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Dimerization-dependent serine protease
activity of FAM111A prevents replication fork
stalling at topoisomerase 1 cleavage
complexes
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Allison L. Welter 1,3, Gaofeng Cui 4, Benoît Bragantini 4,
Maria Victoria Botuyan 4, Anh T. Q. Cong 4, Georges Mer 4,
Matthew J. Schellenberg 4,7 & Yuichi J. Machida 2,3,5,7

FAM111A, a serine protease, plays roles in DNA replication and antiviral
defense. Missense mutations in the catalytic domain cause hyper-
autocleavage and are associated with genetic disorders with developmental
defects. Despite the enzyme’s biological significance, the molecular archi-
tecture of the FAM111A serine protease domain (SPD) is unknown. Here, we
show that FAM111A is a dimerization-dependent protease containing a nar-
row, recessed active site that cleaves substrates with a chymotrypsin-like
specificity. X-ray crystal structures and mutagenesis studies reveal that
FAM111A dimerizes via the N-terminal helix within the SPD. This dimerization
induces an activation cascade from the dimerization sensor loop to the
oxyanion hole through disorder-to-order transitions. Dimerization is
essential for proteolytic activity in vitro and for facilitating DNA replication
at DNA-protein crosslink obstacles in cells, while it is dispensable for auto-
cleavage. These findings underscore the role of dimerization in FAM111A’s
function and highlight the distinction in its dimerization dependency
between substrate cleavage and autocleavage.

FAM111A (FAM111 trypsin-like peptidaseA) is a serineprotease involved
in multiple cellular processes including antiviral defense and DNA
replication. The antiviral function of FAM111Awas suggested in studies
that identified FAM111A as a host restriction factor for the host range
mutants of simian virus 40 (SV40) and orthopoxviruses1–3. In a sub-
sequent proteomics study FAM111A was also found to localize at nas-
cent DNA and was shown to promote DNA replication via interactions
with proliferating cell nuclear antigen (PCNA) through its PCNA-
interacting peptide (PIP) box4. Proper regulation of FAM111A appears
to be crucial, given that heterozygousmutations in FAM111A cause two
rare human syndromes, Kenny-Caffey Syndrome type 2 (KCS2) and the
more severe disorder, Gracile Bone Dysplasia (GCLEB)5–8, which are

characterized by skeletal abnormalities, hypoparathyroidism, hypo-
calcemia, and low stature. Most of the disease-associated mutations
are missense mutations clustered either within or around the pepti-
dase domain of FAM111A9. These mutations are thought to cause
hyperactivation of the enzyme as inferred from its hyper-autocleavage
activity10,11. Ectopic expression of the disease-associated mutations
causes impairedDNA replication, single strandDNA (ssDNA) exposure,
DNA damage, nuclear structure disruption, and cell death11–13, sug-
gesting that protease activity of FAM111A needs to be tightly regulated
for proper DNA replication and cellular homeostasis.

Faithful DNA replication is essential for maintaining genome
integrity. However, replication fork stalling can occur at DNA damage,
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and can lead to double-strand DNA breaks and genomic instability if it
is prolonged14–16. To prevent fork collapse due to DNA damage, cells
use mechanisms involving various DNA repair enzymes to facilitate
DNA replication and repair at DNA damage sites. Our previous study
implicated FAM111A in protection of replication forks at protein
obstacles10. FAM111A KO cells exhibit replication fork stalling in the
presence of camptothecin (CPT), a topoisomerase I (TOP1) inhibitor,
or poly(ADP-ribose) polymerase inhibitors (PARPis)10. These inhibitors
cause replication fork stalling by trapping the target enzymes on
genomic DNA. Inhibition of TOP1 by CPT induces stabilization of
topoisomerase 1 cleavage complexes (TOP1ccs), a reaction inter-
mediate in which TOP1 is covalently bound to the 3’ end of the phos-
phodiester backbone at a ssDNA break17, while PARPis trap PARP
enzymes at ssDNA break sites noncovalently18,19. Due to their bulky
nature, DNA-protein crosslinks (DPCs) such as stabilized TOP1ccs or
tight DNA-protein complexes including trapped PARPs block the
movement of DNA polymerases, thereby imposing cytotoxicity on
cancer cells20. Consistent with this notion, our previous study found
that FAM111AKO cells are hypersensitive to CPT and PARPis, but not to
cisplatin, which blocks DNA replication through interstrand DNA
crosslinks10. Altogether, thesefindings suggest that FAM111A promotes
DNA replication at protein obstacles.

FAM111A contains a serine protease domain (SPD, Fig. 1a) with a
conserved catalytic triad (His385, Asp439, and Ser541). The FAM111A
SPD belongs to the S1 family of serine peptidases, which includes
chymotrypsin, in the MEROPS database21,22. The majority of the S1
family proteases are either extracellular or membrane-associated, but
FAM111A is one of the few proteases in this family that are
intracellular23. The protease activity of FAM111A is essential for its
function of facilitating replication at stabilized TOP1ccs or trapped
PARPs, as an active site mutant cannot rescue the replication defect
phenotype of FAM111A KO cells when treated with CPT or PARPis10.
However,while protease activity of FAM111Ahasbeendemonstrated in
vitro using recombinant proteins through autocleavage activity11,
whether FAM111A is capable of cleaving proteins other than itself
remains unknown.

Proteolysis of DPCs has emerged as an important mechanism for
their repair. The metalloprotease SPRTN was the first protease to be
identified to proteolyze DPCs at replication forks in higher
eukaryotes24–28. To prevent nonspecific cleavage of cellular proteins,
the activity of SPRTN is tightly regulated mainly through binding to
ssDNA, which is present at stalled replication forks24–27,29,30. FAM111A
has similar characteristics of protecting replication forks at protein
obstacles, and it has been hypothesized that FAM111A proteolyzes
DPCs10. However, its regulatory mechanism remains largely unknown,
partly because the structure of FAM111A protein has not been deter-
mined. Furthermore, there currently is noquantitative, in vitro assay to
directly measure FAM111A protease activity, hampering the ability to
examine the enzyme’s activity.

Herein, we have developed an in vitro peptidase assay for
FAM111A and characterized the SPD through structural studies to
understand the regulatory mechanism of FAM111A. Our crystal struc-
ture of the SPDhas revealed that it is a dimerwith a coiled coil interface
between theN-terminal α-helices within the SPDs.We have engineered
mutations to disrupt the dimer SPD interface to generate monomeric
mutants. The crystal structure of themonomericmutant revealed that
the dimer is associated with a disorder-to-order transition that stabi-
lizes the oxyanion hole at the active site. We have demonstrated that
dimerization is necessary for protease activity in vitro as well as DNA
replication at protein obstacles such as TOP1ccs stabilized by CPT
in vivo. Furthermore, we establish that autocleavage can occur inde-
pendent of FAM111A dimerization in our overexpression conditions.
Collectively, these data suggest that dimerization is required for
FAM111A’s substrate-cleaving activity and its cellular functions but not
for the autocleavage.

Results
SPD is sufficient for FAM111A peptidase activity
Recombinant proteins containing full-length human FAM111A were
expressed in insect cells and purified with an N-terminal Strep tag
(Fig. 1a, b). Additionally, recombinant SPD proteins, spanning residues
from the previously reported autocleavage site10 through the carboxy
terminus (Fig. 1a), were generated by expression in E. coli, followed by
affinity purification using the His.MBP tag, tag cleavage, and further
purification via chromatography (Fig. 1b).We then evaluatedpeptidase
activity of these proteins using a commercially available protease
substrate consisting of a peptide with a C-terminal phenylalanine
linked to a 7-amino-4-methyl coumarin (Suc-AAPF-AMC) (Fig. 1c).
Peptidase activity was measured in real-time by monitoring the
increase in AMC fluorescence after the substrate was mixed with
enzymes. Wild-type (WT) FAM111A SPD exhibited a linear increase in
AMC fluorescence over time in an SPD-concentration dependent
manner while the active site mutant S541A produced no detectable
change (Fig. 1d and Supplementary Fig. 1a), indicating that this sub-
strate can be used to assay FAM111A peptidase activity. The wild-type
full-length FAM111A protein also exhibited an increase in AMC fluor-
escence over time, while the S541A mutant showed no increase
(Fig. 1e). The specific activity of SPD was notably higher than that of
full-length FAM111A (Fig. 1f), suggesting potential autoinhibition by the
N-terminal region of FAM111A. Based on these results, we focused on
the SPD-containing fragment for further analyses.

FAM111A exhibits chymotrypsin-like protease activity
Serine proteases exhibit a preference for specific amino acids at the
residue N-terminal to the cleavage site (designated as a P1 residue):
chymotrypsin cleaves after Phe/Tyr/Trp residues; trypsin cleaves after
Arg/Lys residues; and elastase cleaves after Ala/Val residues31. To
determine the P1 specificity of FAM111A, we assayed the cleavage of
three commercially available AMC fluorogenic peptide substrates.
Wild-type SPD cleaved Suc-AAPF-AMC, which contains a phenylalanine
at the P1 position, but did not cleave Boc-LRR-AMC, which has an
arginine at P1, and MeOSuc-AAPV-AMC, which contains valine at P1
(Fig. 1g and Supplementary Table 1). Similarly, since serine proteases
can be inhibited by substrate-mimic chloromethyl ketone (CMK)
inhibitors32–34, we used the sensitivity to CMK inhibitors to corroborate
substrate specificity. FAM111A SPD was potently inhibited by N-p-
Tosyl-L-Phe chloromethyl ketone (TPCK), which has phenylalanine in
the P1 position (Fig. 1h). In contrast, the FAM111A SPDwas not inhibited
by MeOSuc-AAPV-chloromethyl ketone (SPCK), which has a valine at
P1, and only weakly by Nα-Tosyl-Lys chloromethyl ketone (TLCK),
whichhas a lysine in the P1position. Collectively, these data, alongwith
the identification that FAM111A’s site of autocleavage is also the
C-terminal side of a phenylalanine10, suggest that FAM111A prefers
phenylalanine at the P1 site, similar to chymotrypsin.

Chymotrypsin and FAM111A SPD share a sequence identity of
16.8% (Supplementary Fig. 1b). To assess the similarity between the
peptidase activity of FAM111A and chymotrypsin, we compared the
activity of both enzymes using fluorescent peptide substrates con-
taining Phe, Tyr, or Trp residues at the P1 position. FAM111A SPD
exhibited peptidase activity with Phe (P1) substrates as mentioned
above, and with Tyr (P1) and Trp (P1), although to a lesser extent
(Supplementary Table 1). This trend mirrors chymotrypsin activity,
although FAM111A exhibits a stronger preference for Phe at the P1
residue compared to chymotrypsin. These results suggest that
FAM111A exhibits chymotrypsin-like activity in vitro, characterized by
cleavage occurring C-terminal to a phenylalanine, a hallmark of the
FAM111A protease.

The serine protease domain of FAM111A forms a dimer
The SPD protein has a calculated molecular weight of 31.5 kDa. How-
ever, the purified protein eluted from a size-exclusion
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chromatography (SEC) column at a volume that corresponds to an
estimated molecular weight of 67 kDa (Fig. 2a and Supplementary
Fig. 2a), suggesting that the 31.5 kDa SPD forms a stable dimer in
solution. Dimerization was also validated by analytical ultra-
centrifugation (AUC) sedimentation velocity. The sedimentation
coefficient for the SPD normalized for 20 °C in water was 3.835 S (20,

w) (Supplementary Fig. 2b), from which we determined a molar mass
of 62,061 Da by using a calculated partial specific volume (v-bar) of
0.736mL/g. Thismolecularmass closelymatches that of an SPDdimer.

The dimerization of FAM111A SPD was unexpected, considering
that the FAM111A SPD contains a trypsin-like fold, which is typically
monomeric with the active site assembled from residues originally
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Fig. 1 | FAM111A SPD exhibits chymotrypsin-like protease activity. a Schematic
representation of the FAM111A domain architecture. The autocleavage site and
catalytic triad residues are indicated. FL: full length; PIP: PCNA-interacting peptide;
UBL: ubiquitin-like; ssDNA: single-strand DNA; SPD: serine protease domain.
bPurified recombinant Strep-FAM111A FL and SPD analyzedby SDS-PAGE. The sizes
ofmolecularweightmarker proteins are indicatedon the left. Strep:Twin-Strep tag.
c Schematic representation of the SPD protease assay. The AMC is attached to the
substrate peptide at the C-terminus. Protease-catalyzed hydrolysis yields fluores-
cence from AMC, which is measured at Excitation/Emission at 380 nm/460 nm.
d In vitro peptidase assay with WT SPD and S541A. Values are mean± s.d. of three
replicates. RFU: relative fluorescence units. e In vitro peptidase assay with WT
Strep-FL and S541A. Values are mean of three replicates and shaded areas indicate
s.d. f Specific activities of FAM111A FL and SPD. The enzyme reactions were per-
formed with 0.5μM SPD and 5.1μM full-length FAM111A. Activity is represented as

the change in RFU over time. Values are mean ± s.d. of three replicates. g Peptidase
activity of FAM111A SPD measured using various substrates. SPD activity was
measured using chymotrypsin (Suc-AAPF-AMC), trypsin (Boc-LRR-AMC), and elas-
tase (MeOSuc-AAPV-AMC) substrates. Values are mean ± s.d. of three replicates.
h Inhibition of SPD by various serine protease inhibitors. Peptidase assays using
FAM111A SPD were carried out as in (d) using Suc-AAPF-AMC as a substrate in the
absence (DMSO) or presence of inhibitors (1mM). Values are mean ± s.d. of four
replicates. TPCK: Tosyl-L-phenylalanyl-chloromethane; TLCK: Nα-Tosyl-Lys chlor-
omethyl ketone, hydrochloride; SPCK: N-(methoxysuccinyl)-Ala-Ala-Pro-Val-chlor-
omethyl ketone. In (f–h), significance of differences was determined by two-tailed
unpaired t-test. Experiments in (d, g) were repeated three times, experiments in (e)
more than three times, experiments in (f, h) twice with similar results. Source data
are provided as a Source Data file.
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derived from a single polypeptide chain. Therefore, we sought to
determine the molecular basis of FAM111A dimerization and assess
how dimerization could be related to its protease activity using X-ray
crystallography. To mitigate the potential problem with protein pro-
duction due to autocleavage, we generated the mutant SPD (S541A),
which lacks the serine nucleophile of the catalytic triad, andperformed
crystallization trials with the purified protein. The structurewas solved
at 2.7 Å (Protein Data Bank (PDB) ID: 8S9K; Supplementary Table 2;
Supplementary Figs. 2c and 3a) and contained four SPD proteins per
asymmetric unit (Fig. 2b). Overall, the individual SPD chains are similar
to each other (Fig. 2c), with root mean square derivations (RMSDs)
ranging from 0.15 Å to 0.3Å over Cα atoms. Thus, we focused our
analysis on chain D, which is the most complete, but our analysis is
broadly applicable to all chains.

The X-ray structure of the FAM111A SPD reveals an architecture
similar to chymotrypsin (PDB ID: 7GCH)35, featuring twoβ-barrels and a
catalytic triad composed of Asp-His-Ser(Ala), with a calculated RMSD
value of 2.2 Å (Fig. 2d). Interestingly, a protrusion of β-strands (β2 and
β10) buttressed by helices α2 and α5 yields a protease domain with an

active site located at the bottom of a trench, whereas the active site of
chymotrypsin is shallow and accessible for substrate engagement
(Fig. 2d, bottomandFig. 2e). This suggests that the FAM111ASPDactive
site architecture is tailored to cleave smaller substrates, such as linker
regions or disordered substrates, and not globular proteins.

An alignment of the FAM111A structure with that of chymotrypsin
co-crystallized with a trifluoromethyl ketone (TFMK) transition state
analog35 (Fig. 2f, g) reveals that FAM111A shares key features with
chymotrypsin. FAM111A possesses an oxyanion hole formed by the
backbone amide nitrogen of Ser541 and Gly539, as well as a P1 residue
binding pocket (designated as the S1 pocket) similar to that of chy-
motrypsin. This S1 pocket can accommodate phenylalanine, a pre-
ferred P1 residue (Fig. 1g, Supplementary Tables 1), as well as Phe334
present at the FAM111A autocleavage site10. While the S1 pocket in
FAM111A is about 0.5 Å narrower than that observed in chymotrypsin,
it can still easily accommodate phenylalanine by allowing rotation of
the peptide bond between Phe537 and Phe538. The hydrophobic
moieties that line the S1 pocket include Phe538, the main-chain back-
bones of 557-559, the α/β methylene of Glu573, and His556.
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Furthermore, there are additional solvent-exposed hydrophobic resi-
dues in the vicinity of the S1 pocket (Tyr369, Phe536, Phe537, Phe538,
Phe560, and Phe574) (Fig. 2g). This suggests that the presence of
hydrophobic residues in substrates in the vicinity of the cleavage site
may promote association with and cleavage by FAM111A.

Identifying the dimer interface in FAM111A SPD
Since the active site of FAM111A SPD is contained within a single
polypeptide, we sought to explain the curious observation that the
SPD is a dimer, and how dimerization could be linked to the FAM111A
function. We identified two potential dimer interfaces that are present
between adjacent polypeptide chains in the crystal lattice. The first
consists of a hydrophobic coiled coil interaction between the
N-terminal alpha helix (α1) of SPDs (Fig. 3a), and the second was

composed of main chain hydrogen bonds forming a β-sheet between
β10 of adjacent chains (Fig. 3b).

To determine which interface corresponds to the dimer interface
in solution, we engineered mutations that would specifically disrupt
one dimer interface or the other and evaluated the oligomeric state of
the mutant SPD proteins using SEC. To disrupt the interface at the α1
helix, we mutated hydrophobic residues Val347 and Val351 in the
coiled coil interface to aspartic acid (D), (V347D and V351D, respec-
tively) (Supplementary Fig. 3b),whichwould introduce a steric clash as
well as charge repulsion across the α1 dimer (Fig. 3c). To disrupt the
β10 interface, we generated a Thr563 to proline (P) (T563P) mutant,
which would disrupt the β10 sheet hydrogen bonds (Fig. 3d and Sup-
plementary Fig. 3b). We generated recombinant SPD containing these
mutations (Supplementary Fig. 4a) and analyzed them at equal

Chain D Chain A

�1
�1

a b e

c d

Chain C Chain A

�10
�10

gf

h

V351D
V351D

V347

V347

-
- clashV351

V351

V347D

V347D

-
-

clash T563P

T563P

clashclash 10 12 14 16 18 20 22
0
2
4
6
8

10
12
14

 Volume (mL)

A 2
80

 (m
AU

)

SPD V347D (32 �M)
SPD V351D (32 �M)
SPD T563P (32 �M)

67
0 

kD
a

15
8 

kD
a

44
 k

D
a

17
 k

D
a

D M

50
75

110
150

(kDa)
50
75

110
150

S541A

V347D/S541A

50Volume: 60 70 80 90
0

20

40

60

80

(mL)

A 28
0 

(m
AU

) S541A
V347D/S541A

67
0 

kD
a

20
0 

kD
a

66
 k

D
a

29
 k

D
a

D M

Strep-FL V347D/S541A (50 nM)

Mass (kDa)
0 80 160 240 320 400

0

80

160

240

320

C
ou

nt
s

147 kDa
(27%)

84 kDa
(71%)

DM

β7

N340

E415

E535

S342

β7

V347

V351

K348

N

N

D355

V347

V351

D355

K348
E415

N340

E415E535

S342

E415E415
E415E416

E416α1

α1

I344

K345

I344
K345

Strep-FL S541A (50 nM)

0 80 160 240 320 400
Mass (kDa)

0

60

120

180

240

C
ou

nt
s

145 kDa
(75%)

86 kDa
(23%)

DM

Fig. 3 | Identification of the dimer interface in FAM111A SPD. a, b Two possible
dimer interfaces identified in the crystal lattice of FAM111A serine protease
domain (SPD). Two subunits of a dimer, Chain A and Chain D in (a) and Chain A
and Chain C in (b), are shown. c, d Zoomed-in-view of the interfaces between
Chain A and Chain D (c) and between Chain A and Chain C (d). Key residues at the
respective dimer interface are indicated in yellow (V347), and pink (V351). Clashes
between mutated residues are shown with charge repulsion and steric hindrance
indicated byminus signs and curved double lines, respectively. e Chromatograms
of mutants (V347D, V351D, and T563P) from Superdex 200 Increase. Elution
volumes for SEC standard proteins are indicated with arrows on top. Expected
theoretical elution volumes for an SPDmonomer (31.5 kDa, indicated with a letter
M) and an SPD dimer (63.0 kDa, indicated with a letter D) are shown with dotted
lines. f Schematic diagram of the SPD dimerization interface mediated by α1.
Residues that comprise the dimer interface of one SPD monomer (teal) and the

other (gray) related by a 2-fold non-crystallographic symmetry axis are depicted
along with hydrogen bonds as black dashed lines. Residues mutated to disrupt
dimer formation are labelled in red. gChromatograms of FL Strep-FAM111A S541A
and V347D/S541A from HiLoad Superdex 200. Elution volumes for SEC standard
proteins are indicated with arrows on top. Expected theoretical elution volumes
for amonomer (73.6 kDa, indicated withM) and a dimer (147.1 kDa, indicated with
D) are shownwith dotted lines. SDS-PAGE analyses of the corresponding fractions
are shown with the positions of molecular markers. h Mass distribution for FL
Strep-FAM111A S541A and V347D/S541A obtained by mass photometry. Expected
theoretical molecular weights for a monomer (73.6 kDa, indicated with M) and a
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amounts and concentrations (32μM) using analytical SEC to deter-
mine their oligomeric state (Fig. 3e). The T563Pmutant eluted at a size
comparable to the WT SPD at an elution volume of 15.2mL, whereas
both the valinemutants (V347D and V351D) eluted from the column at
a volume (16.4mL) that best correlates with a monomer with no
observable presenceof dimer protein at this concentration. Therefore,
this suggests that the interface between α1 mediates SPD dimerization
in the solution. This interface contains a 1400Å2 of buried surface area
consisting of an interaction about a 2-fold non-crystalline axis of
symmetry that contains two sets of 7 hydrogen bonds (three of which
form main-chain hydrogen bonds to β7) and three salt bridges that
abut the coiled coil interaction between the α1 helices (Fig. 3f).

Dimerization of full-length FAM111A requires the α1 helix of
the SPD
We next used SEC to assess whether full-length FAM111A forms dimers
and whether this dimerization depends on the interactions at the α1
helix within the SPD. The Strep-FAM111A S541A protein (Fig. 1b) eluted
at a volume corresponding to an estimated molecular weight of
199 kDa, roughly matching the calculated molecular weight of the
Strep-FAM111A dimer (Fig. 3g). In contrast, the Strep-FAM111A S541A/
V347D mutant (Supplementary Fig. 4a) predominantly eluted at a
volume corresponding to an estimated molecular weight of 96 kDa,
close to the theoretical elution volume for the monomeric Strep-
FAM111A protein (Fig. 3g). These findings strongly suggest that full-
length FAM111A also exists in a dimeric form, and the V347Dmutation
disrupts this dimerization. This conclusion was further supported by
mass photometry, a technique that measures the mass of individual
biomolecules by analyzing their light-scattering properties36. The
results indicated that the peak fractions from the FAM111A S541A and
FAM111A V347D/S541A SEC predominantly contained dimer and
monomer forms, respectively (Fig. 3h). Collectively, these results
confirm that the α1 helix within the SPD serves as an important
dimerization interface for full-length FAM111A.

To determine the dissociation constant (Kd) of FAM111A dimers,
we prepared various dilutions of the Strep-FAM111A S541A protein and
analyzed thembymass photometry (Supplementary Fig. 4b). Based on
measurements at four different concentrations (10, 12.5, 25, and
50 nM), the average Kd value for full-length FAM111A S541A was cal-
culated to be around 4.8 nM. Additionally, specific activity of the SPD
proteins was similar at various concentrations (49–4000nM) at which
peptidase activity wasmeasurable (Supplementary Fig. 1a), suggesting
that the Kd value of the SPD dimer is ≤ 49 nM. Altogether, these results
suggest that the dissociation constant of full-length FAM111A is esti-
mated to be in the low nanomolar range.

Structure of monomeric FAM111A SPD
To determine the molecular consequences of SPD dimer formation,
we first sought to determine the structure of the monomeric form of
the SPD to enable a comparison of the two states. We prepared
recombinant SPD V351D (Supplementary Fig. 4a) and performed
crystallization trials. We found that it still crystallized in the same
space group as WT with the α1 interface, which is likely due to the
extremely high concentrations of SPD used in crystallization trials
( > 300 μM). Of note, we observed evidence of residual weak dimer
formation at a high concentration (188μM) during SEC (Supplemen-
tary Fig. 5a), suggesting that the dimerization defect of this mutant
could be overcome by very high protein concentrations. We were
unable to produce sufficient concentrations of the V347D SPD for
crystallization trials. Next, we generated a double V347D/V351D
mutant SPD (Supplementary Figs. 3b and 4a), but although it eluted as
a monomer in SEC (Supplementary Fig. 5a) and crystallized in a dif-
ferent space group, α1-mediated dimer interface was still present in
the crystal lattice. Therefore, to generate a mutant SPD that would
crystalizewithout forming theα1 dimer interface even at the very high

concentrations used for crystallization, we truncated the N-terminal
SPD to remove two-thirds of the dimer interface and included an
engineered V347D mutation to create a construct that we have
named mini-SPD (Supplementary Figs. 3b and 4a). We found that
mini-SPD remained monomeric even at the higher concentration of
protein during SEC (Supplementary Fig. 5a). We then performed
sparse matrix crystallization screens with the purified protein and
obtained crystals that diffracted to 1.85 Å (PDB: 8S9L; Supplementary
Table 2).

The mini-SPD crystallized with two polypeptide chains present in
the asymmetric unit. Although helix α1 is still present and visible in the
electron density map (Supplementary Fig. 5b), the dimerization
interface observed in the full SPD dimer structure is noticeably absent.
Overall, the mini-SPD and SPD dimer structures possess a significant
degree of similarity with an overall RMSD value of 0.5 Å, but with some
small yet impactful differences (Fig. 4a). The catalytic triad Asp-His-Ser
(in this construct the catalytic Ser541 was retained as wildtype) is
unchanged, which is expected as they are anchored on the rigid beta-
barrel domain. In contrast, several disordered regions were noted in
the mini-SPD where some of the residues comprising the dimerization
interface, several surface-exposed loops, and the oxyanion hole are
altered. Residues 413-422 that form a part of the loop L4 between β4
and β5 were disordered and not observed in the mini-SPD (Fig. 4b).
Another regionadjoining theβ6-β7 loop (LoopL6, residues 474-480) is
also disordered in one chain and altered compared to the dimeric SPD
in the other chain (Fig. 4c). In turn, this region abuts residues 535-539,
which include Phe538 that is part of the oxyanion hole (Fig. 4d). The
535–539 region surrounding the oxyanion hole is visible in the electron
density map, but in a conformation that is different from the dimeric
SPD with higher B-factors, and furthermore varies between the two
polypeptide chains (Fig. 4d).

The differences observed between the two chains of the mini-SPD
structure and the dimeric SPD as well as the higher B-factors observed
for residues 536–538 encompassing the oxyanion hole and S1 pocket
indicate that themonomeric SPD ismore disordered. This suggests that
dimerization of the SPD is associatedwith a disorder-to-order transition
that supports the oxyanion hole residues in the conformation that is
competent for catalysis. Biochemical support for this hypothesis comes
fromthermal shift data.Monomeric SPDgeneratedby single- ordouble-
pointmutants, or themini-SPD are all less stable thandimeric SPD at the
concentrations assayed (Supplementary Fig. 5c), consistent with the
dimeric state beingmore ordered and thereforemore stable to thermal
denaturation.

SPD dimerization triggers disorder-to-order transition
The loop L4, which is disordered in the monomeric SPD (Fig. 4b), is
structured in the dimeric SPD and forms salt bridges with Lys348 and
Lys345 of the dimerization partner through Glu415 and Glu416
(Fig. 4e). Furthermore, the loop L4 contains Tyr414, which is posi-
tioned in the dimer structure adjacent to the loop L6 that is also
unstructured in themonomeric SPD but structured in the dimeric SPD
(Fig. 4e). This suggests that the loop L4may function as a dimerization
sensor that becomes ordered upon dimerization as well as a transdu-
cer of the structural changes initiated by dimerization. To evaluate the
dynamics of the loop L4 and other regions of the SPD during dimer-
ization, we performedmolecular dynamics (MD) simulations tomodel
the thermal motions of the protein that are missing from the static
snapshots of the SPD yielded by the crystal structures. We performed
an all-atom MD simulation over a course of 200 ns, starting from the
crystal structures. The regions that are absent in the electrondensity in
the mini-SPD are highly mobile whereas they adopt a stable structure
in the dimeric form, consistent with the dimer formation associated
with disorder-to-order transition. A plot of the root-mean-square
fluctuation (RMSF) per residue shows distinct regions that are dis-
ordered in themonomeric SPD, including residues of the loops L4, L6,
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as well as the oxyanion hole being amongst the regions that change
(Fig. 4f). These results suggest that the disorder-to-order transitions
through the L4-L6 loops convey the effect of structural changes trig-
gered by dimerization to the oxyanion hole.

FAM111A SPD requires dimerization for protease activity
To determine whether dimer formation is critical for SPD activity,
we next sought to define the role of dimerization in regulating the
SPD catalytic activity by examining the activities of the WT SPD
relative to the monomeric mutants in an in vitro peptidase assay
using Suc-AAPF-AMC as a substrate (Fig. 5a). Although WT SPD
exhibited robust catalytic activity, the activity of the monomeric
mutant V347D was nearly undetectable. A small amount of resi-
dual activity was observed for V351D, which could be due to a
small amount of residual dimerization, which can be detected at
very high concentration (188 μΜ) by SEC (Supplementary Fig. 5a).
The double mutant of V347D and V351D and mini-SPD, both of
which exhibited diminished dimerization even at high con-
centrations, showed impaired and in the case of mini-SPD nearly
undetectable activity (Fig. 5a). Furthermore, the activity of full-
length Strep-FAM111A was also abolished by the V347D mutation

(Fig. 5b and Supplementary Fig. 4a), suggesting that dimerization
is crucial for FAM111A activity.

To determine whether the residues involved in the dimer-sensing
mechanism are also important for the activity of SPD, we mutated
Lys348,which contactsGlu415 in thedimer sensor loop L4of thedimer
partner, and Tyr414, a residue on the dimerization sensor loop
(Fig. 4e). Mutagenesis of Glu415 was unsuccessful due to poor protein
stability of the mutant. SEC showed that dimerization is disrupted by
the K348A mutation (Supplementary Fig. 5d), indicating that Lys348
contributes to the dimerization of SPD. The dimer-monomer equili-
brium was also shifted slightly towards the monomer with the Y414A
mutant (Supplementary Fig. 5d), although Tyr414 is not directly
involved in the interaction with the dimer partner. Consistent with the
requirement of SPD dimerization for the protease activity (Fig. 5a, b),
peptidase assays showed reduced peptidase activity with the K348A
mutant (Fig. 5c). Importantly, the Y414A mutation exhibited a much
larger impact on peptidase activity than the more monomeric K348A
mutant (Fig. 5c; Supplementary Fig. 5d). This might suggest that
Tyr414 plays an additional role in the activation cascade. Collectively,
these data demonstrate the importance of SPD dimerization for its
activity and underscore the roles of the L4 loop as a dimerization
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sensor as well as a transducer of structural changes caused by
dimerization.

FAM111A dimerization is dispensable for autocleavage
Disease-associated mutations in FAM111A are known to result in
increased autocleavage activity10,11. To assess how these mutations
might alter FAM111A protease activity, we generated recombinant
SPD proteins containing the KCS2 R569H or GCLEB D528Gmutations
(Supplementary Fig. 6a). Both mutants readily cleaved the Suc-AAPF-
AMC substrate at a rate similar to that of the WT, with R569H
hydrolyzing slightly faster and D528G slightly slower than WT
(Fig. 6a). SEC of these patient-associated mutants suggests that they
exist in a dimer form similar toWT SPD (Supplementary Fig. 6b). The
peptidase activity of the R569Hmutant was diminished by the V347D
or the V351D mutation (Fig. 6b), suggesting that the patient-
associated mutant still requires dimerization for the substrate clea-
vage activity.

We then explored whether the autocleavage activity of these
patient-associated mutants also requires dimerization. We con-
firmed that the V347D mutation disrupts intermolecular interac-
tion of full-length FAM111A in vivo by coimmunoprecipitation
(Supplementary Fig. 6c). Surprisingly, the R569H patient mutant
retained the autocleavage activity in vivo even when combined
with the dimer-disrupting V347D mutation (Fig. 6c). Furthermore,
the autocleavage activity of the R569H mutant was unaffected by
the K348A and Y414A mutations (Fig. 6c). Similar results were
observed for the hyper-autocleavage activity associated with the
D528G mutant (Supplementary Fig. 6d), and with the basal level
autocleavage activity of wild-type FAM111A (Supplementary
Fig. 6e). Notably, the Y414A mutation not only had no effect on
the autocleavage activity of the wild-type FAM111A but also sti-
mulated it to a similar extent to the hyper-autocleavage activity of
the R569H mutant (Supplementary Fig. 6e). Overall, these results
suggest that autocleavage activity in both patient-associated
mutants and wild-type FAM111A is governed by a distinct
mechanism from substrate cleavage activity, as it does not strictly
require dimerization or the key downstream residues in these
overexpression conditions.

Dimerization is important for FAM111A’s function in DNA
replication
Our previous study demonstrated that FAM111A KO causes the accu-
mulation of TOP1ccs10. We therefore sought to test whether dimer-
ization is important for the function of FAM111A in preventing TOP1cc
accumulation in cells. To address this question, we expressed WT
FAM111A, the dimer-interface mutants (V347D and V351D), or the
dimerization sensing mechanism mutant (K348A), in the FAM111A KO
cells (Fig. 7a, b). The Y414Amutantwasnot included in this experiment
as its expression level was lower than WT, most likely due to its
increased autocleavage activity (Supplementary Fig. 6e). The higher
expression level of the V347D mutant, and possibly that of the V351D
mutant, might reflect its severely impaired protease activity (Fig. 5b),
whichcould reducecytotoxicity. Expression ofWTFAM111Aprevented
the spontaneous formationof TOP1cc foci in FAM111AKO, asdescribed
previously10. In contrast, the expression of the monomeric or the
dimerization sensing mechanism mutant failed to prevent TOP1cc
accumulation (Fig. 7c–f), despite their comparable or higher expres-
sion levels to that of WT (Fig. 7a, b) and their proper localization on
chromatin (Supplementary Fig. 7a, b).

In theprevious study,wehave also reported that FAM111AKOcells
exhibit replication fork stalling in the presence of CPT using DNA
combing assays10. In this assay, nascent DNA is labeled with CIdU for
30min and thenwith IdU in the presence or absence of CPT for 30min
(Fig. 7g). In the absence of CPT, there were no significant changes in
the fork movement by the expression of WT, V347D, V351D, or K348A
FAM111A in the KO cells. In the presence of CPT, on the other hand,
ectopic expression ofWTFAM111A rescued the replication fork defects
as previously observed10, while expression of the V347D, V351D, or
K348A mutant did not (Fig. 7h, i). We attribute the partial rescue
phenotype seen for V351D to the residual activity observed in vitro
(Fig. 5a). This indicates that we observe a spectrum of fork-protection
activity that correlates with defects in peptidase activity in vitro that
are due to the disruption of dimerization. Altogether, these results
suggest that mutations at the α1 helix of SPD disrupt FAM111A’s ability
to prevent TOP1cc accumulation as well as replication fork stalling in
the presence of CPT, underscoring the importance of SPD dimeriza-
tion in FAM111A’s function in cells.
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Discussion
FAM111A localizes at replication forks andpromotesDNA replication at
protein obstacles through its protease activity. However, little is
known about themolecular architecture of this protease. In this study,
using X-ray crystallography, biochemical analysis,MDsimulations, and
cellular assays, we demonstrate that the FAM111A SPD forms a dimer
that is an active protease that supports replication in the presence of
protein obstacles such as stabilized TOP1ccs. We have identified and
described a series of SPD mutants that partially or fully disrupt
dimerization and correspondingly yield enzymes that are partially or
completely devoid of protease activity. We used one such mutant to
determine the structure of the monomeric form of the SPD, which
reveals an enzyme with an altered oxyanion hole. A comparison of the

monomeric and dimeric SPD structures and MD simulations suggests
that dimerization of the SPD is linked to a disorder-to-order transition
that plays a key role in the activation of the enzyme by stabilizing the
conformation of oxyanion hole residues. Collectively, this study
uncovers the structural basis of FAM111A protease activity, high-
lighting the importance of dimerization for proper enzymatic function
and its cellular roles. These findings provide a better understanding of
FAM111A’s role in DNA replication and insights into the genetic dis-
orders associated with FAM111A mutations.

In previous studies, FAM111A’s protease activity was mainly
investigated by measuring its autocleavage activity, partly due to the
lack of proper enzyme assays in vitro. In our current study, we have
developed an assay to measure FAM111A peptidase activity using a
model peptide substrate. Through this assay, we show that FAM111A is
capable of cleaving substrates other than itself and demonstrate the
significance of dimerization for its activity. Our data indicate that the
effects of dimer-disrupting mutations on in vitro peptidase activity
correlate with their impact on FAM111A’s ability to promote replication
fork progression through TOP1ccs in cells. Altogether, these findings
highlight the critical role of SPD dimerization in FAM111A’s cellular
function and confirm that the results of our in vitro peptidase assay
accurately reflect the protease activity essential for FAM111A’s in vivo
functions.

Since FAM111A is a protease, it needs to be tightly regulated to
prevent non-specific cleavage of itself and other essential cellular
proteins. SPRTN has been shown to dimerize29 and interestingly,
dimerization regulatory mechanisms have also been reported for
some viral serine proteases37,38. This suggests that dimerizationmay be
a widely used mechanism for regulating protease activity because
viruses also need to restrict protease activity to the correct phase of
their life cycle. For any protease present in the sea of cellular proteins,
mechanisms to prevent off-target proteolysis while still permitting
degradationof their targetwill be critical. Proteases that are inactive as
monomers can thus be safely present in cells with minimal risk of off-
target proteolytic activity. Another possible mechanism for restricting
FAM111A’s activity could involve autoinhibition by its N-terminal
domains. Supporting this notion, our enzyme assays demonstrated
that the FAM111A fragment lacking the N-terminal region exhibits
significantly higher specific activity compared to full-length FAM111A.
In the future, it will be important to determine how additional
domains, including the PIP box, UBLs, and ssDNA-binding domain
(Fig. 1a), as well as possible FAM111A-interacting factors in cells influ-
ence proteolysis by FAM111A.

Both FAM111A and SPRTN share a topology where the active site is
located at the bottom of a trench. Recent findings showed that SPRTN
can specifically cleave substrates with a long flexible region rather than
globular proteins29 due to a narrow active site. A similarly recessed
active site in FAM111A also suggests a similar substrate requirement. Of
note, we expressed and purified the FAM111A SPD and did not observe
the recombinant SPD protein cleaving itself to a noticeable extent, nor
did we observe a time-dependent decrease in peptidase activity in our
in vitro assays that would indicate autocleavage within the enzyme
domain and inactivation. In contrast, the active site of chymotrypsin is
muchmore accessible,making it well suited for a role in digestionwhere
it would be advantageous to be able to proteolyze globular proteins.
This suggests that a recessed active site that restricts access to globular
proteins may be an important feature for DNA replication and repair
proteases. However, while this feature may safeguard against non-
specific degradation of other proteins, it poses a challenge if FAM111A’s
target proteins are globular. In the case of SPRTN, unfolding of tightly-
folded proteins by the ATP-dependent unfoldase p97/VCP can enhance
their degradation by SPRTN39. Whether a similar mechanism exists for
FAM111A is an important question for future study.

This study also sheds light on the effects of FAM111A
mutations linked to KCS2 and GCLEB. While it was initially assumed
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that patient-associated mutations lead to enhanced protease activity
in mutant FAM111A, our data challenges this view. Specifically, our
findings reveal that mutant SPD proteins with patient-associated
mutations do not consistently exhibit a proportional increase in
peptidase activity compared to the observed hyper-autocleavage
activity in cells. Furthermore, we observed that, unlike its substrate-

cleaving activity, FAM111A’s autocleavage activity does not strictly
depend on dimerization in our assay condition using FAM111A
overexpression. This suggests that the mechanisms governing sub-
strate cleavage and autocleavage by FAM111A might be distinct. We
note that the link between dimerization and autocleavage may be
more complex than that dictated by Le Chatalier’s principle, as the
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Article https://doi.org/10.1038/s41467-024-46207-w

Nature Communications |         (2024) 15:2064 10



net effect in a biological system may be due to the complex con-
tributions of many other factors. Considering these findings, our
data suggest that the primary impact of these mutations is hyper-
autocleavage, rather than hyperactivation of FAM111A’s normal pro-
tease function. Notably, hyper-autocleavage could still result in
increased FAM111A activation, considering the possible auto-
inhibitory function of the N-terminal region of FAM111A (Fig. 1f). By
cleaving between the autoinhibitory domain and the SPD, hyper-
autocleavage of FAM111A may indirectly result in unregulated
FAM111A activity. Alternatively, these mutations could make the SPD
resistant to the autoinhibition mediated by the FAM111A N-terminal
region. Therefore, understanding the molecular consequences of
these disease-associated FAM111A mutations is an essential area for
future investigation.

FAM111A can protect cancer cells from chemotherapeutic drugs
such as TOP1 inhibitors, which generate DPCs containing stabilized
TOP1ccs10. Therefore, an inhibitor of FAM111A could be used to
mitigate tumor drug resistance. FAM111A inhibitors could also be
used to sensitize cells to DPC-inducing drugs or to enhance their
efficacy in cancer cells where alternative pathways of DPC bypass and
repair are missing or inhibited. However, the development of an
active site inhibitor may be challenging, as the active site of FAM111A
SPD shares core features with chymotrypsin, and likely other
important cellular proteases. Thus, the general strategy of develop-
ing an active site inhibitor could lead to side effects and undesired
toxicity due to off-target binding. Notably, the structure of mono-
meric FAM111A SPD reported here reveals surface-accessible regions
that could be binding sites for an inhibitor that blocks dimerization
or prevents the disorder-to-order transition associated with dimer-
ization. Since these binding sites would not be conserved on other
proteases, it would provide an opportunity for developing an inhi-
bitor that is specific to FAM111A with the potential to enhance cancer
therapeutic efficacy as well as treat disease caused by FAM111A
misregulation.

Methods
Chemicals and reagents
All chemicals and reagents were purchased through Cayman, Sigma,
and Thermo Fisher unless otherwise stated. MeOSuc-Ala-Ala-Pro-Val-
AMC - Cayman (#14907); Boc-Lys-Arg-Arg-AMC - Cayman (#26642);
Suc-Ala-Ala-Pro-Phe-AMC - Sigma (230914); Suc-Leu-Tyr-AMC - Cay-
man (#10008120); Ac-Ala-Asn-Trp-AMC - Fisher Scientific (#50-196-
5076). Inhibitors were purchased through Sigma: TPCK (Tosyl-L-phe-
nylalanyl-chloromethane) (#T4376); SPCK (N-(methoxysuccinyl)-Ala-
Ala-Pro-Val-chloromethyl ketone) (#M0398); TLCK (Nα-Tosyl-Lys
chloromethyl ketone, hydrochloride) (#616382). TCEP (Tris (2-car-
boxyethyl) phosphine) - Goldbio (#51805-45-9).

Expression constructs
The cDNA containing human FAM111A was amplified by reverse tran-
scription PCR and cloned into pLVX2-IRES-puro (no epitope tag) for
lentiviral or transient expression in human cells. For expression of
FAM111A with a C-terminal Flag or HA tag, the FAM111A open reading
frame sequence was amplified using PCR primers containing an in-
frame tag sequence and cloned in pLVX2-IRES-puro. For bacterial
expression, a DNA fragment encoding FAM111A 335-611 was codon-
optimized for E. coli expression and inserted into the pDB.His.MBP
vector (with an N-terminal His6-MBP tag) for recombinant protein
expression. For insect cell expression, full-length FAM111A cDNA
codon-optimized for insect cells was inserted in pFastBac containing
an N-terminal Twin-Strep tag. Recombinant bacmids were generated
using the Bac-to-Bac Baculovirus Expression System following manu-
facturer’s instructions (Thermo Fisher). Point mutations were intro-
duced by Gibson assembly (NEB, #E2611S) or QuickChange (Agilent)
and confirmed by Sanger sequencing.

Mammalian cell culture
Human chronic myelogenous leukemia cell line HAP1 was obtained
from Horizon Discovery (#C631) and cultured in Iscove’s Modified
Dulbecco’s Medium supplemented with 10% fetal bovine serum (FBS).
The FAM111A knockout HAP1 cell line (Clone #14) was generated pre-
viously using CRISPR/Cas9 and contains a 45-bp insertion with a stop
codon in the FAM111A gene exon410. Humanembryonic kidney cell line
293 T was purchased from American Type Culture Collection (#CRL-
11268) and cultured in Dulbecco’s modified Eagle’s medium supple-
mented with 10% FBS. For transient protein expression in 293 T, cells
were transfected with plasmids using Lipofectamine 2000 and har-
vested after 2 days.

Recombinant protein expression
For bacterial expression, BL21(DE3) and Rosetta E. coli cells trans-
formedwithpDB.His.MBP-FAM111ASPDwerecultured inTerrificBroth
using a Lex-48 Bioreactor (Ephiphyte3) at 37 °C until an optimal OD600

of 3-5 was achieved. Protein expression was then induced by the
addition of 4% (v/v) glycerol, 2% (v/v) ethanol and 150μMof IPTG with
further incubation at 10 °C for 40h. Cells were harvested using a Lynx
4000 centrifuge (Thermo Fisher) at 6000 x g for 20min, and cell
pellets were transferred to 50mL Falcon tubes and stored at −80 °C
until ready for protein extraction. For insect cell expression, bacmids
were transfected into ExpiSf9 using ExpiFectamine Sf (Thermo Fisher)
and virus-containing supernatants were collected after 4–5 days.
ExpiSf9 cells cultured in ExpiSf CDmedium supplemented with ExpiSf
Enhancer (ThermoFisher)were infectedwith virus stocks as instructed
by the manufacturer and cultured for 2–3 days at 27.5 °C. Collected
cells were washed once with PBS, frozen in liquid N2, and stored at
−80 °C until protein purification.

Purification of recombinant protein
E. coli pellets frozen at −80 °C were thawed and resuspended in lysis
buffer (50mM sodium phosphate, pH7.5, 500mM NaCl, 5mM imida-
zole, 5% glycerol, 0.5mM TCEP), then transferred to a chilled metal
beaker. Cell lysates were sonicated at 80% power on a Branson
250 sonicator in three 30 s intervals, with 1-min cooling in between.
Clarified lysate was collected after centrifugation at 25,000 x g for
30min and passed over a Ni-NTA resin bed that was equilibrated in a
lysis buffer stated previously. After washing three times with wash
buffer (50mM sodium phosphate, pH7.5, 500mM NaCl, 20mM imi-
dazole, 5% glycerol, and0.5mMTCEP) to remove remaining cell debris
or unbound proteins, proteins were eluted using an elution buffer
(50mM sodium phosphate, pH7.5, 500mM NaCl, 250mM imidazole,
5% glycerol, 0.5mM TCEP). Elution from Ni-NTA was passed over
amylose resin equilibrated with MS300 buffer (20mM Tris pH 7.5,
300mM NaCl, 0.5mM TCEP). After washing four times with MS300
buffer, the His6-MBP-SPD protein was eluted using MS300 buffer
containing 10mM maltose. Eluted protein was subjected to pre-
cipitation with 2 volumes of 4M ammonium sulfate at 4 °C overnight
followed by centrifugation at 25,000 x g for 30minutes at 4 °C. The
precipitated protein was purified using FPLC immediately or kept at
−80 °C until further use.

The precipitated protein pellets were re-dissolved by the addi-
tion of a minimal amount of MS300, then centrifuged at 20,000 x g
for 10min at 4 °C to eliminate any insoluble particulates. The clarified
solution was injected into an ÄKTA go FPLC system (Cytiva) and
purified on a HiLoad 16/600 Superdex 200 pg column (Cytiva) using
MS300 buffer at a flow rate of 1mL/min. His6.MBP-FAM111A were
eluted, cleaved with a homemade TEV protease (150 µM) overnight,
and run on a 6mL RESOURCE Q column (Cytiva) with high salt
(20mM Tris pH 7.5, 1M NaCl) and low salt (20mM Tris pH 7.5, 3mM
DTT) buffers. To determine the oligomeric state of SPD, 100μL of
1mg/mL proteins were analyzed on a Superdex 200 Increase 10/300
GL column in MS300 buffer using ÄKTA pure FPLC system with
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Unicorn (version 7.3) (Cytiva). The molecular weight of the elusted
protein was estimated using a set of molecular mass standards (Bio-
Rad, 1511901). Elution fractions from each column were tested on a
Coomassie blue-stained SDS-PAGE gel. Fractions containing FAM111A
protein were pooled together, and the protein was concentrated
using 10K cut-off centrifugal filters (Millipore). The purified proteins
were stored in a 25% glycerol storage buffer (20mM Tris pH 7.5,
300mM NaCl, 1mM TCEP) at −80 °C for use in downstream assays.

For purification of full-length FAM111A proteins produced in
insect cells, cellswere lysed in lysis buffer (50mMHEPES-NaOHpH7.5,
1MNaCl, 1mMMgCl2, 10%glycerol, 1%NP-40) supplementedwith 4U/
mL Benzonase (Novagen), 1mMDTT, and 2 µMPepstatin. Lysates were
incubated on ice for 30min, sonicated and cleared by centrifugation
(20,000 × g, 4 °C, 30min). Lysates were mixed with Strep-Tactin
superflow resin (Qiagen) equilibrated with lysis buffer by rotation at
4 °C for 3 h. Resin was washed twice with lysis buffer and once with
wash buffer (50mMHEPES-NaOH pH 7.5, 250mMNaCl, 10% glycerol).
Purified proteins were eluted with elution buffer (wash buffer sup-
plemented with 10mM d-Desthiobiotin) and used for protease assays
or stored at−80 °C in small aliquots. To determine the oligomeric state
of full-length FAM111A, 500μL of 1.6mg/mLproteins were analyzed on
a HiLoad 16/600 Superdex 200pg SEC column in MS300 buffer sup-
plemented with 0.2% 3-[(3-Cholamidopropyl)dimethylammonio]−1-
propanesulfonate using the ÄKTApurifier FPLC system with Unicorn
(version 5.11) (Cytiva). Molecular weights of the eluted proteins were
estimated using the following proteins as standards: thyroglobulin
(Sigma, #T9145), bovine serum albumin (Sigma, #A8531), β-Amylase
(Sigma, #A8781), carbonic Anhydrase (Sigma, #C7025).

Protein crystallization and structure determination
FPLC-purifiedFAM111ASPDandmini-SPDwereconcentrated to7mg/mL
and 18mg/mL, respectively, using a 10K cutoff spin concentrator (Mil-
lipore). Crystals of FAM111A were grown using the sitting-drop vapor
diffusionmethod bymixing 100nL of protein and 100 nL of precipitant.
The reservoir contained 25 µL of each crystallization solution. The
JCSG++ and PACT (Jena Bioscience) sparsematrix screens were used to
screen for crystallization conditions. Crystals of SPD were obtained at
20 °C in 20% (w/v) PEG 8,000, 100mM Tris pH 8.5, 200mM MgCl2
grown at room temperature. Mini-SPD crystals were obtained at 4 °C in
100mM BIS-TRIS, pH 5.5, and 2M Ammonium sulfate. These crystals
were transferred intoacryoprotectant solutioncontaining22% (w/v) PEG
8,000, 200mMMgCl2pH8, 16% (w/v) glycerol, and 100mMBIS-TRISpH
5.5, 2.2MAmmonium sulfate, 25% glycerol respectively. All crystals were
flash-frozen in liquid nitrogen prior to data collection. X-ray diffraction
datasets were collected at the Advanced Photon Source at the NE-CAT
beamlines (24-C and 24-E) using beamline in house software. X-ray dif-
fraction datasets were processed and scaled using HKL2000 (version
720)40. TheSPDS541Astructurewas solvedusingmolecular replacement
with the AlphaFold41,42 predicted model of FAM111A residues 340-599
and the PHENIX (version 1.17.1-3660)43, which yielded solutions with a
TFZ score of 33.4 and LLGof 1309, indicating a strong solution. Similarly,
the SPD monomer was used as a search model to solve the mini-SPD
structure, which yielded a solution with a TFZ score of 36.3 and LLG of
1285. Interactive rounds ofmodel building in Coot (version 0.8.9.1)44 and
refinement in PHENIX.REFINE against the high-resolution datasets were
used to produce the final models. Diagrams of protein structure were
generated using PyMOL (version 2.5.2, Schrodinger) or ChimeraX (ver-
sion 1.6.1)45. Modelling, design of point mutations, and RMSD calcula-
tions were performed using PyMOL.

Analytical ultracentrifugation sedimentation velocity
Analytical ultracentrifugation sedimentation velocity was carried out
at 20 °C on an Optima analytical ultracentrifuge (Beckman-Coulter)
using an 8-hole AN-50 Ti rotor with absorbance detection at 280nm.
Protein samples (0.9O.D.) in 20mMTris pH 7.5, 300mMNaCl, 0.5mM

TCEP were loaded into AUC cells composed of a 12mm epon charcoal
2-sector centerpiece with quartz windows. The cells were first sub-
jected to 3 h at 20 °C under vacuum to allow temperature equilibra-
tion, then the experiment was performed at 45,000 rpm with
continuous data acquisition for 7 h (200 scans). The protein partial
specific volume (0.736mL/g) and buffer density and viscosity
(1.0052g/mL and 0.01002 poise respectively) were determined using
SEDNTERP46. The data were analyzed using a continuous c(s) dis-
tribution in the program Sedfit (version 15.01b)47 with fitting of fric-
tional ratio (1.437), meniscus, time invariant noise and radial
invariant noise.

Mass photometry
Mass Photometry was performed using Refeyn Two MP system
(Refeyn) following previously described methods48. Data acquisition
and analysis were carried out using AcquireMP andDiscoverMP (2023
R1), respectively. Dissociation constants (Kd) of FAM111A dimers were
calculated as described previously49. In brief, protein stocks were
dilutedwith Phosphate Buffered Saline (pH 7.4) to final concentrations
of 10, 12.5, 25, or 50nM in low-protein binding tubes one hour prior to
measurements to allow for monomer-dimer equilibration. After iden-
tifying the focal position using Acquire MP (2023 R1), 10 µL of a pre-
diluted protein sample was directly applied onto a glass slide, and
sixty-second movies were recorded for each measurement. Three
measurements were taken for each concentration, and Kd values were
calculated based on the counts corresponding to the monomer and
dimer species.

Protease assays
Protease assays for SPD were performed in 96-well plates with a clear,
flat bottom (Corning 3595). Protein samples were diluted to starting
concentrations in a 25% glycerol storage buffer (20mM Tris pH 7.5,
300mMNaCl, and 1mMTCEP). Protease reactions (50 µL) contained a
substrate buffer (1mM of the indicated substrate, 0.2mg/mL BSA in
the MS300 buffer) and FAM111A protein or bovine chymotrypsin
(Promega). Unless otherwise indicated, 4μM SPD proteins were used
for peptidase assays. Protease was added last to initiate the reaction,
and the plate was placed in a CLARIOstarPlus plate reader (BMG Lab-
tech) that was pre-warmed to 37 °C. Measurements were recorded
using Clariostar (version 5.61) with Ex/Em: 380nm/460 nm every two
minutes for 30 cycles. Control reactions containing only 25% glycerol
storage buffer in place of FAM111A protein samples were used to
correct formeasurable background. Protease activitywas calculated in
MARS (version 3.41, BMG Labtech) by taking the slope of the change in
fluorescence (ΔRFU/sec) over all cycles of each experiment. Protease
assays on full-length FAM111A were performed essentially as described
for SPD, except in a 25 µL reaction volume in a 384-well plate, and
measurements were taken every two minutes for 60 cycles in the
SpectraMax i3x plate reader (Molecular Devices) using SoftMax Pro
(version 7.0.3). Unless otherwise stated, 5.1μM full-length FAM111A
proteins were used for peptidase assays.

Thermal shift assay
Assays were performed with the Protein Thermal Shift™ Dye Kit
(Applied Biosystems, cat. 4461146) according to the manufacturer’s
instructions. Briefly, the protein was diluted to 1mg/mL and 12.5 µL of
protein were added to 7.5 µL of assay solution (2.5 µL 1X SYPROOrange
dye, 5 µL thermal shift buffer) on ice for a total reaction volume of
20 µL. 25% glycerol storage buffer (20mM Tris pH 7.5, 300mM NaCl,
1mMTCEP)wasused as a non-protein control. Reactionswere runon a
CFX384 Touch Real-Time PCR System (Bio-Rad), and the data were
collected using CFX Manager (version 3.1). The temperature was
increased in a step-and-hold manner from 25 °C to 99 °C in a 0.05 °C/
cycle increment and with an equilibration time of 2min at each tem-
perature. The HEX channel was used to analyze the resulting data to
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correlate with the emission-excitation spectra of the SYPRO Orange
dye (490nm excitation, 624 nm emission). The melting temperature
was defined as the first derivative of the peak of the melting curve.

Molecular dynamics simulations
The crystal structures of FAM111A monomer (mini-SPD) and dimer
were processed before performing molecular dynamics (MD) simula-
tions, including stripping the water molecules, modeling missing resi-
dues in loops using Rosetta (version 2019.3-11)50, and renumbering
residues with Coot (version 0.8.9.1)51. GROMACS (version 2021.4) pat-
chedwith PLUMED51 was used for theMDsimulations anddata analysis.
The processed FAM111A molecules were solvated in a periodic cubic
box of length 9.854 nm for the dimer and 8.658 nm for the monomer
with the four-point TIP4P rigid water model52 under the force field
OPLS-AA/M (version 2015)53. Protein charges were neutralized by
adding sodium ions as counterions and sodium chloride (150mM) was
introduced to mimic physiological conditions. Energy minimization
was used to remove steric clashes under the steepest decent algorithm
until the maximum force was less than 200 kJ/mol/nm. A 200ps con-
stant volume/temperature (NVT) simulation and a 200ps constant
pressure/temperature (NPT) simulation with restrained heavy atom
positionswere used to equilibrate the systems to 300Kwith aV-rescale
thermostat54 and to 1.0 bar with a Berendsen barostat55. The LINCS
algorithm56 was used to constrain all bond lengths with a time step of
2 fs. Replica Exchangewith SoluteTempering (REST2)57 simulationwith
leap-frog integration58 was performed to simulate the aqueous beha-
vior of the FAM111A monomer and dimer with the “hot atoms” setting
for all the protein atoms, but without any position restraints. Twenty
replicas with temperature spanning from 300K to 600K were per-
formedwith aHamiltonian replica exchange attempt between adjacent
replicas every 500 steps.

Immunoprecipitation and Western blotting
Cells were lysed in NP-40 lysis buffer (50mMTris-HCl pH 7.4, 150mM
NaCl, 0.1% Nonidet P-40, 5mM EDTA, 50mMNaF, 1mM Na3VO4, 10%
Glycerol) supplemented with protease inhibitor mix (Sigma). For
immunoprecipitation, anti-Flag M2 Affinity Gel (Sigma, A2220) was
incubated with lysates containing 2mg of proteins with rotation and
washed five times with lysis buffer. Precipitated proteins were eluted
by boiling the beads in Laemmli sample buffer. For Western blotting,
lysates containing 30 μg of protein or immunoprecipitated proteins
were separated by SDS-PAGE, transferred to nitrocellulose
membranes, and probed with specific antibodies. Antibodies used
for Western blotting: rabbit anti-FAM111A (Abcam, ab184572,
1:1,000); mouse anti-β-actin [clone AC-74] (Sigma, A5316, 1:5,000),
rabbit anti-Flag (Cell Signaling, #2368, 1:1,000); rabbit anti-HA (Santa
Cruz, sc-805, 1:1,000). Blots were imaged using ChemiDoc MP (Bio-
Rad) and analyzed using the Image Lab software (version 6.0.1,
Bio-Rad).

Immunofluorescence and microscopy
For FAM111A staining, cells underwent chromatin pre-extraction with
CSK buffer supplemented with Triton X-100 (10mM HEPES-KOH pH
7.4, 300mM sucrose, 100mM NaCl, 3mM MgCl2, and 0.5% Triton X-
100) for 10min at room temperature. Cells were fixed on coverslips
using cold Methanol: Acetone (3:1) for 10min at −20 °C, washed with
PBS for 5min, then blocked in 1% BSA, 22.52mg/mL glycine and 0.1%
Tween-20 in PBS for 1 hour at room temperature. Following blocking,
samples were incubated with primary rabbit anti-FAM111A antibody
(Abcam, ab184572, 1:100) in the blocking solution for 2 h at 37 °C.
Samples were washed in PBS three times then incubated with sec-
ondary antibody, goat anti-rabbit IgG Alexa Fluor 568 (Invitrogen, A-
11036, 1:2,000) in blocking solution for 45min at room temperature.
Nuclei were stained with DAPI in PBS and coverslips were mounted
with ProLong Gold Glass AntifadeMountant (Thermo Fisher, P36980).

Images were captured using a Nikon SoRa Spinning Disk microscope
with the NIS Elements software, and single z slices are shown.

TOP1cc staining was performed as described previously59. Briefly,
the cells were fixed for 15min at 4 °C using 4% paraformaldehyde,
permeabilized with 0.25% Triton X-100 in PBS for 15min at 4 °C and
treated with 1% SDS in PBS for 5min at room temperature. The slides
were washed five times with wash buffer (0.1% Triton X-100, 0.1% BSA
in PBS) and blocked with 10% milk in 10mM Tris-HCl pH 7.4, 150mM
NaCl. TOP1cc foci were detected with a primary mouse anti-TOP1cc
antibody (a gift from Scott Kaufmann, 1:200) and secondary antibody,
goat anti-mouse IgG Alexa Fluor 488 (Invitrogen, A-11029, 1:1,000). All
images were captured using a Nikon SoRa Spinning Disk microscope,
andmax intensity projection was generated using Fiji (version 2.9.0)60.
TOP1cc foci were scored using an ImageJ script on images captured
with a 63× objective by a blinded observer.

DNA combing assay
The DNA combing assay was performed as previously described61 with
somemodifications. Briefly, cells were sequentially labeled with 25μM
CldU (Sigma, C6891) for 30min and 100μM IdU (Sigma, I7125) for
30min, followed by a wash with ice-cold PBS to inhibit DNA replica-
tion. The IdU labeling was performed in the absence or presence of
30 nM CPT. Cells were trypsinized and resuspended in PBS. Cells
(1 × 105) were then embedded in a low-melting-point agarose plug. The
plugs were incubated for 18 h at 50 °Cwith 1mg/ml proteinase K in cell
lysis buffer (10mM Tris-HCl pH 8.0, 1% N-Laroylsarcosine sodium salt,
100mM EDTA) and then washed three times for 1 h each with TE
buffer. The plugs were melted in 0.1MMES pH 6.5 for 20min at 70 °C
and were incubated for 10min at 42 °C before β-agarase (NEB,
M0392S) was added. After 18 h of β-agarase digestion at 42 °C, DNA
solutions were poured into a Teflon reservoir and stretched using an
in-house combing machine onto salinized coverslips (Genomic Vision,
COV-002-RUO). Combed DNA was baked in an oven for 2 h at 60 °C
and denatured in 0.5M NaOH for 20min, followed by washing with
PBS five times for 1min each. Coverslips were blocked in PBS with 5%
BSA for 10min at room temperature, then incubatedwith rat anti-CldU
antibody [cloneBU1/75 (ICR1)] (Abcam, ab6326, 1:100) andmouse anti-
IdU antibody [clone B44] (BD, 347580, 1:20) in PBS with 5% BSA
overnight at 4 °C in awet chamber.Afterwashing coverslipswith PBS-T
(0.05% Triton X-100) three times for 5min each on the shaker, cov-
erslips were incubated with Cy5-labeled goat anti-rat IgG (Abcam,
ab6565, 1:100) and Cy3-labeled goat anti-mouse IgG (Abcam, ab97035,
1:100) in PBS with 5% BSA for 1 h at room temperature in a wet
chamber. Coverslips were washed with PBS-T (0.05% Triton X-100)
three times for 5min each on the shaker and incubated with mouse
anti-single strand DNA [clone 16-19] (Millipore, MAB3034, 1:200) in
PBS with 5% BSA for 1 h at room temperature in a wet chamber. After
washing with PBS-T (0.05%Triton X-100) three times for 5min each on
the shaker, coverslips were incubated with Brilliant Violet 480-labeled
goat anti-mouse IgG (Jackson ImmunoResearch, 115-685-166, 1:50) in
PBS with 5% BSA for 45min at room temperature in a wet chamber.
After washing with PBS-T (0.05% Triton X-100) three times for 5min
each on the shaker, coverslips were rinsed with water briefly and
dehydrated sequentially in 70%, 90%, and 100% ethanol for 2min at
each concentration and air-dried at room temperature. Coverslips
were attached to sample holders (Genomic Vision, HLD-001) and
scanned with a FiberVision automated fluorescence microscope
(Genomic Vision, SCN-001). The length of CldU and IdU tracts were
measured by blinded observers using FiberStudio (version 3.2.7,
Genomic Vision).

Multiple sequence alignment (MSA)
MSA of Homo sapiens FAM111A SPD with FAM111A orthologs or Bos
taurus chymotrypsin was generated using Clustal Omega (version
1.2.4)62,63. FAM111A SPD amino acid sequences used in alignment include:
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Homo sapiens FAM111A (Human; UniProt ID: Q96PZ2; 335-611), Mus
musculus FAM111A (Mouse; UniProt ID: Q9D2L9; 332-613), Pantherophis
guttatus FAM111A (Corn snake; UniProt ID: A0A6P9C8G8; 368-671), and
Danio rerio FAM111A-like (Zebrafish; UniProt ID: A0A8M2BD64; 394-
686). Bos taurus chymotrypsin (XP_003587247) was used in the pairwise
sequence alignment with Homo sapiens FAM111A SPD.

Statistics
All graphs were created in GraphPad Prism (version 9.5.0). Statistical
significance was determined by a two-tailed unpaired t-test and
adjusted for multiple sample comparison using the Holmmethod in R
(version 4.1.2). Slopes for protease assays were calculated using MARS
(version 3.41) (BMG Labtech) or GraphPad Prism (version 9.5.0). Sta-
tistics for X-ray diffraction experiments are contained in Supplemen-
tary Table 2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Atomic coordinates and structure factors have been deposited in the
PDB under accession numbers 8S9K (SPD S541A) and 8S9L (mini-SPD).
The PDB ID for the structure of chymotrypsin co-crystallized with a
TFMK transition state analog is 7GCH. The configuration files for the
MD simulations are available at Figshare [https://doi.org/10.6084/m9.
figshare.24915123]. Source data are provided with this paper.
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