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Machine learning predictor PSPire screens
for phase-separating proteins lacking
intrinsically disordered regions

Shuang Hou 1,6, Jiaojiao Hu2,3,6, Zhaowei Yu1, Dan Li 4,5, Cong Liu 2,3 &
Yong Zhang 1

The burgeoning comprehension of protein phase separation (PS) has ushered
in a wealth of bioinformatics tools for the prediction of phase-separating
proteins (PSPs). These tools often skew towards PSPs with a high content of
intrinsically disordered regions (IDRs), thus frequently undervaluing potential
PSPs without IDRs. Nonetheless, PS is not only steered by IDRs but also by the
structured modular domains and interactions that aren’t necessarily reflected
in amino acid sequences. In this work, we introduce PSPire, amachine learning
predictor that incorporates both residue-level and structure-level features for
the precise prediction of PSPs. Compared to current PSP predictors, PSPire
shows a notable improvement in identifying PSPs without IDRs, which
underscores the crucial role of non-IDR, structure-based characteristics in
multivalent interactions throughout the PS process. Additionally, our biolo-
gical validation experiments substantiate the predictive capacity of PSPire,
with 9 out of 11 chosen candidate PSPs confirmed to form condensates
within cells.

The intricate regulation of complex biochemical reactions within cells
has always been an essential issue. Membrane-bound organelles, sur-
rounded by phospholipid bilayers, physically separate their interior
and exterior environments, ensuring a stable reaction environment.
However, membraneless organelles (MLOs), such as nucleoli and
stress granules, can concentrate proteins and nucleic acids at specific
cellular sites without bounding membranes. The formation, compo-
sition control, and function regulation of these MLOs have been elu-
sive for years. In 2009, a study found that P granules in germcells from
Caenorhabditis elegans can form liquid-like droplets, suggesting phase
separation (PS) could underlie the formation of these biomolecular
condensates1. Subsequent studies implicated PS in various

fundamental biological processes like transmembrane signaling2, DNA
repair3, transcription4,5, and RNA processing6. Abnormal formation or
disruption of biomolecular condensates can cause neurodegenerative
disorders7, cancer8,9, and infectious diseases10.

A key feature of phase-separating proteins (PSPs) is their capacity
to form multiple weak, transient, noncovalent interactions. The
stickers-and-spacers model offers an intuitive perspective to the
driving-force behind PS11,12. In this model, the stickers represent
protein-protein or protein-RNA interaction domains, while the spacers
are interspersed between stickers and can modulate PS behavior13. A
considerable number of PSPs can form biomolecular condensates via
interactions between intrinsically disordered regions (IDRs), which
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possess highly flexible conformations and present multiple weakly
interacting elements. IDRs typically contain more charged and polar
amino acids, while often lacking bulky hydrophobic amino acids
necessary for forming well-structured domains. In addition to IDRs,
another way to achieve multivalent interactions is through modular
interaction domains. These domains serve as binding modules and
contribute significantly to PS by oligomerizing multiple protein
molecules, effectively increasing the number of interaction sites and
the multivalency. In this study, we categorized PSPs into two groups:
those containing IDRs (ID-PSPs) and those without IDRs (noID-PSPs).
The IDRs were determined based on pLDDT scores from AlphaFold-
predicted protein structures (see Methods for details).

The development of computational methods for predicting PSPs
is crucial for facilitating the rapid in-silico screening of the entire
proteome. The initial PSP prediction models focused on specific or
limited protein sequence features, utilizing only small subsets of the
entire proteome14. PLAAC15, catGRANULE16, PScore17, PSPer18, and sev-
eral othermethods19–21 belong to this category. In recent years,with the
surge in PSP studies22, more comprehensive PSP prediction methods
have been developed, such as FuzDrop23, PSAP24, PSPredictor25, and
PhaSePred26. These recent methods outperformed their predecessors,
mainly due to the usage of larger training datasets and the imple-
mentation of machine-learning techniques. Despite these advantages,
current PSP predictors severely biased towards predicting ID-PSPs,
resulting in subpar performances in predicting noID-PSPs (see Results
for details). This bias underscores the prevailing challenge of accu-
rately identifying PSPs without IDRs.

As the structures of noID-PSPs may offer insights into the multi-
valent interactions underlying their functions, we hypothesize that
incorporating protein structural information could significantly
enhance the prediction of noID-PSPs. Current PSP predictors rely
solely on amino acid sequences and do not leverage protein structural
information, likely due to the limited availability of high-quality pro-
tein structures. Recently, AlphaFold emerged as the top-performing
method for predicting 3D protein structures with near-experimental
accuracy27, and the AlphaFold Protein Structure Database made high-
accuracy structure predictions publicly accessible28.

In this work, leveraging the availability of high-accuracy atomic
coordinates of proteins in the full human proteome, we train an
XGBoost classifier, PSPire, to predict PSPs by incorporating both
residue-level and structure-level features. We employ the PS-related
features utilized for the prediction of PSPs by the two best current
predictors, PSAP and PhaSePred, and calculate these features on IDRs
and non-IDRs separately. Evaluations using various datasets demon-
strate that our model significantly outperforms current predictors in
classifying noID-PSPs from non-PSPs, highlighting the significant value
of protein structural information in decoding the multivalency
involved in PS.

Results
Current PSPs predictors struggle to accurately predict
noID-PSPs
We initially gathered human PSPs from two sources: (1) PSPs employed
in the development of PhaSePred26; (2) PSPs extracted from LLPSDB29,
PhaSePro30, PhaSepDB31, and DrLLPS32 databases. The PS abilities of
these PSPs were corroborated by in vivo or in vitro experiments or by
the identification of membraneless compartments. Subsequently,
these PSPs were randomly divided into training and testing datasets
(seeMethods for details). As evidence suggested that several initial PSP
prediction models exhibit heavy bias towards proteins with high IDR
contents33, we hypothesized that the current PSP predictors might be
less effective in predicting noID-PSPs. To verify our suspicion,
we assessed the performances of representative PSP predictors
(including PhaSePred, PSPredictor, PSAP, FuzDrop, PSPer, PScore,
catGRANULE, and PLAAC; Supplementary Table 1) on separate ID-PSPs

and noID-PSPs datasets (see Methods for details). The area under the
receiver operating characteristic curve (AUROC) and the area under
the precision-recall curve (AUPRC) revealed that these predictors were
quite effective in distinguishing ID-PSPs from non-PSPs (best
AUROC=0.84, best AUPRC=0.42). However, their ability to predict
noID-PSPs was significantly lower (best AUROC=0.68, best AUPRC =
0.08) (Fig. 1a, Supplementary Fig. 1a), highlighting the ongoing chal-
lenge of accurately identifying PSPs that do not contain IDRs.

To understand why current predictors were less effective in pre-
dicting noID-PSPs, we investigated the features employed in PSAP and
PhaSePred, which are considered the best performers among current
PSP predictors. PSAP utilized a set of elaborately designed amino acid
features associated with PS, out of which we analyzed the 10 most
impactful ones by comparing their values among ID-PSPs, noID-PSPs,
and non-PSPs in our dataset. Interestingly, only the “fraction_L” feature
(i.e., the fraction of leucine in the whole protein sequence) was able to
simultaneously distinguish ID-PSPs and noID-PSPs from non-PSPs.
Seven features demonstrated opposing tendencies for ID-PSPs and
noID-PSPs. For example, the “IDR_50” feature (i.e., IDR percentagewith
an IDR score cutoff of 0.5) showed higher values for ID-PSPs compared
to non-PSPs and lower values for noID-PSPs compared to non-PSPs.
The remaining two features (“fraction_C”, i.e., the fraction of cysteine
in the whole protein sequence, and “group_Xle”, i.e., the fraction of Xle
groupwhich includes leucine and isoleucine) did not show statistically
significant difference between noID-PSPs and non-PSPs (Fig. 1b).
Similarly, when examining the six features used by PhaSePred, com-
parable trends were observed (Supplementary Fig. 1b). Only two fea-
tures (“phos_frequency”, i.e., the phosphorylation frequency, and
“group_Charged”, i.e., the fraction of charged group which includes K,
R, D, and E) was able to simultaneously distinguish ID-PSPs and noID-
PSPs from non-PSPs. Taken together, it appears that most features
employed by current PSP predictors do not favor noID-PSPs, which
explains their subpar performance in predicting noID-PSPs. This
observation underscores the need for utilizing other features suitable
for the accurate prediction of noID-PSPs.

Structured superficial features enable identification of both ID-
PSPs and noID-PSPs
Considering that noID-PSPs lack IDRs, we aimed to identify IDR-
independent features that can effectively distinguish both ID-PSPs and
noID-PSPs from non-PSPs. As each residue in a protein can either be
buried within the protein structure or exposed to the surrounding
solvent, and that exposed residues are often implicated in interactions
with other proteins or ligands, we hypothesized that residues of
structured superficial regions (SSUP) of PSPs might play a significant
role in the multivalency involved in PS. To explore this hypothesis, we
identified SSUP for each protein in our dataset by using AlphaFold-
predicted 3D structures (Fig. 2a; see Methods for details). Among the
most impactful features of PSAP and PhaSePred (Fig. 1b, Supplemen-
tary Fig. 1b), eight of them could be calculated based on residues of
SSUP. As the definition of SSUP intrinsically excludes IDRs, these fea-
tures derived from SSUP residues can be considered IDR-independent.
Surprisingly, in contrast to the unfavorable full-length protein features
for noID-PSPs, all of the SSUP features could concurrently differentiate
ID-PSPs and noID-PSPs from non-PSPs (Fig. 2b). For example, the
“group_Hydrophobic” feature (i.e., the fraction of hydrophobic group
which includesV, I, L,M, F,WandY) of the full-lengthprotein displayed
opposing tendencies for ID-PSPs and noID-PSPs (Fig. 1b), whereas the
same feature derived from SSUP demonstrated similar tendencies for
ID-PSPs and noID-PSPs (Fig. 2b). This observation emphasized that
SSUP residues directly contribute to PS, and features derived from
SSUP could be utilized for the accurate prediction of both ID-PSPs and
noID-PSPs.

To further elucidate the role of SSUP residues in PS, we explored
the stickers-and-spacers model in the specific context of SSUP.
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Considering that electrostatic interactions between positively and
negatively charged residues are well-studied bases for sticker inter-
actions contributing to PS behavior, we designed a computational
approach for the identification of charged stickers, i.e., clusters of
similarly charged residues interspersed on SSUP (Fig. 2c; see Methods
for details). For our approach, we tested a range of distances from
10Å to 20Å and chose 14Å as the threshold where the fraction of
proteins with ≥3 stickers in the union of training and testing datasets
reached the maximum (Supplementary Fig. 2a; see Methods for
details). As PS has been reported to be mediated by electrostatic
interactions through the stickers in the coiled-coil domain34, LINE-1
ORF1 protein was shown as an example of calculated stickers in the
coiled-coil domain (Fig. 2d). By applying our approach, we identified
stickers for each protein in the union dataset. We observed that the
proportion of proteins with ≥3 stickers was higher in both ID-PSPs

and noID-PSPs compared to non-PSPs (Supplementary Fig. 2b).
Moreover, considering that the presence of both positively and
negatively charged stickers could promote the formation of elec-
trostatic interactions between proteins, we further calculated the
number of sticker pairs for each protein, i.e., the minimum number
of the positively and negatively charged stickers. We found that the
proportion of proteins with ≥2 sticker pairs was higher in ID-PSPs and
noID-PSPs than in non-PSPs (Supplementary Fig. 2c). To eliminate the
differences in the number of SSUP residues, we calculated normal-
ized values for sticker number and sticker pair number, and com-
pared these values among ID-PSPs, noID-PSPs, and non-PSPs,
revealing that both normalized values for ID-PSPs and noID-PSPs
were significantly higher than those of non-PSPs (Fig. 2e). These
results supported that SSUP residues have the potential to mediate
PS via the stickers-and-spacers model.
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Fig. 1 | Performance of current PSP predictors on ID-PSPs and noID-PSPs.
a Receiver operating characteristic curves (ROC) of eight predictors on testing
dataset. The performance was evaluated on ID-PSPs and noID-PSPs separately. The
PhaSePred tool includes two models: SaPS for self-assembling proteins and PdPS
for partner-dependent proteins. b Comparison of ten PS-related features that
attribute the highest importance to PSAPprediction between the two types of PSPs
(ID-PSPs and noID-PSPs) and non-PSPs. The amino acid groups include Xle (L, I),
Aliphatic (V, I, L,M), Hydrophobic (V, I, L,M, F,W, Y), andAlphahelix (V, I, L, F,W, Y).
The ten features calculated on the whole protein sequence are: fraction_C (i.e., the
fraction of cysteine), fraction_L (i.e., the fraction of leucine), IDR_50 (i.e., IDR

percentagewith an IDR scorecutoff of 0.5), IDR_60 (i.e., IDRpercentagewith an IDR
score cutoff of 0.6), IDR_length (i.e., IDR length with an IDR score cutoff of 0.5), the
proportion of the four amino acid groups, and low complexity score. P values were
calculated using the two-sided Mann-Whitney U test: ns (not significant) for
p >0.05, ** for p <0.01, *** for p <0.001, and **** for p <0.0001. The central dot
indicates the median. The box represents interquartile range (IQR), 25–75th per-
centile. Whiskers extend to the data’s minima and maxima within 1.5 * IQR. The
comparison was conducted on the union of training and testing datasets which
contained 389 ID-PSPs, 128 noID-PSPs, and 10,284 non-PSPs.
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Development and performance evaluation of PSPire
In order to leverage the distinct features observedon SSUP for both ID-
PSPs and noID-PSPs compared to non-PSPs, we aimed to develop a
high-accuracy machine learning classifier that could effectively dis-
tinguish both ID-PSPs and noID-PSPs from non-PSPs by integrating
these features. In addition to the aforementioned top features from
PSAP and PhaSePred, we incorporated all other PS-correlated features
employed by PSAP. These additional features were first calculated on
SSUP as were done for the aforementioned features. Besides SSUP
features, we also calculated all features on IDRs since PS of many ID-
PSPs is dependent on IDRs, and these IDR-related featureswerenull for
proteins without IDRs. Furthermore, we also incorporated the phos-
phorylation (Phos) frequency feature, using Phos sites of human

proteins from PhosphoSitePlus35, which has been demonstrated to be
IDR-independent and harbored the leading contribution to the pre-
diction of PhaSePred26. By incorporating the IDR- and SSUP-related
features along with the Phos frequency feature (Supplementary
Data 1), we designed an XGBoost predictor of PSPs, named PSPire,
based on a combination of residue-level and structure-level features to
predict PS propensity for both ID-PSPs and noID-PSPs (Fig. 3 and
Supplementary Fig. 3; see Methods for details). As Phos sites recorded
in PhosphoSitePlus are sparse for species other than human, we
trained models with the Phos feature for predicting PSPs in human,
while trained models without the Phos feature for predicting PSPs for
other species. We utilized the model interpreter SHAP separately to
distinguish ID-PSPs and noID-PSPs fromnon-PSPs in the human testing
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Fig. 2 | Features calculated on structured superficial regions (SSUP).
a Schematic view of SSUP calculation. Intrinsically disordered regions (IDRs) of a
protein were first determined based on AlphaFold (AF) structures. The protein was
then divided into IDRs and non-IDRs. Lastly, the residues in the non-IDRs with a
relative solvent accessibility (RSA) value greater than 25% constituted the SSUP.
b, e Comparison of ten SSUP-related features between the two types of PSPs (ID-
PSPs and noID-PSPs) and non-PSPs. The amino acid groups include Xle (L, I), Ali-
phatic (V, I, L, M), Hydrophobic (V, I, L, M, F, W, Y), Alpha helix (V, I, L, F, W, Y), and
Charged (K, R, D, E). The eight features calculated on SSUP are: (b) fraction_C_ssup
(i.e., the fraction of cysteine), fraction_L_ssup (i.e., the fraction of leucine), the
proportionof the five amino acid groups, hydropathy_ssup (i.e., hydropathy score),
(e) sticker_ssup (i.e., normalized value of charged sticker number), and stick-
er_pair_ssup (i.e., normalized value of charged sticker pair number). P values were
calculated using the two-sided Mann-Whitney U test: ** for p <0.01 and **** for
p <0.0001. The central dot indicates the median. The box represents interquartile

range (IQR), 25–75th percentile. Whiskers extend to the data’s minima andmaxima
within 1.5 * IQR.The comparisonwas conductedon theunionof training and testing
datasets which contained 389 ID-PSPs, 128 noID-PSPs, and 10,284 non-PSPs.
c Schematic view of stickers calculation. First, the net charge index of each residue
in SSUPwithin a defined distance was calculated. Then, a group of residues with an
absolute value of the net charge index greater than three were collected. Lastly,
hierarchical clustering was performed on the group of residues to obtain positive
and negative clusters. d Graphical representation of charged stickers in SSUP. The
example shown is the LINE-1 ORF1 protein. The left panel displays the 3D structure
of three domains: the coiled-coil domain, the RNA recognition motif (RRM), and
the C-terminal domain (CTD). Themiddle panel presents the protein surface of the
coiled-coil domain colored byCoulombic electrostatic potential which ranges from
negative (red) to positive (blue). The right panel shows the calculated stickers (red
for negative stickers and blue for positive stickers) of the coiled-coil domain using
our algorithm.
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XGBoost classifier was then constructed using these features. For a query protein,
PSPire can output the PS score which denotes the likelihood of phase separation
and the protein type which indicates whether the protein contains IDRs.
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dataset (see Methods for details) to measure the contribution of each
feature. The Phos frequency feature got the highest absolute SHAP
score in both cases. Besides the Phos feature, IDR- and SSUP-related
features were both important for ID-PSPs prediction, while the top-
ranked features for noID-PSPs prediction were all calculated on SSUP
as noID-PSPs do not contain IDRs (Supplementary Fig. 4).

We evaluated the performance of PSPire in predicting noID-PSPs
and ID-PSPs on the human testing dataset. The performance of PSPire
for ID-PSPs prediction (AUROC: 0.86, AUPRC: 0.51; Fig. 4a, b) was
comparable to the top current predictors (AUROC: 0.84, AUPRC: 0.42;
Fig. 1a, Supplementary Fig. 1a). Notably, PSPire demonstrated superior
performance for noID-PSPs prediction (AUROC: 0.84, AUPRC: 0.24;
Fig. 4a, b) in contrast to the best current predictors (AUROC: 0.68,
AUPRC: 0.08; Fig. 1a, Supplementary Fig. 1a). Given the scarcity of in
vivo or in vitro confirmed PSPs, we further evaluated the performance
of PSPire using 5 human datasets annotating proteome inMLOs, since

proteins in MLOs are potential PSPs (see Methods for details). As
shown in Fig. 4c, PSPire performed comparably to the best current
predictors in predicting ID-PSPs across all five datasets, yet it demon-
strated significantly better performance for noID-PSPs prediction. In
addition to AUROC and AUPRC, other evaluation metrics (i.e., Mat-
thews correlation coefficient (MCC), F1-score, sensitivity, specificity,
accuracy, false positive rate (FPR), and false negative rate (FNR))
showed similar trends on the testing dataset and the fiveMLOdatasets
(Supplementary Table 2). In summary, the results showed that PSPire
remarkably outperforms current predictors in distinguishing noID-
PSPs from non-PSPs.

Validation of candidate PSPs predicted by PSPire
To systematically predict candidate humanPSPs, we ultimately trained
PSPire using the combination of training and testing datasets and
utilized it to assign the PS scores to all humanproteins (Supplementary

Fig. 4 | Performance benchmarking of PSPire against current PSP predictors.
a, b Performance of PSPire on the testing dataset assessed by ROC and PRC curves.
The performance was evaluated on ID-PSPs and noID-PSPs separately. c AUCs of
ROC and PRC for PSPire and eight predictors on five human MLO datasets: the
G3BP1 proximity labeling set, the DACT1-particulate proteome set, the RNA-
granuleDB Tier1 set, the PhaSepDB low and high throughput MLO set, and the

DrLLPSMLO set. The PhaSePred tool includes twomodels: SaPS for self-assembling
proteins and PdPS for partner-dependent proteins. AUC values are calculated by
using ID-PSPs or noID-PSPs in these datasets as positive samples andproteins in the
negative testing dataset as negative samples. Proteins in the positive training
dataset were excluded. The best results for each row are marked in bold.
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Data 2). The proteins were then ranked based on their PS scores, and
those ranked within the top 1500 but not present in the training
dataset or MLOs were considered as highly confident PSP candidates,
whereas those ranked between the top 1500 and 3500 were termed as
moderately confident candidates. In total, 74 highly confident ID-PSP
candidates, 100highly confident noID-PSP candidates, 580moderately
confident ID-PSP candidates, and 395 moderately confident noID-PSP
candidates were identified (Supplementary Data 3). Among the PSP
candidates, 152 proteins were predicted as candidate PSPs by
DeepPhase36, a predictor based on immunofluorescence images from
the Human Protein Atlas. Besides, orthologs of 11 PSP candidates in
other species havebeen recognized as PSPs,whichwere validatedby in
vivo or in vitro experiments. Additionally, orthologs of 99 other PSP
candidates have been reported as MLO compartments in different
species. Recently, 11 ID-PSP candidates and 5 noID-PSP candidateswere
reported to exhibit the ability to undergo PS. These evidences sug-
gested the reliability of candidates predicted by PSPire.

To substantiate the reliability of PSPire’s predictions, we con-
ducted further biological experiments to authenticate the PS pro-
pensity of the candidate PSPs. In addition to the PS score, we
considered other factors in selecting candidates, such as the protein
size, literature support of association with the biological processes of
interest, the availability of antibodies for immunofluorescence, and the
feasibility of expressing and purifying proteins for in vitro condensa-
tion assays. We first chose three highly confident noID-PSP candidates
(HPRT1, H3C15, and ACTR2) and three negative candidates (ZNF738,
GTF2A2, and CA5B) for validation. AlphaFold-predicted 3D structures
of the three noID-PSP candidates can be seen in Supplementary Fig. 5.
We constructed GFP-tagged versions of these proteins and over-
expressed them in HeLa cells. As shown in Fig. 5a, GFP-ACTR2, GFP-
H3C15, and GFP-HPRT1 obviously formed condensates in cytoplasm or
nuclei. In contrast, cells transfected with GFP-ZNF738, GFP-GTF2A2, or
GFP-CA5B showed negligible puncta both in cytoplasm and
nuclei (Fig. 5b).

We further conducted validation studies for several candidates at
the endogenous expression level. Given the commercial availability of
primary antibodies, we focused on two highly confident noID-PSP
candidates (ANXA3 and S100A7) and three moderately confident
candidates (PGM1, TXNL4B, and SERPINB4). Additionally, we selected
three ID-PSP candidates (CKMT2, RAB31, and VPS26B), which were
predicted as noID-PSPs by ESpritz37 and MobiDB-lite38, with PS scores
akin to the highly confident candidates for CKMT2 and moderately
confident candidates for RAB31 and VPS26B when IDR-related fea-
tures were null. AlphaFold-predicted 3D structures of the eight
chosen proteins can be seen in Supplementary Fig. 5. To gauge cel-
lular localization of these proteins under standard conditions, we
conducted immunostaining of these endogenous proteins in HeLa
cells. PGM1, TXNL4B, SERPINB4, and VPS26B emerged as small
cytoplasmic puncta within cells (Fig. 5c). Interestingly, these four
proteins’ condensates co-localized with EDC4, a known P-body
marker, hinting at their role in P-body assembly (Fig. 5c and Sup-
plementary Fig. 6a). S100A7 and RAB31, although dispersed in HeLa
cell cytoplasm (Supplementary Fig. 6b), co-localized with cyto-
plasmic stress granules under sodium arsenite-induced stress (Fig. 5d
and Supplementary Fig. 6a). No puncta were observed for ANXA3
and CKMT2 (Supplementary Fig. 6c, d).

These cellular findings affirm that 9 out of 11 selected candidates
can form condensates within cells. To validate these proteins’ inde-
pendent in vitro PS, we obtained purified full-length proteins of PGM1,
SERPINB4, S100A7, and RAB31 (Supplementary Fig. 6e). Introducing
crowding agent PEG 3350 led to the formation of typical spherical
liquid droplets by PGM1, SERPINB4, and RAB31 - a key PSP trait. Simi-
larly, S100A7underwent PS in thepresence of another crowding agent,
PEG 8000 (Fig. 5e). We expanded our investigation by labeling PGM1,
SERPINB4, S100A7, and RAB31 with fluorescent dyes and conducting

fluorescence recovery after photobleaching (FRAP) experiments. The
FRAP results revealed moderate dynamics in the condensates formed
by PGM1, RAB31, and S100A7, and relatively limited dynamics in SER-
PINB4 condensates, as detailed in Supplementary Fig. 6f–i. Given that
PSPire incorporates the features of charged stickers, we further
examined electrostatic interactions among them in our candidates.
SERPINB4 and PGM1, with high counts of charged stickers (10 and 11,
respectively), were postulated to form condensates driven by elec-
trostatic interactions. High salt concentrations indeed significantly
disrupted the phase separation of SERPINB4 and PGM1 (Supplemen-
tary Fig. 6j). Collectively, these results verify these proteins’ strong PS
propensity, reinforcing the efficacy of PSPire.

Discussion
The burgeoning understanding of proteins and their biological func-
tions through the formation of biomolecular condensates emphasizes
the importance of accurate PSP predictors. PSP predictors could allow
researchers to identify PSP candidates from the proteome, thereby
expediting our comprehension of the PS process. In this study, we
developed PSPire, a machine learning model developed to predict PS
propensities based on the integration of residue-level and structure-
level features. Unlike current predictors that primarily rely on amino
acid features, PSPire integrates 3D structural information, demon-
strating superior performance in identifying noID-PSPs. Consequently,
PSPire effectively identified PSP candidates and could benefit our
understanding of these proteins and their role in condensate
formation.

Multivalent interactions driving phase separation not only
involve IDR-driven nonspecific interactions but also widely concern
modular domain-mediated specific interactions39,40. However, most
existing PSP predictors displayed amarked bias towards proteins with
high IDR contents, resulting in suboptimal performance when pre-
dicting noID-PSPs. To address this, we introduced non-IDR features
based on SSUP to complement IDR-related features. Our analyses
showed that these SSUP-related features effectively distinguish
PSPs from non-PSPs, indicating a strong correlation between SSUP
residues and the multivalency inherent to the PS process of structural
domain-driving proteins. Furthermore, we computed sticker-related
features that could differentiate PSPs from non-PSPs effectively.
Hence, SSUP residues, particularly those constituting stickers, offer
sites where mutations might impact PS behavior, which could be
valuable for further experimental validation and have the potential to
aid in the identification of drug targets related to PS. Besides biological
experiments, critical residues in SSUP can be further explored using
molecular dynamics to uncover potential mechanisms driving PS.
Leveraging these important features, PSPire reported the residue
positions of SSUP and identified stickers as output.

The theoretical framework, known as the stickers-and-spacers
model, describes the molecular grammar underlying various phase-
separating systems (Supplementary Fig. 7). These systems can be
categorized into three distinct types: folded proteins, intrinsically
disordered proteins, and linear multivalent proteins41. For folded
proteins, stickers are defined as interaction patches on the protein
surface, while spacers consist of regions that do not engage in inter-
actions. In intrinsically disordered proteins, stickers may include
individual amino acids, short linear motifs, or a combination of both,
interspersed by spacers, which are the intervening non-interactive
residues. Regarding linear multivalent proteins, stickers comprise the
multiple folded domains, and spacers are the flexible linkers that
connect these domains. For well-defined binding domains, stickers are
characterized as the binding sites on the domain surfaces, with non-
binding surface residues serving as additional spacers. From another
perspective, the computed features related to stickers, IDRs, and SSUP
were designed to capture the distinct properties of the three types of
stickers accurately.
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Regarding sticker-related features, PSPire focused on electro-
static interactions, instead of hydrophobic interactions, with the fol-
lowing considerations. The strength of electrostatic interactions,
ranging from 2 to 15 kcal/mol, is typically greater than that of hydro-
phobic interactions, which range from 0.5 to 3 kcal/mol42. In addition,
the proportions of hydrophobic residues in SSUP were significantly
lower in ID-PSPs and noID-PSPs than in non-PSPs, while the propor-
tions of charged residues in SSUP were significantly higher in ID-PSPs

and noID-PSPs compared to non-PSPs (Fig. 2b), suggesting that elec-
trostatic interactions might be more prevalent than hydrophobic
interactions for structural domain-driven phase separation. We
attempted to modify the sticker identification method by incorporat-
ing hydrophobic residues. However, the incorporation of hydrophobic
residues made no improvement in the prediction power of PSPire.

While PSPire’s performance is exemplary, it does face several
challenges. First, despite AlphaFold’s near-experimental precision in
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Fig. 5 | Candidate PSPs predicted by PSPire undergo phase separation in HeLa
cells and in vitro. a Confocal images of GFP-ACTR2, GFP-H3C15, and GFP-HPRT1
overexpressing in HeLa cells. Condensates were indicated by white arrows. Scale
bars, 5 µm. b Confocal images of GFP-ZNF738, GFP-GTF2A2, and GFP-CA5B
expressing in HeLa cells. Scale bars, 5 µm. c Confocal images of endogenous PGM1,
TXNL4B, SERPINB4, and VPS26B in HeLa cells. EDC4 (red) marks the P-body. Scale

bars, 5 µm. d Immunostaining images of endogenous S100A7 and RAB31 in HeLa
cells under stress conditions induced by sodium arsenite. G3BP1 (red) marks the
stress granules. Scale bars, 5 µm. e Differential interference contrast (DIC) images
demonstrate PS of PGM1, SERPINB4, RAB31, and S100A7 under specified condi-
tions. Scale bars, 2 µm. The imaging was independently repeated 3 times with
similar observations.
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predicting 3D protein structures from amino acid sequences43, dis-
crepancies can arise between the AlphaFold-predicted and native
structures. For instance, AlphaFold predicts the structure of α-Syn to
comprise an N-terminal α-helix domain and a C-terminal IDR, whereas
its native structure has three unstructured domains. Given that protein
structures significantly contribute to calculating structured superficial
regions, the performance of PSPire hinges on the accuracy of its pre-
dicted structure. We expect enhancements in prediction performance
as more precise protein structures become available. Alternatively,
users could provide their own refined protein structures for enhanced
accuracy in predictions. Second, the current classification between ID-
PSPs and noID-PSPs is based on the presence of IDRs. Nevertheless, the
PS of certain ID-PSPs predominantly hinges on modular domains
rather than IDRs.A case inpoint is JAK1, a recognized ID-PSP,which can
form a PS-driven CNF1-JAK1-JAK2 complex via its SH2 domain44. With
PSPire’s default features, the PS score of JAK1 is a mere 0.64. To tackle
the issue that IDR-related features may inadvertently impair predic-
tion, PSPire offers a parameter to specifically ignore IDR-related fea-
tures for proteins with IDRs. Consequently, when JAK1’s IDR-related
features are nullified, its PS score increases to 0.93. Third, PSPire is not
designed to indicate which proteins are more likely to be drivers or
passengers of phase separation, mainly due to the composition of the
training dataset. Further experiments, such as the in vitro purified
protein condensation assays, are required to confirm the proteins’ role
as drivers or passengers and capabilities to formeither single- ormulti-
component droplets within cells.

Methods
Datasets
In this study, datasets used for development of the PhaSePred26 model
were obtained, which contained 155 PSPs and 8801 non-PSPs for
training, and 117 PSPs and 2200 non-PSPs for testing. Then a total of
189 additional PSPs were retrieved from LLPSDB29, PhaSePro30,
PhaSepDB31, and DrLLPS32, which were validated by in vivo or in vitro
experiments. Besides, 77 noID-PSPs classified as scaffolds or regulators
by DrLLPS were included. Since proteins longer than 2700 amino
acids were segmented into overlapping fragments by AlphaFold, pro-
teins with a sequence length ≤100 or ≥2700 amino acids were filtered
out. As PSPer18, PScore17, and PLAAC15 have restrictions on the length of
protein sequences, proteins that cannot be predicted by these three
tools were also filtered out. Then the ID-PSPs and noID-PSPs were both
randomly split into separate training and testing datasets with a ratio
of 1:1 and the training PSPs of PhaSePred were reserved in training
dataset. Consequently, the positive training dataset comprised 259
PSPs, including 195 ID-PSPs and 64 noID-PSPs; the positive testing
dataset consisted of 258 PSPs with 194 ID-PSPs and 64 noID-PSPs; and
the negative training and testing datasets contained 8323 and 1961
proteins, respectively (Supplementary Data 4). The union dataset of
training and testing datasets was used for features comparison of ID-
PSPs and noID-PSPs from non-PSPs. Furthermore, five human MLO
datasets were collected for evaluation: the G3BP1 proximity labeling
set26,45, the DACT1-particulate proteome set26,46, the RNAgranuleDB
Tier1 set47, the PhaSepDB low and high throughput MLO set31, and the
DrLLPS MLO set32 (Supplementary Data 5).

Secondary structure calculation
The secondary structure state of each residue was calculated by the
Definition of Secondary Structure of Proteins (DSSP)48,49 using Alpha-
Fold Protein Data Bank (PDB) coordinate files. The DSSP module from
the Biopython package was used as an interface to the DSSP program.
The resulting secondary structure assignments contained eight types:
α-helix (H), 3-helix (G), 5-helix (I), β-bridge (B), β ladder (E), bend (S),
turn (T), and irregular. These types were further grouped into three
categories: helix (H, G, and I), sheet (B and E), and loop (S, T, and
irregular).

Intrinsically disordered regions (IDRs) calculation
The amino acid sequence and pLDDT scores of each protein were
extracted from PDB files of AlphaFold-predicted protein structures
using the PDB and SeqIO modules from the Biopython package. To
identify long disordered regions, IDRs were assigned based on pLDDT
scores using a threshold of 50 (i.e., a residuewith a score lower than 50
was considered as disordered). Then residues annotated as helix or
sheet secondary structures by the DSSP program48,49 were filtered out
from IDRs. As carried out by MobiDB-lite38, the IDRs were further
refined by iteratively converting short stretches of up to three residues
of IDRs among ordered regions to order, and vice versa. Ordered
stretches of up to 10 consecutive residueswere then converted to IDRs
if they were flanked by two IDRs of at least 20 residues. Finally, IDRs
with a sequence length below 20 were removed. The final IDRs were
used todistinguishbetween ID-PSPs andnoID-PSPs, i.e., PSPswith IDRs
were classified as ID-PSPs and PSPs without IDRs as noID-PSPs.

Structural superficial regions (SSUP) determination
Relative solvent accessible surface area (RSA) is defined as the per-
residue ratio between solvent accessible surface area (SASA) and the
‘standard’ value for a particular residue. In this study, we used
the PSAIA program50 to calculate RSA. First, we grouped the residues
based on a threshold value of RSA. If the RSA percentage of a residue
wasgreater than 25%, itwas assigned as anexposed residue; otherwise,
it was classified as a buried residue. Further, all exposed residues
were classified as the superficial group (SUP group), and the non-IDRs
were regarded as structural group (S group). Finally, the structural
superficial regions (SSUP) were generated by overlapping the S group
and SUP group.

Sticker-related features
To obtain sticker-related features, we first calculated the net charge
index of each residue in SSUP. The net charge index of a residue was
defined as the number of positive residues in SSUP minus the number
of negative residues in SSUP within a defined distance of the residue.
We tested a range of distances from 10Å to 20Å. The proximate
residues were searched using the PyMOL python package as an inter-
face to the PyMOL software51. We then obtained a group of residues
whose absolute value of the net charge index was greater than three.
Next, we implemented the hierarchical clustering of the group of
residues using the Python scipy package based on Cα 3D coordinates
of each residue, which were extracted from AlphaFold PDB files. The
parameters used were: criterion=distance, metric=Euclidean, and
method=centroid. The distance thresholds of hierarchical clustering
were used as the same as proximate residues searching. Further, if the
net charge index of the majority of residues was positive (negative),
the cluster was classified as a positive (negative) cluster. Finally, the
total sticker number was defined as the sum of the positive and
negative cluster numbers, while the sticker pair numberwasdefined as
the minimum value of the positive and negative cluster numbers. The
final two features of sticker frequency and sticker pair frequency were
defined as the total sticker number and sticker pair number divided by
the residue number in SSUP.

IDR- and SSUP-related features
Firstly, amino acids were classified into fifteen groups according to
different properties. The combinations included Asx (D, N), Glx (E, Q),
Xle (I, L), Positively charged (K, R, H), Negatively charged (D, E), Aro-
matic (F,W, Y, H), Aliphatic (V, I, L,M), Small (P, G, A, S), Hydrophilic (S,
T, H, N, Q, E, D, K, R), Hydrophobic (V, I, L, F, W, Y, M), Alpha helix (V, I,
Y, F, W, L), Beta turn (N, P, G, S), Beta sheet (E, M, A, L), Aromaticity (F,
W, Y), and Charged (K, R, D, E). The hydropathy value was allocated to
each residue, which was calculated using the same method as in
localCIDER52 based on a normalized Kyte-Doolittle hydrophobicity
scale53. Besides, the polarity value54 was also allocated to each residue.
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Subsequently, the following features, utilized by PSAP and PhaSePred,
were calculated on IDRs and SSUP separately: fraction of each of the
20 standard amino acids, proportion of each of the fifteen groups,
averaged hydropathy score, as well as the isoelectric point and mole-
cular weight determined by ProteinAnalysis module from the Biopy-
thon package. Additionally, the averaged polarity scores of residues in
IDRs and SSUP were computed separately and included as features.
Besides, the sequence length of IDRs and sequence length percentage
of IDRs in a protein were added. Lastly, the phosphorylation (Phos)
frequency feature was calculated using the same definition as Pha-
SePred, i.e., the number of Phos sites retrieved fromPhosphoSitePlus35

divided by the length of the protein sequence.

Model training and performance evaluation
The feature data was normalized by scaling using the MinMaxScaler
from Scikit-learn. We utilized a tree-based ensemble learning method,
XGBoost, to train the classifier for distinguishing between PSPs and
non-PSPs. During the XGBoost model fitting process, sample weights
were assigned to ID-PSPs, noID-PSPs, and non-PSPs in the training
dataset based on the inverse of frequencies of each type to reduce the
effect of sample imbalance. Two separatemodels with andwithout the
Phos frequency feature were trained. To mitigate overfitting and
enhance the model’s generalization capability, we implemented a five-
fold cross-validation scheme and utilized the Optuna55 framework to
systematically tune the following hyperparameters: learning_rate,
n_estimators, max_depth, min_child_weight, subsample, colsample_-
bytree, gamma, reg_lambda, and reg_alpha (Supplementary Table 3).
The optimization process was guided by the objective of maximizing
the area under the receiver operating characteristic curve (AUROC)
averaged on the five-fold for prediction of ID-PSPs. A comprehensive
set of 1000 trials was executed to ensure a thorough exploration of the
hyperparameter space. The optimal set of hyperparameters identified
from the best-performing trial was then adopted for the final model
(Supplementary Table 4).

For each fold of the five-fold cross-validation process, the positive
training, positive validation, and negative validation subsets remained
fixed and ten models were generated with ten different negative
training subsets. These negative subsets were randomly sampled
from the negative training dataset, ensuring that the number of
proteins in the negative training subsets was twice the number of
proteins in the positive training subsets. Furthermore, the ratio of ID-
PSPs to noID-PSPs was consistently maintained across all folds. The
final prediction score for a protein was determined by averaging the
scores across these ten models. Utilizing the optimal set of hyper-
parameters, a final training model was trained with the full training
dataset for subsequent comparison with existing PSP predictors.
Similarly, ten rounds of training were performed, each with a distinct
negative training subset, again ensuring a two-to-one ratio of nega-
tive to positive proteins. The mean prediction score of the ten
rounds was used as the final prediction score. To facilitate a fair
comparison, the PSAP model was re-trained on the same training
dataset with the same strategy.

The prediction was evaluated using the independent testing
dataset. Themodel’s performancewas assessed by severalmetrics: the
area under the curve (AUC) of the receiver operating characteristic
(ROC) curve and the precision-recall (PRC) curve, Matthews correla-
tion coefficient (MCC), F1-score, sensitivity, specificity, accuracy, false
positive rate (FPR), and false negative rate (FNR). To calculateMCC, F1-
score, sensitivity, specificity, accuracy, FPR, andFNR,prediction scores
were converted to binary labels using a threshold from the point
nearest to the top-left corner of the ROC curve. To getmore reliable PS
scores of the human proteome, a final model was trained with merged
training and testing datasets. The same ten-round training procedure
was applied to themerged datasets, and the averaged prediction score
of the ten trained models was used as the PS score for each protein. A

random seed of 42 was used consistently throughout the process to
ensure reproducibility.

Plasmids and constructs
Thegenes of full lengthACTR2,H3C15, HPRT1, ZNF738, GTF2A2,CA5B,
RAB31, S100A7, SERPINB4, and PGM1 were synthesized by AZENTA.
These genes were inserted into the pCAG vector, which contained an
N-terminal GFP tag. For protein purification, RAB31, S100A7, SER-
PINB4, and PGM1 genes were inserted into the pET-28a vector, which
contained an N-terminal His6-tag and a thrombin cleavage site.

Cell cultures, transfection, and immunofluorescence
HeLa cells obtained from cell bank of the ChineseAcademy of Science,
Shanghai, China (SCSP-504) were cultured in Dulbecco’s Modified
Eagle Medium (11995073, Gibco) supplemented with 10% (v/v) fetal
bovine serum (10099141, Gibco) and 1% penicillin/streptomycin
(15140122, Gibco) at 37 °C in 5% CO2. Transient transfection was per-
formed using Lipofectamine 3000 (Invitrogen) in Opti-MEM (Invitro-
gen). Cells were transfected for at least 24 h before the subsequent
drug treatments or examinations. For immunostaining, cells were
grown on coverslips in a 24-well plate. After being washed with PBS,
the cells were fixed in 4% paraformaldehyde for 15min at room tem-
perature. Following fixation, the cells were permeabilized with 0.5%
Triton X-100 in PBS for 15min and blockedwith 3% goat serum in PBST
(0.1% Triton X-100 in PBS) for 30min. Next, the cells were incubated
with primary antibodies overnight at 4 °C, followed by the incubation
with secondary antibodies at room temperature for 1 h. After being
washed three times with PBST, the cells were mounted on glass slides
using the antifade mountant with DAPI (P36962, Thermo Fisher). For
sodium arsenite treatment, cells were incubated with a culture med-
ium containing 250 µM sodium arsenite for 1 h before harvesting.
Imagingwas performed using a Leica TCS SP8microscopewith a 100 ×
objective (oil immersion, NA = 1.4) at room temperature. Image J (v
2.0.3) was applied for data processing.

The following antibodies were used for immunofluorescence
assays: rabbit anti-PGM1 (abs117064, absin), rabbit anti-SERPINB4
(abs134793, absin), rabbit anti-S100A7 (abs139303, absin), rabbit anti-
TXNL4B (abs117670, absin), rabbit anti-RAB31 (abs134703, absin),
rabbit anti-VPS26B (absin134908, absin),mouse anti-G3BP1 (611127, BD
Biosciences,), mouse anti-EDC4 (sc-376382, Santa Cruz Biotechnol-
ogy). The following fluorescent secondary antibodies were used: goat
anti-rabbit-Alexa Flour 488 (Invitrogen, A-11008), and goat anti-mouse-
Alexa Flour 568 (Invitrogen, A-11004). Antibodies includingAnti-PGM1,
anti-SERPINB4, anti-S100A7, anti-TXNL4B, anti-RAB31, and anti-
VPS26B were diluted to a concentration ratio of 1:100. Anti-G3BP1
and anti-EDC4 antibodies were diluted at a higher concentration ratio
of 1:500. Secondary antibodies were diluted to a concentration ratio
of 1:1000.

Protein expression and purification
The S100A7, SERPINB4, and PGM1 plasmids were transformed into
BL21 (DE3) Chemically Competent Cell (CD601-03, TransGenBiotech).
As for the RAB31 plasmid, the Transetta (DE3) Chemically Competent
Cell (CD801-02, TransGenBiotech) was used. Cells were grown to an
OD600 of 0.8 and induced with 0.5mM IPTG overnight at 16 °C. Pro-
teins were loaded onto the HisTrap FF column (GE Healthcare) with
buffer containing 50mM Tris-HCl, pH 8.0, 500mM NaCl, and 10%
glycerol. The proteins were eluted with imidazole and then further
purified using a size exclusion column. The RAB31, S100A7, and SER-
PINB4 proteins were purified using a Superdex 75 16/600 column (GE
Healthcare), while the PGM1proteinwas purifiedusing a Superdex 200
16/600 column (GE Healthcare). The purified proteins were stored in a
buffer containing 50mM Tris-HCl, pH 8.0, 500mM NaCl, and 10%
glycerol at −80 °C. The purity of recombined proteins was character-
ized by SDS-PAGE following the data processing by Image Lab (v 3.0).
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For fluorescence labeling, Alexa-488 (A10254, Invitrogen, USA)
was used for RAB31, S100A7, SERPINB4, and PGM1. All the labeling
experiments were performed as described by the manufacturer. The
2-fold dyes were mixed with proteins and incubated at room tem-
perature for at least 1 h. After that, the proteins labeled with fluor-
escent dyes were purified using a Superdex 75 Increase 10/300 GL
column (GE Healthcare).

Differential interference contrast imaging
For DIC observation, the purified proteins were diluted in a buffer
containing 50mM Tris and 150mM NaCl at pH 7.5, to achieve a final
concentration of 50 µM. Although a 2% PEG 20000 concentration is
often standard56, optimal conditions indeed require empirical deter-
mination for each protein system under investigation. For example,
10% PEG 8000 was used for the PS of TIA157, lactoferrin58,
β-lactoglobulin58, lysozyme58, RNase A58, and Tau58. Additionally, 15%
PEG 8000 was used for the PS of alpha-synuclein59, TIP6060, and
SOD161. Here, 15% (w/v) PEG 3350was used for phase separation (PS) of
RAB31, PGM1, and SERPINB4, and 10% (w/v) PEG 8000wasused for the
PSof S100A7.OncePSwas induced in the tube, 3 µL of the solutionwas
pipetted onto a glass slide for DIC imaging. The images were collected
using a Leica TCS SP8 microscope with a 100x objective (oil immer-
sion, NA = 1.4) at room temperature.

Fluorescence recovery after photobleaching (FRAP) assay
The FRAP assay was executed using the FRAP module on a Leica TCS
SP8 confocal microscope, equipped with a 100× oil immersion
objective. This procedure involved selectively bleaching fluorescently
labeled assemblies with a laser beam and targeting a specific circular
region of interest. Following photobleaching, imaging was performed
continuously, capturing one frame every 2.58 s. The fluorescence
intensity in the bleached region (Itm) was measured, along with the
intensity (Itc) in a nearbyunbleached assembly serving asa control. For
quantitative analysis, the fluorescence intensity at the bleached site at
each time point (t) was normalized against the control. The recovery of
fluorescence was calculated using the formula: It = (Itm/I0m)/(Itc/I0c).
All captured images were subsequently analyzed using the Leica
Application Suite X software.

Visualization and statistical analysis
All plotting and statistical analyses were implemented in Python with
numpy and pandas packages or R. When applicable, multiple test
corrections were carried out using the Benjamini-Hochberg (BH) cor-
rection method. P values were calculated using the two-sided Mann-
Whitney U test and were indicated in figures as follows: ns (not sig-
nificant) for p > 0.05, * for p < 0.05, ** for p <0.01, *** for p <0.001, and
**** for p <0.0001. The graphical representations of proteins were
generated using PyMOL51 or UCSF Chimera62 software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The PDB format files of human protein structures (identifier:
UP000005640) can be downloaded from the AlphaFold DB website
(https://ftp.ebi.ac.uk/pub/databases/alphafold/latest/UP000005640_
9606_HUMAN_v4.tar). All datasets used in this study are publicly
available and detailed in Supplementary Data 4 and Supplementary
Data 5. The following four databases were used for the collection of
phase-separating protein datasets: LLPSDB, PhaSePro (https://
phasepro.elte.hu), PhaSepDB (http://db.phasep.pro), and DrLLPS
(https://llps.biocuckoo.cn). Pre-calculated PSPire predicted scores and
residue positions in structured superficial regions (SSUP) and sticker
regions for proteins in the following model organism proteomes

generated in this study have been deposited in the GitHub repository
(https://github.com/TongjiZhanglab/PSPire): Arabidopsis thaliana,
Caenorhabditis elegans, Candida albicans, Danio rerio, Dictyostelium
discoideum, Drosophila melanogaster, Escherichia coli, Glycine max,
Homo sapiens, Methanocaldococcus jannaschii, Mus musculus, Oryza
sativa, Rattus norvegicus, Saccharomyces cerevisiae, Schizosacchar-
omyces pombe, and Zea mays. The secondary structure states and
relative surface exposure data of proteins in human proteome gener-
ated in this study could also be downloaded from the GitHub reposi-
tory. Source data are provided with this paper.

Code availability
PSPire is freely available at https://github.com/TongjiZhanglab/PSPire.
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