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scCASE: accurate and interpretable
enhancement for single-cell chromatin
accessibility sequencing data

Songming Tang1, Xuejian Cui 2, Rongxiang Wang3, Sijie Li1, Siyu Li4,
Xin Huang5 & Shengquan Chen 1

Single-cell chromatin accessibility sequencing (scCAS) has emerged as a
valuable tool for interrogating and elucidating epigenomic heterogeneity and
gene regulation. However, scCAS data inherently suffers from limitations such
as high sparsity and dimensionality, which pose significant challenges for
downstream analyses. Although several methods are proposed to enhance
scCAS data, there are still challenges and limitations that hinder the effec-
tiveness of these methods. Here, we propose scCASE, a scCAS data enhance-
ment method based on non-negative matrix factorization which incorporates
an iteratively updating cell-to-cell similarity matrix. Through comprehensive
experiments on multiple datasets, we demonstrate the advantages of scCASE
over existing methods for scCAS data enhancement. The interpretable cell
type-specific peaks identified by scCASE can provide valuable biological
insights into cell subpopulations. Moreover, to leverage the large compendia
of available omics data as a reference, we further expand scCASE to scCASER,
which enables the incorporation of external reference data to improve
enhancement performance.

The emergence of single-cell omics sequencing technology allows us
to study cellular heterogeneity and complexity1. In the field of single-
cell epigenomics, single-cell chromatin accessibility sequencing
(scCAS) can measure the open chromatin status of individual cells2,
discover epigenomic heterogeneity, reveal gene regulation mechan-
isms, and deepen our understanding of life processes such as cell
development, cell differentiation, and diseases3–6. However, compared
with conventional single-cell RNA sequencing (scRNA-seq) data, scCAS
data present some challenges due to assay-specific characteristics,
such as high dimensionality and severe sparsity7. In addition, though
there are many thousands of possible open positions per cell, only a
few thousand distinct reads can be captured, resulting in the dropout
events of sequencing data2,8–10. The dropout events of scCAS data
significantly impact downstream analyses such as cell clustering and

data visualization10. Consequently, developing an efficient scCAS data
enhancementmethod to impute the dropout events is essential for not
only improving the quality of downstream analyses but also revealing
biological insights.

Many enhancement methods have been designed for scRNA-seq
data, such as MAGIC11, scImpute12, DCA13, and SAVER14, and have also
been attempted to be applied to scCAS data15. However, since these
methods are not explicitly designed for scCAS data, they exhibit poor
performance, lack the necessary level of stability when applied to
scCAS data, and should be used cautiously10,15, highlighting the press-
ing need for enhancement methods specific to scCAS data. Currently,
several computational methods have been proposed to enhance
scCAS data. For instance, SCALE embeds each cell with a vector of
latent features via an encoder network and reconstructs original
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profiles through a decoder network to obtain the enhanced open
chromatin status of each cell9. scBFA models the gene detection pat-
terns through binary factor analysis to obtain an embedding matrix
and a loadingmatrix that can bemultiplied to enhance both scRNA-seq
and scCAS data16. scOpen uses regularized non-negative matrix fac-
torization (NMF) on scCAS count matrix and restores the original data
using the factorizedmatrices to enhance anddenoise the scCASdata10.
Besides, scBasset adopts a deep convolutional neural network to
leverage DNA sequence information underlying accessibility peaks to
model scCAS data and predict chromatin accessibility17.

However, certain limitations deserve further consideration. On
the one hand, existing methods primarily focus on enhancing scCAS
data only on accessibility peaks, disregarding the crucial factors of cell-
to-cell difference and correlation, which can be used to enhance epi-
genetic signals and maintain cellular heterogeneity within and
between subpopulations15,18. On the other hand, large compendia of
available omics data offer valuable prior knowledge that can be
employed to model the target scCAS data preferably. Studies have
consistently demonstrated that leveraging publicly available data as
references can be highly effective in aiding single-cell omics data
analysis19–21. Despite that, none of the existing scCAS data enhance-
ment methods can effectively incorporate external reference data.

Tofill these gaps,weproposeanaccurate and interpretable scCAS
data enhancement method, namely scCASE, based on non-negative
matrix factorization. To model the cell-to-cell difference and correla-
tion, we incorporate a cell-to-cell similarity matrix when performing
non-negativematrix factorization, which can be used to aggregate the
scCAS data of similar cells and be updated in an iterative manner. The
enhanced scCAS data effectively capture signals of cellular hetero-
geneity and improve the quality of downstream analyses, such as cell
clustering and data visualization.With comprehensive experiments on
one simulated and ten publicly available real scCAS datasets, we
demonstrated that scCASE outperforms baseline methods in the
enhancement of scCAS data. Moreover, we showed that we can iden-
tify cell type-specific peaks based on the trained scCASE model and
unveil biological insights into specific cell subpopulations via exten-
sive biological function enrichment, tissue-specific expression
enrichment, and partitioned heritability analysis, suggesting the

compelling interpretability of scCASE. Furthermore, we developed
scCASER, which can incorporate publicly available omics data as
reference data to better characterize the target scCAS data and facil-
itate data enhancement. We also provided various approaches to
construct effective reference data, further expanding the applicability
of scCASER.

Results
The scCASE model
The schematic diagram of scCASE is shown in Fig. 1. The input of
scCASE is a scCAS count matrix, which is processed to filter the peaks
accessible in fewer than 1% cells and then subjected to a term
frequency-inverse document frequency (TF-IDF) transformation
(“Methods”). Based on non-negative matrix factorization (NMF),
scCASE incorporates an iterative updated cell-to-cell similarity matrix
to enhance scCAS data. Given that similar cells generally have similar
chromatin accessibility patterns, we can describe the read counts of a
certain cell as a weighted average of other cells by introducing the
similarity matrix to fully utilize cell-to-cell correlation. The higher the
similarity between a cell and the certain cell, the greater the weight of
the cell. We also generated a matrix randomly sampled by binomial
distribution to prevent similar cells from exhibiting entire consistent
read counts. The model can be divided into two parts. On the one
hand, via multiplying the scCAS count matrix by the Hadamard pro-
duct of the similarity matrix and the randomly sampledmatrix, we can
obtain a scCAS count matrix enhanced by similarity. On the other
hand, we can obtain a reconstructed scCAS count matrix via multi-
plying the two factorized matrices of projection matrix and cell
embedding matrix. We iteratively update the similarity matrix, the
projection matrix, and the cell embedding matrix to minimize the
difference between the enhanced matrix and the reconstructed
matrix. In addition, scCASE can adaptively adjust the dimension of cell
embedding based on the input dataset (“Methods”).

We compared the performance of scCASE with state-of-the-art
scCAS data enhancement methods, including SCALE9, scBFA16,
scOpen10, and scBasset17 (“Methods”), using their default parameters,
and conducted comprehensive comparisons on various datasets,
including a simulated scCAS dataset, eight publicly available scCAS
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Fig. 1 | The graphical illustration of scCASE. scCASE takes a preprocessed scCAS
countmatrix as input, then generates an initial similaritymatrix basedon thematrix
and performs non-negative matrix factorization to obtain an initial projection
matrix and an initial cell embedding.Wedescribe the read counts of a certain cell as
a weighted average of other cells by introducing the similaritymatrix to fully utilize
cell-to-cell correlation. Random sampling matrix is generated through binomial

distribution and Hadamard multiplied with similarity matrix in the computation is
to avoid same cells exhibit almost the same accessible peaks which improperly
reduces the cellular heterogeneity. The model uses similarity and matrix factor-
ization to enhance scCAS data separately and iteratively optimizes the initialized
matrix, aiming to minimize the difference between the reconstructed and
enhanced matrices.
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datasets, two scCAS datasets annotated base on the paired scRNA-seq
data, and two mixed scCAS datasets (“Methods”, Supplementary
Table S1). The simulated data is constructed by simCAS22, the state-of-
the-art method for scCAS data simulation. For the eight publicly
available scCAS datasets, the Blood dataset contains ten types of
human hematopoietic cells from bone marrow, while the BM0828
dataset is a widely-used benchmarking subset of the Blood dataset
with thedonor label BM08287,21,23,24. Todeterminewhether thefindings
remain consistent across various species and tissues, we collected the
WholeBrainA, WholeBrainB, LungA, LungB, Spleen, and LargeIntestine
datasets, which were derived from the whole brain, lung, spleen, and
large intestine tissues of adultmice25. We also employed twomultiome
datasets, including Muto and PBMC, for consistency between scRNA-
seq and scCAS to reduce the impact of mislabeling caused by anno-
tating solely based on scCAS data. Moreover, two mixed datasets are
concatenated with datasets from different tissues or protocols. All the
datasets vary in terms of protocol, species, tissue, number of cells,
number of peaks, number of cell types, and imbalance degree of cell
types, but all exhibit high sparsity and dimension (Supplementary
Table S1).

scCASE enhances scCAS data for better cellular heterogeneity
characterization
We first assess the capability of scCASE in recovering dropout events.
For a real dataset, the ground truth without any corruption is
unknown, we thus quantified data enhancement performance on a
simulated dataset. We utilized simCAS22, the state-of-the-art method
for scCAS data simulation, in discrete mode to construct a dataset
consisting of five clusters, each containing 500 cells. We then used the
EpiScanpy pipeline to identify the top 3000 differentially accessible
peaks for each cell type26. In this way, we obtained a simulated dataset
with 2500 cells and 15,000 peaks as the input of different enhance-
ment methods (Fig. 2a and Supplementary Table S1). Figure 2b shows
theheatmapof the data enhancedby scCASE,which effectivelyfilled in
the dropout events in the raw data (Supplementary Fig. S1a) and pro-
vided clearer cell type-specific patterns. Next, we evaluated the cor-
relation between enhanced simulated data and ground truth data with
the area under the precision-recall curve (auPRC) and the area under
the receiver operating characteristic curve (auROC) for each cell and
each peak, respectively. scCASE significantly outperformed the com-
peting methods by presenting higher auPRC and auROC regardless of
cell-wise (Fig. 2c) or peak-wise (Supplementary Fig. S1b, c). In addition,
we calculated the auPRC and auROC for each of the five cell types
separately (Supplementary Fig. S1d, e) and observed that even for cell
types with significant dropout events, such as cell types A and D,
scCASE was able to uncover the potential epigenetic information and
accurately enhance the scCAS data.

Furthermore, we evaluated the ability of scCASE to accurately
capture the underlying characteristics of cells and effectively promote
cell clustering performance in real datasets. Utilizing the same eva-
luation strategy as scOpen, a method tailored for scCAS data
enhancement, we performed principal component analysis (PCA) to
reduce the dimensionality of the enhanced data to 50 dimensions10

and then performed Louvain clustering with binary search strategy to
ensure the number of clusters equals to the number of cell types7,26,27.
The clustering results were then evaluated by adjusted Rand index
(ARI)28, adjusted mutual information (AMI)29, and Fowlkes-Mallows
index (FMI)30. Besides, following scOpen, we examined the influenceof
data enhancement on the estimation distances between cells by sil-
houette score10,31. A higher silhouette score indicates that a cell exhibits
more significant similarity to cellsof the same type compared to that of
other types (“Methods”).

Compared with baseline methods, scCASE demonstrated the
overall best performance (Fig. 2d, e; Supplementary Fig. S2 and Sup-
plementary Table S2). Specifically, scCASE achieved an average

improvement of 13.89% in ARI and 24.41% in silhouette scores across
the eight datasets compared with the second-best method for each
dataset (Supplementary Fig. S3). Besides, the scCAS data enhanced by
scCASE significantly outperformed the rawdata and thedata enhanced
by other methods with p values less than 0.05 in one-sided paired
Wilcoxon signed-rank tests (Supplementary Fig. S4), indicating that
scCASE can effectively enhance scCAS data and thus characterize
cellular heterogeneity well and improve the accuracy of cell clustering.
Annotation solely based on scCAS data may lead to mislabeling, thus,
these labels aren’t necessarily better at capturing true biological het-
erogeneity. We included the two scCAS datasets annotated based on
paired scRNA-seq data including Muto and PBMC in our benchmark
(“Methods”), and the data enhanced by scCASE consistently demon-
strated the best performance compared to raw data and data
enhanced by baseline methods (Supplementary Fig. S5). Moreover,
scCASE can obtain latent cell embeddings, achieving data dimension-
ality reduction. The cell embeddings from scCASE are also beneficial
for clustering. The embeddings learned by scCASE demonstrate cer-
tain advantages over the latent representations obtained frombaseline
methods (Supplementary Fig. S6).

To visually illustrate that the real scCAS data can be efficaciously
enhanced by scCASE, we further provided an example using the
BM0828 dataset. We utilized EpiScanpy to identify the top ten differ-
entially accessible peaks for each type26. Based on the differentially
accessible peaks identified from raw data, we plotted heatmaps of the
count matrices of the raw data (Fig. 2f) and the data enhanced by
scCASE (Fig. 2g). Evidently, the raw data exhibited significant dropout
events and technical noise, and showed indistinct patterns of different
cell types. After enhancement by scCASE, the dropout events have
been effectively imputed, and accessible patterns of different cell
types can be effectively captured, again suggesting the profound
proficiency of scCASE in interrogating and elucidating cellular het-
erogeneity. Moreover, correcting for sequencing depth is one of the
most important goals in the enhancement of scCAS data, and many
commonly usedmethods for preprocessing scCAS data such as TF-IDF
don’t fully correct sequencing depth25. Following Cusanovich et al.25,
we applied TF-IDF transformation to the raw count matrix and
employed SVD to reduce the model dimensions to 10, a significant
correlation between principal component 1 (PC1) and sequencing
depth can be observed. The correlation coefficient between PC1 and
sequencing depth exceeds 0.8 in the Blood dataset, and 0.7 in the
LungA dataset (Supplementary Figs. S7 and S8). This is also evident in
uniformmanifold approximation and projection (UMAP) visualization,
where sequencing depth largely determines the positions of cells in
the low-dimensional representation (Fig. 2h and Supplementary
Figs. S7a and S8a). For the data enhanced by scCASE, the observed
correlation was attenuated. In the Blood dataset, this correlation with
PC1 has been reduced by 45.6%, while in the LungA dataset, it has been
reduced by 19.6% (Fig. 2i and Supplementary Figs. S7 and S8). To
enhance the capability of scCASE in further mitigating the impact of
sequencing depth, we extended the scCASE model and set it as an
optional variant (Supplementary Text S3). In the data enhanced by the
extended scCASE, it is hard to observe a strong correlation between
individual principal components and the sequencing depth (Supple-
mentary Figs. S7 and S8).

Moreover, we visualized the enhanced scCAS data using t-SNE (t-
distributed stochastic neighbor embedding) and UMAP. Compared
with the raw data and the data enhanced by other methods, utilizing
the data enhanced by scCASE, we can better separate different cell
types and recognize subtle differences between cells of different types
(Fig. 3 and Supplementary Figs. S9 and S10). For example, we can
effectively distinguish the LMPP, MEP, and CMP in the Blood and
BM0828 datasets using the data enhanced by scCASE (Fig. 3a, b). In
contrast, these cell types could not be separated effectively in the raw
data and the data enhanced by SCALE and scBFA. Besides, in the LungA
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and LungB datasets, alveolarmacrophages, dendritic cells, and someB
cellswere close to eachother in the latent space of rawdata (Fig. 3c, d).
Using the data enhanced by other methods, we struggled to distin-
guish these types ideally, yet only scCASE proved capable of char-
acterizing the cellular heterogeneity of these cell types. Furthermore,
on the Spleen dataset, we can identify T cells and regulatory T cells
using the data enhanced by scCASE, while they cannot be identified via

the data enhanced by other methods (Fig. 3e), indicating that even for
closely related cell types, scCASE can still capture the subtle differ-
ences between different subtypes.

scCASE intuitively reveals cell type-specific biological insights
scCASE canextract latent features of cell subpopulations,which canbe
applied to downstreamanalyses and reveal cell type-specific biological
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insights. Specifically, scCASE can identify cell type-specific peaks,
allowing us to gain insights into various aspects of cellular hetero-
geneity, such as functionality, tissue-specific expression, and parti-
tioned heritability. Taking the Blood dataset as an example, we utilized
the factorized cell embedding and projection matrices to identify the
specific accessibility peaks of monocytes. In Fig. 4a, each row repre-
sents a component of cell embedding learned by scCASE, and each
column represents a cell, with cells ordered by cell type. We con-
sidered a column of the projection matrix (a pattern of peaks) corre-
sponding to the row of cell embedding with the highest activation
levels in the monocyte cluster, investigated the pattern of peaks with
relatively large coefficients, and identified the top 100 influential peaks
as the monocyte-specific peaks (Fig. 4a). Subsequently, we performed
a genomic region enrichment of annotation tool (GREAT)32 analysis on
the monocyte-specific peaks identified by scCASE (Supplementary
Table S3). The top five pathways with the smallest p values using the
binomial test consist of response to bacterium; response to lipopoly-
saccharide; response to molecule of bacterial origin; positive regula-
tion of immune system process; and regulation of immune system
process. All the enriched top five pathways are consistent with the
known functions of monocytes: monocyte is a subgroup of white
blood cells, an important part of the defense system, and an essential
natural immune effector cell.

To better demonstrate the correlation between cell type-specific
peaks and functionality, we further used the UCSC genome browser33

and the UniProt database34 to retrieve these peaks. Some monocyte-

specific peaks are located within or close to the genes’ transcript
positions expressed explicitly in monocytes, indicating that scCASE
can be used to identify genomic regions highly related to cell func-
tions. For example, the identified peak chr2: 219,246,758-219,247,258
(hg19) is located within the genomic region of the human SLC11A1
gene. This gene encodes a natural resistance-associated macrophage
protein that transports divalent transition metals, and it is highly
expressed in macrophages that differentiate from monocytes35. The
peak chr6: 41,239,630-41,240,130 (hg19) is located near the genomic
region of the TREM1 gene, which is selectively expressed in sub-
populations of monocytes in the blood and mediates the activation of
monocytes36.

To investigate whether these strategies of scCASE for revealing
cell type-specific biological insights can be applied to datasets from
different species and tissues, we conducted the same experiments on
the LungB dataset and took T cells as an example. The top five path-
ways of peaks identified by scCASE with the smallest p values of the
binomial test in GREAT analysis are abnormal T cell physiology;
abnormal CD8-positive, alpha-beta T cell morphology; abnormal T cell
activation; abnormal CD8-positive, alpha-beta T cell number; and
abnormal T cell proliferation (Supplementary Fig. S11 and Supple-
mentary Table S4), which have good agreement with the functionality
of T cells. In addition, the scCASE-identified peak chr12: 114,092,788-
114,093,703 (mm9) is contained in the genomic regions of the Gpr132
gene, which serves as a mechanism to slow down proliferation and
repair damaged DNA in T and B lymphocytes (Supplementary
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Table S5)37. Besides, the scCASE-identified peaks chr11: 46,201,573-
46,203,658 and chr11: 46,157,147-46,158,328 are located within the
genomic regions of the Itk gene, which is associatedwith T cell antigen
receptor signal transduction and contributes to T cell activation38. The
results suggest that the capability of scCASE to unveil cell type-specific
biological insights can be generalized to various species and tissues.

We further demonstrated that the cell type-specific peaks identi-
fied by scCASE can also provide tissue-specific expression enrichment.
We again used scCASE to identify 1000cell type-specificpeaks for each
cell type to verify whether the peaks provide more significantly
expressed tissue specificity than the background peaks without cell
type specificity. We calculated the mean coefficient of the projection
matrix and the mean coefficients of each peak. Next, we chose the top
1000 peaks whose mean coefficients are closest to the mean coeffi-
cient of the projection matrix as background peaks. Subsequently, we
performed SNPsea analysis39, using the default settings, on each set of
cell type-specific peaks and background peaks separately to obtain
tissues explicitly affected by these peaks (“Methods”, Fig. 4b and
Supplementary Fig. S12). For the Blood dataset, tissues associatedwith
blood display significant enrichment in gene expression based on the
identified cell type-specific peaks. However, less enrichment is
observed based on the background peaks, indicating that the cell type-
specific peaks identified by scCASE can exhibit distinct tissue specifi-
city and thus provide cellular heterogeneity insights in related tissues.

Moreover, the cell type-specific peaks obtained by scCASE can
contribute to investigating phenotype variations. We employed par-
titioned linkage disequilibrium score regression (LDSC)40 with default
settings to quantify heritability enrichment for phenotypes within cell
type-specific and background peaks in the Blood dataset (“Methods”).
Compared with the background peaks, we revealed a significant
enrichment of heritability for blood-related phenotypes, specifically
within the cell type-specific peaks (Fig. 4c and Supplementary Fig. S13).

Concretely, the enrichments of heritability for the eosinophil and
the phosphate count in the cell type-specific peaks are higher than that
in the background peaks except CLP cells. Therefore, scCASE pos-
sesses the potential to enhance comprehension regarding the sig-
nificance of distinct cell subpopulations and establish systematic
connections between particular phenotypes and the function of spe-
cific cell types.

Given that motif enrichment analysis can deepen the under-
standing of regulatory mechanisms, we also showed that scCAS data
enhanced by scCASE can trenchantly reveal cell type-specific motifs.
We performed PCA on the data enhanced by scCASE, followed by the
Louvain clustering to obtain the cluster labels. Following RA37, we
identified 1000 specific peaks for each cluster using the hypothesis
testing procedure in scABC based on the scCASE- enhanced matrix41.
Then, chromVAR42 was utilized to determine the transcription factor
(TF) binding motifs enriched within these cluster-specific peaks
(“Methods”). We visualized the top 50most variable TF bindingmotifs
in the Blood dataset (Fig. 4d and Supplementary Fig. S14). Existing
literature confirms that 35 motifs of the top 50 most variable TF
binding motifs are associated with hemocytes (Supplementary
Table S6). SomeTF bindingmotifs are specific to one or two cell types,
and existing literature further confirms the correlation between these
TFs/motifs and the corresponding cell types. For example, the BATF
gene, expressed explicitly in HSCs (hematopoietic stem cells), limits
the self-renewal and differentiation checkpoint, and the JUNB gene
regulates HSC function43. In MEP cells (megakaryocyte-erythroid pro-
genitor cells), the specifically expressed motifs include the GATA
family (GATA1, GATA2, GATA3, GATA5) and TAL1, of which the former
involved in the regulation of the development of erythroid and
megakaryocyte precursors and crucial for normal hematopoiesis,
while the latter serving as a positive regulator of the erythroid lineage
differentiation44,45. The pDCs (plasmacytoid dendritic cells) participate
in immune function. The genes SPI1, IRF7, IRF8, SPIC, and SPIB are

involved in immune function and necessary for developing plasma-
cytoid dendritic cells46–49. Moreover, the CEBPA, CEBPB, CEBPD, CEBPE,
and CEBPG genes are expressed explicitly in GMP cells (granulocyte-
macrophage progenitor cells) and are critical in normal granulocyte
production and essential for the transitioning progress fromCMPcells
(common myeloid progenitor cells) to GMP cells50–53.

Moreover, the enrichment results with the cell type-specific peaks
identified by scCASE are relatively better than those identified by
EpiScanpy (Supplementary Text S4 and Supplementary Figs. S15–S20),
demonstrating the superior biological significance of the cell type-
specific peaks identified by scCASE. Taken together, we can use
scCASE to explore more comprehensive biological implications and
gain broader cell type-specific insights.

scCASE exhibits superior robustness to various application
scenarios
We first assess the robustness of scCASE to different sparsities,
imbalance degrees, and sample sizes of datasets. We employed the
LungA dataset as an example given its high sparsity. We intentionally
manipulated the data to simulate different conditions, allowing us to
evaluate the robustness of different scCAS data enhancement meth-
ods under such extreme scenarios. We excluded the scBFA and
scBasset methods from comparison in this section due to their
inadequate speed and memory usage performance, rendering them
incapable on the LungA dataset within 48 h under amemory limitation
of 256GB. We randomly dropped out the non-zero entries to be
translated to zero with a probability equal to the dropout rate, which
was set to range from0% to 80%. As the dropout rate increased, ARI of
the clustering results obtained from the scCAS data enhanced by
scCASE was stable and satisfactory, while the raw data and the data
enhanced by other methods exhibited varying degrees of fluctuation
and decline (Fig. 5a). Then, considering that the proportions of dif-
ferent cell types can impact the capability of methods to learn dis-
tinctive features of each type24, we conducted random subsampling by
reducing the differences in cell number of various cell types to assess
the performance of different methods on datasets with various
imbalanced degrees of cell types (“Methods”). The results revealed
that scCASE consistently and accurately enhanced dropout events
across different degrees of cell type imbalance (Fig. 5b), suggesting
that scCASE is robust and proficient in handling datasets with imbal-
anced cell types. Next, we conducted a comprehensive validation to
confirm the robustness of scCASE to sample size. We randomly sub-
sampled cells in the raw data to decrease the number of cells from a
total of 3671 cells to 367 (about one-tenth of the total). As shown in
Fig. 5c, regardless of the dataset size, scCASE consistently achieved
superior and stable enhancement performance for cellular hetero-
geneity characterization.

Secondly, with the accumulation of public scCAS data, datasets
from different sources, tissues, donors, or batches pose great chal-
lenges for data analysis54. We concatenated two mouse brain datasets
from protocols of 10X and snATAC55,56 as a new dataset named Mixed-
protocols, which exhibits obvious batch effects. Besides, to evaluate
the performanceof scCASE in datasets affectedbydifferent tissues,we
concatenated the LungA and Spleen datasets25 as a new dataset named
Mixed-tissues (Supplementary Table S1). We evaluated the clustering
performance of data enhanced by different methods and found that
scCASE consistently outperformed the baseline methods, indicating
that scCASE can also effectively enhance data from different sources,
tissues, donors, or batches for better downstream analysis (Fig. 5d and
Supplementary Figs. S21 and S22). Moreover, we also provide an
optional extension of scCASE, enabling it to significantly enhance the
analyses of data with batch effects (Fig. 5e), and this modification will
beprovided as anoptional variant (SupplementaryText S5). Taking the
Mixed-protocols dataset as an example, this dataset exhibits obvious
batch effects. The extended scCASE achieved a significant lead in
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metrics measuring both the preservation of biological variation (ARI,
AMI, FMI, and Silhouette score), and batchmixing (k-nearest neighbor
batch effect test (kBET) and modified average silhouette width of
batch (Batch ASW)) (Supplementary Text S1 and Supplementary
Fig. S21a)57,58. In the raw data and data enhanced by baseline methods,
L2/3 IT cells from different baches exhibit significant differences,
making it challenging to identify them as the same cell type in UMAP
visualization and Louvain clustering (Fig. 5e and Supplementary
Fig. S21b–e). The extended scCASE is able to reduce the differences
between L2/3 IT cells from different batches, resulting in their clus-
tering as a single group in Louvain clustering (Fig. 5f and Supple-
mentary Fig. S21f). The results indicate that the extended scCASE can
effectively correct batch effects and facilitate the analyses of data with
batch effects.

Taken together, scCASE can enhance scCASdata effectively under
diverse scenarios, demonstrating its strong robustness and suggesting

that it can be widely employed to facilitate data enhancement on
scCAS datasets with different characteristics.

scCASE can effectively incorporate reference data to further
promote performance
Incorporating the available omics data in public databases as a refer-
ence for the analysis of single-cell omic data is a practical approach to
address the inherent challenges posed by high levels of noise and
technical variation7,20,21. However, current scCAS data enhancement
methods rely on the target scCAS data itself, neglecting the valuable
prior information contained within the extensive public chromatin
accessibility data. Given that reference data offer a more compre-
hensive representation of the general chromatin accessibility land-
scape for a specific cell type, we have expanded scCASE method and
developed scCASER (scCASE with reference data) to further utilize the
prior information (Fig. 6a). Briefly, scCASER uses the reference data as

Fig. 5 | Robustness tests and batch effect correction. a–c Robustness of different
methods in various scenarios. a Robustness of differentmethods to the noise level.
b Robustness of different methods to the cell type imbalance degrees.
c Robustness of different methods to the dataset size. d The values of different
metrics of raw data and the data enhanced by various methods on the Mixed-

protocols dataset. UMAP visualizations of (e) raw data and (f) the data enhanced by
scCASE on the Mixed-protocols dataset. Cell type annotation labels, batch labels
and clustering labels are projected onto the visualizations. Source data are pro-
vided as a Source Data file.
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an input, then utilizes NMF to reduce the dimension of reference data
and extract prior knowledge as a part of the projection matrix
(“Methods”).

Integrating reference data in scCASER can better characterize the
target scCAS data, enrich the enhancement process, and improve the
quality of downstream analyses. To expand the applicability of scCA-
SER, we explored various methods to obtain reference data (“Meth-
ods”). First, for the Blood and BM0828 datasets, similar to existing
studies7,21, weobtained the reference from thebulk data encompassing
17 distinct blood cell types23. Secondly, for the paired datasets of the
same tissue, i.e., WholeBrainA/WholeBrainB and LungA/LungB, we
generated pseudo-bulk reference for one of the datasets via aggre-
gating the countmatrix of another dataset by cell type labels. Finally, in
cases where datasets have no related bulk data or paired single-cell
dataset available, such as the LargeIntestine and Spleen datasets, we
used a general scCAS analysis pipeline to cluster cells26, aggregated the
target scCAS count matrix by clustering labels, and obtained pseudo-
bulk self-reference data. With the strategy, we could leverage the
inherent information of target scCAS data to create representative
reference data without introducing external information. The various
strategies for obtaining reference data enable us to expand the
applicability of scCASER.

We assessed scCASER’s performance in improving cell clustering
and estimation of cellular distances. The results indicated that upon
integrating reference data, the values of different metrics overall
exhibited obvious improvement compared with scCASE without
incorporating reference data. The average improvement was 9.05% in
ARI, 4.04% in AMI, 5.70% in FMI, and 3.19% in silhouette score (Fig. 6b;

Supplementary Figs. S2–S4 and Supplementary Table S2). Indeed,
different reference data may impact the accuracy of the enhancement
of scCASER. Taking the Spleen dataset as an example, the reference
data generated by Louvain clustering with default parameters initially
comprised 11 clusters, providing comprehensive reference data. If we
only consider a subset of these clusters, the resulting reference data
will contain less information. To illustrate the impact of different
reference data for scCASER, we dropped out the clusters in sequence
from 11 clusters and obtained reference data containing 8, 6, and 4
clusters, respectively. In this scenario, we observed that scCASER can
still benefit from the information provided by the incomplete refer-
ence data, while their performances are comparatively inferior to that
achieved with the complete reference data containing all 11 clusters
(Fig. 6c). Despite this, scCASER still surpasses the performance of
scCASE (the orange dashed line). The results indicate that while
reference data with incomplete information may lead to a slight
decline in performance compared with the complete one, incorpor-
ating reference data in scCASER can generally prove advantageous for
scCAS data enhancement.

Discussion
In this study, we propose a non-negative matrix factorization-based
scCAS data enhancement method called scCASE. Through compre-
hensive experiments on multiple datasets generated with different
protocols, from various species and tissues, and of divergent sizes,
dimensions, and qualities, we have demonstrated the superior per-
formance of scCASE over state-of-the-art methods in imputing drop-
out events in scCAS data and thus facilitating downstream analyses.

Blood BM0828 WholeBrainA WholeBrainB LungA LungB Spleen LargeIntestine
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Fig. 6 | scCASE can effectively incorporate reference data to further promote
enhancement performance. a The graphical illustration of scCASER. scCASER
builds upon scCASE by additionally incorporating reference data, which serves as
the second input to the model. scCASER performs NMF on the reference data and
incorporates the factorized projection matrix from the reference data.

b Performance comparison between scCASER and scCASE. c The clustering per-
formance of scCASER on the Spleen dataset with different numbers of self-
reference pseudo-bulk samples. The dashed line represents the performance of
scCASE method. Source data are provided as a Source Data file.
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Moreover, we have shown that the enhancement process of scCASE is
interpretable, making scCASE a valuable tool for elucidating cellular
heterogeneity and revealing cell type-specific biological insights. In
addition, we developed scCASER, which enables the incorporation of
external data as a reference to better characterize the target scCAS
data and facilitate data enhancement. We also introduced multiple
strategies to obtain or construct reference data, thereby expanding
the applicability of our model in various scenarios.

Certainly, while scCASE offers significant advancements, it does
exhibit certain limitations. We provide several directions for further
improving scCASE. First, the currentmodel relies upon linear products
of non-negative matrices, which presents challenges in capturing
nonlinear patterns. We can introduce nonlinear projection through
sophisticated techniques like deep non-negative matrix factorization
or integration with neural networks. Second, although we have pro-
posed a strategy to choose the optimum step size in gradient descent,
scCASE only has comparable performance in computational efficiency
compared with other approaches. This drawback can be mitigated by
employing GPU for parallel operations, thereby accelerating the
execution of scCASE. Third, the application of the modeling ideas in
scCASE may not be confined solely to scCAS data. Given the accuracy
and interpretability of scCASE, we speculate the prosperous applica-
tions to single-cell data of other omics, such as spatial omics and even
multi-omics.

Methods
The model of scCASE
Given a scCAS count matrix, we first filter out the peaks expressed in
fewer than 1% of the cells (Supplementary Text S6)7,9,59, and then use
TF-IDF transformation to reweight peaks by their occurrence
frequencies7,59. The formula of TF-IDF transformation is shown in
Eq. (1):

xij =
x̂ijPm

k = 1 x̂kj

 !
� log nPn

t = 1 x̂it

� �
ð1Þ

where x̂ij is the read count in peak i of cell j. We denote the pre-
processed count matrix asX 2 Rm×n, wherem is the number of peaks
and n is the number of cells. We then minimize the loss function F in
Eq. (2) to enhance the data in an iterative manner:

min
W,H,Z ≥0

F = kXðZ � RÞ �WHk2F + λkZ�HTHk2F + γ1kWk2F + γ2kHk2F ð2Þ

where Z 2 Rn×n is the cell-to-cell similarity matrix in which each
column sums to 1, and zij represents the similarity between cell i and
cell j. R 2 Rn×n is the random sampling matrix, where each element is
either 0 or 1 generated through binomial distribution. R is Hadamard
multiplied with Z in the computation to avoid the similar cells
exhibiting almost the sameaccessible peakswhich improperly reduces
the cellular heterogeneity. W 2 Rm× k is the factorized projection
matrix while H 2 Rk ×n is the corresponding cell embedding matrix.

More specifically, the scCASEmodel canbedivided into twoparts.
On the one hand, X Z � Rð Þ is the matrix enhanced by similarity. On the
other hand, WH is the matrix reconstructed by matrix factorization.
We aim tominimize the difference between the twomatrices. The first
term in Eq. (2) uses the Frobenius norm to approachX Z � Rð Þ andWH.
The second term minimizes the Frobenius norm of the cell-to-cell
similarity matrix and the product of HT and H. This term makes Zij

similar to the Cartesian product of the cell embedding vectors of cell i
and cell j. Similar cells should have smaller angles between their
embedding vectors and more oversized Cartesian products, corre-
sponding to larger elements in the similarity matrix. The third and
fourth terms represent two regularization terms that constrain the
projection matrix W and the cell embedding H, respectively, to

prevent model overfitting. The Frobenius norm is commonly used in
non-negative matrix factorization due to its differentiability, which
facilitates the optimization process. Coefficients of λ, γ1, and γ2 serve
as weights of different terms. We also discuss the differences and
advantages of scCASE to PCA/SVD in Supplementary Text S7.

The model of scCASE with reference data
Wealso introduce a variant of scCASE, named scCASER, to incorporate
available omics data as reference data to further improve the data
enhancement performance. The data preprocessing strategy in scCA-
SER is the same as that in scCASE. We perform conventional NMF on
the reference data and obtain the factorized projection matrix
P 2 Rm× k1 . We introduce the projectionmatrix learned from reference
data to the loss function F, as shown in Eq. (3):

min
W1,2 ,H,Z ≥0

F = kXðZ � RÞ � ½W1,W2�Hk2F + λkZ

�HTHk2F + γ1kWmk2F + γ2kHk2F +αkP�W1k2F
ð3Þ

The projection matrix Wm 2 Rm× k is decomposed into two
parts and can be written as W1,W2

� �
, where W1 2 Rm× k1 is used to

transfer the epigenetic information from reference data, while W2 2
Rm× k2 is the projectionmatrix learned during fitting the target scCAS
data. Additionally, k1 and k2 are the numbers of columns in W1 and
W2, respectively (k = k1 + k2), and they can be adjusted to control the
dominance of the reference data on the model. The last regulariza-
tion term of the optimization problem imposes a constraint on W1

using thematrix P, to mitigate the difference between the projection
matrix learned from reference data and the projectionmatrix learned
from target data. Other settings of scCASER are similar to that of
scCASE. Coefficients of λ, γ1, γ2, and α serve as weights of differ-
ent terms.

Iterative optimization of scCASE
For scCASE, to minimize the loss function in Eq. (2), we can update the
three matrices W, H, and Z iteratively using the gradient descent
algorithm. To achieve this, we first compute the partial derivatives of
the loss function with respect to each matrix. According to the defi-
nition of the Frobenius norm and the trace of a matrix, we can convert
the loss function from a norm form to a trace form as Eq. (4), making it
easier to compute the gradient:

F = trððZ � RÞTXTXðZ � RÞ �HTWTXðZ � RÞ � ðZ � RÞTXTWH+HTWTWHÞ
+ λtrðZTZ�HTHZ� ZTHTH+HTHHTHÞ + γ1trðWTWÞ + γ2trðHTHÞ

ð4Þ

After obtaining the partial derivatives of F with respect to W, H,
and Z (Eq. (5)), we use gradient descent to optimize the model:

∂F
∂W

= � 2X ðZ � RÞHT + 2WHHT +2γ1W

∂F
∂H

= � 2WTX ðZ � RÞ+2WTWH � 2λHðZ+ZT Þ+4λHHTH +2γ2H

∂F
∂Z

=2ðXTX ðZ � RÞÞ � R� 2ðXTWHÞ � R +2λZ � 2λHTH

ð5Þ

The iteration will stop if the change between two consecutive
iterations is less than 10�6. Finally, we multiply the raw data matrix X
by the iteratively optimized cell-to-cell similaritymatrixZ, resulting the
enhanced scCAS data XZ.

To improve the efficiency of the optimization algorithm, we
propose a strategy to choose the optimal step size for each iteration.
We let ∂F

∂W =D1,
∂F
∂Z =D2 and ∂F

∂H =D3. For W, we assume the most
appropriate step size δ1 should be the one that minimizes

Article https://doi.org/10.1038/s41467-024-46045-w

Nature Communications |         (2024) 15:1629 10



F W� δ1D1,H,Z
� �

, as shown in Eq. (6):

F = trððZ � RÞTXTXðZ � RÞ �HT ðW� δ1D1ÞTXðZ � RÞÞ
+ trð�ðZ � RÞTXT ðW� δ1D1ÞH+HT ðW� δ1D1ÞT ðW� δ1D1ÞHÞ
+ λtrðZTZ�HTHZ� ZTHTH+HTHHTHÞ+ γ1trðWTWÞ+ γ2trðHTHÞ

ð6Þ

By substituting the parameters into Eq. (6) and taking the deri-
vative, we can obtain the following:

dF
dδ1

= trðHTDT
1 XðZ � RÞÞ+ trððZ � RÞTXTD1HÞ � trðHTWTD1HÞ

� trðHTDT
1 WHÞ+ 2δ1trðHTDT

1 DHÞ
ð7Þ

When obtaining the minimum value of F , the derivative of F with
respect to δ is zero. Let Eq. (7) equal to 0, andwe can solve the value δ1

as:

δ1 =
�trðHTDT

1 X Z � Rð ÞÞ � trððZ � RÞTXTD1HÞ+ tr HTWTD1H
� 	

+ tr HTDT
1 WH

� 	

2tr HTDT
1 D1H

� 	

ð8Þ

For Z, we suppose the best step size is δ2, and then the δ2 will let

F W,H,Z� δ2D2

� �
get minimum,

dF W,H,Z�δ2D2ð Þ
dδ2

= 0, and the calculation

of loss function F is as below:

F = trðððZ�δ2D2Þ � RÞTXTXðZ�δ2D2Þ � R �HTWTXðZ�δ2D2Þ � RÞ
+ trð�ððZ�δ2D2Þ � RÞTXTWH +HTWTWHÞ
+ λtrððZ�δ2D2ÞT ðZ�δ2D2Þ �HTHðZ�δ2D2Þ � ðZ�δ2D2ÞTHTH

+HTHHTHÞ+ γ1trðWTWÞ+ γ2trðHTHÞ
ð9Þ

dF
dδ2

=0= � trððD2 � RÞTXTXðZ � RÞ+ ðZ � RÞTXTXðD2RÞÞ

+2δ2trððD2 � RÞTXTXðD2 � RÞÞ
+ trðHTWTXðD2 � RÞ+ ðD2 � RÞTXTWHÞ
� λtrðZTD2 +D2

TZÞ+ 2λδ2trðD2
TD2Þ

+ λtrðHTHD2 +D2
THTHÞ

ð10Þ

Then, we get the optimal δ2 value as Eq. (11):

δ2 =
tr eq1ð Þ � tr eq3ð Þ+ λtr eq4ð Þ � λtr eq6ð Þ

2tr eq2ð Þ+ 2λtr eq5ð Þ ð11Þ

where

eq1 = ðD2 � RÞTXTXðZ � RÞ+ ðZ � RÞTXTXðD2 � RÞ
eq2= ðD2 � RÞTXTXðD2 � RÞ
eq3= HTWTXðD2 � RÞ+ ðD2 � RÞTXTWH

eq4= ZTD2 +D2
TZ

eq5= D2
TD2

eq6= HTHD2 +D2
THTH

ð12Þ

At each iteration, the optimal step size will be calculated and then
used to update the variable matrix, accelerating convergence speed
and reducing the computational cost. For scCASE, the optimal step
size forW andZ canbe adaptively obtained, while forH, due to its high
order terms, we cannot find the optimal step size in a similar way. We

initialize the step size δ3 ofH to 0.2. If this step size cannot reduce the
loss function during the iteration process, we will reduce the step size
and try updating H again.

In a similar fashion to the scCASE approach, we additionally
introduce two mask matrices of M and N when implementing scCA-
SER, and Eq. (3) becomes:

min
W1,2 ,H,Z≥0

F = kXðZ � RÞ � ðM �W1 +N �W2ÞHk2F + λkZ�HTHk2F
+ γ1kWmk2F + γ2kHk2F +αkP�W1k2F

ð13Þ

In Eq. (13),W1 is expanded from the originalW1 to W1,0
� �

to have
the same dimension as Wm.M is a masking matrix with 1 in the region
where W1 acts and 0 elsewhere. The same is done for W2 and N.
Hadamard multiplyingM, N byW1,W2 respectively, and adding them
yields the equivalent effect of Eq. (3). The loss function F can then be
written as Eq. (14):

F = trððZ � RÞTXTXðZ � RÞ �HT ðM �W1 +N �W2ÞTXðZ � RÞ
� ðZ � RÞTXT ðM �W1 +N �W2ÞH
+HT ðM �W1 +N �W2ÞTðM �W1 +N �W2ÞHÞÞ
+ λtr ZTZ�HTHZ� ZTHTH+HTHHTH

� 	

+ γ1tr WT
mWm

� 	
+ γ2tr HTH

� 	

+αtrðPTP� M �W1

� �TP� PT M �W1

� �
+ M �W1

� �T M �W1

� �Þ
ð14Þ

Details of the optimization process for scCASER are similar to that
of scCASE and can be found in Supplementary Texts S2.

Initialization and parameter selection of scCASE
Due to the high-dimensional characteristic of the variable matrix, ran-
dom initialization cannot guarantee that the algorithmconverges quickly
to the desired solution. Therefore, we initializeW, H, and Z specifically.
We initialize Z as the Jaccard similaritymatrix between cells18, andW and
H as the projection matrix and cell embedding matrix obtained by per-
forming conventional NMF on the target scCASmatrixX, respectively. In
scCASER, W1 is initialized as the projection matrix obtained by NMF on
the reference data andW2 is initialized as the projectionmatrix obtained
by NMF on the target scCAS data. We use ASTER to estimate the number
of cell types as the number of latent factors in non-negative matrix fac-
torization, which is empirically suitable for various scCAS datasets24. The
default value of lambda in the model is 106.

As pointed out in the existing literature, enhancement may lead to
over-smoothing, resulting in the removal of true cell-cell heterogeneity
signals11,60. We validated the impact of different initializations and
parameter choices on over-smoothing. We designed three additional
metrics, namely, over-smoothing score, under-smoothing score, and
smoothing score (Supplementary Text S1), to assess the degree of over-
smoothing. First, for model initialization, random initialization of H
would severely affect the matrix Z and lead to unsatisfactory outcomes
(Supplementary Fig. S24). Themodel with random initialization of Z will
still convergent, though leading to a worse performance of enhance-
ment, and the random initialization of Z does not result in over-
smoothing (Supplementary Fig. S24). Secondly, we ran scCASE with
varying lambda values within the range of 105 to 108. As lambda varies,
different metrics remain stable with few changes (Supplementary
Fig. S25). This indicates the high robustness of scCASE to the choice of
lambda, suggesting that within a certain range, the choice of lambda
does not lead to over-smoothing. Finally, we validated the impact of
different values of parameterK . The results indicate thatwhenK is small
(K<7), it can be observed that at lower dimensions, the model struggles
to capture differences in the data effectively, leading to the elimination
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of heterogeneity between different cell types and over-smoothing of the
data (Supplementary Figs. S26–S28). As K gradually increases, the
degree of over-smoothing eases. However, though not lead to over-
smoothing, large values of K (K>20) may introduce excessive noise,
making the model learning more challenging and resulting in a lower
under-smoothing score (Supplementary Figs. S26–S28).

Run-time and memory usage of scCASE
scCASE consistently exhibited commendable performance of run-time
and peak memory usage. In terms of run-time, scCASE exhibits sig-
nificant advantages compared to other methods, especially on smaller
datasets such as BM0828, Blood, and LungA, where scCASE can
operate several times faster than baseline methods (Supplementary
Fig. S29). Even on larger datasets, scCASE still maintains a notable
speed advantage. In terms of peakmemory usage, SCALE and scBasset
are GPU-based methods, they make more usage of GPU memory, so
their memory usage is typically smaller than the methods that utilize
CPUs. scCASE demonstrates a certain advantage in peak memory
usage on smaller datasets such as BM0828, Blood, and LungA (Sup-
plementary Fig. S29). Although the peak memory usage of scCASE
increases in larger datasets, its memory usage is still comparable to
that of scOpen, the state-of-the-art scCAS data enhancement method
(Supplementary Fig. S29). Moreover, the memory usage of scCASE
growth remains manageable. On two larger datasets of Muto and
Simulated,whichhave a similar numberof peaksbut afivefold increase
in the number of cells (from 20k to 100k), the peak memory usage of
scCASE increased by 7.67 times,while that of scOpen increasedby 8.62
times. Note that scBFA is unable to run on datasets with 100k cells due
to out-of-memory errors.

Implementation details of baseline methods
scBFA: scBFA is a detection-basedmodel to remove technical variation
in scRNA-seq and scATAC-seq data, available at https://github.com/
quon-titative-biology/scBFA16. We utilized the raw count matrices as
input and performed scBFA using their default parameters. We exe-
cuted scBFA following the samebenchmarkingprocedureas in scOpen
(https://github.com/CostaLab/scopen-reproducibility/blob/main/
scripts/Imputation/scBFA.R).

SCALE: SCALE integrates both the variational auto-encoder (VAE)
and the Gaussian mixture model (GMM) to characterize the distribu-
tion of scATAC-seq data9. We obtained the SCALE program from
https://github.com/jsxlei/SCALE and used the raw count matrices as
input. When executing the program, we set the option “impute” as
TRUE to obtain the imputed data, while keeping other parameters at
their default settings.

scBasset: scBasset is a sequence-based convolutional neural net-
work method to model scATAC data and predict chromatin
accessibility17. The program and training tutorial of scBasset can be
downloaded from https://github.com/calico/scBasset. We trained
scBasset with default parameters using the raw count matrices and
peaks as the input. Genome fasta file used in scBasset can be down-
loaded from (https://hgdownload.soe.ucsc.edu/downloads.html).
After obtaining the trained model, we referred to their tutorial to
obtain the enhanced data (https://github.com/calico/scBasset/blob/
main/examples/PBMC_multiome/evaluate.ipynb).

scOpen: scOpen is a scCAS-seq imputation method based on
regularized non-negative matrix factorization10. The raw scCAS count
matrix serves as the input for scOpen, and the output is an imputed
matrix. We followed the tutorial and examples of scOpen provided at
https://github.com/CostaLab/scopen and executed it with default
parameters.

Implementation details of downstream analyses
t-SNE and UMAP Visualization: we first preprocessed the raw data and
the data enhanced by different methods using TF-IDF. Then, we

performed PCA to reduce the dimensionality, created a “neighbors”
graph, and used t-SNE/UMAP to obtain two-dimensional visualizations
of the data, respectively following the scATAC-seq data analysis
workflow provided by EpiScanpy26 (https://colomemaria.github.io/
episcanpy_doc/examples.html). The above steps were performed
using the default parameters in the EpiScanpy pipeline.

SNPsea: SNPsea is an algorithm to identify cell types and pathways
likely to be affected by risk loci. Specifically, genome-wide association
studies (GWAS) havediscoveredmultiple genomic loci associatedwith
risk for different types of disease. SNPsea provides a simple way to
determine the types of cells influenced by genes in these risk loci.
SNPsea supposes disease-associated alleles influence a small number
of pathogenic cell types, and assumes that a gene’s specificity to a cell
type is a reasonable indicator of its importance to the unique function
of that cell type.We performed SNPsea analysis with default settings in
each set of cell type-specific peaks and the set of background peaks,
respectively. The enrichments of tissue-specific expression in profiles
of 17,581 genes across 79 human tissues (Gene Atlas) were quantified61.
Specifically, we first obtained SNP site data for thewhole genome from
HapMap3 SNPs, which can be downloaded at https://zenodo.org/
records/7768714. To obtain the SNP sites corresponding to eachgroup
of cell type-specific peaks, we utilized GenomicRanges to identify SNP
sites present within the cell type-specific peak regions62. Genomi-
cRanges is an R/Bioconductor package for representing and manip-
ulating genomic intervals, available at https://github.com/
Bioconductor/GenomicRanges. Then we obtained the SNP sites cor-
responding to each group of cell type-specific peaks, which serve as
the input for SNPsea. We specified the same additional data including
phenotype data and parameters for SNPsea as in its tutorial. These
additional data can be downloaded from http://www.broadinstitute.
org/mpg/snpsea (SNPsea_data_20140520.zip). Their sources and
detailed explanations are described at https://snpsea.readthedocs.io/
en/latest/data.html. The parameters and specific running tutorials of
the method can be found at https://snpsea.readthedocs.io/en/latest/
usage.html. We quantified the enrichments of each set of peaks in
tissue-specific accessibility profiles across 79 tissues, and the top
30 significantly enriched tissues are illustrated in the figures.

LDSC: LDSC is a command line tool for estimating heritability and
genetic correlation from GWAS summary statistics40. After identifying
cell type-specific peaks and background peaks in the Blood dataset, we
quantified the enrichment of heritability for blood-related phenotypes
within cell type-specific peaks for each cell type using partitioned
LDSC with default settings. We ran LDSC using HapMap3 SNPs and
used European samples from the 1000 Genomes Project as the LD
referencepanel. All the summary statistics providedby LDCS including
SNPs and phenotypes were downloaded from the Broad LD Hub
(https://doi.org/10.5281/zenodo.7768714). Specifically, in this analysis,
our input consists of the detected cell type-specific peaks or back-
ground peaks. Similar to SNPsea, we first utilized GenomicRanges to
identify SNP sites present within the specific peak regions. Subse-
quently, we used the LDSC program to calculate the LD Scores for
these SNP sites. The LDSC process in this step can be referred to at
https://github.com/bulik/ldsc/wiki/LD-Score-Estimation-Tutorial.
Finally, we invoked the LDSC program again, using the obtained LD
Scores as input, to calculate heritability and genetic correlation with
blood-related phenotypes. The LDSC process in this step can be
referred to https://github.com/bulik/ldsc/wiki/Heritability-and-
Genetic-Correlation.

scABC: scABC is an R package for the analysis of scATAC-seq
data41. With the clustering assignments obtained from scCASE and
Louvain clustering, we followed the scABC workflow, utilized the
function “getClusterSpecificPvalue()”, calculated the p value using
hypothesis testing procedure, and finally identified cluster-specific
peaks (https://github.com/SUwonglab/scABC/blob/master/vignettes/
ExampleWorkflow.html). These identified cluster-specific peaks will be
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used as the input of chromVAR42 to perform motif analysis similar
to RA37.

chromVAR: chromVAR is an R package for the analysis of sparse
chromatin accessibility data from single-cell/bulk ATAC-seq/DNase-
seq42. The package aims to identify motifs or other genomic annota-
tions associated with variability in chromatin accessibility between
individual cells or samples. We downloaded chromVAR from https://
greenleaflab.github.io/chromVAR/. The motifs database is obtained
from the “getJasparMotifs()” function within the chromVAR42 method,
which is sourced from the JASPAR63 database. Following the workflow
in RA37, we used the data enhanced by scCASE as the input and applied
chromVAR42 to infer the enriched transcription factor (TF) binding
motifs within the top 1000 cluster-specific peaks with the smallest p
values calculated by scABC. Subsequently, we visualized the deviations
calculated by chromVAR for the top 50 TF binding motifs.

Data collection and preprocessing
We utilized 13 datasets in this study, including a simulated scCAS
dataset, eight publicly available scCAS datasets, two scCAS datasets
annotated based on paired scRNA-seq data, and two mixed scCAS
datasets (Supplementary Table S1). The simulated scCAS dataset is
created by simCAS22, the state-of-the-art method for scCAS data
simulation, in discrete mode to construct a dataset consisting of five
clusters, each containing 500 cells. We then used the EpiScanpy
pipeline to identify the top 3000 differentially accessible peaks for
each cell type26. In this way, we obtained a simulated dataset with 2500
cells and 15,000 peaks. We collected eight real scCAS datasets for
benchmarking. The Blood dataset contains ten types of human
hemocytes frombonemarrow,while the BM0828dataset is a subset of
the Blood dataset with the donor label of BM0828, containing seven
types of human hemocytes23. To investigate the applicability of
methods to datasets from different species and tissues, we further
collected six datasets of WholeBrainA, WholeBrainB, LungA, LungB,
LargeIntestine, and Spleen, which were profiled from the whole brain,
lung, large intestine, and spleen tissues of adult mice25. These datasets
vary in terms of protocol, species, tissue, number of cells, number of
cell types, number of peaks, and imbalance degree, but all exhibit high
sparsity and dimension (Supplementary Table S1). For the two scCAS
datasets which were annotated solely based on paired scRNA-seq data,
the Muto dataset was profiled via snATAC-seq and snRNA-seq and
contains human kidney cells64. The snRNA-seq dataset was annotated
based on lineage-specific marker expression, and the annotated
snRNA-seq dataset was leveraged to predict snATAC-seq cell types
with the label transfer function in Seurat65. The PBMC dataset was
profiled by “10x Genomics via Single Cell Multiome ATAC + Gene
Expression Sequencing” and contains the cryopreserved human per-
ipheral blood mononuclear cells (PBMCs) of a healthy female donor.
The cell type labels were annotated in the original study using only the
scRNA-seq data. The Mixed-tissues and Mixed-protocols datasets are
obtained by concatenating datasets from various tissues and proto-
cols, respectively, to evaluate the robustnessof differentmethods. The
Mixed-tissues dataset was generated from the LungA and Spleen
datasets while the Mixed-protocols dataset contains two batches
assayed by snATAC-seq and 10X55,56. Cell types that accounted for less
than three percent of the total cells were discarded along with the
unknowncategories to ensure evaluation credibility.Wedetermine the
imbalance degree by estimating the normalized entropy of the cell-
type size distribution24 using Eq. (15):

I = 1 +
1

logC

XC

c = 1

nc

N
log

nc

N
ð15Þ

where C is the number of cell types in the dataset, nc is the number of
cells in the cell type c and N is the total number of cells in the dataset.
The more imbalanced the dataset is, the higher the value I has. This

metricwill have a value of 1 if all the cells have the same type and0 if all
the cell types have the same number of cells.

Construction of reference data
The construction approaches of reference data for scCASER are
flexible and diverse. Firstly, we can obtain references from existing
bulk data. For the Blood and BM0828 datasets, the reference data
was constructed using bulk data from 17 hematopoietic cell types23.
We counted the reads aligned to peaks of the scCAS data for the bulk
samples, resulting in a countmatrix that shares the same peaks as the
target scCAS data. Then, we obtained the reference data by scaling
the count matrix based on the total mapped reads of each bulk
sample7.

Secondly, we can construct pseudo-bulk reference data by
aggregating scCAS data of an external dataset from a similar tissue as
the target data. The WholeBrainA and WholeBrainB datasets, as well
as the LungA and LungB datasets, are paired data derived
from similar tissues. We grouped the cells in one of the paired
datasets by cell type, took the sum of each peak over cells of the
same type, and then obtained the pseudo-bulk reference data for
another dataset.

Thirdly, we can aggregate the scCAS data by its own clustering
labels to construct the pseudo-bulk self-reference data. For scCAS
datasets without external reference data, such as the Spleen and Lar-
geIntestine datasets, we applied Louvain clustering with the default
resolution, took the sum of each peak over cells of the same cluster,
and then obtained the pseudo-bulk self-reference data for the target
scCAS data.

Performance evaluation
We evaluated data enhancement performance via numerical accuracy,
cell clustering, and data visualization. For numerical accuracy, we uti-
lized the area under the precision-recall curve (auPRC) and the area
under the receiver operating characteristic curve (auROC) to test if the
enhanced matrix can recover the true signal cell-wise and peak-wise,
respectively66. auPRC considers the relationship between precision
and recall, while auROC considers the relationship between correctly
classified positive examples and the number of incorrectly classified
negative examples. auPRC is preferred for taskswith a large skew in the
class distribution.

For cell clustering, we adopted the widely-used Louvain
algorithm26,65,67,68 and utilized a binary search strategy to ensure the
number of clusters equals the number of cell types7,24,26,27,69. We
assessed the clustering results by four widely used metrics: adjusted
Rand index (ARI)28, adjusted mutual information (AMI)29, Fowlkes-
Mallows index(FMI)30, and silhouette score31. Rand index (RI) com-
putes a similarity measure between the cluster labels and the cell-
type labels. ARI is adjusted based on RI and accounts for chance
agreement. Mutual information (MI) quantifies the correlation
between the cluster labels and the cell-type labels and NMI is a nor-
malized variant of MI. The Fowlkes-Mallows score FMI is defined as
the geometric mean of the pairwise precision and recall. The sil-
houette score measures the similarity between an object and its own
cluster compared to that of other clusters. While silhouette score is
commonly utilized clustering labels, we replaced it with the cell type
labels to evaluate the performance of the impact of enhancement on
the estimation of the distance between cells as scOpen10, and the
higher the silhouette score, the better the performance. We used 1-
Pearson correlation coefficients as the cell-to-cell distance matrix as
scOpen10.

For data visualization, we performed PCA to reduce the dimen-
sionality of the raw scCAS data or data enhanced by various methods
to 50 and then used the t-SNE70 and UMAP71 algorithms to further
reduce the dimension to two. Cells in the visualization could be
colored by cell-type labels and batch indices. More detailed

Article https://doi.org/10.1038/s41467-024-46045-w

Nature Communications |         (2024) 15:1629 13

https://greenleaflab.github.io/chromVAR/
https://greenleaflab.github.io/chromVAR/


mathematical equations and formulas for the aforementioned eva-
luation metrics are provided in Supplementary Text S1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. The Blood
and BM0828 datasets and their corresponding bulk data can be
retrieved from NCBI Gene Expression Omnibus (GEO) with accession
number GSE96772. The datasets of variousmouse tissues are available
at https://atlas.gs.washington.edu/mouse-atac/data. The Muto dataset
can be retrieved from GEO with accession number GSE151302. The
PBMC dataset profiled by 10x Genomics via “Single Cell Multiome
ATAC + Gene Expression Sequencing” can be downloaded at https://
www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-
donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-2-
0-0. The Mix-protocols dataset was concatenated from two mouse
brain datasets profiled by different protocols, which are available at
https://support.10xgenomics.com/single-cell-atac/datasets/1.1.0/atac_
v1_adult_brain_fresh_5k and in GEOwith accession number GSE126724.
UCSC Genome Browser and UniProt database of protein are used in
this study. Source data are provided with this paper.

Code availability
The MIT-licensed scCASE software, including detailed documents and
tutorials, is freely available on GitHub (https://github.com/BioX-NKU/
scCASE). All codes for reproducing the analysis are available at
Zenodo72.
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