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Bidirectional generation of structure and
properties through a single molecular
foundation model

Jinho Chang 1 & Jong Chul Ye 1

Recent successes of foundationmodels in artificial intelligence have prompted
the emergence of large-scale chemical pre-trained models. Despite the grow-
ing interest in large molecular pre-trained models that provide informative
representations for downstream tasks, attempts for multimodal pre-training
approaches on the molecule domain were limited. To address this, here we
present a multimodal molecular pre-trained model that incorporates the
modalities of structure and biochemical properties, drawing inspiration from
recent advances in multimodal learning techniques. Our proposed model
pipeline of data handling and training objectives aligns the structure/property
features in a common embedding space, which enables the model to regard
bidirectional information between the molecules’ structure and properties.
These contributions emerge synergistic knowledge, allowing us to tackle both
multimodal and unimodal downstream tasks through a singlemodel. Through
extensive experiments, we demonstrate that our model has the capabilities to
solve various meaningful chemical challenges, including conditional molecule
generation, property prediction, molecule classification, and reaction
prediction.

Capturing complex relations between chemical entities and their
properties is the essence of numerous chemical challenges. During the
last decade, artificial intelligence has emerged as a promising tool in
chemistry research for estimating many biochemical properties and
interactions between molecules, polymers, and proteins, which are dif-
ficult to obtain experimentally1–3. Various deep learning-based approa-
ches in the chemical domain employed deep neural networks to extract
desired characteristics like intrinsic properties, biochemical activities,
and chemical reactions from rawmolecule data4–6. Additionally, de novo
molecule design has been extensively studied using recurrent
networks7, variational autoencoders8,9, graph networks10, etc11–13. More
recently, unsupervised learning approaches of learning better repre-
sentations of the chemical inputs have been suggested14–16 to overcome
the limitationof learning separate features for each task in a super- vised
manner. These recent approaches are on the same track as the concept
of the foundation models that are trained with large datasets and are
often considered as a new paradigm of deep learning17,18.

Specifically, a concept of pre-training a neural network in a self-
supervised manner for a better feature representation has been
adapted for various chemical fields14–16. N-GramGraph19 and GROVER20

used a graph neural network and a graph transformer network,
respectively, to obtain a pre-trained model from the molecular graph.
ChemBERTa-221 trained a roBERTa model with 77 million molecules to
build a molecular foundation model, by training the model to predict
200 different chemical property values.

Meanwhile, in the computer vision field, multimodal pre-training
methods like Vision-Language Pre-training (VLP)22 have achieved out-
standing performance in downstream tasks that require an under-
standing of both image and text. Most of the modern VLP models
utilize Transformer23 architecture and its cross-attention mechanism
to learn the correlation between different modalities24,25. Moreover,
several works introduced contrastive learning, which assimilates fea-
tures with the same context and distances semantically unrelated
features, to align image and language features in the common feature
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space26–28. VLP enables various tasks such as visual question
answering29, image-text retrieval30, text-driven image generation31,
image-driven text generation32, etc., which are not possible using sin-
gle modality foundation models.

Inspired by the success of multimodal learning, several recent
works tried to obtain a better feature of a molecule by leveraging
knowledge from different data representations. Winter et al. trained a
translation model between Simplified Molecular-Input Line-Entry Sys-
tem (SMILES) and International Chemical Identifier (InChI) key to get a
feature vector with meaningful information that both molecular
representations have in common33. Zhu et al. used a self-supervised
training method of BYOL34 between different molecule representa-
tions of SMILES and molecular graphs to build a dual-view model35.
However, these works introduced multimodality only for the
enhancement of a molecule feature for unimodal tasks, not for the
interplay between those different modalities. Furthermore, since
SMILES, InChI, and graph representations contain almost identical
information about the connection between atoms in a molecule, it is
unlikely to expect new emergence properties by multimodal learning
between these different molecule representations.

In this work, we are interested in the cross-modal comprehension
between molecule structure and the associate properties, which
facilitates solving meaningful tasks in many applications like property
predictions, conditionalmolecule design36,37, etc. Taking a step further
frommulti-task learningmethods38 which use the prepared properties
as labels to extract general features21, our approach regards a set of
properties as a stand-alone modality that represents the input mole-
cule and suggests that multimodal learning for molecules with this
property modality can provide much more informative features.

Specifically, we propose a molecule Structure-Property Multi-Modal
foundation model (SPMM) that allows various chemistry experiments
in silico, which is pre-trainedwith awide rangeofmolecules’ structures
and a vector of its properties. By employing a Transformer
architecture23, the intramodal feature extraction and intermodal
fusion can be done with self-attention and cross-attention mechan-
isms, respectively.

Our experimental results show that simultaneous learning of
structural features with information from the associate properties
through a single foundation model gives us a better representation
that can be fine-tuned for various downstream tasks. Specifically, by
treating both structure and property symmetrically, the model can
perform bidirectional generation and prediction with a single pre-
trained model, which was not possible before.

Figure 1a illustrates the overall model architecture and training
objectives for SPMM. The framework of SPMM extends the structure
of the dual-stream VLP models27,28,39. Dual-stream VLP models encode
the input for each modality with an unimodal encoder, then use
another encoder module to perform cross-attention by using one
modality feature as a query and the other modality feature as a key/
value. When a training molecule is given, SPMM takes the molecule’s
SMILES string and its property vector (PV) asmultimodal data inputs as
shown in Fig. 1a. The SMILES and PV are passed through their corre-
sponding unimodal encoders, which perform self-attention where
embedded inputs become the key, query, and value. After two unim-
odal features are obtained, contrastive learning aligns the SMILES and
PV features into the same embedding space by assimilating the fea-
tures that contain the same context. This is known to improve the
model performance by making cross-modal encoding easier and
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Fig. 1 | The overview of the model pipeline of the Structure-Property Multi-
Modal foundation model (SPMM) for its pre-training and downstream tasks.
a The model architecture and pre-training objectives of SPMM. SPMM utilizes the
molecule’s SimplifiedMolecular-Input Line-Entry System (SMILES) and its Property
Vector (PV). The contrastive loss aligns the output feature of two unimodal enco-
ders into the same embedding space. The fusion encoder learns the relations
between two modalities, trained with Next Word Prediction, Next Property

Prediction, and SMILES-PV Matching loss. [CLS]S and [CLS]P represent the special
token utilized for SMILES and PV modality, respectively. b Possible downstream
task scenarios that require multimodal comprehension, namely PV-to-SMILES
generation and SMILES-to-PV generation. c Possible downstream task scenarios for
singlemodality inputs, namely property prediction and forward and retro reaction
prediction.
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guiding the unimodal encoded features to reflect more semantics of
the input27. Then, the encoded SMILES and PV features are passed
through the fusion encoders, which perform cross-attention between
SMILES and PV features. This single fusion encoder can perform cross-
attention with an alternation of its query and key/value input because
the contrastive learning aligns the output of the SMILES encoder and
the PV encoder into the same feature space39. The fusion encoder is
pre-trained with Next Word Prediction (NWP) for SMILES, Next Prop-
erty Prediction (NPP), and SMILES-PV Matching loss (SPM). Prediction
of the next component from the given transformer input is a com-
monly used self-supervised learning objective, and our NWP and NPP
tasks make the model learn the contextual relationship between
SMILES tokens and properties with the aid of the other modality’s
semantic feature. Additionally, SPM predicts whether a given pair of
SMILES and PV represents the same molecule or not.

Once trained, SPMM can be used for various bidirectional down-
stream tasks that require an understanding of both SMILES and
properties like property prediction (SMILES-to-properties) and
property-conditioned molecule generation (properties-to-SMILES,
also referred to as inverse-QSAR37) as shown in Fig. 1b. Furthermore,
the pre-training objectives thatwe’ve used allow the pre-trained SPMM
to be applied for single-modality tasks as well, such as molecule clas-
sification and reaction predictions (see Fig. 1c). The pre-trained SPMM
showed comparable performances to state-of-the-art models in these
unimodal tasks, which suggests the model’s generalization ability as a
foundation model.

Results
Themodel learns bidirectional comprehension between SMILES
and properties
Once SPMM was pre-trained, we made the model generate SMILES
with given PV inputs only, which is a crucial challenge for many che-
mical tasks such as de novo molecule design. As one of the major
approaches for drug discovery, various methods have been suggested
for generating molecules with desired properties9–11,13. In the approa-
ches presented so far, the maximum number of simultaneously con-
trollable properties wasn’t very large. Also, the length of the input
property vector cannot be changed. Whenever the target properties
change, the model needs to be trained again for the new wanted
conditions. In contrast, the pre-trained SPMM can take 53 properties
used in pre-training as input conditions and generate molecules that
satisfy all of them, without separate additional training for each
property combination. Moreover, for the properties that we don’t
want to control, we can let the model ignore those conditions by
replacing themwith the [UNK] token that we used in pre-training. This
is very useful because controlling all 53 input properties is not a usual
scenario in practice, and is also not easy since the properties are cor-
related and entangled (e.g., ‘5 atoms & 30 bonds’ or ‘2 rings & 5 aro-
matic rings’ is unlikely to be a valid PV input).

To demonstrate the molecule generation capability of SPMM, we
prepared a number of PV-to-SMILES generation scenarios and let the
pre-trained SPMM autoregressively generate SMILES using the input
properties. This process of SPMM is very similar to the sequence-to-
sequence translation tasks in terms of the model pipeline (see Sup-
plementary Fig. 1a for details), from the property sentence of PV to the
molecular structure sentence of SMILES.

The validity, uniqueness, and novelty of the generated molecules
are the quantitative metrics of SPMM’s molecule generation. Addi-
tionally, as a qualitativemetric to see how the generated SMILESmatch
the property input, we measured the normalized Root Mean Square
Error (normalized RMSE) between the input conditions and the gen-
erated molecules’ properties. More specifically, we calculate the
average of the RMSE of all controlled properties, after those values are
normalized with the corresponding property’s mean and standard
deviation in the pre-training dataset. We note that RMSE was calcu-
lated on the normalized scale of each property because the values of
the properties span multiple orders of magnitude.

For the first PV-to-SMILES generation scenario, we prepared 1000
PVs of SMILES from PubChem40 that are not contained in the pre-
training dataset and fed them to the pre-trained SPMM to generate
appropriate SMILES. Here, the sampling process was done in a deter-
ministic manner: starting from the SMILES [CLS] token ([CLS]S), the
model predicts the probability distribution of the next token and
chooses theoptionwith thehighest probability. Thefirst rowof Table 1
shows its results. Among the output of deterministic PV-to-SMILES
generation for 1000 PVs, 99.5% of the generated output were valid
SMILES. The mean RMSE of the 53 normalized properties was 0.216,
which implies that the properties of the generated samples agree with
the property input.

Application fields like drug discovery often require generating
multiplemolecules for a single wanted target property condition. This
can be done by sampling the next token stochastically from the
modeled probability distribution instead of using a token with the
highest probability. To verify our model’s ability to generate multiple
molecules from a single PV input, we generated 1000 SMILES with
stochastic sampling on a fixed PV. Figure 2 shows the property dis-
tributions of 1000 molecules generated from a single PV input. The
mode of each property distribution lands on the input property value
(Fig. 2a). In the situation when only some of the properties are given,
the model only regards the known properties while the other masked
properties arenot restricted (Fig. 2b, c). SPMMcangeneratemolecules
even with no property information at all; when all input properties are
replaced with [UNK] token (Fig. 2d), the model performs an uncondi-
tional molecule generation, and the output follows the distribution of
the pre-training dataset. The validity, uniqueness, and novelty of the
generated molecules under conditions in Fig. 2 are listed in the ‘sto-
chastic’ rows of Table 1. The validity, uniqueness, and novelty fluc-
tuated depending on how feasible or difficult the property input was,

Table 1 | Quantitative and qualitative results on various scenarios of PV-to-SMILES generation tasks, with the mean value and
standard deviations

Sampling input PV Validity Uniqueness Novelty normalized RMSE

deterministic 1000 unseen PubChem SMILES’ PV 0.995 ±0.001 0.999 ± 0.001 0.961 ± 0.005 0.216 ± 0.004

stochastic full PV of the molecule 1 0.974 ±0.005 0.905 ± 0.007 0.998 ± 0.003 0.185 ±0.004

Molar mass = 150 0.974 ±0.007 0.945 ±0.006 0.872 ± 0.007 0.192 ± 0.010

#ring = 2, #aromatic ring = 1, TPSA = 30,
QED =0.8

0.998 ±0.002 0.981 ± 0.006 0.952 ±0.013 0.257 ± 0.025

no property control 0.971 ± 0.004 0.991 ± 0.003 0.950 ±0.003 -

Fordeterministic sampling,we ran theexperimentwith four different randomsets of 1000unseenPropertyVector (PV)s. In the caseof stochastic scenarios, four different randomseedswereused for
each experiment;
TPSA Topological Polar Surface Area, QED Quantitative Estimate of Drug-likeness67, RMSE Root Mean Square Error.
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and it was greater than0.9 inmost cases. SupplementaryTable 1 shows
that SPMM performed better at generating valid, novel, and desired
molecules compared to other benchmark models10,41–43, in both
unconditional and conditional molecule generation scenarios. More
examples of the generated molecule can be found in Supplemen-
tary Fig. 2.

The aforementioned results demonstrate that SPMM can perform
molecule generation with arbitrary PV inputs, which enables simple
molecule designing and editing. As possible examples of molecular
editing, Fig. 3 contains the output of the SPMM’s stochastic molecule
generation for five PV inputs, which all originated from the PV of the
molecule 1but four of themhadcertain values changed. Thegenerated
molecules follow the inputmodificationwhilemaintaining unmodified
properties similarly. SPMM is even able to generatemolecules with the

out-of-domain conditions such as ‘log P = 7’ (note that ~5% of the pre-
training dataset has log P > 7).

Regarding the overall molecule generation performance of
SPMM,wewant to emphasize that SPMMcan generate suitable SMILES
for many property conditions that the model has not seen in its pre-
training. When we trained SPMM without 50% of random property
masking with [UNK] token, the model only worked when all 53 prop-
erties are given since the model has not seen the partially-given
properties. However, evenwith the technique of [UNK] tokenmasking,
the model cannot face most of the 253 possible property combination
during the pre-training process. The SPMM’s ability to handle arbitrary
property conditions for SMILES generation comes from treating PV as
a ‘language with 53 words’ and focusing on each property separately,
not simply considering the entire property input as a single condition.

Fig. 2 | Property distribution of the generated molecules with different Prop-
erty Vectors (PV) inputs and [UNK] tokenmasking.The gray vertical dotted lines
are the input property values. For the properties with continuous range, we
included kernel density estimate plots with red or blue solid lines. The controlled
properties are colored in red, and the uncontrolled properties are colored in blue.
Only 12 out of 53 properties are shown for each scenario. TPSA Topological Polar

Surface Area, logP octanol-water partition coefficient, MR Molar Refractivity, QED
Quantitative Estimate of Drug-likeness67. Source data are provided as a Source Data
file. aAll 53 properties are controlledwith the input PV obtained from themolecule
1. bMolarmass to 150, and the other property inputs aremaskedwith [UNK] token.
c#ring, #aromatic ring, TPSA, andQED are controlled to 2, 1, 30, and 0.8. The other
properties are masked. d Every property is masked.
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This innovative approach for conditional molecule generation has
never been demonstrated with the existing methods and thus can be
used for many important chemical fields.

With the same approach as SMILES generation, the pre-trained
SPMM can also be used to generate a PV with SMILES input only. This
task is equivalent to performing 53 property predictions of a given
SMILES at once. Similar to the PV-to-SMILES generation, properties are
predicted in an autoregressive manner: the model predicts the first
property value using only the property [CLS] token ([CLS]P), then takes
all previous outputs again to get the next prediction value, and so on
(see Supplementary Fig. 1b). Although 53 properties that we’ve used
can be calculated using the Python module, the purpose of this
experiment is to verify that the data-drivenway of property estimation
coincides with the analytic approach.

Specifically, we fed 1000 SMILES from the ZINC15 dataset44, which
are not contained in the pre-training dataset, to the pre-trained SPMM
and generated their corresponding PV. Figure 4 is the scatter plot of
the real property value against the generated output for 12 selected
properties out of 53 that we used for pre-training. It is clear that
SPMM’s predicted property is very close to the actual value, and most
of the data point lies on the y = x line. Although themodel virtually has
never seen a full-filled PV in the pre-training due to the 50% of random
property masking, the model could autoregressively predict all 53
properties as a whole. The mean r2 score of the 53 properties was
0.924. The full scatter plot for all 53 properties with each r2 score and
raw RMSE is in Supplementary Figs. 3 and 4.

To provide an interpretation of the pre-trained SPMM’s perfor-
mance presented so far, we further analyzed the learned cross-modal
comprehension between SMILES and property vectors by visualizing
the attention scores from the pre-trained SPMM. Transformer-based
models have the benefit of intuitive attention visualization that shows
how the model considers the relation between the input queries and
keys, by providing cross-attention scores between them. In Fig. 5, we
plotted the cross-attention score from the last fusion layer of our pre-
trained SPMMwhen SMILES and its property vector inputs were given.

Since there are multiple heads for the cross-attention, we took the
mean of their attention scores. It is interesting that the aspect of cross-
attention scores followed the intuitive relations between chemical
properties and molecular fragments. The properties related to
hydrogen bonding (‘NumHDonors’, ‘NumHAcceptors’) show high
attention scores for tokens with oxygen and nitrogen atoms. The
property ‘RingCount’ focuses on the tokens that are involved with
rings while showing weak attention to side groups, and the property
‘NumAromaticRings’ only gives high attention score to the compo-
nents of aromatic rings.Whendifferent SMILES tokens played a similar
role in themolecule such as ‘c1ccccc1)’ and ‘c1ccccc1’ in themolecule 7,
their attention patterns were similar as well. This result demonstrated
that SPMM could capture the relations between molecule structures
and chemical properties without explicitly-given supervision between
them. For more statistical analysis, we also observed which tokens
show high attention scores for 12 chosen properties, using 1000 ran-
domly sampled molecules’ cross-attention map. The result showed
that tokens frequently related to certain property tend to show high
attention score to that property; ‘TPSA’ got high attention scores
towards tokens with polar atoms like oxygen and halogen atoms,
‘NumHAcceptors’ got tokens that involve with hydrogen bonding, and
‘NumAromaticRings’ got the components of aromatic rings. More
detailed lists of tokens for each property can be found in Supple-
mentary Table 2.

Generalization ability as a molecular foundation model
So far, we have demonstrated that the pre-trained SPMM can be
applied to tasks that require an understanding of the relationship
between SMILES andproperties. However, we can also employ the pre-
trained SPMM for challenges that only use SMILES data, such as
molecular property prediction. One advantage of having a dual-stream
VLP model structure is that the SPMM’s multimodal pre-training pro-
cess includes adjusting the output of one unimodal encoder to contain
contextual information from the othermodality, by aligning it with the
other unimodal encoder’s output. This implies that the SMILES

Fig. 3 | Examples of molecule editing, by changing specific values from the
original Property Vectors (PV) and performing PV-to-SMILES generation
with it. The colored output values correspond to the changed properties from the
original PV. TPSA Topological Polar Surface Area, logP octanol-water partition
coefficient, QED Quantitative Estimate of Drug-likeness67. (1) The output of the

same PV of the sourcemolecule. (2) The output when #aromatic ring is changed to
0. (3) The output when #ring is changed to 2 and #aromatic ring is changed to 1.
(4) The output when logP is changed to 7. (5) The output when #rotatable bond is
changed to 12. For the generation, the other 41 property conditions are masked by
the [UNK] token.
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encoder output is a unimodal representation vector, that not only
embeds the input molecule’s structural information but it’s also
enhanced by its property information.

We have analyzed if our pre-trained model had learned an infor-
mative representation that can be readily used for other tasks, even for
a single modality. So we only utilized the SMILES encoder of pre-
trained SPMM (see Supplementary Fig. 1c) and made a benchmark
study on nine MoleculeNet45 downstream tasks and a Drug-Induced
Liver Injury (DILI) prediction task. Each MoleculeNet task is a regres-
sion or classification task for pharmaceutical/biochemical applications
like solubility, toxicity, and brain penetrability. The DILI classification
task was done to overcome the potential limitation of open
databases46,47 and verify if SPMM could be extended to more complex
endpoints. The task is to classify whether the givenmolecule has a risk
of causing liver injury. Since many proposed DILI machine learning
models have built their dataset rather than using common bench-
marks, we took the dataset preparations from a known publication48

and compared the performance with it for a fair evaluation.
Table 2 contains the performance of SPMM and other models for

MoleculeNet. Using only 6 BERT encoder layers, SPMM showed com-
parable performances with state-of-the-art models for all tasks. It
achieved the best performance for five tasks out of nine, showing its
capability as a foundationmodel.We’ve alsoobserved that the score of
our model dramatically decreased without pre-training. SPMM also
outperformed the proposed 5-ensemble models on the DILI

classification task under the same data preparation as shown in
Table 3, which was not the case for the naive BERT layers without
SPMM pre-training.

We also trained SPMM for the forward and retro-reaction pre-
diction tasks, which require the model to predict the product SMILES
from the reactant SMILES and vice versa. Regarding both tasks as
sequence-to-sequence generation, the model pipeline for these reac-
tion prediction tasks is the same as the PV-to-SMILES generation tasks,
except the PV encoder is replaced with the SMILES encoder (see
Supplementary Fig. 1d). The detailed task definition and dataset pre-
paration are described in the Methods section.

Table 4 shows the performances of SPMM and other benchmark
models on forward and retro-reaction prediction tasks. Although the
reaction prediction tasks are not the best scenario for the property-
emergence features to play significant roles, SPMM showed the high-
est top-1 accuracy in the forward-reaction task with a relatively small
pre-training data size (i.e., 50M molecules, compared to 100M
molecules of Chemformer). SPMMalso achieved the second-best top-1
accuracy among the string-based retro-reaction task models.

Discussion
In this work, we proposed a transformer-based multimodal chemical
foundationmodel SPMM.Theproposedmodel allows for bidirectional
generation/predictionofmolecular structure andproperties, aswell as
unimodal tasks like reaction prediction. During the process, we

Fig. 4 | Scatter plots of the 1000 ZINC15molecules’ real property value against
the generated output, for 12 selected properties. The x-axis is the real property
value, and the y-axis is themodel output. The gray dotted line is the y = x line. TPSA

Topological Polar Surface Area, logP octanol-water partition coefficient. QED
Quantitative Estimate of Drug-likeness67. Source data are provided as a Source
Data file.
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introduced a method of treating property collections as a language so
that the model could learn the relationship between SMILES tokens
and each property independently. We demonstrated that pre-trained
SPMM showed remarkable performances in problems for interactions
between SMILES and PV domains. And not only for multimodal chal-
lenges but even its unimodal feature for SMILES, SPMMalso provides a
useful representation that can be fine-tuned for many molecular
downstream tasks. It is important to note that all of these results were
obtainedwith a pre-training of 50millionmolecules, which is relatively
small compared to other large pre-training approaches and still has
room for better performance with more data and parameters. We also
note thatwe’ve gatheredour 53properties to let themcover thewidest
range possible, rather than paying the best effort to select the most
effective combination of properties. This implies the proposed
structure-property multimodal training can be flexibly adopted with
different property selections, according to the given specified
scenarios.

Onemight consider that treating a PV as tabular data, handling its
elements without predetermined order, could be a more straightfor-
ward approach. However, the recent theoretical work49 showed that
autoregressivemodeling is a universal learner that is not specific to any
data type. Moreover, the transformer architecture’s permutational
invariance of the positional encoding has been well documented and
utilized50,51. Additionally, if the order of PVs is permuted in a different
order, then the learnable positional embedding would learn different
embedding that takes into account the optimal alignment between the
properties and the SMILES embeddings. This makes the output of the

transformer’s self-attention and cross-attention mechanism is further
invariant to the position of each feature vector. Given all this evidence,
webelieve thatourwayof utilizing the PV encoding is theoretically and
empirically well-supported. In fact, when we modified the training
objectives (more details in the Pre-training objectives section) to pre-
train our model with a purely order-invariant PV, this did not improve
performance on the overall downstream tasks (see Supplementary
Table 3). Moreover, we observed that utilizing different property
orders for constructing PVs does not affect the overall performance of
SPMM (see Supplementary Table 4).

Despite the noticeable performances of SPMM, it has several
chances for improvement. One of those comes from using the SMILES
notation. Although SMILES can contain full details about the 2D
structure of the molecule, the information on how atoms and bonds
are connected only exists implicitly. Also, a slight modification in
molecular structure can be a drastic change in SMILES. Graph format is
another widely used modality for molecule representation that con-
tains the explicit information of the adjacencymatrix, which can be an
alternative for SMILES. Another limitation in our current SPMM is that
the 53 properties we used happen to be invariant with the changes in
the stereochemistryof the givenmolecule. It is known that considering
stereochemistry plays a crucial part in various biochemical tasks.
However, the 53 properties we used cannot provide any knowledge
about stereochemical information since their values are unchanged in
different stereoisomers. This makes the SMILES encoder output of
different stereoisomers converge since the contrastive loss aligns
them to the same PV feature. We believe this is the prominent factor
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Fig. 5 | The mean attention score from the attention heads in the Structure-
Property Multi-Modal foundation model (SPMM) fusion encoder’s final cross-
attention layer. Two sample molecules (a) and (b) were used for this figure.
A darker green means a higher attention score. For the attention calculation pro-
cess, the property featureswereused as queries, and theSMILES featureswereused
as keys and values. The corresponding fragments for each token are indicated with

ivory boxes on the molecular structure, while fragments for duplicated tokens are
color-coded with purple. We have calculated cross-attention scores for all 53
properties and SMILES tokens, but only 12 of those properties are shown. TPSA
Topological Polar Surface Area, logP octanol-water partition coefficient, QED
Quantitative Estimate of Drug-likeness67. Source data are provided as a Source
Data file.
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that lowered the performance of SPMM in MoleculeNet tasks, which
could be resolved by usingmore properties that reflect the molecule’s
stereochemistry.Moreover, validation throughwet-lab experiments to
verify the model’s predicted/generated properties is another possible
further study. Overcoming these drawbacks of the current study and
making the model more applicable to other chemical tasks could be
the works for the future.

Nevertheless, we believe that our approach can provide a pre-
trained model capable of encompassing each input domain and their
multimodal domain simultaneously, which has a vast potential utility.
We expect this approach to be applied to more various and practical
chemical situations by using broader and richer molecular modalities,
and possibly, different biochemical domains like polymers and
proteins.

Methods
Handling SMILES and property values as a language
Molecules can be represented with various formats such as finger-
prints, strings like SMILES, InChI, or a molecular graph. Since these
different notations contain almost the same information about com-
pletemolecular structure,weemployedSMILES todescribe amolecule
structure. SMILES is a sequence of characters that represents the
connection structure of the molecule. Many researchers treat SMILES
as a variant of language data and utilize a concept of language models
for chemical tasks on SMILES data11,21,52.

Figure 6a illustrates our embedding procedure for the input
SMILES. The raw SMILES string is tokenized by the tokenizer and
embedded by the SMILES encoder with the [CLS]S token and the [SEP]
token. Here, [CLS] token is a special token attached to the beginning of
every input sequence53. Although the [CLS] token itself doesn’t contain
any meaning, the bidirectional attention mechanism of the model
allows the [CLS] token to contain contextual information of the entire
input. Once the model is pre-trained, the [CLS] token output of the
given sequence can be considered as an input representation vector
and be used for classification/regression downstream tasks, as inmany
BERT variations for images54,55 and VLP27.

In the SMILES tokenization, our tokenizer tokenizes a given
SMILES into fragments that are contained in a prepared token dic-
tionary of 300 subwords. This dictionary was obtained from the pre-
training data SMILES corpus by the BPE algorithm56, which starts from
a set of simple characters and iteratively appends the most frequent
token pairs as a merged subword. Being widely adopted for various
language models57,58, the BPE algorithm has provided a subword dic-
tionary containing common functional groups and substructures like
benzene rings, carbonyl groups, two- letter atoms, and amino groups.
Compared to naive character-wise tokenization which considers each
character as a separate token, the merged subwords help the model’s
chemical inference for chemical groups and reduce the total number
of tokens.

For this work, we built a PV for each molecule that contains 53
molecularproperties and considered this as a sentencewith a lengthof
53. These properties from the RDKit python library59 cover a wide
range from simple ones, such as the number of rings and molar mass,
to complex properties like solubility, TPSA, and druggability. The
transformer architectureof ourmodel considers eachelement of PV as
a token to perform the attention mechanism, which is equivalent to
regarding PV as a semi-sentence of 53 properties. Although the size of
the vocabulary is more limited and their order is fixed compared to
natural language, it provides much more precise and compact infor-
mation about the 53 properties. One benefit of regarding PV as a lan-
guage is that we do not have to collect all elements to build a valid PV.
In contrast to a simple vector input, some property elements can be
removed or masked in our approach.

Figure 6b shows our embedding procedure for the input PV. Each
property element in the PV is a numerical value and normalized withTa
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Table 3 | The Drug-Induced Liver Injury (DILI) classification task performance of Ai et al.48 and the Structure-Property Multi-
Modal foundation model (SPMM)

model Acc in %[↑] Selectivity in %[↑] Specificity in %[↑] AUROC in %[↑]

Ai et al.48 (best single model on training set) 81.1 81.0 81.5 89.6

Ai et al. (5-ensemble) 84.3 86.9 75.4 90.4

SPMM(w/o pre-train) 72.6 70.6 79.2 82.0

SPMM 84.4 83.9 84.6 92.6

Table 4 | The performance of the Structure-Property Multi-Modal foundation model (SPMM) and other works on the forward
and retro-reaction prediction task

forward prediction molecule modality top-k accuracy in %[↑]

string-based graph-based k = 1 k = 2 k = 3 k = 5

Molecular Transformer72 O 88.7 92.1 93.1 94.2

Augmented Transformer63 O 90.6 94.4 - 96.1

Chemformerlarge
64 O 91.3 - - 93.7

Graph2SMILES73 O O 90.3 - 94.0 94.8

MEGAN74 O 86.3 90.3 92.4 94.0

LocalTransform6 O 90.8 94.8 95.7 96.3

SPMM O 91.5 93.5 94.6 95.4

retro-reaction prediction top-k accuracy in %[↑]

k = 1 k = 5 k = 10

SCROP75 43.7 65.2 68.7

Two-way Transformer76 47.1 73.1 76.3

Augmented Transformer63 48.3 73.4 77.4

Chemformerlarge
64 54.3 62.3 63.0

SPMM 53.4 67.6 70.3

For the retro-reaction prediction task, we only prepared the benchmark results of string-based models. The benchmark model results are from the paper of LocalTransform6 and Chemformer64.
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[PAD]
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Fig. 6 | Embedding process for SMILES and the corresponding Property Vec-
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word dictionary, which was obtained with the BPE algorithm. Each token in the
tokenization result is replaced with its corresponding word embedding, then
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molecule’s chemical properties is prepared and passed through a linear layer. The
output vectors are randomly replaced with special [UNK] token, and the result is
passed to the PV encoder with positional embedding.
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the mean and standard deviation of that property. The order of these
53 properties is predetermined, as Supplementary Table 4 shows that
the performance of SPMM isn’t affected by certain property orders
used in the PV. Eachvalue in the PV is encoded to a feature vector using
a linear layer as a value encoding. Thenwe randomly replace 50%of the
property features into the [UNK] token, which is the special token
utilized to simulate that the property is unknown. This is possible since
there is no problem in describing amolecule using only a part of these
properties. Random property feature masking prevents the model
from overly dependent on the specific property, has the effect of data
augmentation, and improves the model’s generalization ability.
Although every property we used in this work can be easily and thor-
oughly prepared by the computer, this might not be the case for other
properties in real-world situations. SPMM still can be trained when
some properties for certain training molecules are not known, by
replacing those unknown properties with the [UNK] token. On top of
the randomly-masked value encoding, we added a learnable positional
encoding similar to that in BERT. Since a PV explicitly contains the
values only, this positional embedding provides information about
what property each value corresponds to. Also, because of the pre-
defined order of these properties, this position embedding is equiva-
lent to giving a unique index for each property and adding an
embedding of that corresponding index. Then we pass the final result
to the PV encoder with the [CLS]P token.

Pre-training objectives
Contrastive learning aims to learn better unimodal representation by
aligning the features from different modalities into the same feature
space26. When the encoded features of [CLS] tokens of SMILES S and
PV P are given as Scls and Pcls, we calculate the similarity function
sim(S, P) and sim(P, S) as:

sim S,Pð Þ= hS Scls

� �� �⊺hP Pcls

� �
,sim P,Sð Þ= hP Pcls

� �� �⊺hS Scls

� � ð1Þ

where hS and hP are the linear projection + normalization layer for
SMILES and property vector, respectively. Now, for a given pair of S
and P, we calculate the SMILES-to-PV and PV-to-SMILES intermodal
similarities as follows26,27:

ss2p =
expðsimðS,PÞ=τÞPN

n= 1
expðsimðS,PnÞ=τÞ

, sp2s =
expðsimðP,SÞ=τÞPM

m= 1
expðsimðP,SmÞ=τÞ

ð2Þ

whereM andN are the total numbers of SMILES and PV used in the loss
calculation. Here, τ is a learnable temperature parameter, which has a
sharpening effect by exaggerating the similarity difference. The
intramodal similarities can be calculated in the same way.

ss2s =
expðsimðS,SÞ=τÞPM

m= 1
expðsimðS,SmÞ=τÞ

, sp2p =
expðsimðP,PÞ=τÞPN

n= 1
expðsimðP,PnÞ=τÞ

ð3Þ

The overall contrastive loss is defined using the cross-entropy loss
H and one-hot similarity y, which contains 1 for pairs originating from
the same molecule and contains 0 otherwise.

Lcontrastive =
1
2
ðHðys2p, ss2pÞ+Hðyp2s, sp2sÞ +Hðys2s, ss2sÞ+Hðyp2p, sp2pÞÞ ð4Þ

Following the recent contrastive loss application in VLP60, we
build the SMILES and PV queues that store the k most recent SMILES
and PV instances and use them for contrastive loss. We set our queue
size k to 24,576.

Next Word Prediction (NWP) trains the model to predict the
(n + 1)-th SMILES tokenwhen0∼n-th tokens and the correspondingPV

are given. Predicting the next token is a common objective for training
languagemodels, known for being utilized in the pre-training of GPT61.
This can be done with a single flow for each SMILES by applying a
causalmask in the self- attention of the SMILES encoder and the fusion
encoder. Let S = {s0, s1, …, sn} and P denote the input SMILES and the
corresponding PV, and pNWP (sn | s0:n−1, P) denote themodel’s predicted
probability distribution of the n-th token with given P and 0 ~ (n-1)-th
SMILES tokens. The loss for NWP is defined as follows:

LNWP =
Xn
i= 1

HðyNWP
n ,pNWP ðsnjs0:n�1,PÞÞ ð5Þ

where ynNW P is a one-hot label for the n-th SMILES token sn.
We applied a similar concept of NWP for the property vector as

Next Property Prediction (NPP). NPPmakes themodel predict the next
property value using its corresponding SMILES and the previous
properties. Since each property element is a numerical value, we
replaced the cross-entropy loss in NWP with mean-square-error loss.
When S and P = {p0, p1, …, pn} denotes the input SMILES-PV pair and
p̂n(p0:n−1, S) denotes the model’s predicted next property values with
causal mask in the PV and the fusion encoder, the loss for NPP is given
as follows:

LNPP =
Xn
i= 1

pn � p̂nðp0:n�1,SÞ
� �2 ð6Þ

In NPP, the model does not predict the property value if it is
replaced with [UNK] token.

SMILES-PV Matching (SPM) learns if a given SMILES-PV pair (S, P)
is matched or not. We concatenate the feature of [CLS]S and [CLS]P
token from the fusion encoder output and pass this through a linear-
layer SPM head. When pSPM (S, P) is the output of the SPM head, the
SPM loss can be defined as

LSPM =HðySPM ,pSPM ðS,PÞÞ ð7Þ

where ySPM is a one-hot vector for a binary label of SMILES-PVmatching;
the label is 1 if S and P originated from the same molecule and 0
otherwise. To build negative samples for SPM, we randomly select a
‘negative’ pair for each SMILES and PV instance from the other
modality and match them as negative pairs. This negative pair
selection was done by hard-negative mining, which gives a higher
chance of being selected as a negative pair for instances that has a
higher similarity of Eq. (2) but isn’t a positive match. This makes the
trainingmoredifficult and forces themodel to learnhow todistinguish
similar instances.

In contrastive learning, using a one-hot label could be too strict
since it regards all instances that came from other pairs as equally
negative instances. However, some PVs might agree with many
SMILES, not only one SMILES that they’re pairedwith. Even SMILES can
be matched with different PVs since there’s a 50% of masking in a PV
(e.g., ‘molarmass = [UNK], logP = 2.1, #atom= 12’ and ‘molarmass = 78,
logP = 2.1, #atom= [UNK]’ both explain Benzene, even if they came
from different molecules). A similar problem also occurs for NWP.
Sometimes there could bemultiple sensible options for being the next
token, but using a one-hot label for ground truth might ignore this.

To resolve this issue, we built the momentum teacher model27,60

and utilized its output for contrastive learning and NWP. The
momentum teacher performs a knowledge distillation by providing a
pseudo-label that reflects how the teacher model comprehends. Spe-
cifically, the label for the contrastive learning and NWP aremixed with
the momentum model’s output s∗,momentum(∗ ∈{s2p, p2s, s2s, p2p}) and
pNW P

momentum(sn | s0:n−1, P), with an adjusting hyperparameter α. The
detailed formulas for utilizing the momentum model for contrastive
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learning and NWP are described in Eq. (8)∼(9) and Eq. (10)∼(11).

ey* = 1� αð Þy* +αs*,momentum * 2 s2p,p2s,s2s,p2p
� �� � ð8Þ

eLcontrastive = 1
2

H eys2p,ss2p� �
+H eyp2s,sp2s� �

+H eys2s,ss2s� �
+H eyp2p,sp2p� �� �

ð9Þ

eyNWP
n = 1� αð ÞyNWP

n +αpNWP
momentumðsnjs0:n�1,PÞ ð10Þ

eLNWP =
Xn
i= 1

H eyNWP
n ,pNWPðsnjs0:n�1,PÞ

� �
ð11Þ

After the student model’s parameterswmodel are updated for each
batch, the parameters of the momentum teacher modelwmomentum are
updated by the exponentialmoving average (EMA) usingwmodel and an
EMA hyperparameter λ according to Eq. (12).

wmomentum = 1� λð Þwmodel + λwmomentum ð12Þ

The overall pre-training objective is the combined loss of Con-
trastive, NWP, NPP, and SPM loss.

L=eLcontrastive +eLNWP + LNPP + LSPM ð13Þ

We note that when there’s no specific attention mask (e.g., causal
attention mask as in GPT61), the output of the transformer’s self-
attention and cross-attentionmechanism is invariant to the position of
each feature vector. Thismeans the only pre-training objective that the
predetermined order or the PV’s 53 properties matters is the NPP task,
and SPMM behaves identically for the other pre-training objectives
when we permute the order of the properties and their corresponded
position embedding. If we replace the NPP task to an order-invariant
objective (e.g., masked language modeling of BERT53), the pre-
determined order of the elements in a PV would not affect the output
of SPMM at all. Supplementary Table 3 shows the performance of
SPMMwhen the NPP task was replaced to masked property modeling,
and we found that this doesn’t improve the model performance.

Training for downstream tasks
Supplementary Fig. 1 describes how we utilized our pre-trained model
for downstream tasks. For PV generation and SMILES generation
(Supplementary Fig. 1a, b), we don’t need additional fine-tuning since
their training objectives are already included in the pre-training (NWP,
NPP). For the inference procedure, the model generates PV or SMILES
with autoregressive sampling. Specifically, starting from the [CLS]
token of themodality thatwewant to generate, themodel predicts the
first component and repeats taking the previous outputs to predict the
next component until it’s done or meets a sign to stop. For PV-to-
SMILES generation, we used a beam search of k = 2 to help the model
generate valid SMILES. Themetrics of validity, uniqueness, and novelty
that we’ve used for PV-to-SMILES generation are defined as follows:

validity =
#SMILES with valid syntax

#generated SMILES
ð14Þ

uniqueness=
#non duplicate valid SMILES

#valid SMILES
ð15Þ

novelty =
#unique SMILES not in the pretraining data

#unique SMILES
ð16Þ

ForMoleculeNet downstream tasks and theDILI classification task
that only provide SMILES data, we utilized only the SMILES encoder
part of the model (Supplementary Fig. 1c). After the input molecule is
encoded with the SMILES encoder, we pass the feature of the [CLS]S
token through a classification/regression head to get an output. The
classification/regression head consists of MLP with one hidden layer.
We fine-tuned our model with the given training set and get a check-
point with the lowest loss on the validation set, and recorded that
checkpoint’s performance on the test set.

The forward reaction prediction task provides a reactant SMILES
(including multiple reagent molecules) and a product SMILES. We
encode these two inputswith the SMILES encoder, then feed them into
the fusion encoder + prediction head. The model is trained to auto-
regressively generate the original product SMILES (Supplementary
Fig. 1d). In the inference stage, starting from the [CLS]S token, the
model predicts the next token until it generates the [SEP] token.
Similar to the SMILES generation, the self-attention of the fusion
encoder and the reactant SMILES encoder uses a causal mask. The
retro-reactionprediction taskwasdone in the sameway, but the role of
the reactant and product SMILES were swapped. We fine-tuned SPMM
for the forward reaction prediction task with an approach of ‘mixed
task’, meaning that the information about the major reactant is not
given to the model. For both forward and retro-reaction tasks, we
replaced the input reactants and products with their random non-
canonical augmented SMILES62 with a probability of 0.5. This SMILES
augmentation is reported63,64 to increase the accuracy of sequence-
based reaction prediction models, and we listed the ablation study
results about this in Supplementary Table 5.

Data preparation
We obtained 50,000,000 SMILES of general molecules from
PubChem40 for pre-training. All 53 properties we used can be calcu-
lated with SMILES using the RDKit Python library59. The dataset for the
MoleculeNet downstream tasks is providedby theDeepChem65 Python
library. We split every dataset into train/valid/test sets in a ratio of 8:1:1
using a scaffold splitter from DeepChem, which is a more harsh con-
dition for themodel than randomsplitting. For the reaction prediction
task, we used theUSPTO-480k dataset which contains 479,035 pairs of
reactants and the major product of their reaction. The retro-reaction
prediction task used the USPTO-50k dataset, containing 50,037
product-reactant pairs with corresponding reaction types. Although
theUSPTO-50kdataset provides tags of reaction type for each reaction
data, we didn’t use them, following the previous retro-reaction pre-
diction publications.

Implementation details
We employed the architecture of 6 BERTbase encoder layers for our PV
encoder and SMILES encoder, and 6 BERTbase encoder layers with
cross-attention layers for our fusion encoder. With givenQ 2 Rlenq ×dk ,
K 2 Rlenk ×dk , and V 2 Rlenk ×dv as query, key, and value inputs, the self-
attention and cross-attention layers inBERT compute theoutput of the
scaled-dot attention according to the following formula:

Attention Q,K,Vð Þ= Sof tmax
QKTffiffiffiffiffiffi

dk

p !
V ð17Þ

We pre-trained the model until it converges using a batch size of
96 and the AdamWoptimizerwith aweight decay of 0.02. The learning
rate iswarmedup to 10−4 anddecreased to 10−5 with a cosine scheduler.
We used the momentum-adjusting hyperparameter α of 0.4. Since the
pseudo-label from the momentum teacher is not useful in the early
stages of the training, we linearly increased α from 0 to 0.4 during the
first epoch. The EMAhyperparameter λwasfixed to 0.995, and the size
of the PV and SMILES queue k was set to 24,576. The momentum
models are not used for downstream tasks. The pre-training was done
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with 8Nvidia A100GPUs for about 52,000batch iterations, which took
roughly 12 h. The full description of training for downstream tasks is in
Supplementary Table 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pre-training dataset is publicly available in PubChem https://
pubchem.ncbi.nlm.nih.gov/. ZINC15 test molecules for SMILES-to-PV
generation are accessible through the ZINC15 website. Scaffold-split
MoleculeNet datasets are available via DeepChem python module
https://deepchem.io/, and raw databases can be found in the Mole-
culeNet website https://moleculenet.org/. The DILI training and test
data preparation can be found in https://pubmed.ncbi.nlm.nih.gov/
29788510/. The USPTO-480k and USPTO-50k dataset is available at
https://github.com/wengong-jin/nips17-rexgen and https://github.
com/MolecularAI/Chemformer/tree/main. Source data are provided
with this paper.

Code availability
The source code for SPMM, a list of 53 properties for PV, experimental
codes, and datasets are available at https://github.com/jinhojsk515/
SPMM/(DOI: 10.5281/zenodo.10567599)66 to allow reproducing the
results.
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