation (2) can be continuously deformed into
H1 = ωeI2 + gτx

� �� I, with I2 being the 2 × 2 identity matrix, via a linear
interpolation HλðkÞ= ð1� λÞHðkÞ+ λH1, λ 2 ½0,1�.

Further, det HλðkÞ � ωeI2 � I
� �

= det �g2I
� �

≠0, so theHamiltonian
remains gapped near ωe during the deformation. Note that any
time–reversal symmetry is preserved, and so is the particle–hole
(chiral) symmetry if it is extended as ð�CÞ � Cðð�SÞ � SÞ. SinceH1 does
not depend on k and is thus trivial, we conclude that HðkÞ, which is
continuously connected toH1, is also trivial. Note that the above proof
applies equally to Hermitian and non-Hermitian systems. Moreover,
the fact that an appropriately extended chiral symmetry requires a
minus sign on the emitter side explains why the triviality of the entire
system does not contradict the topological preservation in chiral
symmetric systems.

Proof of topological preservation and reversal
Here, we provide a general analysis of the fundamental symmetry
classes (in Hermitian AZ, non-Hermitian AZ, or non-Hermitian AZy)
that exhibit topological reversal or otherwise topological preservation
for the one-emitter-per-resonator setup. To ensure that the PHS and
chiral symmetry are inherited, we focused on the case of ωe =ω0 =0
(ω0 is the bare resonator frequency), so thatHaðkÞ= � g2HpðkÞ�1 with
both HaðkÞ and HpðkÞ gapped near 0. We observed that for the non-
Hermitian case, both Bloch Hamiltonians must be point-gapped
around ωe with a negative imaginary part so that their spectra lie
below the real axis in the complex energy plane. This is a rigid shift
along the imaginary axis that does not affect the following discussion.

One obvious observation is that themapping fromHpðkÞ toHaðkÞ
is invertible. This immediately implies that after obtaining the topo-
logical equivalence classes of HaðkÞ and HpðkÞ, we obtain an auto-
morphism on the classification group. Recalling that nontrivial
Hermitian AZ classes are classified by Z2 or Z, and so are the non-
Hermitian AZ ðAZyÞ classes, it suffices to consider the automorphisms
on Z2 or Z (with respect to addition). We note here that in the litera-
ture, the topological classifications of someclasses are usually denoted
as 2Z, meaning that the winding number or Chern number can only be
an even integer. Nevertheless, since 2Z is isomorphic to Z, the con-
ventionZ is also used. In the former case Z2

� �
, the only automorphism

is the identity map, implying that all theZ2 phases exhibit topological
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preservation. In the latter case ðZÞ, the only two possibilities of an
automorphism are the identity map and inversion ðn 7! � nÞ, corre-
sponding to topological preservation and reversal, respectively. We
emphasize that the above results apply to both Hermitian and non-
Hermitian systems. The problem is thus reduced to distinguishing the
Z phases exhibiting topological reversal from those exhibiting topo-
logical preservation.

We first consider the Hermitian case. Using the band flattening
ðH ! sgnHÞ technique41, the map from HpðkÞ to HaðkÞ can be simpli-
fied into a simple inversion ðH ! �HÞ at the level of topological
equivalence classes. If the spatial dimension is odd, all theZ phases are
chiral symmetric, and thus, the Bloch Hamiltonian takes the following
form:

HðkÞ= 0 QðkÞ
QðkÞy 0

" #
: ð18Þ

The integer topological invariant is the winding number given by

ν /
Z
BZ
Tr Q�1dQ

� �D
: ð19Þ

Obviously, this topological invariant does not change under
inversion H ! �H (leading to ! �Q). Otherwise, in even spatial
dimensions, the topological invariant is the Chern number, which is
determined by the flattened Bloch Hamiltonian HðkÞ via

Ch /
Z
BZ
Tr HðdHÞD

� �
: ð20Þ

However, unlike the winding number, the Chern number is
inversed upon the inversion of the Hamiltonian.

We now move to the non-Hermitian case. Here, the counterpart

of band flattening is unitarization56, H ! V =H
ffiffiffiffiffiffiffiffiffiffi
HyH

p� ��1
, upon

which the photon–atom map is simplified to V ! �V y. The topolo-
gical invariants in odd dimensions are the winding numbers given in
Eq. 19 and we always have a topological reversal. In even dimensions,
any Z topological phase exhibits a chiral symmetry S, i.e.,

SHyðkÞS�1 = � HðkÞ. The integer topological invariant is then given by
the Chern number, Eq. 20 for H= iSV 44, which is confirmed to
be Hermitian and flattened (i.e., square to identity). After the opera-

tion V ! �V y, this quantity turns out to undergo a unitary

conjugation, iSV ! �iSV y = iVS= S�1ðiSV ÞS, leaving the Chern num-
ber unchanged.

In summary, for the Hermitian AZ classes, a topological reversal
occurs only for Z phases in even dimensions. For the non-Hermitian
AZ and AZy classes, a topological reversal occurs only for Z phases in
odd dimensions.

Data availability
All data needed to evaluate the conclusions in this study are present in
the paper and in the Supplementary Information.
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