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Resonant generation of propagating second-
harmonic spin waves in nano-waveguides

K. O. Nikolaev 1,4, S. R. Lake2,4, G. Schmidt 2,3, S. O. Demokritov 1 &
V. E. Demidov 1

Generation of second-harmonic waves is one of the universal nonlinear phe-
nomena that have found numerous technical applications in many modern
technologies, in particular, in photonics. This phenomenon also has great
potential in the field of magnonics, which considers the use of spin waves in
magnetic nanostructures to implement wave-based signal processing and
computing. However, due to the strong frequency dependence of the phase
velocity of spin waves, resonant phase-matched generation of second-
harmonic spin waves has not yet been achieved in practice. Here, we show
experimentally that such a process can be realized using a combination of
different modes of nano-sized spin-wave waveguides based on low-damping
magnetic insulators. We demonstrate that our approach enables efficient
spatially-extended energy transfer between interacting waves, which can be
controlled by the intensity of the initial wave and the static magnetic field.

Second-harmonic generation (SHG) plays an important role inmodern
technologies that use waves of different nature for transmission and
processing of information. This phenomenon is particularly important
in the field of photonics as it allows efficient generation of coherent
optical waves that are difficult to generate directly. Because of its great
practical importance, the optical SHG has been intensively studied
over many decades1–4, which has enabled the development of a wide
variety of highly efficient photonic devices.AlthoughSHG is auniversal
physical phenomenon, which can potentially be realized for any kind
of waves, its practical realization requires fulfillment of two important
conditions. First, SHG is possible only in media exhibiting nonzero
second-order nonlinear susceptibility. Second, efficient SHG requires
exactmatching of the phase velocities (commonly referred to as phase
matching) of the initial wave and the second-harmonic wave. In optics,
the first requirement is met in a large class of non-centrosymmetric,
nonlinear crystals. Thanks to the weak dispersion of light waves, the
second condition of phase velocity matching can also be easily
achieved by using a number of well-developed approaches2–4.

In the case of magnetic systems, the requirement of nonzero
second-order nonlinear dynamic susceptibility can be satisfied rela-
tively easily. The second-order nonlinearity arises when the

magnetization vector precesses in finite-size magnetic structures. Due
to the dynamic demagnetization effects, the precession trajectory is
typically elliptical under these conditions. This ellipticity initiates a
dynamic magnetization component along to the precession axis at
double the precession frequency5. In other words, magnetic SHG does
not require the use of special media and can be observed in many
magneticmaterials and experimental configurations so long as there is
elliptical magnetization precession6–15. This makes magnetic oscilla-
tions excellent candidate for generation of microwave-frequency
harmonics. For example, in ref. 15 it was shown that the nonlinear
response of magnetic domain walls to a driving magnetic field at
megahertz frequencies can lead to the generation of up to 60
harmonics.

A significantly more complex task is the implementation of a
phase-matched resonant SHG for propagating waves of dynamic
magnetization (spin waves), which are believed to be one of the most
promising candidates for nano-scalewave-based signal processing and
computing16–19. In contrast to electromagnetic waves, spin waves
exhibit strong dispersion, i.e., a strongly nonlinear dependence of the
frequency on the wavevector. Accordingly, the phase velocity of spin
waves changes significantly with the increase of their frequency, which
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makes it difficult to achieve phase matching for waves at frequencies
that differ by a factor of 2. As a result, in previous experiments with
spin waves, only the non-resonant SHG process could be achieved, in
which the generated second-harmonic wave did not belong to the
eigenspectrum of spin waves and represented a forced non-resonant
motion of magnetic moments, i.e., a non-propagating wave6.

Recently it was shown theoretically11 thatphase-matched resonant
SHG can be achieved in a semi-infinite magnetic film for spin waves
propagating in a field-induced potential well near the edge of the
film20,21 (so-called edge modes) and bulk spin-wave modes of the film.
However, to satisfy conservation of linear momentum, the second-
harmonic waves must propagate away from the film edge, which
reduces the efficiency of their interaction with the initial wave propa-
gating along the edge. In addition, in real magnetic nano-systems, the
edge modes exhibit enhanced spatial damping due to the scattering
from edge imperfections (see, e.g., ref. 8), which strongly limits the
practical applicability of the approach.

In this work, we propose and experimentally demonstrate a new
approach that enables fully phase-matched, resonant generation of
second-harmonic spinwaves inmagnetic nano-waveguidesmade from
a low-damping magnetic insulator. We base this approach on the
nonlinear interaction of spin-wave modes with different distributions
of the dynamicmagnetization through the thickness of thewaveguide.
We show that by choosing a proper thickness, one can engineer the
dispersion spectrum of modes so that the phase velocities of a spin
wave and its second harmonic become equal. Under these conditions,
the initial spin wave continuously transfers its energy to the second-
harmonic wave, resulting in a long-lasting, spatially-extended growth
of the latter. This process can be achieved for different transverse
modes and canbe controlled by varying the intensity of the initial wave
and the static magnetic field. Our experimental data show very good
quantitative agreement with the results of theoretical analysis. The
proposed approach provides new opportunities for the field of mag-
nonics. It enables highly-efficient generation of spin waves with short
wavelengths that are difficult to excite directly22–27. Due to the phase
locking of the initial wave and its second harmonic, the approach can
also be used for the implementation of new interference-baseddevices
that utilize interference effects at the fundamental and doubled fre-
quencies simultaneously.

Results
Studied system and approach
Figure 1a shows the schematics of the experiment. We study spin
waves propagating in a waveguide with the width w = 500nm fabri-
cated from a film of Yttrium Iron Garnet (YIG)28–33 with the thickness
d = 80 nm. The spin waves are excited using a 500-nm wide and 200-
nm thick Au antenna carrying microwave electric current. The wave-
guide is magnetized in plane by a static magnetic field H applied per-
pendicular to its axis. The propagation of spin waves is analyzed with
spatial and spectral resolution using micro-focus Brillouin light scat-
tering (BLS) spectroscopy34 (see Methods for details). This technique
yields a signal, referred to as BLS intensity, which is proportional to the
intensity of spin waves at the position, where the probing light is
focused (Fig. 1a). This allows a direct imaging of spin waves with high
spatial resolution. Thanks to the spectral resolution of the BLS tech-
nique, spin waves at different frequencies can be imaged indepen-
dently. Additionally, we use the ability of BLS to detect the phase of
propagating spin waves, which allows direct determination of their
wavelength and phase velocity.

Figure 1b illustrates the main idea of our work – inter-mode
resonant generation of second-harmonic spin waves. It shows the
spectrum of spin-wave modes in a 500-nm wide YIG waveguide cal-
culated using the analytical theory35 and the approach developed in
ref. 36 According to this approach, the frequency of spin-wave modes

can be calculated as:
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wavevector characterizing the standing wave of the dynamic magne-

tization across the waveguide width36 (see insets in Fig. 1b). The total
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, where κ =πq=d is the effective
wavevector characterizing the standing wave of the dynamic magne-
tization through the thickness of the waveguide. This model assumes
standard boundary conditions for dynamic magnetization37. The
boundary conditions at the surfaces of the waveguide correspond to
“unpinned” dynamic magnetization, which is typical for thin magnetic
films. In contrast, the boundary conditions at the waveguide edges are
determined by dipolar effects and correspond to “pinned” dynamic
magnetization. The calculations are performed at H = 500Oe using
material parameters described in Methods.

The fundamental mode of the waveguide (q = 0, p =0) is char-
acterized by a uniformdistribution of dynamicmagnetization through
its thickness (inset in Fig. 1b). This mode interacts most efficiently with
the dynamic magnetic field of the antenna and, therefore, can be dri-
ven to a large-amplitude strongly-nonlinear regime using moderate
powers of the excitation signal of the order of 10−4W. As shown in the
inset in Fig. 1a, in this regime, the ellipticity of the precession of
magnetization M leads to the appearance of a sizable component of

the dynamic magnetization along the z-axis. The projection ofM onto

the axis z, can bewritten as:Mz =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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, wherem is
the dynamic component of the magnetization in the x-y plane. Sub-
stituting into this expression the dependence in the form
m2 =m2
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amplitudes of the dynamic magnetization in the x and y directions,
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The first two terms in Eq. (2) are time independent. The third term
mz oscillates at frequency 2f while its spatial dependence is char-
acterized by a wavevector 2k. The amplitude of this magnetization
component is proportional to m2

x �m2
y, i.e. to the ellipticity of pre-

cession. Due to demagnetization effects in the narrow waveguide and
the non-zero wavevector, this component creates a dynamic dipole
magnetic field that is not strictly parallel to the static field H and can
linearly excitemagnetizationdynamics (see ref. 6). Similarly tomz , this
field oscillates with a frequency 2f and vary in space with a wavevector
2k, where f and k are the frequency and the wavevector of the initially
excited fundamental wave, respectively. Therefore, this dipole field is
expected to couple the initial wave with the wave at 2f and 2k.

This process can also be considered as the confluence of two
magnons with energy hf and linear momentum hk into a magnon with
energy 2hf andmomentum 2hk according to the energy and the linear
momentum conservation laws. We emphasize, however, that this
process can be efficient only if the phase-space point (2f, 2k) corre-
sponds to an eigenexcitation of the system, which is difficult to
implement in practice using one spin-wave mode. Three-magnon
confluence processes can be easily realized when the initial magnons
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have oppositely directed wavevectors, and the resultingmagnon has a
nearly zero wavevector38,39. In this case, the energy and momentum
conservation rules can be easily satisfied even for waves, whose fre-
quency vs wavevector dependence is not linear. However, to imple-
ment efficient resonant generation of the second harmonic, the three-
magnon confluence process must involve two initial magnons with
equal and collinear wavevectors and a resulting magnon with a dou-
bled wavevector. Simultaneously, the frequency of the resulting
magnonmust be twice the frequency of the initial magnon. In contrast
to theprocess involving counter-propagatingmagnons, suchaprocess
is difficult to implement due to the nonlinear dependence of the fre-
quency of spin waves on the wavevector.

In order to find the frequencies at which 2f and 2kmatchmagnon
states in the sample,weplot the curve 2f(2k) on thedispersiondiagram
(red dashed line in Fig. 1b). Any intersection of the 2f(2k) curve with
other magnon branches indicates a dedicated frequency for which
SHG can become a highly efficient process. As seen from Fig. 1b, the
dashed curve never intersects the curve for the fundamental mode
(q = 0, p =0). In other words, the required resonant condition cannot

be satisfied for a single spin-wavemode. However, as seen in Fig. 1b, in
nanoscale YIG waveguides, the dashed curve can intersect with dis-
persion curves of first-order thicknessmodes (q = 1) characterized by a
non-uniform distribution of dynamic magnetization through the
thickness40,41 (inset in Fig. 1b). Note that, by definition, the intersection
points correspond to the condition of equality of the phase velocities
vph = 2πf/k of two spin-wave modes – the fundamental mode and the
mode with doubled frequency. Therefore, it becomes possible to
achieve a completely phase-matched inter-mode resonant energy
exchange, as shown in Fig. 1b by arrows.We emphasize that for a given
thickness of the waveguide, the resonant process is possible in a cer-
tain range of the static field H. By varying the field, one can shift the
intersection points towards shorter or longer wavelengths.

Evidence of resonant generation of second-harmonic spinwaves
Toprove thepossibility of the resonant inter-modeprocess in practice,
we first performmeasurements atH = 500Oe.We apply to the antenna
an excitation signal at a frequency fexc varying from 2 to 3GHz, which
corresponds to the frequency range of the fundamentalmode (Fig. 1b),
and record the BLS signal at a frequency 2fexc to observe possible SHG.
Figure 2a shows the frequency dependence recorded at a distance
x = 10μm from the antenna. This curve exhibits two narrow peaks at
fexc = 2.47 and 2.56 GHz, while the intensity found at other frequencies
is below the noise background. This clearly shows that efficient second
harmonic generation is possible only at specific frequencies, which
indicates the resonant character of this process.

Figure 2b shows the complete BLS spectra recorded at two exci-
tation frequencies corresponding to the observed resonances. These
spectra allow one to simultaneously observe signals at the excitation
frequency, aswell as thosecorresponding to the secondharmonic. The
data show that, at x = 10μm, the intensity of the second harmonic
exceeds that of the initially excited wave by more than a factor of two

Fig. 1 | Implementationof resonant generationof second-harmonic spinwaves.
a Schematics of the experiment. Spin waves in a 500-nmwide and 80-nm thick YIG
waveguide are excited using a Au strip antenna. The ellipticity of the precession of
the magnetization M leads to the appearance of a sizable double-frequency com-
ponent of the dynamic magnetizationmz / m2

x �m2
y (inset), which results in the

excitation of the second-harmonic spin wave. Both waves are independently
detectedbyBLS.bCalculated dispersion spectrumof spin-wavemodes. The phase-
matching condition between the fundamental mode (q =0, p =0) and the first-
order thickness modes (q = 1) is satisfied at the points corresponding to the inter-
section of the dashed curve 2f(2k) with the dispersion curves of the q = 1 modes.
This enables a resonant energy transfer, as indicated by the dashed arrows. Sym-
bols correspond to the resonantly interacting waves, as observed in the experi-
ment. Insets schematically show the distributions of dynamic magnetization over
the thickness and the width of the waveguide. The data are obtained atH = 500Oe.
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Fig. 2 | Experimental evidence for resonant wave interaction. a BLS intensity
detectedat a frequency twice the frequencyof the initial spinwave fexc as a function
of the latter. Note two narrow resonant peaks at fexc = 2.47 and 2.56 GHz.
b Complete BLS spectra recorded at two excitation frequencies corresponding to
the observed resonances, as labeled. The data are obtained at H = 500Oe at a
distance x = 10 μm. Power of the excitation signal P =0.1mW.
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for both resonances. This indicates a very efficient energy transfer
from the initially excited wave to the second-harmonic wave.

We study this processes in more detail in the space domain using
the space- and phase-resolution of BLS. Figure 3 shows the results of
spatial mapping of the intensity and phase (cos(φ)) of spin waves
corresponding to two observed resonances. Figure 3a–c characterizes
the resonance at fexc = 2.47GHz, while Fig. 3d–f characterizes the
resonance at fexc = 2.56GHz. Figure 3a shows spatial maps of the
intensity and phase corresponding to the initial wave at 2.47GHz,
while Fig. 3b shows the same maps for the second-harmonic wave at
4.94GHz. The intensity of the initial wave decreases with propagation
distance, while the intensity of the second harmonic, which is negli-
gible near the antenna, gradually increases in space. Figure 3c shows a
direct comparison of the spatial dependences of the intensities of the
initial wave and the second-harmonic wave. The initial wave exhibits a
well-defined exponential decay (note the logarithmic scale of the
vertical axis) characterized by the decay length of 54μm (for com-
parison, the independently determined decay length of the wave at
4.94GHz is 11μm). The intensity of the second harmonic increases in
the range x =0–10μm and then saturates. The intensities of the two
waves quickly become equal at x ≈ 4μm.

Interestingly, at x > 5μm, the intensity of the second harmonic
becomes larger than the maximum intensity of the initial wave. We
associate thiswith adifference in the groupvelocities of the twowaves.
In fact, although the waves have equal phase velocities, the second-
harmonic wave possesses the group velocity of 0.2μmns−1, which is 4
times smaller than the velocity of the initial wave of 0.8μmns−1. The
energy transferredby awave is proportional to theproduct of intensity
and group velocity. Therefore, when awavewith a large group velocity
is converted into a wave with a smaller group velocity, the intensity
must increase to satisfy the law of conservation of energy flux42. In
agreement with this interpretation, the maximum intensity of the
second harmonic does not exceed four times the maximum intensity
of the initial wave. Note, however, that the ratio of these intensities is
close to 4, reinforcing that there is high-efficiency energy transfer.

Analysis of the data obtained for the second resonance at
fexc = 2.56 GHz (Fig. 3d–f) demonstrates the main difference between
the two observed resonances. Characteristics of the initial wave at
2.56GHz (Fig. 3d) are not significantly different from those of thewave

at 2.47GHz (Fig. 3a). However, the spatial maps of their second har-
monics differ substantially. While the wave at 4.94GHz (Fig. 3b) is
characterized by an intensity maximum in the center of the waveguide
and a uniform distribution of phase across the waveguide width, the
intensity of the wave at 5.12 GHz exhibits a minimum in the center and
the phase shows a variation by π across the waveguide section. These
differences indicate that the two resonances correspond to two dif-
ferent q = 1 modes that possess symmetric (p =0) and antisymmetric
(p = 1) transverse profiles.

This conclusion is in excellent agreement with the results of cal-
culations (Fig. 1b). From the phase maps in Fig. 3, we obtain the
wavelengths of the initial wave, λ0, and the second harmonic, λSH, for
the first (λ0 = 1.65μm, λSH = 0.82μm) and the second (λ0 = 1.38μm,
λSH = 0.69μm) resonances. Taking into account the frequencies of
these waves found from the previous analysis, we can plot the
experimental points on the calculated dispersion diagram (symbols in
Fig. 1b). As seen from these data, the point-up triangles, corresponding
to the initial wave, coincide well with the dispersion curve of the fun-
damental mode, and the point-down triangles, corresponding to the
second harmonic, are located at the intersections of the dashed curve
with the dispersion curves of q = 1 modes with transverse quantization
numbers p =0 and 1, i.e., symmetric and antisymmetric transverse
modes of the waveguide34.

Comparison of the data of Fig. 3c, f allows us to draw one more
important conclusion. The intensity of the second-harmonic wave at
5.12 GHz (Fig. 3f) growswith thepropagationdistancenoticeably faster
than that of the wave at 4.94GHz (Fig. 3c). These data show that the
second harmonic generation efficiency is higher for the mode p = 1.
This is understandable, since the confluence of two magnons is also
expected to cause a doubling of the transverse component of the
wavevector, which favors generation of the mode p = 1. We also note,
that the spatial decay of the initial wave at 2.56GHz occurs faster than
at 2.47 GHz. This is also the result of the faster energy transfer from the
initial wave to the second harmonic due to the higher efficiency of the
process. Generally speaking, the efficiency of the inter-mode SHG
process is expected to be nonzero also for modes with p > 1. However,
thesemodes possess a very short effective wavelength in the direction
across the width of the waveguide and cannot be detected by our
measurement setup.
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Fig. 3 | Spatial mapping of resonantly interacting waves. Left column corre-
sponds to the resonance at fexc = 2.47GHz, right column corresponds to the reso-
nance at fexc = 2.56GHz. a, d Intensity and phase maps of the initially excited wave.
b, e Intensity and phase maps of the second-harmonic wave. c, f Spatial

dependences of the intensity of the initial wave and the second-harmonic wave.
Lines show the exponential fit of the data obtained for the initial wave. The data are
obtained at H = 500Oe. Power of the excitation signal P =0.1mW.
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Off-resonance interaction
Let us now discuss the generation of the second harmonic at fre-
quencies outside the resonances.We vary the excitation frequency fexc
in the range 2.4–2.6GHz around the found resonances and record
spatial dependences of the intensity of the second harmonic at 2fexc.
The obtained results (Fig. 4a) show that the spectral width of the
resonant peaks strongly decreases with increasing propagation dis-
tance x. This is a natural feature of the resonant interaction, which
requires phase matching between the initial wave and the second
harmonic along the entire interaction path. At large interaction dis-
tances, the result becomes more sensitive to the difference in the
phase velocities of the interacting waves. Correspondingly, efficient
energy exchange can only be achieved over a narrow frequency
interval. On the contrary, at small distances, a significant mismatch of
phase velocities does not lead to a strong mismatch of the phases of
the interacting waves, facilitating energy exchange over a wider
spectral region. We emphasize, however, that the maximum achiev-
able amplitudes of the second harmonic are much smaller in this case.
This is demonstrated in Fig. 4b, which shows sections of the map
Fig. 4a for the resonant frequency 2.47 GHz and an off-resonance fre-
quency of 2.45GHz. As seen from these data, in the region x =0–2μm,
the intensity of the second harmonic grows similarly for both fre-
quencies. However, in the non-resonant case (fexc = 2.45GHz), the
intensity starts to decrease at x > 2μm until it completely vanishes at
x = 4μm, only to return periodically for larger distances. This dimin-
ishment arises as the initial wave periodically becomes out of phase
relative to the second-harmonic wave and, thus, suppresses it. The
observed behaviors are similar to those found in optical systems3,
where the frequency dependence of the refractive index tends to lead
to a phase mismatch between the initial wave and the second harmo-
nic, unless special phase-matching approaches are used.

Dependence on the excitation power
As discussed above, generation of the second harmonic relies on the
component of the dynamic magnetization mz / m2

x �m2
y (Fig. 1a),

which, in the first approximation, is proportional the square of the
amplitude of dynamic magnetization at the frequency of initially exci-
ted precession5. Therefore, we expect that the intensity of the second
harmonicwill be proportional to the square of the intensity of the initial
wave. This is confirmedby the results presented in Fig. 5a,whereweplot
the intensity of the second-harmonic signal for the two resonances as a
function of the power of the excitation signal, P, which is proportional
to the intensity of the initial spin wave. As seen from Fig. 5a, the
experimental data (symbols) are fit well with parabolic functions (solid
curves). We note that the second harmonic generation is a non-
threshold process that can be observed at arbitrarily small intensities of
the initial wave. However, due to the nonlinear dependence of the
intensity of the second harmonic on the intensity of the initial wave, it
only becomes clearly pronounced at large intensities of the initial wave.

Figure 5b shows spatial dependences of the second harmonic
intensity obtained for the first resonance (fexc = 2.45GHz) at excitation
powers P =0.1 and 0.2mW. According to the aforementioned quad-
ratic dependence, at a given distance x ≤ 10μm, the intensity of the
second harmonic increases by about four times when the intensity of
the initial wave is doubled. This implies that the spatial rate of the
energy transfer from the initial wave to the second harmonic increases
with the increase in P. This greater efficiency gives rise to faster spatial
attenuation of the initial wave at P =0.2mW in comparison with
P =0.1mW. As a result, at this power, the energy transfer from the
initial wave beyond x = 10μm can no longer fully compensate the
attenuation of the second-harmonic wave and the intensity of the
latter starts to decrease, in contrast with P =0.1mW, where this
decrease occurs at x > 15μm.
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Fig. 5 | Dependence on the excitation power. a Intensity of the second-harmonic
wave for the two resonances, as labeled, as a function of the power of the excitation
signal, P. The data are recorded at a distancex = 10μm. Symbols showexperimental
data. Curves show the fit by a parabolic function. b Spatial dependences of the
intensity of the second harmonic recorded at P =0.1mW and 0.2mW, as labeled.
The data are obtained at H = 500Oe.
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Dependence on the static magnetic field
Finally, we discuss the effects of the static magnetic field H on the
studied phenomena. In the first approximation, a decrease in H
shifts the dispersion spectrum (Fig. 1b) down without significantly
affecting the frequency gap between the fundamental mode and
q = 1 modes, which is determined by the thickness of the magnetic
film, as well as by its saturation magnetization and the exchange
constant35. Under these conditions, the intersection points corre-
sponding to the resonant interaction shift towards larger wave-
vectors (smaller wavelengths). To demonstrate this, we vary the
static magnetic field, determine the resonant frequencies, and find
the wavelengths of the second-harmonic waves from phase-
resolved measurements. The results of these measurements are
summarized in Fig. 6. The values of the wavelengths obtained from
the experiment (symbols) are in good agreement with the results of
analytical calculations (curves). As seen from Fig. 6, by decreasingH
to 350 Oe, second-harmonic waves with the wavelength below
500 nm can be resonantly generated. Such short waves cannot be
excited directly by the used antenna34. In other words, the resonant
second-harmonic generation process can be used to achieve effi-
cient excitation of short-wavelength spin waves, which are difficult
to excite using traditional inductive mechanism.

In conclusion, our results provide direct experimental evidenceof
highly efficient resonant second-harmonic generation by spin waves
enabledby the engineering of the dispersion spectrumof spinwaves in
nanoscale YIG waveguides. This engineering allows one to fulfill the
resonant conditions for the three-magnon interaction
processes38,39,43–45, inwhich thenon-zerowavevector and the frequency
of magnons can be doubled simultaneously. The demonstrated
approach is flexible and can be customized for different microwave
frequency ranges by simply varying the thickness of the magnetic
waveguide. For example, for YIG waveguides with a thickness of
10–20 nm, the resonant conditions can be fulfilled for sub-THz band
frequencies. The use of films with smaller thicknesses also makes it
possible to tune the dispersion spectrum to achieve the fulfillment of
the resonant conditions for the generation of higher-order harmonics.
In addition to clear-cut andbountiful opportunities of generating high-
frequency, ultra-short spin waves, resonant second-harmonic genera-
tion can also be used to implement novel magnonic devices. For
instance, until now, magnonic devices exploiting wave-interference
effects could only operate with signals carried by waves of the same
frequency. The phase-locked second-harmonic generation process
allows such devices to operate simultaneously at the fundamental and
double frequencies. These possibilities will help to extend the func-
tionalities of magnonic circuits and will propel new developments

within the field. Additionally, the demonstrated approach is funda-
mental and is not limited to spin waves. Indeed, engineering the inter-
mode second-harmonic generation in other thin-film nanostructure
systems may just grant the ability to exploit other types of waves (e.g.
elastic waves) as well.

Methods
Sample fabrication
To fabricate the YIG waveguides, first a double-layer of PMMA resist
was spin coated onto GGG < 111 > , then 8 nm of gold was evaporated
to provide a conductive layer, and lastly the structures were pat-
terned using e-beam lithography. Afterwards, the sample was
placed in a potassium iodide solution to etch away the gold layer
and then was developed in pure isopropanol. It was further pro-
cessed with oxygen plasma to remove any remaining resist in the
developed areas. Using the recipe established by Hauser et al.32,
nominally 100 nm of YIG was deposited at room temperature by
pulsed laser deposition and lifted-off in acetone. The sample was
annealed in oxygen for 3 h at 800 degrees, followed by a phosphoric
acid etch to remove about 20 nm of YIG for precise thickness
engineering and smoother edges. In order to do high frequency
measurements on the sample, microstrip antennas had to be over-
layed on top of the YIG waveguides. The same fabrication process
used for the YIG waveguides, up until the PLD step, was used to
pattern gold antennas on top. At this stage, 10 nm of titanium and
200 nm of gold were deposited by e-beam evaporation and then
lifted off in acetone to complete the fabrication of the gold
antennas.

Micro-focus BLS measurements
Measurements are performed at room temperature. For the
magneto-optical detection of propagating spin waves, we focus the
probing laser light into a diffraction-limited spot on the surface of
the YIG waveguide using a high-performance 100× microscope
objective lens with a numerical aperture of 0.9. The probing light
with a wavelength of 437 nm and a power of 0.25 mW is produced by
a single-frequency laser. The spectrum of the light inelastically
scattered from magnetic oscillations is analyzed using six-pass
Fabry–Perot interferometer. The measured intensity of the scat-
tered light is proportional to the intensity of spin waves. To obtain
additional resolutionwith respect to the phase of spinwaves, we use
the interference of the scattered light with the light modulated by
the signal used to excite spin waves. After processing, we obtain a
value proportional to cos(φ), where φ is the difference of the phase
of the spin wave at the measurement position and the phase of the
signal applied to the antenna.

Calculation of the dispersion spectrum
We use the nominal geometrical parameters of the waveguide and
standard for YIG saturation magnetization 4πMs = 1750G. The
exchange constant A is used as an adjustable parameter. An excellent
agreement between the experimental and the calculated dispersion is
achieved in a broad range of the static magnetic field for exchange
constant of 3.25 erg/cm, which is very close to the standard for YIG
3.66 erg/cm.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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