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Riboformer: a deep learning framework for
predicting context-dependent translation
dynamics

Bin Shao 1,6 , Jiawei Yan2, Jing Zhang 3, Lili Liu4, Ye Chen4 &
Allen R. Buskirk 5

Translation elongation is essential for maintaining cellular proteostasis, and
alterations in the translational landscape are associated with a range of dis-
eases. Ribosome profiling allows detailed measurements of translation at the
genome scale. However, it remains unclear how to disentangle biological
variations from technical artifacts in these data and identify sequence deter-
minants of translation dysregulation. Here we present Riboformer, a deep
learning-based framework for modeling context-dependent changes in
translation dynamics. Riboformer leverages the transformer architecture to
accurately predict ribosomedensities at codon resolution.When trained on an
unbiased dataset, Riboformer corrects experimental artifacts in previously
unseen datasets, which reveals subtle differences in synonymous codon
translation and uncovers a bottleneck in translation elongation. Further, we
show that Riboformer can be combined with in silico mutagenesis to identify
sequencemotifs that contribute to ribosome stalling across various biological
contexts, including aging and viral infection. Our tool offers a context-aware
and interpretable approach for standardizing ribosome profiling datasets and
elucidating the regulatory basis of translation kinetics.

Ribosomes move along mRNAs at varying rates, which can impact
protein homeostasis and cellular function1–3. Elongation rates across
the transcriptome are shaped by a complex interplay between local
sequence features, such as mRNA secondary structures4, clusters of
charged amino acids5, and consecutive proline residues6, and global
factors like cellular resource availability and protein quality
control7–9. These intricacies impact translation efficiency, co-
translational protein folding, and covalent modification1,3,10–12. Cells
must fine-tune elongation rates to achieve the proper levels of pro-
tein output from each mRNA, accounting for demands of regulation
and protein folding. Despite recent advances in understanding
translation dynamics, deciphering the regulatory code of translation

dysregulation and proteostasis collapse in complex diseases remains
challenging13,14.

The advent of ribosomeprofiling has led to substantial progress in
our understanding of mRNA translation8. Ribosome profiling captures
and sequences mRNA fragments protected by ribosomes from nucle-
ase digestion, allowing the reliable inference of the ribosomal decod-
ing site in each footprint and yielding information about ribosome
distribution along mRNA from each gene. In general, the more ribo-
some density there is on a codon, the slower it is decoded. With
improved methods, non-optimal codons were found to have higher
ribosomedensity andbedecodedmore slowly, as expected15,16. Several
computational approaches have been developed to glean insights
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from the accumulating body of ribosome profiling data that are pub-
licly available.Whole-cellmodels basedon these data provide a precise
depiction of the physical process of translation17,18. Sophisticated
models, such as probabilisticmodels and neural networkmodels, have
been used to study how ribosome density is determined by the mRNA
sequence and biophysical features of the nascent polypeptide7,9,19–22.
For example, Ribo-seq Unit Step Transformation (RUST) identifies
positional mRNA sequence features that affect ribosome footprint
densities and predicts ribosome density with high accuracy7. A con-
volutional neural network (CNN) model has been implemented to
predict ribosome stalling sites in both yeast and human cells20, out-
competing the conventional methods. More recently, deep learning
methods such as RiboMIMO23 and Riboexp24 were developed to
reconstruct the ribosome density distributions based on the coding
sequence (CDS).

Despite these computational advances, little effort has been
devoted to model the context-dependent changes in translation
dynamics. Consequently, it remains a challenge to distinguish biolo-
gical signals from technical artifacts that have a profound effect on the
observed translational landscape7. For example, Mohammad et al.
found that methods used to arrest translation and harvest bacterial
cultures introduce sequence-specific ribosome pauses16. Unfortu-
nately, existing computational tools lack the ability to use multiple
datasets (biased vs unbiased) to model the shift in ribosome dis-
tributions induced by these artifacts. Secondly, the underlying
mechanism driving the changes in the translational landscape under
complex physiological states remains largely elusive. Although
disease-focused studies often employ design principles such as case
versus control, current methods don’t harness these approaches to
uncover the sequence features that affect translation elongation in
disease progression. Lastly, the predictive power of current models is
limited. The trained models cannot be utilized to improve the analysis
of existing experiments or predict ribosome distribution in new
contexts.

To address these challenges, we present Riboformer, a deep
learning-based framework that models the context-dependent
changes in ribosome dynamics at codon resolution. Our model
compares ribosome distributions between two datasets and
extracts the sequence features driving the difference between
them. This structure enables the trained Riboformer model to
remove experimental bias from the input dataset, query the
sequence determinants of relative changes in ribosome density,
and predict sites of ribosome collision (disome) from monosome
profiles (Fig. 1a). Our approach uses a transformer architecture
that effectively captures interdependencies between codons in the
regulation of translation elongation25 (Fig. 1b). We have bench-
marked the prediction performance of Riboformer using a variety
of prokaryotic and eukaryotic ribosome profiling datasets. We
demonstrate the effectiveness of our neural network structure in
modeling the impact of experimental protocols on the in vivo
translational landscape, and the trained Riboformer model cor-
rects artifacts in a wide range of unseen datasets. This process
reveals subtle differences in synonymous codon translation and
uncovers a potential bottleneck in translation elongation. Com-
bined with in silico mutagenesis analysis, Riboformer identifies
peptide motifs that contribute to ribosome stalling across various
biological contexts, such as aging and viral infection, highlighting
its versatility in diverse research areas (Fig. 1a). Altogether, Ribo-
former is an end-to-end tool that facilitates the standardization
and interpretation of ribosome profiling datasets, and our results
demonstrate the potential of context-aware deep learning models
that capture the complex dynamics of biological processes subject
to variations in cell physiological states. Riboformer is imple-
mented in Python as a command line tool26, publicly available at
https://github.com/lingxusb/Riboformer/

Results
Riboformer accurately clarifies ribosome density
Training of Riboformer requires two ribosome profiling datasets and it
leverages a transformer architecture to capture the sequence features
that determine the changes in translation kinetics (Fig. 1b). The
transformer block consists of self-attention layers that gather the
impact of distant codons based on their sequence representations25, in
contrast to convolutional neural network that relies on convolution
operators to detect local sequencemotifs. The first input to ourmodel
is the reference dataset consisting of normalized ribosome density
from a control experiment as a baseline for modeling translation
dynamics. The second input to our model is the coding sequence.
More specifically, our approach assumes that the relative change in
ribosome occupancy between the reference dataset and the target
dataset is primarily determined by the surrounding sequences. The
codon sequence around the position of interest and the normalized
ribosome footprint counts in the control experiment were encoded as
vectors, which were further connected to two branches of neural
networks. The features extracted from the two inputs by a series of
transformer blocks were subsequently merged using element-wise
multiplication. Finally, a fully connected layer converts the output to
the normalized ribosome density in the target condition (see the
“Methods”). Thus, Riboformer learns how to convert ribosomedensity
from one condition to another based on the differences it observes in
the training datasets.

To evaluate the performance of Riboformer, we started with
bacterial samples in which technical artifacts during the preparation of
the libraries had perturbed the underlying translation kinetics. His-
torically, bacterial samples were commonly harvested by rapid filtering
and lysed in a buffer containing chloramphenicol (Cm) to arrest
elongation27. However, recent ribosome profiling and toeprinting stu-
dies have found that this protocol alters translation elongation in a
sequence-specific manner16,28. To address this issue, a novel protocol
was developed that involves flash-freezing the cell culture directly and
arresting translation with a lysis buffer containing high magnesium
concentrations16. This approach eliminates pauses at Ser and Gly
codons arising from the filtering protocol and provides a clearer view
of the in vivo translational landscape. We trained our Riboformer
model on this dataset to predict the unperturbed ribosome profile
(Mg) based on the perturbed profile (Cm). The input sequence inclu-
ded instances of the codon of interest across all expressed genes
(methods) as well as the sequence and ribosome density of 20 codons
upstream and downstream. The normalized ribosome densities from
the two experiments were used as the inputs (Fig. 2a).More specifically,
we chose the 1005 genes with the highest ribosome densities to con-
struct a dataset of 323,688 instances of codons. Then we used 10-fold
cross-validation tests to evaluate the model performance. In each fold,
one-tenth of the data was held out as test data while the remaining data
were used as training data. We used Pearson and Spearman correlation
coefficients tomeasure the correlation between the predicted and true
ribosome densities for all codons in the test datasets.

As shown in Fig. 2b, starting with samples obtained by filtering
with the Cm-lysis buffer, Riboformer accurately predicts the codon-
level ribosome density of samples obtained by flash-freezing with the
high-Mg buffer. There is a high correlation between the ground truth
and the predicted ribosome density (r =0.91, Fig. 2b, Supplementary
Table 1).We defined the ratio of ribosomeoccupancy at each codon to
the average ribosomeoccupancy of the CDS as the codon pause score,
and we found that Riboformer recapitulated the average pause score
for all the codons (Fig. 2c, see the “Methods” section). Notably, ribo-
some pausing at Gly and Ser codons is largely reduced, and Pro has a
high pause score at all three ribosomal tRNA binding sites (E, P, A) in
the corrected profiles16.

We further investigated how the input data characteristics affect
the model performance. By varying the window sizes of the input
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sequence, we observed that the model performance increases with
window size (Supplementary Fig. 1). However, the improvement
becomes marginal when the window size exceeds 40 codons. We
found the model performs better for highly expressed genes due to
thehigh signal-to-noise ratio (SupplementaryFig. 2). Thus,we assessed
potential biases in model performance that might arise when the
model is trained on genes with high ribosome density. Interestingly,
models trained on these genes could effectively predict ribosome
density for more lowly expressed genes (Supplementary Table 2 and
Supplementary Note 1). We also found that Riboformer’s prediction

accuracy is robust across replicated experiments and that increasing
the number of replicates further enhances the model accuracy (Sup-
plementary Table 3 and Supplementary Note 1). Finally, we system-
atically compared the performance of Riboformer with other deep
learning-based models including RiboMIMO and Riboexp and found
that it compares favorably (Supplementary Fig. 3, Supplementary
Table 4, and Supplementary Note 2). In conclusion, our results
demonstrate the robust performance of Riboformer across different
input window sizes, gene expression levels, and replicated
experiments.

Riboformer corrects experimental bias in unseen data
We further used the trained E. coliRiboformermodel to correct for the
bias in the translational landscapes inother datasets producedwith the
same experimental artifacts. We applied it to an unseen ribosome
profiling dataset obtained with filtering and the Cm lysis buffer (Sup-
plementary Fig. 4) from E. coli cells with low levels ofm1G37 in tRNAs, a
deficiency that affects the decoding of specific codons29. Using the
trained Riboformer model to predict the unperturbed ribosome
occupancy, we were able to correct bias in the pause scores for Gly
codons, while maintaining the high pause scores for the affected Pro
and Arg codons CCA, CCG, and CGG (Supplementary Fig. 4). Working
with a second dataset prepared in a different lab30, Riboformer
removed the strong pauses at Ser and Gly codons and highlighted
increased ribosome occupancy at Pro and Trp codons (Fig. 2e).
Moreover, in a sample from this dataset overexpressing a transgene
containing the rare Leu codon CUA, we observed a high pause score
for the CUA codon in the corrected ribosomeprofiles due to increased
demand for the corresponding tRNA, similar to the uncorrected
results30 (Fig. 2d and e). Together, these results show that the subtle
variation of ribosome pausing in synonymous codons is preserved
even as the experimental bias is removed. In addition, the ribosome
occupancy from these samples was previously shown to be correlated
with the level of genome-wide RNA structures determined by dimethyl
sulfate (DMS)-seq31. Our corrected ribosome occupancy shows a
higher correlation with the DMS-seq score (Supplementary Fig. 5) than
originally reported30, confirming the impact of mRNA secondary
structure on translational efficiency32. Collectively, these results
demonstrate that once trained on unbiased datasets, the Riboformer
model can be used to standardize a wide range of ribosome profiling
measurements, reducing experimental noise while remaining true to
the underlying biological signal of interest.

Riboformer identifies a limiting step in translation elongation
In synthetic biology, the proper functioning of engineered systems
relies on the coordinated expression of functional genes. However, the
expression of heterologous genes imposes an additional burden on
the cells, which negatively impacts the growth rate and leads to evo-
lutionary instability. Ribosome profiling has been used to quantify the
consumption of cellular resources by a 3-input genetic circuit con-
sisting of seven NOT/NOR gates in E. coli cells33 (Fig. 3a). However, this
dataset was generated using a biased protocol. To gain a better
understanding of the translation dynamics in burdened cells, we used
the trained Riboformer model to predict the unperturbed ribosome
occupancy across the transcriptome in eight circuit states.We found a
reduction in the pause scores of Glu, Ser, and Thr codons in the
ribosomal A site, while Pro and Trp showed the highest pause scores
(Fig. 3b). We then explored the relationship between translational
efficiency (TE) of genes and codon pause scores. Translational effi-
ciency was defined as the ribosome density (RD) normalized bymRNA
level as quantified by RNA-seq. Interestingly, we found that genes with
high TE tend to have a higher pause score for Trp (Fig. 3c, methods).
Thus, our results indicate that slow decoding of Trp codons could
affect translation elongation, potentially serving as a rate-limiting step
in protein synthesis. To further characterize the role of pausing at Trp
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codons on gene expression in the strains expressing the engineered
circuits, we calculated the correlation of the Trp pause score and the
level of expression of the Trp biosynthesis genes for different circuit
states, as quantified by the ribosome density (Fig. 3d). There was a
positive correlation between the expression of Trp operon genes and
the Trp pause score in the corrected ribosome profiles, especially for
TrpE and TrpD (Fig. 3e). This observation is in accord with the well-
characterized regulation of these genes by transcriptional attenuation
after trpL which is upstream of trpE34. Ribosome stalling in the Trp
codon-rich trpL sequence promotes transcription of the TrpEDCBA
operon. The clarity in the pausing landscape provided by Riboformer

allows us to explain these changes in gene expression driven by
overexpression of the circuit components in this example.

Riboformer identifies sequence determinants of ribosome
collisions
Prolonged slowing of translating ribosomes can lead to ribosome
collisions, triggering ribosome rescue pathways that promote the
degradation of the nascent polypeptide35–37. Collided ribosomes form
nuclease-resistant disomes because they protect the mRNA at the
disome interface. Disome profiling experiments allow the genome-
wide detection of collided ribosomes by sequencing the disome-
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protected mRNA fragments38–41. To examine the relationship between
ribosome collisions andmRNAsequence features,weusedRiboformer
to identify the sequence determinants of ribosome collisions in bud-
ding yeast (Saccharomyces cerevisiae, Fig. 4a). Although the mono-
someanddisomedensities showaweakcorrelation across thegenome
(Supplementary Fig. 6a, r =0.35), our framework successfully predicts
the disome profiles based on monosome occupancy (Supplementary
Fig. 6a, r = 0.75). For all sites with significant ribosome collisions
(n = 11,079, Supplementary Fig. 6b), we used an in-silico mutagenesis
approach to determine the sequences that contribute to ribosome
stalling (Fig. 4a). In brief, a sliding window of the codon sequence was
randomly mutated, and the corresponding change in the predicted
disome occupancy at the position of interest was defined as the
sequence impact score (SIS) for the mutation window (see the
“Methods” section).

We performed unsupervised clustering of the SIS profiles for all
the significant ribosome collision sites (Fig. 4b, see the “Methods”
section) which were grouped into 10 clusters. Interestingly, we found
that the mean SIS of each cluster is linearly correlated with the mean
mRNA folding energy (r = −0.96, Fig. 4c). In other words, when the
mRNA is highly structured, disrupting the mRNA sequence by intro-
ducing mutations leads to lower predicted levels of ribosome colli-
sions, in agreement with a previous report42. In addition, positively
charged amino acids have been shown to slow down ribosome elon-
gation speedby interactingwith the exit channel9,43. Our approach also
identifies a strong negative correlation between the number of posi-
tive charged amino acids in the upstream sequencewith SIS (r = −0.96,
Fig. 4c), suggesting that removing these amino acids would reduce
ribosome stalling. In contrast, the number of negatively charged amino
acids shows little correlation with SIS (r = −0.07, Supplemen-
tary Fig. 6c).

Notably, a few clusters have their lowest SIS at the ribosome
decoding sites (Fig. 4b, clusters 7–10), indicating that these ribosome
collisions are mediated by local sequence features. In these clusters,
Pro codons are enriched in all three tRNA binding sites (E, P, and A)
(Fig. 4d and e), consistent with the well-characterized tendency of Pro
residues to slow down translation elongation44–46. Clusters 4 and 5
show distinct SIS profiles from the population average, with Trp and
Lys codons enriched at the ribosomal A site, respectively (Supple-
mentary Fig. 7). Interestingly, the R-X-Kmotif of cluster 5 is enriched in

ribosome collision sites in both humans and zebrafish41, and it aligns
with the amino acid motifs associated with macrolide-induced ribo-
some arrest47. We found pausing sites from cluster 4 are more likely to
be affected by the mRNA secondary structure of the downstream
sequences (Supplementary Fig. 7c). In addition, previous works have
demonstrated that consecutive Lys codons (polybasic region) couldbe
potential sites for ribosome collision13,40. Riboformer further identifies
consecutive Lys codons as the sequence determinant of disome peaks
in the PWP1 gene (Supplementary Fig. 8). In summary, our inter-
pretable framework identifies the sequences responsible for ribosome
collision events, clusters these sequences into distinct groups, and
uncovers variousmodes of ribosome stalling, offering insights beyond
motif analysis of all the pausing sites.

We further used the trained Riboformer model to identify novel
disome sites in yeast from published monosome data5 (Fig. 5a). Pre-
vious work demonstrated the regulatory role of ribosome pausing in
the processing of ubiquitin peptides40. Here we identified five periodic
disome peaks in the ubiquitin coding gene UBI4l, with a novel peak at
the beginning of the gene, comparing to the training dataset (Fig. 5b).
All the peaks were positioned at a proline-rich motif (PPD). When all
the disome and monosome profiles are aligned based on the PPD
motif, the disome profiles show clear periodic peaks upstream of the
pause sites, which is not apparent in the input monosome pro-
files (Fig. 5c).

Riboformer allows interpretation of exacerbated ribosome
stalling in aging
High levels of ribosome collisions can lead to proteostasis collapse in
aged organisms13. To investigate the mechanism of aging-related
ribosome pausing, we applied the Riboformer pipeline to ribosome
profiling data fromyoung andold yeast cells13. Using ribosome profiles
in young yeast (day 1) as the control, our pipeline successfully pre-
dicted ribosome occupancy in aged yeast (day 4, r =0.94, Supple-
mentary Fig. 9a, b). In silico mutagenesis analysis of the aging-related
pausing sites (n = 6347, Supplementary Fig. 9c) identified a few clus-
ters with a low SIS at the ribosome decoding site. Further examination
of these clusters revealed significant enrichment of Pro codons in the
ribosomal A site (Supplementary Fig. 9e, f). This observation was not
discernible upon analysis of all the ribosomepausing sites5. We further
extended our analysis to the aging experiments in worms
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the standard derivation of all profiles. Source data are provided as a Source
Data file.
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(Caenorhabditis elegans, Supplementary Fig. 10). Interestingly, when
we examined SIS for the age-dependent pause sites (n = 8376, Sup-
plementary Fig. 10c), there was an enrichment of Asp codon in the P
site for the clusters with similar shapes (Supplementary Fig. 10d–f).
This observation agrees with the enriched motifs associated with age
comparisons (day 12 vs. day 1) in theoriginal paper13. In both aged yeast
and worm, the SIS was positively correlated with the number of posi-
tively charged amino acids (Supplementary Figs. 9h and 10h), unlike
what we observed with yeast disomes. Interestingly, the overloaded
RQC pathway in aging organisms does not target highly positively
charged protein sequences48, whichmay explain the observed positive
correlation.

In our analyses of yeast disomes described above, we observed a
negative correlation betweenmRNA folding energy and SIS, indicating
that the ribosomes are more likely to pause in structured regions of
mRNA. This correlation holds true for predicted ribosome density
from day 4 yeast cells (Supplementary Fig. 9g, r = −0.84). Surprisingly,
SIS and mRNA folding energy were positively correlated in the ribo-
some collision sites in aged worms (Supplementary Fig. 10g, r = 0.97).
Our results imply thatmRNA secondary structuresmight playdifferent
roles in aging-related ribosome stalling events in these model organ-
isms. Overall, our approach provides a general pipeline for the inter-
pretation of context-dependent ribosome pausing and reveals novel
insights into how local context affects aging-dependent translation
dynamics.

Discussion
Taken together, our work presents a general predictive framework for
standardizing and interpreting ribosome profiling experiments across
different organisms and experimental conditions. Our framework
models the change in ribosome kinetics caused by the experimental
protocol, offering a unique opportunity to correct protocol biases in
pre-existing datasets and circumvent the need for certain resource-
intensive experiments in standard protocols. We have benchmarked
its performance by removing experimental artifacts resulting from
rapid filtering and the Cm-containing lysis buffer across 16 ribosome
profiling datasets produced by four different labs. We anticipate that
our method will also be useful in clarifying ribosome density in
eukaryotic samples. While most yeast protocols use cycloheximide to
arrest translation in the lysis buffer, Wu et al. found that adding
cycloheximide and tigecycline together yields short footprints (~21 nt)
from ribosomes with empty A sites and longer footprints (~28 nt) with
full A sites49. We further demonstrated that Riboformer can be trained
to predict these short and long-footprint distributions from libraries
createdwith the cycloheximide-only protocol, indicating Riboformer’s
broad applicability to existing ribosome profiling datasets (Supple-
mentary Table 5). Finally, Riboformer can be trained on any pair of
ribosome profiling datasets. This flexibility enables in silico extra-
polation of ribosome densities using a limited number of existing data.

Using a trained model to estimate disome profiles based on mono-
somedata, ourmethodcan evenpredict newdisomepeaks that do not
exist in the training datasets.

By simulating the impact of sequence mutations on ribosome
occupancy, the Riboformer model identifies the sequences respon-
sible for ribosome collisions, providing insights beyond simple motif
analysis. This approach enables a granular classification of ribosome
pausing sites, uncovers the impact of amino acid charges and mRNA
structure on ribosome collisions and identifies the effect of proline-
enriched motifs on ribosome stalling in young and aged yeast. More-
over, it provides insight into the regulatory code of translation kinet-
ics, facilitating the discoveryof novel therapeutic targets. For example,
we applied Riboformer to analyze the ribosomeprofiles of SARS-CoV-2
following infection of human cells50. Our findings reveal that binding
motifs of fragile Xmental retardation protein (FMRP) contribute to the
increased ribosome occupancy in later stages of infection (Supple-
mentary Fig. 11). Notably, FMRP has been demonstrated to bind to
polysomes51, and our observation implies the therapeutic potential of
Fragile X syndrome drugs for inhibiting SARS-CoV-2 viral reproduc-
tion. Interestingly, the antiviral activity of FMRP has been reported for
ZIKA virus52. In addition, a new study reveals that the SARS-CoV-2 virus
load is reducedwith the inhibition ofmGluR5, a leading drug target for
Fragile X syndrome that signals through FMRP53.

The Riboformer framework is not without its limitations. Firstly, it
relies on existing datasets for training. With the development of tech-
niques for unbiased measurement of translational landscape, we envi-
sion that new Riboformermodels can be further trained to improve the
analysis of biased datasets. In addition, like many existing methods,
Riboformer does not consider translation initiation and termination,
both of which can affect ribosome queuing along the transcript. Our
model excludes the first and last ten codons in the gene coding region
in the downstream analysis. This could be addressed in future work
through systematic quantification and modeling of translation initia-
tion and elongation rates. Thirdly, Riboformer is not designed to han-
dle rare events like ribosomal frameshifting, due to the limited number
of training samples. To tackle these specific situations, transfer learning
approaches could be explored, which allows for initial training on one
task and subsequent fine-tuning across various contexts. Finally, while
our SIS analysis identifies specific ribosome stalling sites that could be
mediated by sequence features such as proline-rich motifs, further
experimental work will be needed to expand on these findings.

Nonetheless, our Riboformer model distinguishes experimental
artifacts from real biological signals and provides a means for the
integrated analysis of existing heterogeneous ribosome profiling
datasets. Comparison of ribosome profiles across multiple species
allows the study of ribosome stalling through the lens of evolution,
paving the way to investigate the evolutionary forces that determine
codon selection and elongation efficiency. Further, with the rapid
development of single-cell sequencing methods such as single-cell
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Ribo-seq and RIBOmap54,55, context-aware models like Riboformer will
make it possible to study translation dynamics in a cell state and cell
type-specific manner. Riboformer can be used as a pure sequence-
based model when the reference input is masked, or in combination
with other computational methods such as Scikit-ribo56 and choros57 to
enable a more accurate estimation of ribosome distribution. While
primarily developed for the ribosome profiling datasets, we envision
the Riboformer pipeline could be widely applicable for modeling the
experimental bias and biological variations in other types of high-
throughput sequencing data.

Methods
Ribosome profiling datasets
The ribosome profiling dataset for E. coli cells (Cm vs. high-Mg lysis
buffer) was obtained from the NCBI GEO database with accession
numberGSE119104. TheBurkhardt et al. datasetwasobtained from the
NCBI GEO database with accession number GSE77617. The ribosome
profiling dataset for genetic circuits was obtained from the NCBI GEO
database (GSE152664). Genomic data, including gene sequences, as
well as transcript and open reading frame (ORF) boundaries, were
obtained from NCBI. The S. cerevisiae and C. elegans aging datasets
were downloaded from NCBI GEO (GSE152850). Monosome and dis-
ome profiles were obtained from NCBI GEO (GSE139036). The ribo-
some profiles of SARS-CoV-2 were obtained from NCBI GEO
(GSE149973). For all the ribosome footprint experiments, we excluded
the first and last 10 codons in the downstream analysis to avoid the
atypical footprint counts observed at the beginnings and ends of
genes. To model ribosome density without being biased by the het-
erogeneity of translational speed along the 5′ ramp and to obtain
robust estimates of the steady-state distribution, we excluded all the
genes with length <200 nt. In addition, we filtered out genes with poor
ribosome coverage, in accordance with previous works5,12. Genes with
fewer than 0.5 reads per nucleotide on average in prokaryotes and
genes with fewer than 5 reads per nucleotide on average in eukaryotes
were excluded from the analysis. For ribosome profiling experiments
with replicates, the mean ribosome occupancy at each nucleotide is
used for the following analysis. For the codonof interest, we calculated
the pause score by taking the mean ribosome density in the 3nt win-
dow and dividing it by the mean density across the ORF. The pause
scores of codons represent the mean of the scores for all instances of
the codon of interest. We further z-score normalized the codon pause
scores before visualization.

Implementation and architecture of Riboformer
We used the RNA sequence and the normalized ribosome density in
the control experiment as a separate input to the Riboformer model.
For both inputs, our model employs 5 convolutional blocks and 1
transformer block (see below for more details) to extract the features
of coding sequences and reference ribosome densities. We used an
element-wisemultiplication layer to pool the information from the two
branches together followed by a feedforward layer that produces the
model output.

The 40-codon sequence is the input for the first branch, and itwas
further transformed into a vector using sequence embedding (hidden
dimension: 8). For the input sequence x 2 RL× E (length L across E
dimensions), the first stage of the architecture aims to extract the
relevant sequence motifs from the mRNA sequence using the follow-
ing block of operations:
1. 2D convolution, with the kernel size of (5, 5), filter number 32:

xf
i =

X

m

xi+m � Kf
m +bf

m, ð1Þ

where Kf
m and bf

m are the learnable weight and bias matrices of the
fth filter.

2. Batch normalization.
3. Rectified linear activation unit (ReLU) activation:

xfi =ReLUðwfc � xfi Þ, ð2Þ

where wfc stands for the learnable weights for the fully
connected layer.

We applied this block 5 times. Then the information from all 32
filters was pooled together using average pooling.

The second stage of the architecture aims to capture the inter-
dependency among the codons, similar to many natural language
processing tasks. We used a multi-head attention (MHA) layer. Given
an input sequence x 2 RL×C (length L across C channels), each atten-
tion head has a set of weights wq 2 RC ×K ,wk 2 RC ×K , and wv 2 RC ×K .
These weights transform the input sequence into queries, keys, and
values, defined as

qi = xi �wq,ki = xi �wk , and vi = xi �wv.
The attention matrix is then derived from the equation:

aij = softmaxðqik
T
j =

ffiffiffiffi
K

p
Þ, ð3Þ

Here aij represents the influence of the query at position i on the
key at position j. The values depict the data each position contributes
to the subsequent positions attending to it. Each single attention head
computes its output as a weighted sum over all input positions:
hi =aij � vj . This mechanism enables each query position to access
information from the entire sequence. The multiple heads compute
with independent parameters, and their outputs are concatenated to
yield the final layer output. Our layers used 10 heads, key/query
dimension of 8, and a dropout rate of 0.1. The last feed-forward
module uses a fully connected layer followed by layer normalization
and the ReLU activation function.

The input to the second branch is the ribosome density of the
same codon sequence from the control experiment (40 codons). For
each codon, we calculated the sum of reads from all three nt. Then the
ribosome density is further log-transformed and processed by a neural
network structure that is similar to the first branch. The only difference
is that 1D convolution layers are used in the convolution block, instead
of 2D convolution layers. The output of the second branch has the
same dimension as the first branch (32). Finally, element-wise multi-
plication was used to combine all the information from the two
branches, and a ReLU activation function was used to predict the
ribosome density at the position of interest in the new condition:
xoutput = ReLUðwfc � xcoding � xref +bÞ. The model was implemented in
Tensorflow and the source code is available at https://github.com/
lingxusb/Riboformer.

Riboformer training and hyperparameter tuning (training and
validation dataset construction)
Adam optimizer was used to train the Riboformer model on an
A100GPU (40GB, Nvidia). A cosine learning decay was used to sche-
dule the learning rate with a start learning rate of 0.0005:

learning rate =0:0005*
1 + cosðπ*stepÞ

2
, ð4Þ

The mean squared error loss function was employed to measure
model performance in both the training and validation stages. The
explanatory input data and corresponding response variables were
divided into training (70%), validation (15%), and test (15%) sets. Early
stopping was introduced to prevent overfitting, and the training pro-
cess terminated when the validation loss did not decrease for 10
epochs. For building and training models, Keras v2.2 and Tensorflow
v1.10 software packages were used.
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Codon positional enrichment
We calculated the translation efficiency (TE) for a target gene as the
ratio between the mean of the ribosome density (RD) and the mRNA
expression. The ribosome density (RD) of each gene was calculated by
averaging all ribosome occupancies over the length of the gene20. The
mRNA expression in FPKM (fragments per kilobase of transcript per
million mapped reads) of each gene was calculated by averaging the
height of the RNA-seq profile over the length of the gene.

We analyzed the first 100 codons of genes with TE in the highest/
lowest 10 percentiles among all the genes. In each 10-codon window,
we calculated the number of a specific codon. It is then comparedwith
the codon number from a randomly sampled gene group with the
samenumber of genes.We calculated thep values froma student t-test
(function ttest_ind from the scipy package) as the positional enrich-
ment for the specific codon.

Identification of conditional-dependent pause sites
To identify conditional-dependent ribosome pausing sites, we used a
strategy that is similar to Stein et al.5, which utilized two-tailed Fisher’s
exact tests to identify codon positions with statistically significant
changes in ribosome pausing. At each codon position, 2 × 2 con-
tingency tables were created to perform a two-tailed Fisher’s exact test
to compare the ratio of the reads in the control sample and the sample
of interest. This compares the observed ratio of ribosome reads at a
specific position from the two samples to the expected ratio based on
the total number of reads from the two samples. It allows the calcu-
lation of the odds ratio as well as the p-value. The first 10 and last 10
codons of the transcript were excluded in the analysis. The conditional
pausing sites were identified as follows: p-value < 0.001 and odds
ratio > 1.

In silico mutagenesis analysis
For each conditional dependent pausing site, we denote the Ribo-
former predicted ribosome density as RD. In the 40-codon input
sequence, we selected a 10-codon window and sampled 100 random
sequences fxjg to replace the original sequence. The mean predicted
ribosome density from the random sequences was calculated as
RD0 = 1

100

P100
j = 1RDðxjÞ and RD−RD’ is the sequence impact score (SIS)

for the 10-codon window. We moved the window along the RNA
sequence at one codon step so that every codon was randomly
mutated 1000 times. Enrichment of known sequence motifs of RNA-
binding proteins was identified using SEA58.

Clustering analysis of sequence impact scores
We used the K-means clustering method from the Python scikit-learn
package to cluster the impact score profiles. Elbow method was used
to determine the cluster number and the random seed was set to 0.

For each 40-codon sequence, we calculated its folding energy
using the RNAfold software (https://www.tbi.univie.ac.at/) with default
parameters. The energy was then averaged for each cluster.

To calculate the codon enrichment for each cluster, the codon
occurrences at each position (−20 to 20) for each cluster were com-
pared with randomly sampled codon sequences. A Student t-test was
used to calculate the p-value of the enrichment or depletion of the
specific codons. The sequence log was generated based on the log-
transformed p values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We provide all datasets generated or analyzed during this study. The
ribosome profiles were downloaded from Gene Expression Omnibus
with the accession numbers GSE119104 (Mohammad dataset12),

GSE77617 (Burkhardt dataset16), GSE98664 (synthetic circuit
dataset20), GSE152850 (aging dataset21), GSE139036 (disome dataset5),
GSE149973 (SARS-CoV-2 dataset50), and GSE115162 (Wu dataset49).
More information for these datasets can be found in the “Methods”
section. Source data are provided with this paper.

Code availability
Codes for the Riboformer pipeline are available from https://github.
com/lingxusb/Riboformer and https://doi.org/10.5281/zenodo.
10594484. Codes for reproducing the figures including Figs. 2d, e,
4b, c, e, Supplementary Figs. 4 and 5, are available from GitHub
(https://github.com/lingxusb/Riboformer/tree/main/reproducibility).
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