
Article https://doi.org/10.1038/s41467-024-46240-9

Widespread stable noncanonical peptides
identifiedby integrated analyses of ribosome
profiling and ORF features

Haiwang Yang1,3, Qianru Li1,3, Emily K. Stroup 1, Sheng Wang2 & Zhe Ji 1,2

Studies have revealed dozens of functional peptides in putative ‘noncoding’
regions and raised the question of how many proteins are encoded by non-
canonical open reading frames (ORFs). Here, we comprehensively annotate
genome-wide translated ORFs across five eukaryotes (human, mouse, zebra-
fish, worm, and yeast) by analyzing ribosome profiling data. We develop a
logistic regression model named PepScore based on ORF features (expected
length, encoded domain, and conservation) to calculate the probability that
the encoded peptide is stable in humans. Systematic ectopic expression vali-
dates PepScore and shows that stable complex-associating microproteins can
be encoded in 5’/3’ untranslated regions and overlapping coding regions of
mRNAs besides annotated noncoding RNAs. Stable noncanonical proteins
follow conventional rules and localize to different subcellular compartments.
Inhibition of proteasomal/lysosomal degradation pathways can stabilize some
peptides especially those with moderate PepScores, but cannot rescue the
expression of short ones with low PepScores suggesting they are directly
degraded by cellular proteases. Themajority of human noncanonical peptides
with high PepScores show longer lengths but low conservation across species/
mammals, and hundreds contain trait-associated genetic variants. Our study
presents a statistical framework to identify stable noncanonical peptides in the
genome and provides a valuable resource for functional characterization of
noncanonical translation during development and disease.

Conventional genome annotation has largely been based on com-
putational analyses of gene structure and sequence conservation
using the “one-gene one-polypeptide” hypothesis1,2. The canonical
protein-coding sequence of an mRNA has been defined as the
longest open reading frame (ORF) with an AUG start codon and is
under evolutionary constraint. Alternative splicing and poly-
adenylation can generate mRNA isoforms with different coding
regions. Genes without a long and/or conserved ORF have usually
been classified as long noncoding RNAs (lncRNAs) or pseudogenes
based on the assumption that long proteins are more likely to fold

into stable structures with biological functions3–6. One conventional
approach to defining coding regions is using an arbitrary cutoff
such as 100 aa just because ORFs longer than this occur rarely in a
genome7. Alternatively, computational methods were developed to
predict the “coding potential” of a transcript8,9, but these models
were trained on molecular features of canonical proteins with a
median length of 500 aa showing species conservation. Although
these methods can identify functional proteins, they ignore ORFs
encoding stably folded microproteins or species-specific
peptides10.
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Noncanonical ORFs (ncORFs) have historically been overlooked,
in part due to the technical challenge of defining actively translated
ones. If we only consider ORF structures, there aremillions of possible
ORFs in a eukaryotic genome. Recent advances in computational
analyses of ribosome profiling11,12 have resolved this technical barrier.
For actively translated ORFs, ribosome profiling reads show con-
tinuous 3-nucleotide (nt) periodicity, representing the stepwise
movement of 80S ribosomes as they decode RNAs. Based on this read
distribution feature, we and others have developed computational
algorithms to identify genome-wide translated ORFs using ribosome
profiling13–17. These analyses revealed thousands of translated ncORFs
in a cell encoded by annotated lncRNAs, pseudogenes, 5’ untranslated
regions (UTRs), and 3’UTRs.

The comprehensive identification of translated ncORFs paved the
path to systematically dissecting their biological roles. CRISPR
screening experiments showed that knocking out some ncORFs
inhibited cell proliferation18,19. Ectopic expression of these ncORFs
showed that hundreds of noncanonical peptides, including poorly
conserved ones, can be stably expressed in cells18–20. Mass spectro-
metry experiments showed thousands of these peptides are displayed
by themajor histocompatibility complex I (MHC I) and can function as
neoantigens for disease therapy, although many of them are possibly
unstable and quickly degraded in cells21–23.

Importantly, emerging genetic studies have revealed detailed
molecular functions of dozens of microproteins. For example, the
secreted hormonal microproteins ELABELA (APELA, 55 aa) is con-
served across vertebrates and regulates embryonic stem cell self-
renewal24 and heart development25. A few microproteins, such as
phospholamban (PLN, 55 aa), sarcolipin (SLN, 31 aa), and myoregulin
(MRLN, 46 aa), regulate sarcoplasmic reticulum Ca2+ ATPase activity
and muscle function26–28. A putative human lncRNA LINC00992
encodes a GATA3-interacting cryptic protein (GT3-INCP, 120 aa) that
promotes estrogen receptor-positive breast cancer progression29.

As high stability is crucial for protein functions, the findings
demand the development of computational methods to distinguish
ncORFs encoding stable proteins vs. quickly degraded byproducts.
Here, we aimed to address this question by analyzing large cohorts of
ribosome profiling data and comprehensively annotating genome-
wide translated ORFs across five eukaryotes from yeast to humans.
Furthermore, based on the genomic features of ORFs encoding char-
acterizedmicroproteins, we developed and experimentally validated a
machine learning model named PepScore to calculate the probability
that an ORF-encoded peptide is stable, which provides a statistical
framework to study noncanonical peptides.

Results
A comprehensive catalog of translated ORFs across five eukar-
yotic species
Large cohorts of published ribosome profiling datasets across model
species provided a valuable resource to examine the expression and
evolution of ncORFs. A challenge for the data analyses is that
sequencing reads from different studies show quite variable distribu-
tion patterns due to RNase digestion differences or lineage-specific
regulation. Only a subset of reads showed 3-nt periodicity in translated
regions and can be used to accurately identify actively translatedORFs
(Supplementary Fig. 1a, b). To this end, we further developed our
RibORF software13,30 (RibORF 2.0), which automates the performance
of data quality control, selects reads showing 3-nt periodicity, and uses
ribosomal A-site corrected reads to identify genome-wide
ORFs (Fig. 1a).

In total,we analyzed 38.8billion reads across 669human samples,
559mouse samples, 34 zebrafish samples, 43worm samples, and 7 yeast
samples (Supplementary Data 1 and Fig. 1b). We selected 3.1 billion
reads showing strong 3-nt periodicity in canonical ORFs (>60%
assigned to the first nt of codons) (Fig. 1c, Supplementary Fig. 1c–f, and

SupplementaryData 1).OurRibORF trained a logistic regressionmodel
to identify translatedORFs showing continuous 3-nt periodicity across
codons based on the following read distribution features: (1) the
fraction of reads assigned to the 1st nt of codons; (2) the fraction of
codons showing 3-nt periodicity and supporting in-frame translation;
and (3) the percentage of maximum entropy (PME) value measuring
the uniformness of reads across codons (Supplementary Fig. 2a–c; see
Methods for details).

Our logistic regression model can accurately classify in-frame vs.
off-frame ORFs with an area under the receiver operating character-
istic (AUROC) curve of 0.990 (SD =0.011) across samples (Supple-
mentary Fig. 2d and Supplementary Data 2), and the three modeling
features we used contributed significantly to the prediction (Fig. 1d–f
and Supplementary Fig. 2e–h). To account for lineage-specific reg-
ulation, we built a predictive model for each cell type from a ribosome
profiling dataset as well as a separate model using the merged reads
from a species (Supplementary Data 2). We required that retained
ORFs should show at least two independent positive predictions with
the RibORF translation probability >0.6, and the ORF isoforms should
express in at least one cell type with reads per kilobase per million
mapped reads (RPKM) >0.2 calculated by the Salmon tool31.

The analyses of the compendium of ribosome profiling datasets
provided comprehensive annotations of the translatome (Fig. 1g,
Supplementary Data 3, and Supplementary Data 4). In humans, we
identified 58,383 ncORFs in 13,062 coding genes, 3887 annotated
lncRNA genes, and 1287 pseudogenes. We cross-validated our ORF
predictions using other published software, including RiboTish32,
RiboCode33, PRICE34, andRiboTricer35. If requiring the perfectmatch of
predicted ORF structures, 98.3% of our ncORFs ≥20 aa and 88.0% of
these <20 aa can be identified by at least one other software (Sup-
plementary Fig. 3a and Supplementary Data 5). Because these software
use different methods to select the representative start codon of an
ORF16, if we allow start codon mismatch of predictions, the validation
rate for our ncORFs is 99.8% for ORF ≥ 20 aa and 97.0% for ORFs <20
aa. This high cross-validation rate is consistent for different ncORF
types (Supplementary Fig. 3b–h), indicating the high-quality of our
ORF annotation.

73.5% of human coding genes showed translation outside cano-
nical ORFs (Fig. 1h). 62.8% were translated in 5’UTRs with 28,981
upstream ORFs (uORFs) and 4679 overlapping uORFs (ouORFs), and
19.6% showed translation in 3’UTRs with 4907 downstream ORFs
(dORFs) and 738 overlapping dORFs (odORFs) (Fig. 1h and Supple-
mentary Fig. 4a–c). 56.7% of ncORFs used AUG as start codons (Sup-
plementary Fig. 4b, c). A comparable fraction of coding genes inmouse
showed noncanonical translation (51,481 ncORFs identified in total;
Fig. 1h and Supplementary Fig. 4bc). We detected noncanonical
translation in 37% of zebrafish coding genes and 15% of genes in worm
and yeast (Fig. 1h). The number of identified ncORFs inmammals is 2.5-
fold that in zebrafish, 20-fold that in worm, and 50-fold that in yeast
(Supplementary Fig. 4b, c). One reason is that human andmouse have
more high-quality ribosome profiling datasets available, and the other
reason is that mammals have more annotated lncRNAs and their
coding genes have longer 5’/3’ UTRs (1.2- to 1.8-fold) with more tran-
script isoforms per gene (2.2- to 2.7- fold) (Supplementary Fig. 4d).
These results underscored the complexity of mammalian translatome.

Identifying genomics features of stable microproteins
The translation of ncORFs can produce stable peptides or quickly
degraded byproducts. Currently, there lack of computational
approaches that can distinguish these two types of ncORFs. Addres-
sing this question is important because high stability is crucial for
protein function. To this end, we examined the genomic features of
ORFs encoding experimentally characterized microproteins (<100 aa)
with an AUG start codon. We collected 343 stably expressed peptides
from two sources: (1) RefSeq-curated microproteins, which were
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shown to be stably expressed and have well-annotated molecular
functions, such as metallothionein 1X (MT1X, 61 aa) and NADH:ubi-
quinone oxidoreductase subunit A1 (NDUFA1, 70 aa); and (2) stably
detectable peptides encoded by annotated lncRNAs from recent
ectopic expression experiments (Fig. 2a and Supplementary Fig. 5a;
Supplementary Data 6; see Methods for details)18,19. A previous study
also identified 100 microproteins undetectable from ectopic expres-
sion (Supplementary Data 6)18, and these peptides are possibly
unstable as their ORF expression were driven by the same 5’UTR and
3’UTR compared to the detectable ones. We used them as negative
examples for comparison. We focused on AUG-initiated ORFs in this
analysis, because 5’-end methionine is known to be critical for stabi-
lizing proteins36 and the vast majority of known stable peptides use
AUG as the start codon.

Existing studies have prioritized conservedproteins for functional
characterization, and the collection of stable microproteins showed
higher conservation levels measured by PhyloCSF scores (based on
genome alignments across 58 mammals)37 than undetectable ones
(Fig. 2b). We next divided stable peptides into three groups based on
their PhyloCSF scores: >0, −5 ~ 0, and <−5. The peptides from all three
groups showed comparable lengths (median: 78 aa) and were

significantly longer than undetectable ones (median: 51 aa) (Fig. 2c;
Wilcoxon Rank Sum Test P < 10−9). These results suggested that ORF
length is an important parameter that identifies stable peptides, in
addition to conservation.

We hypothesized that longORFswould not emerge by chance in a
genome and that randomly occurring ORF structures would be short.
We aimed to calculate the false discovery rates (FDRs) of observedORF
lengths by comparing them to expected ones from randomized
sequences. Considering RefSeq-defined coding genes, protein lengths
are positively correlated with transcript lengths (R =0.71; Supple-
mentary Fig. 5b), and transcripts encoding microproteins are sig-
nificantly shorter than those producing long proteins (Wilcox rank
sum test P = 2 × 10−12; Supplementary Fig. 5c). To obtain the expected
ORF length of a transcript, we controlled the transcript length and
generated pseudo-transcripts from shuffled sequences and random
genome sequences. Then we calculated the FDR of an observed ORF
length as the ratio of the number of ORF structures longer than the
observed vs. the total number of possible ORFs from pseudo-
transcripts (Supplementary Fig. 5d).

Indeed, randomly occurring ORF structures are short (Supple-
mentary Fig. 5e) and the expected ORF lengths are correlated with
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transcript length (Fig. 2d and Supplementary Fig. 5f). The median
transcript length for the collection of 343 stable microproteins was
1 kb. The expectedORF length at a 5%FDRwas 55 aa and that at 2% FDR
was 73 aa. For the corresponding observed ORF lengths, 92% showed
FDRs <5% and 64% were <2%. For the ORFs encoding stable peptides
with different PhyloCSF scores, their length FDRs were comparable
and were more significant than the undetectable ones (Fig. 2e). These

analyses indicated that many ORFs encoding stable microproteins are
longer than expected when considering their transcript lengths.

We next examined other ORF features (Supplementary Fig. 6).
RefSeq-defined microproteins used more optimized codons and
stronger Kozak sequences around initiation sites compared to unde-
tectable ones (Supplementary Fig. 6c, d; Wilcoxon Rank Sum test
P = 10−8). Using the hydrophobic cluster analysis (HCA)method38,39, we
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examined the folding potential of the peptides. RefSeq-defined
microproteins showed a moderately higher HCA measured fold-
ability (Supplementary Fig. 6e; Wilcoxon Rank Sum test P = 10−3).
However, these features did not show significant differences between
detectable vs. undetectable microproteins based on the ectopic
expression experiments as most of these peptides are encoded by
annotated lncRNAs (Supplementary Fig. 6c–e).

Additionally, we searched for protein domains encoded by the
characterized peptides, including Pfam40 and TMHMM41. 97.8% of
RefSeq-defined microproteins and 15.5% of stably detectable peptides
from annotated lncRNAs contained at least one functional domain,
while only 6.8% of undetectable ones did (Supplementary Fig. 6m). A
domain sequence would not emerge by chance in a peptide.

A logistic regression model named PepScore to predict peptide
stable probability
Our above analyses identified ORF features separating stable vs.
undetectable microproteins. Next, we used these features to build a
logistic regressionmodel named PepScore to calculate the probability
that an ORF encodes a stably expressed peptide. We used the above
collection of ORFs encoding 343 stable and 100 undetectable micro-
proteins as positive and negative examples, respectively. We also
added 30 ORFs encoding ≤11 aa peptides but with PhyloCSF scores >0
as negative examples. We randomly selected 200 peptides for the
training dataset with 5-fold cross-validation, and another 100 peptides
for the testing dataset.

We used different feature combinations to classify the stable vs.
undetectable microproteins. Three of the ORF features contributed
significantly to our final model. The length FDR showed the most sig-
nificant contribution to the classifier (P = 4.4 × 10−10). The existenceof a
protein domain contributed the second most (P = 0.0024), and the
P-value for the PhyloCSF score was 0.021 (Fig. 2f). Adding additional
ORF features did not increase the prediction accuracy. PepScore
accurately classified microproteins with an overall AUROC=0.944.
The classification accuracy based on the feature combination is higher
than using individual ones (Fig. 2g–i).

The two positive sets of stable microproteins (i.e. RefSeq-defined
and stably detectable from ecotopic expression) all show significantly
higher PepScores than the negative set: P = 10−10 comparing detectable
vs. undetectable from ectopic expression and AUROC=0.79 classify-
ing the two groups; P = 10−46 comparing RefSeq-defined vs. undetect-
able and AUROC=0.99 classifying the two groups (Supplementary
Fig. 6n–p). 99.3% of RefSeq-definedmicroproteins (<100 aa) showed a
PepScore >0.6 including very short ones such as RPL41 (25 aa), SLN
(31 aa), PLN (52 aa), MRLN (46 aa), and APELA (54 aa) (Fig. 2g). Because
of the logistic regression algorithm we used, PepScore can be applied
to calculate the stable probability for long proteins. The RefSeq-
defined proteins (>100 aa) show scores close to 1 (Fig. 2g).

Most noncanonical peptides with high PepScores tend to be
pooly conserved
Next, we calculated PepScores for RibORF-identified translated ORFs
(with AUG start codons) in humans (Supplementary Fig. 7a–f; Sup-
plementary Data 7). 4812 ncORFs showed PepScores >0.6, which is
13.3% of the total (Fig. 3a). These included 1871 ORFs in annotated
lncRNAs, 987 ORFs in pseudogenes, 687 uORFs, 430 ouORFs, 188
internal ORFs (iORFs), 239 odORFs, and 410 dORFs (Fig. 3b and Sup-
plementary Data 7). The median length of these peptides was 99 aa
with the 5th percentile at 57 aa and the 95th percentile at 278 aa
(Fig. 3c). 80.9% of noncanonical peptides showed a low PepScore
(<0.3), suggesting that most noncanonical translation generates
quickly degraded byproducts.

85.6% of high-PepScore (>0.6) peptides showed a PhyloCSF score
<0, indicating their low conservation across mammals (Fig. 3d and
Supplementary Data 7). 34.0% contained at least 1 predicted protein

domain (Fig. 3e). Considering the conservation of both ORF types and
expression, 18.0% of these high PepScore peptides were conserved in
mouse, <1.5% were conserved in zebrafish and worm, and none was
conserved in yeast (Fig. 3f, g and Supplementary Data 7). The data
indicated that most noncanonical peptides are uniquely expressed in
humans or mammals. 3011 of these ncORFs showed differential
expression >10-fold across 11 tissue/cell lineages (Supplementary
Fig. 7g). Compared to canonical ones, ncORFs showed higher tissue-
specific expression as measured by Tau-index values42 (Wilcox rank
sum test P = 10−82; Fig. 3h and Supplementary Fig. 7g, h). Using
DeepLoc43, we predicted the subcellular localization of these peptides.
Compared to canonical proteins, noncanonical ones showed a 3.4-fold
enrichment of localization to mitochondria (36.9% of the total) and
extracellular secretion (13.7% of the total) (Fig. 3i).

We next searched the noncanonical peptides by analyzing pub-
lished cohorts of mass spectrometry data for the whole proteome and
forMHC I-bound peptides. Using a cutoff of FDR < 1%, wedetected 326
noncanonical peptides from the whole proteome and 1480 bound by
the MHC. The peptides expressed from the whole proteome showed
significantly higher PepScores and were longer than MHC-bound ones
(Wilcox rank sum test P = 10−82; Fig. 3j and Supplementary Fig. 7i). We
also analyzed the published CRISPR/Cas9 screening data19 measuring
cell survival after knocking out the translated regions in lncRNAs and
uORFs in induced pluripotent stem cells (iPSCs) and K562 cells. The
loss of ncORFs with high PepScores (>0.6) resulted in stronger cell
growth inhibition compared peptides with low PepScores (≤0.6)
(Fig. 3k and Supplementary Fig. 7jk), although the two groups showed
comparable PhyloCSF scores (Supplementary Fig. 7l). These data
indicate ncORFs with high PepScores are more likely to be stably
expressed and play functional roles.

Systematic ectopic expression validated the correlation
between PepScore and peptide stability
Since PepScore was trained based on the features of annotated main
ORFs frommRNAs aswell as those from lncRNAs,wenext examined its
accuracy for identifying stable proteins from polycistronic mRNAs. To
this end, we performed ectopic expression of 29 randomly selected
uORF peptides with different PepScores in the HEK293T cells (Fig. 4a,
b, Supplementary Fig. 8a, b, and Supplementary Data 8). To compare
their relative stability, we fused each ORF with the same 5’/3’ UTR
sequences and a C-terminal Flag tag (8 aa)44, and used immunostaining
experiments to examine the expression of the peptides across single
cells. As the translation of these ORFs were driven by the same 5’/3’
UTRs with an AUG start codon, the resulting peptide expression dif-
ferences wouldmore reflect the regulation of peptide stability, but not
the ORF translatability. Using green fluorescent protein (GFP) expres-
sion to control cell transfection efficiency, we calculated the peptide
expression level as the fraction of cells showing detectable expres-
sion (Fig. 4c).

Peptides with high PepScores showed stronger expression than
low score ones (P =0.02, Wilcoxon Rank Sum test comparing those
with PepScore >0.6 vs. others) (Fig. 4d, e). For the nine peptides with
PepScore >0.6, four (44%) expressed in >50% of cells, three (33%)
expressed between 5 ~ 12%, and the remaining ones (22%) were
detectable in ~1.5% of cells (Fig. 4d and Supplementary Data 9). For the
12 peptideswith PepScores between0.3 and0.6, only one (8%) showed
expression in >5% of cells, four (33%) expressed between 1% and 4%,
and the remaining ones (58%) were nearly undetectable (Fig. 4d). We
could not detect expression for the eight peptides with PepScore <0.3
(Fig. 4d). PepScore can classify well-expressed peptides (>5% of cells)
vs. others with an AUROC=0.911 (Fig. 4f) and with a classification
accuracy that is higher than using individual features such as ORF
length or PhyloCSF score (ΔAUROC>0.071; Fig. 4g).

We next examined whether the inhibition of the conventional
protein degradation pathway can stabilize uORF peptides. To this end,
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we treated the cells with the proteasome inhibitor MG-132 and found
that the peptide responsewas also correlatedwith PepScore (Fig. 4d, i,
and Supplementary Data 9). For the 15 peptides expressed in <6% of
cells and with PepScore >0.3, 11 (73%) showed higher expression upon
MG-132 treatment (the average expression increased from 2.1% (SD =
2.1%) to 14.3% (SD = 4.9%)) (Fig. 4d). For the eight peptides with Pep-
Score <0.3, we could not detect their expression even after MG-132
treatment (Fig. 4d). These data indicate that noncanonical peptides
withmoderate PepScores can be stabilized upon proteasome pathway
inhibition.

To further examine pathways regulating noncanonical peptide
stability, we treated cells with a few other inhibitors, including those
blocking proteasome activity (lactacystin) or lysosome/autophagy-
mediated pathways (chloroquine and bafilomycin A1) (Fig. 4h).
Individual treatment with these drugs stabilized noncanonical pep-
tides with moderate PepScores, and combination treatment further
enhanced the peptide expression (Fig. 4j, k and Supplementary
Fig. 8c, d). These data indicate that the stability of these peptides is
regulated by both the proteasome and lysosome/autophagy path-
ways. Peptides with low PepScores (<0.3) showed nearly
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Test is shown.
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undetectable expression even after the combination treatments
(Fig. 4j, k and Supplementary Fig. 8c, d). One possible explanation for
this is that these short peptides can be directly digested by proteases
without the facilitation of the proteasome and lysosome/autophagy
pathways.

We also examined the expression of other ncORF types and per-
formed ectopic expression of the eight peptides with high PepScores

(>0.6) from overlapping coding regions and 3’UTRs, including five
ouORFs, one iORF, and two dORFs (Fig. 4l, m and Supplementary
Fig. 8e–g). These peptides were well expressed in >20% of cells
(Fig. 4n). Altogether, our data indicate that stable proteins can be
encoded across different regions of mRNAs and that PepScore pro-
vides a quantitative framework to identify candidate stable non-
canonical peptides.
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uSLC35A4 and iPGRMC1 are mitochondrial proteins with dif-
ferent biological roles
Proteins are localized to specific subcellular compartments to fulfill
biological functions. We used the DeepLoc program (v1.0)43 to predict
the subcellular localization of the stable noncanonical peptides
examined above. Consistent with the prediction, the immunostaining
experiments showed that five peptides, including uSLC35A4, uMKKS,
iPGRMC1, uCGGBP1, and ouTFAM, are localized to mitochondria
(Supplementary Fig. 9a). The endogenous expression and

mitochondrial localization of uMKKS were also shown in a previous
study45. Although uSLC35A4 was suggested to be a functional
protein46, its molecular roles remain uncharacterized. We confirmed
the expression of uSLC35A4 protein from the polycistronic RNAs by
expressing the native transcript sequence and tagging both the
uSLC35A4 and downstream main ORF (Supplementary Fig. 9b). The
mutation of uSLC35A4 start codon diminished the uSLC35A4 expres-
sion but increased the SLC35A4 protein production, indicating the
uORF suppresses the main ORF translation (Supplementary Fig. 9b).

Fig. 4 | The stability and degradation pathways of ncORF peptides with dif-
ferent PepScores. a PepScores and peptide lengths of 29 selected uORFs. b The
PhyloCSF scores of 29 selected uORFs. c, d The ectopic expression of uORFs in
HEK293T cells. Cells with ORF-Flag expression were stained with anti-Flag (green)
and DAPI (blue). Empty vector and GFP-Flag were used as the negative and positive
controls, respectively. Representative images of cells expressing selected uORFs
are shown in (c). Scale bar, 50μm. The y-axis represents the normalized fraction of
cells expressing ORF-Flag. Data are shown as mean values ± SD of five (nontreat-
ment) or four (MG132 treatment) replicates and are representative of three inde-
pendent experiments. e Comparing peptide expression of uORFs with high vs. low
PepScores in untreated cells. The P-value calculated using the two-sided Wilcoxon
Rank Sum Test is shown. f The ROC curve measuring the performance using Pep-
Score to classify uORFs with expression >5% vs. others. The AUROC value is shown.
g The AUROC values obtained when using PepScore, peptide length, and PhyloCSF

to classify highly vs. lowly expressed uORF peptides. h Compounds used in this
study and their targeted pathways. i Comparing peptide expression of uORFs with
high vs. lowPepScores inMG132-treated cells. The P-value calculated using the two-
sided Wilcoxon Rank Sum Test is shown. j–k The uORF peptide expression levels
were analyzedusing untreated cells or those treatedwith proteasome inhibitors or/
and lysosome inhibitors. Representative immunostaining images of selected uORF
peptides in each condition are shown in (j). Scale bar, 50μm. The expression levels
are shown in (k). Error bars represent the standard deviation of four replicates.
l PepScores and peptide lengths offive selected ouORFs, one iORF, and two dORFs.
m The PhyloCSF scores of selected ncORFs. n The ectopic expression levels of the
noncanonical peptides. The calculation method is the same as in (d). k, n Data are
shown as mean values ± SD of four replicates and are representative of three
independent experiments. The peptide expression level can be found in Supple-
mentary Data 9.
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Using co-immunoprecipitationmass spectrometry (co-IP/MS) and
western blot, we showed that the uSLC35A4 protein interacts with
mitochondrial outer membrane proteins, such as VDAC1 and VDAC3
(Fig. 5a and Supplementary Fig. 9c, d). The co-immunostaining
experiments showed that uSLC35A4 was colocalized with the outer
membrane marker TOMM20 but not other subcompartment markers
(Fig. 5b). To further examine its cellular roles, we generated MCF-7
cells stably expressing uSLC35A4 using a lentiviral system, with 3-fold
overexpression compared to endogenous levels (Supplementary
Fig. 9e–g). Compared to the start codon-mutated sequence, the
uSLC35A4 overexpression impaired cell growth (Fig. 5c). In line with
this, RNA sequencing (RNA-seq) analyses showed that 605 genes were
down-regulated upon uSLC35A4 overexpression (>1.3-fold in both
replicates) and were enriched in pathways such as “cell cycle” and “cell
division” (Fig. 5d, e). Conversely, 252 genes were up-regulated and
were enriched in themitochondria-relatedpathways such as “response
to hypoxia” and “negative regulation of mitochondrial membrane
potential” (Fig. 5d, e). Indeed, overexpression of uSLC35A4 induced
the loss of mitochondrial membrane potential, which was rescued by
knockout of uSLC35A4 (Fig. 5f, g and Supplementary Fig. 9h). Alto-
gether, we identified that uSLC35A4 is a mitochondrial outer mem-
brane protein, the expression of which regulates cell proliferation and
mitochondrial membrane potential.

We next examined the cellular roles of iPGRMC1. We confirmed
the expression of iPGRMC1 in the native transcript context by
expressing the internalORFbut not disrupting the protein sequence of
the main ORF (Supplementary Fig. 9i and Supplementary Data 8). The
mutation of the iPGRMC1 start codon didn’t affect the expression of
canonical PGRMC1 expression (Supplementary Fig. 9i). Comparedwith
cells stably expressing uSLC35A4 or uMKKS, we found cells stably
expressing iPGRMC1 showed a much lower peptide expression con-
firmed by both western blotting and immunostaining (Supplementary
Fig. 9e, f). The co-IP/MS identified two major interacting complexes:
mitochondrial-processing peptidase (MPP, consisting of PMPCA and
PMPCB) and the molecular chaperone 14-3-3 proteins (composed of
seven subunits, e.g., YWHAB and YWHAH) (Fig. 6a and Supplemen-
tary Fig. 9j).

We hypothesized that the iPGRMC1 peptide might be processed
by MPP in mitochondria. We thus set up knockouts of PMPCA and
PMPCB in iPGRMC1 stably expressing cells. Indeed, either PMPCA or
PMPCB knockout increased the full-length iPGRMC1 peptide level
(Fig. 6b) and its mitochondrial localization (Fig. 6c). In addition, we
found that iPGRMC1 showed detectable cell membrane enrichment,
which was abolished upon PMPCA or PMPCB knockout (Fig. 6c and
Supplementary Fig. 9a), suggesting its C-terminal peptide might be
translocated to the cell membrane after MPP processing. To further
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verify this, we generated a stable cell line expressing dual-tagged
iPGRMC1 with an N-terminus HA-tag and a C-terminus Flag Tag (Sup-
plementary Fig. 9k). We detected two smaller peptides (~10 kD and
~2 kD) generated after MPP cleavage with western blotting (Supple-
mentary Fig. 9k). Co-immunostaining of cells with both tags showed
that the N-terminus fragment accumulated in the cytosol, while its
C-terminus was enriched on the cell membrane (Supplementary
Fig. 9l). In line with this, peptide sequence analysis identified an MPP
cleavage site motif (the “R-2 rule”) at the C-terminus47,48 (Fig. 6d).
Besides, we performed RNA-seq to examine differential gene expres-
sion upon stable iPGRMC1 overexpression in MCF-7 cells (2-fold
overexpression compared to endogenous levels) (Supplementary
Fig. 9e–g). Gene ontology analysis showed that up-regulated genes
were enriched in pathways such as “epitheliumdevelopment” and “cell
migration,” and down-regulated genes were enriched in pathways
related to “innate immune response” (Fig. 6e, f). Taken together, our
results indicate that iPGRMC1 is cleaved by mitochondrial-processing
peptidase generating an 11-mer peptide translocated to the cell
membrane.

Noncanonical peptides follow conventional sequence determi-
nants and are localized to different organelles
Besides mitochondrial peptides, we examined ORFs encoding pep-
tides localized to other organelles. uINPP5F, uBPGM, and ouMRS2
peptides were localized to the endoplasmic reticulum (ER) (Fig. 7a),
and their interaction with ER marker proteins (e.g., calnexin and BIP)
was also supported by co-IP followed by western blotting (Fig. 7b). We
also confirmed the uINPP5F and uBPGM expression in the native
transcript context with main ORF (Fig. 7c and Supplementary Fig. 10a,
b). The mutations of the uORF start codons increased main ORF pro-
tein production, indicating the uINPP5F and uBPGM suppresses main
ORF translation (Fig. 7c).

Based on DeepLoc prediction, uINPP5F is localized to the ER.
uBPGM and ouMRS2 peptides were predicted to be secreted extra-
cellularly, but their ER localization is consistent with the fact that most
extracellular proteins tend to be processed in the ER before secretion.
Furthermore, we isolated exosomes from the cell media and could
detect the expression of uBPGM, ouMRS2, and uINPP5F in them
(Fig. 7d). Co-IP/MS on these three proteins showed that their top
interactingproteinswere enrichedwith theseER-localized or secretory
proteins (Supplementary Fig. 10c–e). For example, uINPP5F interacts
with secretory vesicle membrane proteins such as ATP6V0A1,
ATP6V0D1, and POMGNT1 (Supplementary Fig. 10c).

We also confirmed the cytosolic and/or nuclear localization of
uCDH8, ouPHF19, ouIP6K2, ouRNF10, dCENPO, and dREEP6 peptides
with immunostaining and/or co-IP MS (Fig. 7e and Supplementary
Fig. 10f, g). Of those, we further confirmed the expression and peptide
localization of ouPHF19 and dCENPO in their native transcript context,
and the start codonmutations of these two ncORFs did not impact the
protein production from corresponding main ORFs (Fig. 7f, g and
Supplementary Fig. 10h, i). Altogether, our results indicate that ncORF-
encoded proteins follow the basic molecular properties of canonical
proteins for subcellular localization to carry out diverse cellular roles.

ncORFs with high PepScores contain disease/trait-associated
variants
Genetic studies have revealed sequence variants associated with
human diseases or traits. Most of these variants are located outside of
canonical coding regions and were historically considered as ‘non-
coding’. Since we identified >50,000 novel translated ORFs across the
human genome, we next examinedwhether genetic variants can cause
peptide mutations in these ORF regions. To this end, we collected
variants annotated by the ClinVar and GWAS databases49,50, selected
those located outside of RefSeq-defined coding regions, and inter-
sected them with the ncORFs identified in this study (Fig. 8a). In total,

6,621 ClinVar and 585 GWAS variants were located in ncORFs (Fig. 8b,
c, Supplementary Fig. 11a, b, and Supplementary Data 10). 77% of these
variants were nonsynonymous mutations causing amino acid sub-
stitution, start/stop codon change, or frameshift (Fig. 8b, c). Among
AUG-initiated ORFs with high PepScores (>0.6), 212 were from ClinVar
and 142 were from GWAS (Fig. 8d).

For example, the inflammasome subunit NLRP3 gene encodes an
AUG-initiated uORF peptide (length = 98 aa and PepScore = 0.977).
This uORF contains 11 ClinVar SNPs, including six missense, one stop
gained, and four synonymous variants (Fig. 8e). The associated dis-
eases include familial cold autoinflammatory syndrome, chronic
infantile neurological cutaneous and articular syndrome, and familial
amyloid nephropathy with urticaria and deafness.

We examined the annotated risks for the ClinVar variants in
ncORFs. 41.4% were annotated as “uncertain significance”, and 49.3%
were considered as “benign” or “likely benign” (Supplementary
Fig. 11c). These risk annotations were mostly based on their impact on
disrupting known functional elements in the genome. Future work is
needed to examine the functional roles of these ncORFs, which may
reveal novel pathogenic roles of some variants.

Discussion
Recent advances in ribosomeprofiling data analysis revealed pervasive
translation in putative ‘noncoding’ regions. Emerging studies have
shown that some microproteins, including lowly conserved ones, are
stable with biological functions. These findings demand the compre-
hensive identification of translated ORFs across genomes and the
development of computational approaches to distinguish non-
canonical translation events generating stable peptides vs. translation
byproducts. Here we collected a large cohort of published ribosome
profiling datasets and selected high-quality reads showing strong 3-nt
periodicity to identify genome-wide translated ORFs across five
eukaryote species: human, mouse, zebrafish, worm, and yeast. Com-
pared to the existing ORF databases51,52 and studies of ORF
evolution13,53,54, our annotation leveraged more ribosome profiling
datasets across species and we required that the ncORFs annotated in
this study should show 3-nt periodicity of read distribution.

Our study represents the first to develop a logistic regression
model, PepScore, that calculates the probability that the peptide
encoded by a noncanonical is stable. PepScore was trained on a col-
lection of experimentally characterizedmicroproteins. Our systematic
follow-up experiments validated the correlation between PepScore
and peptide stability. Three molecular features contributed sig-
nificantly to the PepScore: the ORF length FDR, conservation, and the
presence of a protein domain in a peptide sequence. Studies examin-
ing ORF evolution13,53,54 have mostly relied on the conservation of ORF
structure and peptide sequences to identify candidate functional
proteins. As a result, many well-studied microproteins are conserved.
Unexpectedly, the peptide length contributedmost significantly to the
PepScore. Different from using an arbitrary cutoff of 100 aa, we cal-
culated the FDR of each observed ORF sequence. Many microproteins
showed significant FDRs when controlling for their transcript length.
This is consistent with the fact that long proteins are more likely to be
stably folded, and >60 aa seems to be a cutoff based on our ana-
lyses (Fig. 2c).

Considering ncORFs with high PepScores, most of them showed
significant length FDRs but with low conservation levels. For 4812
humanncORFswith high PepScore (>0.6) andAUGstart codons, 85.6%
showed negative PhyloCSF scores indicating their poor conservation
across mammals. 80% of these human peptides are not conserved in
any of the other four specieswe examined. And 18% are conservedonly
between human and mouse, but not in zebrafish, worm, or yeast.
Importantly, many of these lowly conserved peptides can be stably
expressed in the cells. For 16 noncanonical peptides showing an
expression level >5% in our ectopic expression experiments, 12 (75%)
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had PhyloCSF scores <0. Since poorly conserved lncRNAs can play
various biological roles through functional RNA domains, these
species-specific proteins can be biologically important. It will be
interesting to dissect their detailed molecular functions.

PepScore is also correlated with peptide response to the inhibi-
tion of proteasomal and lysosomal protein degradation pathways. For
unstable peptides with moderate PepScores, inhibiting these degra-
dation pathways can drastically enhance peptide expression. Most

peptides with low PepScore (<0.3) did not show expression even after
the combinatory inhibition of proteasome and lysosome pathways.
One possibility is that these short peptides are directly degraded by
proteases in the cell. The tens of protease types expressed in a cell
make it difficult to block their activities simultaneously. A recent study
showed that some noncanonical proteins can be degraded by the
BAG6-mediated proteasome pathway55. Here we expressed the full-
length translated ORFs in cells and showed that the peptides can be
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Fig. 7 | Noncanonical peptides follow the conventional rules and localize to
different subcellular compartments. a The immunostaining experiments show-
ing uINPP5F, uBPGM, and ouMRS2 (green) are localized to the ER. Calnexin (red)
was used as the ER marker protein. The DAPI staining (blue) was used to label the
cell nucleus. Scale bar, 10μm. b Western blot analysis of uINPP5F, uBPGM, and
ouMRS2 co-IP lysates.We examined the expression of ERproteins calnexin and BIP,
mitochondrial protein MT-ND1, and cytosolic protein RPS24. Only ER proteins
interactwith the uORFpeptides. cWesternblot showing the expressionof uINPP5F,
uBPGM, andmain ORFs in their native transcript. Flag-tagged uORF and HA-tagged
main ORF were ectopically expressed in HEK293T cells. EV, empty vector control.
dWeperformedwesternblot analysis of the exosome fraction andwhole cell lysate
to examine the expression of uINPP5F, uBPGM, and ouMRS2. CD63 protein was
used as the exosome marker. The nonsecreted protein calnexin was used as the

whole-cell lysate maker. We detected uORF peptide expression in both exosome
andwhole cell lysates, indicating these peptides are secreted extracellularly. e Flag-
tagged ORFs were ectopically expressed in HEK293T cells and co-immunostained
for Flag (green), cytosolic marker RPL24 (red), and DAPI (blue). Scale bar, 10μm.
f Western blot showing the expression of ouPHF19 and PHF19 (main ORF) in the
native transcript. Flag-tagged ouORF and HA-tagged main ORF were ectopically
expressed in HEK293T cells. The flag tag induced an insertion of 8 in-frame amino
acids into the main ORF without disturbing the protein sequences. gWestern blot
showing the expression of CENPO (main ORF) and dCENPO in the native transcript.
dORFwas taggedwith a Flag and themainORFwas taggedwith anHA. Experiments
(a–g)wereperformed three timeswith similar results. Sourcedata areprovided asa
Source Data file.
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regulated by a variety of degradation pathways correlated with Pep-
Scores (or lengths). While our PepScore prioritizes noncanonical
peptides for experimental characterization, further studies are needed
to examine the molecular properties of microproteins subject to dif-
ferent degradation pathways, such as motif existence or protein sec-
ondary structures. Learning these basic molecular mechanisms can
add an additional layer to quantitatively predict cellular microprotein
expression.

Because the majority of characterized functional proteins use
AUG as their start codons and 5’-end methionine is critical for protein
stabilization, our PepScore was trained only based on AUG-initiated
ORFs. Our RibORF analyses also identified thousands of non-AUG-
initiated ORFs that were translated in a cell. Currently, there lacks
enough experimental data for these non-AUG ORFs to train a pre-
dictive model, although studies showed that a few CUG-initiated ORFs
can have cellular functions. It was shown that both canonical Met-
tRNAi

Met and Leu-tRNACUG can decode non-AUG start codons56–58.
However, for individual ORFs, their regulatory mechanisms remain
elusive. Future experiments are needed to focus on non-AUG-initiated
peptides and examine basic molecular mechanisms regulating their
expression and stability.

Pervasive translation happens in annotated untranslated regions
of mRNAs or off-frame regions (i.e., uORFs, dORFs, and iORFs). 1954
uORF/iORF/dORF peptides showed high PepScores (>0.6). Our
experiments showed that many of them can be stably expressed in
association with protein complexes. The ectopic expression of endo-
genous transcripts tagging both ncORFs and canonical ORFs showed
that the two peptides can be generated confirming the polycistronic
nature of the transcripts. These results raise the semantics issue of
conventional gene structure definition based on the “one-gene one-
polypeptide” hypothesis. Precautions are needed in the future char-
acterization of individual candidate polycistronic RNAs, including
checking the accuracy of transcript isoform annotations and per-
forming experiments showing that the tandem peptides can be gen-
erated from one transcript isoform.

Our study provides a valuable resource for future functional stu-
dies of noncanonical peptides during development and disease. As
high stability is an important feature for potential functions, the Pep-
Score provides a quantitative guide to prioritize these peptides for
detailed characterization. On the other hand, although most non-
canonical peptides (>80%) are predicted to have low PepScores, they
could function as regulators ofmainORF expression (e.g., uORFs). The
quickly degraded noncanonical peptides can also be presented by the
MHCs and could be used as neoantigens for disease therapy21–23. Many
ncORFs contain ClinVar and GWAS variants, which can be biologically
and clinically important. Functional characterization of these non-
canonical peptides in human diseases may lead to the development of
novel therapeutic strategies.

Methods
Ribosome profiling data processing
We downloaded ribosome profiling datasets from the NIH Gene
Expression Omnibus (GEO) and the EMBL-EBI European Nucleotide
Archive (ENA) databases. The datasets we analyzed are listed in Sup-
plementaryData 1.We trimmed sequencing adapters of reads and then
mapped reads to ribosomal RNA (rRNA) sequences annotated in each
respective species using Bowtie (v2.2.6)59. The non-rRNA reads were
mapped to reference transcriptomes and genomes using TopHat
(v2.1.0)60. We used GENCODE61 transcriptome annotations for human
(hg38, GENCODEV39) andmouse (mm10,GENCODEV25), andweused
ENSEMBL gene annotation for zebrafish (GRCz11), worm (WBcel235),
and yeast (sacCer3). The uniquely mappable reads were used for
subsequent analyses. The samtools (v1.9)62 and deepTools (v3.1.1)63

were used for processing the sequencing reads.

Identifying genome-wide translated ORFs using RibORF30

For each ribosome profiling sample, we grouped reads based on their
fragment sizes and plotted the distribution of 5’-ends of fragments
around start and stop codons of annotated mRNAs. We calculated the
fraction of reads assigned to the 1st nucleotides of codons (in-frame
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GWAS catalog in ncORFs. b The number of ClinVar variants located in different
ncORF types, grouped based on the start codon and PepScore. We used the soft-
ware SnpEff to annotate different functional impacts of the variant on the ncORFs.

c As in (b), the GWAS variants were analyzed. d For the ncORFs with AUG start
codon and high PepScore (>0.6), we plotted the number containing ClinVar and
GWAS variants grouped based on ORF type. e The example gene NLRP3 encodes a
high-PepScore uORF containing ClinVar variants. The variants are colored based on
mutation types shown in (b).
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reads). We required that the high-quality reads should show in-frame
reads >60%, and only these reads were used for downstream analyses.
We calculated the offset distance to adjust the 5’-end locations of the
reads to the ribosomal A-sites (the correction parameters are shown in
Supplementary Data 1). These A-site adjusted reads were next used to
examine genome-wide translated ORFs.

Based on transcript annotations in each genome, we identified
candidate ORFs (with a start codon (NUG/AUC) and a stop codon) and
required that ORFs included in the downstream analyses should con-
tain >10 ribosome profiling reads. Suppose the ORF contained L
codons (excluding the start codon). For the codon i, the number of
reads located in the 1st, 2nd, and 3rd nucleotides is ni1, ni2, and ni3,
respectively. We used the following three features to model whether
the reads showed continuous 3-nt periodicity across codons in a can-
didate ORF: (1) the fraction of the reads assigned to 1st nt of codons:

f 1 =
PL

i= 1
ni1PL

i= 1
ni1 +

PL

i= 1
ni2 +

PL

i= 1
ni3

; (2) the fraction of codons supporting in-

frame translation (i.e., the 1st nucleotide contains more reads than the

2nd and 3rd): f 2 =
PL

i = 1ðni1 >ni2 &ni1 >ni3Þ=L; and (3) the PME value to
measure the uniformness of read distribution across the codons as
detailed below13,64.

For eachORFwith L codons, supposed the total read number isN.
We divide the ORF into smaller regions based on N and L: if N > L, we
define a region length as 1 codon; otherwise, a region length is defined
as floor (L/N). For each region j in anORF, we calculated the fraction of
reads in the region: P(Xj) = nj/N, where nj represents the number of
reads in region j. We then calculated the entropy value of the read
distribution: E =

Pm
j = 1ðPðXjÞ*log2PðXjÞÞ, wherem is the total number of

regions. The PME value is calculated as: f3 = E/maxE, wheremaxE is the
entropy value when we resampled the reads to be perfectly evenly
distributed across codons in an ORF.

We trained a logistic regressionmodel to identify translated ORFs
using the three features (f 1,f 2, and f 3). A candidate ORF has a higher
probability of being actively translated if the three features show
higher values. We used canonical ORFs as positive examples. Internal
off-frame ORFs and those showing highly localized distribution with
PME (f 3) < 0.1 (likely representing non-ribosomal RNA-protein
complexes64) were used as negative examples. We randomly selected
1000 positive examples and 3000 negative examples to train the
model with 5-fold cross-validation. To test the performance of the
classifier, we used another 1000 positive and 3000 negative examples
for the testing dataset and calculated the AUROC.

To account for lineage-specific regulation, we built a logistic
regression classifier to identify translated ORFs for each cell type from
each ribosome profiling dataset (Supplementary Data 2). We also built
a model using merged reads from each species. To minimize the false
positive predictions, we required that an ORF should show positive
predictions (P >0.6) by two independent models. We further used
Salmon (v1.6.0)31 to calculate the ORF isoform level expression and
required that an ORF should show expression level RPKM (reads per
kilobase of exon per million reads mapped) >0.2 in at least one
cell type.

Comparing the ORF predictions using other published software
To examine the robustness of our RibORF predictions, we used several
other published software to predict genome-wide translated ORFs in
human, including RiboTish32, RiboCode33, PRICE34, and RiboTricer35.
We performed a prediction for each high-qualify ribosome profiling
sample showing strong 3-nt periodicity in Supplementary Data 1.
RiboTish, RiboCode, and RiboTricer allowed the customized para-
meters for the offset correction distance between the 5’-end of reads
and ribosomal P-sites. The distances were based on the parameters
listed in Supplementary Data 2: the offset distance to P-site = the

distance to A-sites − 3. We performed a prediction using an AUG-start
codon only and another prediction allowing NUG/AUC start codons.
The minimal ORF length was set to 2 codons. For PRICE, it does not
allow customized parameters, the prediction was done using the
default parameters.

Then we compared our RibORF prediction with those obtained
from these software. We annotated ORFs with perfect ORF structure
match. Additionally, as these algorithms used different approaches to
select representative start codons of an ORF, we also annotated ORFs
showing stop codon match and start codon mismatch across the
predictions. These comparison results were shown in Supplemen-
tary Data 5.

The collection of microproteins
To examine the ORF features of stable microproteins, we curated a list
of studied peptides from the literature/database. We selected micro-
proteins <100 aa and with an AUG start codon, and required ORF
sequences show a perfect match between our annotation vs. pub-
lished.We collected 343 stablemicroproteins from the following three
sources: (1) RefSeq-defined microproteins, which have well-
characterized functional roles. The longest protein isoform of a gene
was considered. (2) Stable microproteins based on the ectopic
expression experiments from Prensner et al. 18. In the study, they fused
the full-length noncanonical ORFs with a V5-tag and the same 5’UTR/
3’UTR, and performed the ectopic expression in HEK293T cells. They
performed in-cell immunoblotting to quantify the peptide expression.
If the expression value > 1, a peptide was considered to be stably
expressed. (3) Complex-associating microproteins from Chen et al. 19.
They used the co-IP mass spectrometry experiments and showed that
the peptides are associated with other proteins. There are overlaps of
these microproteins from three sources, shown in the Venn diagram
(Supplementary Fig. 5a).

We collected 100 microproteins which were undetectable based
on ectopic expression experiments from Prensner et al. 18 with
expression values < 1. The list of stable and undetectable peptides is
shown in two different spreadsheets in Supplementary Data 6.

In this list, we only consideredmicroproteins encoded by putative
lncRNAs or canonical ORFs ofmRNAs. Some of the peptides studied in
Prensner et al. 18 or Chen et al. 19 were not included if they were longer
than 100 aa, used non-AUG start codon, had sequence mismatches
with our annotation, or were annotated as ncORFs (e.g., uORFs)
in mRNAs.

Annotation of molecular features of translated ORFs
We used PhyloCSF scores based on the genome alignment across 58
mammals to measure the peptide conservation level. DeepLoc43 was
used to predict the subcellular localization of the peptides. We cal-
culated the amino acid composition of a peptide sequence using
categories of hydrophobic (“F”, “L”, “I”, “V”, “P”, “A”, “G”), charged (“R”,
“K”, “D”, “E”), polar (“Q”, “N”, “H”, “S”, “T”, “C”), hydrophilic (“C”, “D”,
“E”, “H”, “K”, “N”, “Q”, “R”), and amphipathic (“W”, “Y”, “M”). The fol-
lowing codons showing high usage frequency compared to other
synonymous ones were considered optimized codons: “GCC”, “CGC”,
“AAC”, “GAC”, “TGC”, “CAG”, “GAG”, “GGC”, “CAC”, “CTG”, “AAG”,
“CCC”, “TTC”, “AGC”, “ACC”, “TAC”, and “GTG”. We used the tool
pyHCA to perform the hydrophobic cluster analysis (HCA) and
examine peptide foldability39.

Weused Pfam (v1.6-2)40 andTMHMM(v2.0c)41 to searchwhether a
protein domain exists in a peptide sequence. We calculated the motif
strength surrounding AUG start codons (6 nt upstreamof the AUG and
1 nt downstreamof the AUG) based on the consensus Kozak sequence.
The Kozak score is calculated as described in Chen et al. 19: if the −6
position is a ‘G’, +3; if the−5 position is a ‘C’, +1; if the −4position is a ‘C’,
+1; if the −3 position is a ‘G’ or ‘A’, +3; if the −2 position is a ‘C’, +1; if the
−1 position is a ‘C’, +1; and if the +1 position is a ‘G’, +3. We took a 40 nt
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sequence around start codons (20 nt upstreamand 20nt downstream)
and used ViennaRNA (v2.5.0)65 to fold the RNA sequence and calculate
the minimum free energy (MFE) value.

To study the human noncanonical peptide conservation in other
species, we used BLASTP (v2.6.0)66 to examine the sequence simila-
rities in ORFs we identified other species. We consider a human pep-
tide to be conserved if it meets the following criteria: (1) the two ORFs
have aBLASTP alignment E-value < 10−4; (2) theORF types are the same;
(3) the start codons are the same.

Weused theTau-index42 to calculate the tissue-specific expression
across the following 11 cell/tissue types: B-LCL: GSE143263, Liver: E-
MTAB-7247, HepG2: GSE129061, Brain: E-MTAB-7247, Testis: E-MTAB-
7247, iPSC: GSE131650, K562: GSE129061, A375: GSE143263, HCT116:
GSE143263, HeLa: GSE125218, and HEK293T: GSE125218. Suppose xi is
the expression level of the gene in tissue i, and n is the number of
samples. We calculated the relative expression of the gene as

ri = xi=max1≤ i ≤nðxiÞ. The Tau index is calculated as τ=
Pn

i= 1
ð1�riÞ

n�1 .

Calculating the length FDRs of translated ORFs
Toobtain the expectedORF lengths in a transcript, we generated 1000
pseudo-transcripts of the same length from shuffled transcript
sequences and random genome sequences. For each pseudo-tran-
script, we identified all possible ORF structures with an AUG start
codon and a stop codon. Then we calculated the length distribution of
these expected ORFs from pseudo-transcripts. Suppose there are n
total possible ORFs from a pseudo-transcript; for each of them, we
examined whether its length is longer than the observed translated
ORF in the transcript. Suppose m ORFs giving rise to a pseudo-
transcript are longer than the observed length. The FDR of the
observed ORF length was calculated asm/n. The FDR values calculated
based on the shuffled transcripts and randomgenome sequences were
significantly correlated (Supplementary Fig. 5f). We then used the
mergedexpectedORFs fromthe two sets of randomized sequences for
the final FDR calculation.

Building the logistic regression model PepScore to predict
peptide stable probability
Based on the comparisons of stable vs. undetectable microproteins,
we found genomic features showing a significant difference between
the two types. Three ORF features were included in our PepScore
model: (1) the FDR of ORF length: t1 = -log10(FDR value); (2) the exis-
tence of a Pfam or transmembrane (TMHMM) domain (t2 = 1 if there is
a domain; t2 =0 if no identifieddomain); (3) conservationmeasuredby
the PhyloCSF score as t3. Suppose an ORF has K codons; for each
codons i the in-frame PhyloCSF score is fi. t3 is calculated as

log 10ðjPK
i= 1 f ij+ 1Þ � signð

PK
i = 1 f iÞ. In our final model, we used

log(sum of PhyloCSF scores) across the ORF region to model the
conservation. We also tried using the average PhyloCSF score, but
found it performed worse than the sum value.

Based on these features (t1, t2, and t3), we trained a logistic
regression model, PepScore, to calculate each peptide’s stable prob-
ability, using the R (v3.5.1) package “caret”. We randomly selected 200
microproteins for the training dataset with 5-fold cross-validation, and
a different set of 100 microproteins for the testing dataset. The R
command line used for 5-fold cross-validation is “train_control ←
trainControl(method = “cv”, number = 5)”, and the command for build-
ing the logistic regression model is “model ← train(as.factor(st-
ability) ~ t1 + t2 + t3, data = input, trControl = train_control,
method = “glm”, family=binomial())”. For our final model, the training
and testing sets show comparable AUROC values in distinguishing
stable vs. undetectable microproteins. We used the command “eval-
mod”of theRpackage “precrec” to calculate theAUROCvalues. Adding

more ORF features to the classifier, as presented in Supplementary
Fig. 6, did not increase the prediction accuracy (the AUROC change
was <0.01). To compare PepScore’s performance in classifying the two
types of microproteins vs. using other ORF features, we calculated
AUROCusing the individual ORF features to perform the classification.

Cell culture
HEK293T (CRL 3216) and MCF-7 (HTB-22) cells were purchased from
the American Type Culture Collection. Cells were cultured in Dulbec-
co’s modified Eagle medium (DMEM) supplemented with 10% fetal
bovine serum (FBS) and maintained in a humidified incubator at 37 °C
with 5% CO2.

ORF ectopic expression and expression level quantification
To generate plasmids used for ectopic expression, the ORFs were PCR
amplified, digested, and then inserted into the pcDNA3.1(+) vector
(Invitrogen) with a fused Flag tag before the stop codon. The CDS of
EGFP was cloned into the pcDNA3.1(+) vector and was used as a posi-
tive control. All CDSs of ORFs and primers used for amplification were
synthesized by Twist Bioscience and Integrated DNA Technologies
(IDT). We listed ORF sequences and primers in Supplementary Data 8.

To examine the expression of ncORFs in their native transcript
context, we cloned the full transcript (5’UTR to the stop codon ofmain
ORF for uORFs, ouORFs, and iORFs; 5’UTR to the stop codon of dORF
for dORFs) to the pCDH-CMV-MCS-EF1-Puro vector (System Bios-
ciences) through the Nhe1 and Not1 restriction sites by gene assembly.
NcORFs were fused with a Flag tag and main ORFs were fused with an
HA tag. Control plasmids were generated bymutating all in-frame start
codons in ncORFs. All full transcript sequences and primers are listed
in Supplementary Data 8.

To ectopically express ORFs, 1.5 × 105 HEK293T cells were grown
on poly-L-lysine (Sigma) coated 15mm cover glasses placed in a 24-
well plate for 12 h and transfected with 0.6 µg plasmid using lipo-
fectamine 2000 reagent. Media was refreshed 6 h after transfection,
and cells were further cultured for 24 h. Cells were fixed with 4%
paraformaldehyde for 10min at room temperature and washed twice
with Dulbecco’s phosphate-buffered saline (DPBS). Cells were then
permeabilized with 0.1% Triton X-100 for 10min and washed twice
with DPBS. After blocking with 2.5% BSA for 1 h at room temperature,
cells were stained with anti-Flag antibody (1:500, P1804, Sigma)
overnight at 4 °C. Cells were washed three times and then incubated
with secondary antibody (1:1000, A32723, Goat anti-Mouse Alexa
Fluor 488, Invitrogen) for 1 h at room temperature. Cells werewashed
and mounted onto glass slides using ProlongTM Glass antifade
mountant with NucBlueTM Stain (P36983, Invitrogen). We used 0.6 µg
pcDNA3.1-EGFP plasmid as the positive control and 0.6 µg pcDNA3.1
empty vector as the negative control. Control sampleswere prepared
in parallel. Images were captured using a Nikon A1R confocal
microscope.

To quantify the expression level of ORFs, we analyzed and cal-
culated the percentage of cells with a positive-Flag-staining signal by
ImageJ. The percentage of GFP-positive cells was calculated, and the
expression score of each ORF was given by normalizing the ORF-
positive percentage to the GFP-positive percentage. More than 6000
cells from at least four experimental replicates were analyzed for
each ORF.

To examine the magnitude of overexpression, total RNA was
isolated after 24 h ectopic expression using the Direct-zol RNA Mini-
Prep kit (Zymo Research). Reverse-transcript was carried out using a
High-Capacity cDNA Reverse Transcription Kit (4368814, Applied
Biosystems). Quantitative PCR was performed with PowerUp™ SYBR™
Green Master Mix (A25742, Applied Biosystems) on QuantStudio 3
(Applied Biosystems). All qPCR primers are listed in Supplemen-
tary Data 8.
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Protein degradation pathway inhibition
To inhibit peptide degradation, 6 h after transfection, cell culture
media was changed to complete DMEM supplemented with protea-
some inhibitors MG132 (M7449, Sigma; 5 µM) and lactacystin (2267,
TOCRIS; 20 µM), and/or lysosome/autophagy inhibitors chloroquine
(C-237, Sigma; 50 µM) and bafilomycin A1(S1413, Selleckchem; 50 nM).

Generation of stable cell lines
To generate plasmids used for stable expression of ORFs in the various
cell lines, we cloned the CDSs of the indicated ORFs (uSLC35A4,
uMKKS, and iPGRMC1) into the pCDH-EF1-MCS-IRES-copGFP vector
(SystemBiosciences) through theNhe1 andNot1 restriction siteswith a
fused Flag tagbefore the stop codon. Control plasmidsweregenerated
bymutating all in-frame start codons. All CDSs andprimers are listed in
Supplementary Data 8.

To generate stable cell lines, lentivirus was produced by trans-
fecting HEK293T cells with pMD2.G, pPAX2, and ORF-containing
pCDH-EF1-ORF-IRES-copGFPplasmids.Media containing lentiviruswas
collected after 48 h and filtered through a 0.45 μm PVDF membrane.
MCF-7 cells were spinfected in virus-containing media supplemented
with 8μg/mLpolybrene at 1000× g for 1 h at 37 °C.Mediawas replaced
after overnight incubation. MCF-7 cells stably expressing ORFs were
sorted by gating GFP-expressing cells on a BD Influx cell sorter after
3–4 days. Cells were expanded, and theORF expressionwas confirmed
by western blotting and immunostaining (all antibodies used are listed
in Supplementary Data 8).

CRISPR knockout
To generate plasmids used for CRISPR knockout, sgRNAs targeting
uSLC35A4/PMPCA/PMPCBandnontargeting controlswere cloned into
the LentiCRISPRv2 backbone. sgRNAs are listed in Supplementary
Data 8. All plasmids used in this study were verified through Sanger
sequencing.

To generate knockout cells, lentivirus particles were packaged by
transfecting HEK293T with pMD2.G, pPAX2, and constructed pLenti-
CRISPRv2 plasmids. Media was changed after 6 h, and media contain-
ing lentivirus was collected after two days. The collected media was
centrifuged at 2000 rpm for 5min and filtered through a 0.45μm
PVDF membrane. MCF-7 cells expressing the indicated ORFs were
spinfected in virus-containing media supplemented with 8 μg/mL
polybrene at 1000 × g for 1 h at 37 °C. After 24 h, cells were selected
with 1 µg/mL puromycin for 5 days. Protein knockout was validated
with western blotting (antibodies are listed in Supplementary Data 8).

Identification of peptide subcellular localization by
immunostaining
The immunofluorescence was performed as described above, except
for the antibody incubation. After blocking, cells were stained with
anti-Flag mouse antibody (F1804, Sigma, 1:200) and co-stained with
organelle markers for mitochondria, ER, or cytoplasm overnight
(ab186735, anti-TMM20, 1:200, Abcam; 5318, Cell Signaling Technol-
ogy, anti-AIF, 1:200; 12175-1-AP, anti-OXCT1 Proteintech, 1:100; 2679 T,
anti-Calnexin, Cell Signaling Technology, 1:200; 17082-1-AP, anti-
RPL24, Proteintech, 1:100). In Figs. 5b, 6c, Supplementary Fig. 9f and
9k, MCF-7 cells with stable ORF expression were incubated in sec-
ondary antibody solution: Alexa Fluor 555 Goat anti-Mouse (A21424,
Invitrogen, 1:1000) and Alexa Fluor 647 Goat anti-Rabbit (A32733,
Invitrogen, 1:1000). In Figs. 7a, 7e, Supplementary Fig. 9a, 9b, 10a, 10b,
10f, 10h, and 10i, ORF-expressing HEK293T cells were incubated in a
secondary antibody solution: Alexa Fluor 488 Goat anti-Mouse
(A32723, Invitrogen, 1:1000) and Alexa Fluor 555 Goat anti-Rabbit
(A21428, Invitrogen, 1:1000) for 1 h at room temperature. After wash-
ing, cells were mounted with ProlongTM Glass antifade mountant with
NucBlueTM Stain. Slides were imaged on a Nikon A1R confocal
microscope.

Identification of peptide interaction partners by immunopreci-
pitation/mass spectrometry
HEK293T cells were seeded on a 6-cm dish at 60% confluency and
transfectedwith 4μgORF-containing pcDNA3.1 plasmids the next day.
Cell media was changed after 6 h and cells were collected after 48 h.
Peptides were immunoprecipitated with anti-Flag M2 magnetic beads
(M8823, Sigma) according to the manufacturer’s instructions. Briefly,
washed cells were lysed in lysis buffer (50mMTris HCl, pH 7.4, 150mM
NaCl, 1mM EDTA, 1% Triton X-100, and protease inhibitor) for 10min
on ice. After clarification, the supernatant was transferred to a new
centrifuge tube and incubated with pre-washed anti-FlagM2magnetic
beads overnight in an agitator at 4 °C. Beads were washed three times
with buffer (50mMTris HCl, pH 7.4, 150mMNaCl), and peptides were
eluted with SDS-PAGE sample buffer. Samples were boiled and loaded
into a 4–20% Mini-protein TGX stain-free gel (Bio-Rad). The stacking
gel was prepared by running the gel at 120 V for 5min until all samples
were embedded into the gel. The gel was stained with Coomassie blue
and the protein-containing region was excised. The peptide/protein
complexes were then subjected to in-gel digestion and prepared for
mass spectrometry. We used an empty vector as the negative control,
and each peptide was prepared and measured in triplicate. The
enrichment of peptides was validated with western blotting.

Raw mass spectrometry files were processed with MaxQuant
(1.6.17.0)67 using label-free quantification and searched against a cus-
tom FASTA file. An FDR of 1% was applied to peptide-spectrum match
(PSM) and protein level. The fixed modification was carbamidomethyl
(C). Selected variable modifications were oxidation (M) and acetyl
(protein N-terminus). Exported data were further analyzed with Per-
seus (v1.6.15.0)68. After data normalization, filtering, and imputation,
interactors were identified by performing two-sample two-sided
t-tests. The enrichment values and P-valueswere exported for plotting.

Analysis of published mass spectrometry and CRISPR
screening data
We downloaded published mass spectrometry datasets (PXD019486,
PXD020620, PXD014031; 188 samples in total) from nine human cell
lines (e.g., iPSCs,HEK293T, PC3), sixmouse cell lines (e.g.,mESCs,MEF,
4T1), and eight mouse tissues (e.g., brain, kidney, heart)19,69. The raw
data were processed with MaxQuant (v1.6.17.0) using label-free quan-
tification and searched against a customized FASTA file with the ORF
sequences identified in this study. For whole proteome data, peptides
with a minimum length of eight amino acids were considered for the
search, including N-terminal acetylation and methionine oxidation as
variable modifications and cysteine carbamidomethylation as a fixed
modification. Enzyme specificity was set to trypsin-specific. A FDR of
1% was applied to PSM and protein levels. A maximum of two missed
cleavages was allowed. Maximum precursor and fragment ion mass
tolerance were set to 4.5 and 20 ppm, respectively.

For the MHC I-bound peptides, we downloaded datasets from six
allotype-resolved cell lines70 and three DLBCL cell lines21 (PXD000394,
PXD020620; 31 samples in total). When searching HLA and MCH
peptidome data, an FDR of 1% was applied to PSM. Protease specificity
was set to nonspecific, and possible peptide identifications were
restricted to 8-15 amino acids. We also incorporated the MHC
I-detected peptides shown in Ouspenskaia et al. 22. To examine whe-
ther an ORF knockout impacts cell growth, we analyzed the pheno-
typic scores presented in Chen et al. 19, who designed a customized
CRISPR library to knock out lncRNA ORFs and uORFs and examined
their impact on iPSCs and K562 cells. A lower phenotypic score indi-
cated stronger inhibition of cell proliferation.

Mitochondrial membrane potential measurement
MCF-7 cells and MCF-7_uSLC35A4 cells with uSLC35A4 knockout or
control knockout were seeded in 8-well µSlides (80826, iBidi) at
35,000 cells/well. When cells were grown to 80% confluency the next
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day, CCCP (positive control of mitochondrial membrane potential
loss; 13296, Cell Signaling Technology) was added to the control wells
to a 50 µM final concentration. Cells were incubated at 37 °C for
30min. To measure mitochondrial membrane potential, TRME solu-
tion (13296, Cell Signaling Technology) was added to each well to a
final concentration of 100 nM, and cells were stained in an incubator
for 20min. Cells were washed three times with warmed PBS and then
incubated in pre-warmed FluoroBrite DMEM (A18967, Gibco). Live
images were acquired on a Nikon A1R confocal microscope. Para-
meters of image capture were set based on CCCP-treated and
untreated MCF-7 cells.

For analysis of themembrane potential of mitochondria in cells in
different experimental conditions, the intensities of TMRE (tetra-
methylrhodamine, ethyl ester) fluorescence were measured with
ImageJ software (v1.52) following published methods71,72. Statistical
analyses were performed by unpaired two-sided Student’s t-tests using
the Prism analysis program (GraphPad v9.2.0).

Exosome isolation
Extracellular vesicles were isolated using Total Exosome Isolation
Reagent (4478359, Invitrogen) following the manufacturer’s instruc-
tions. Briefly, HEK293T cells were grown on a 10-cm dish to 80% con-
fluency and transfected with 10μg pcDNA3.1 plasmids. After 6 h,
culture media was changed to DMEM supplemented with 10%
exosome-depleted FBS (A2720803, Giboco) and protease inhibitors
(P1860, Sigma). Cell culture media was collected after two days and
centrifuged at 2000× g for 30min. The supernatantwas transferred to
a new tube andmixed with 0.5 volumes of the total exosome isolation
reagent. Samples were incubated at 4 °C overnight and centrifuged at
10,000× g for 1 h at 4 °C. The pellet was suspended in 1x Laemmli
sample buffer and analyzed by western blotting. CD63 (10628D, Invi-
trogen) was used as an exosome marker73.

Western blotting
Cells were lysed in RIPA buffer (89900, Thermo) supplemented with a
protease inhibitor cocktail (Roche). Protein concentrations were
determined by a Detergent Compatible Bradford Assay kit (23246,
Thermo). Calibrated samples were diluted with 4x Laemmli sample
buffer (Bio-Rad), and equal amounts of total protein were separated in
Mini-protein TGX stain-free gels (Bio-Rad). Proteins were transferred
to nitrocellulosemembranes using a Trans-blot TurboTransfer System
(Bio-Rad). The membranes were blocked with 5% nonfat milk in TBST,
incubated with primary antibodies overnight at 4 °C, washed three
times with TBST at room temperature, incubated with HRP secondary
antibodies, and imaged using the Bio-Rad Chemidoc imaging system.
All antibodies and dilution information used in this study are listed in
Supplementary Data 8.

RNA library preparation
RNA-seq libraries were generated as the previously described74. In
brief, total RNA was extracted with a Direct-zol RNA kit (Zymo
Research), and mRNAs were then isolated using Oligo(dT)25 magnetic
beads (New England Biolabs) according to the manufacturer’s
instructions. Purified mRNAs were fragmented with a NEBNext Mg2+

RNA fragmentation module (New England Biolabs) at 94 °C for 4min.
Fragmented RNAs were then precipitated overnight at −20 °C by
adding 0.1 volume of 3M sodium acetate, 10mg of glycoblue, and 1.2
volumes of isopropanol. RNA fragments were re-suspended, and the
library was constructed with A-tailing and SMARTer oligo-based tem-
plate switching method.

RNA-seq data analyses
We trimmed the 3’ sequencing adapters from the reads (AAAAAAAA
for the A-tailing methods). For the libraries we used SMARTer oligo-
based template switching, and we trimmed the first 7 nt, including the

random 4 nt and the 3 locked Gs in the 5’ sequencing adapters. The
trimmed reads were mapped to the reference genome (hg38) and the
GENCODE-defined transcriptome using STAR (v2.1.0)75. We used
HTSeq (v0.9.1)76 to generate gene-level read counts. Genes showing
dynamic regulation of RNA expression after ectopic ORF expression
were defined based on the following criteria: (1) transcript per million
(TPM) >3 in at least one condition; (2) >1.3-fold expression change in
both replicates.

Gene ontology analyses
Gene ontology analyses were conducted using the DAVID database77.

Genetic variant analyses
We downloaded genetic variant annotations from the ClinVar
database50 and the NHGRI-EBI GWAS calatog49. We filtered out these
located in RefSeq-defined coding regions. Next, we used the software
SnpEff (v4.5)78 to intersect and annotate the variants in human ncORFs
we identified in this study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We analyzed a large-cohort of published ribosome profiling datasets
and their accession numbers are listed in Supplementary Data 1. The
sequencing datasets generated in this study are available in the Gene
Expression Omnibus (GEO) repository with the accession number
GSE216093. The mass spectrometry data were deposited in the Pro-
teomics Identifications Database (PRIDE) with the project accession
PXD037658. Source data are provided with this paper.

Code availability
Computational codes were deposited in GitHub (https://github.com/
zhejilab/RibORF and https://github.com/zhejilab/PepScore).
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