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Diffractive optical computing in free space

Jingtian Hu1,2,3, Deniz Mengu1,2,3, Dimitrios C. Tzarouchis4,5, Brian Edwards 4,
Nader Engheta4 & Aydogan Ozcan 1,2,3

Structured optical materials create new computing paradigms using photons,
with transformative impact on various fields, including machine learning,
computer vision, imaging, telecommunications, and sensing. This Perspective
sheds light on the potential of free-space optical systems based on engineered
surfaces for advancing optical computing. Manipulating light in unprece-
dented ways, emerging structured surfaces enable all-optical implementation
of various mathematical functions and machine learning tasks. Diffractive
networks, in particular, bring deep-learning principles into the design and
operation of free-space optical systems to create new functionalities. Meta-
surfaces consisting of deeply subwavelength units are achieving exotic optical
responses that provide independent control over different properties of light
and can bring major advances in computational throughput and data-transfer
bandwidth of free-space optical processors. Unlike integrated photonics-
based optoelectronic systems that demand preprocessed inputs, free-space
optical processors have direct access to all the optical degrees of freedom that
carry information about an input scene/object without needing digital recov-
ery or preprocessing of information. To realize the full potential of free-space
optical computing architectures, diffractive surfaces andmetasurfaces need to
advance symbiotically and co-evolve in their designs, 3D fabrication/integra-
tion, cascadability, and computing accuracy to serve the needs of next-
generationmachine vision, computational imaging, mathematical computing,
and telecommunication technologies.

The past decade has witnessed an increasing interest in optical com-
puting platforms because of their potential to realize fast, massively
parallel computation at low power consumption1–4. For example,
integrated photonics-based processors5–9 with on-chip inter-
ferometers and waveguide-embedded light sources were designed to
replace or empower their electronic counterparts. These planar
optoelectronic architectures can implement various linear and non-
linear operations and can rapidly self-tune and reconfigure, making
them powerful and versatile for optoelectronic computing10,11. There-
fore, integrated photonics-based processors have advantages in
their reconfigurability and ease of integration with electronics,making
them ideal for task-specific on-chip accelerators. However, integrated

photonics devices often require preprocessing of input information,
for example, to retrieve the lost phase information of an input scene
due to intensity-only detection at the optoelectronic sensor array or
simply to vectorize themulti-dimensional imageof an input object into
planar signals. In contrast, free-space optical processors (Fig. 1) can
perform a given computation or inference task via light propagation
and diffraction through a series of structured surfaces. Without any
optoelectronic conversion or preprocessing of input information,
diffractive optical processors perform computational tasks with direct
access to all the encoded optical information in 3D, including
the spatial phase and amplitude, polarization, spectrum, and orbital
angular momentum (OAM) information of the input wave, which
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represents an object or a scene. This direct access to all the degrees of
freedom carried by the input waves provides significant advantages to
free-space optical processors for various applications such as all-
optical statistical inference, wireless telecommunications, and com-
putational imaging and sensing12, where the information is created/
represented and transmitted through electromagnetic waves. There-
fore, free-space optical processors offer advantages in visual infor-
mation processing and related applications due to their direct access
to 2D or 3D optical information. Driven by some of these fundamental
advantages, free-space optical computing systems (Fig. 1) have
undergone a paradigm shift in their designs facilitated by emerging
deep-learning methods and unique fabrication technologies.

This Perspective focuses on data-driven design and fabrication
of (1) diffractive surfaces that are structured at the wavelength
scale (with a unit size of λ/2 or larger), and (2) metasurfaces with
deeply subwavelength dielectric or metallic units (smaller than λ/2).

Considering only the propagating electromagneticwaves and ignoring
the evanescent fields, the lateral footprint of photons in free-space is
~λ/2; the optical processor design spaces covered by diffractive sur-
faces and metasurfaces intersect at this λ/2 boundary, giving us a
plethora of transformative opportunities to control and process light
at different scales. For example, diffractive optical processors con-
structed based on a series of densely-packed surfaces engineered
through deep-learning can achieve universal linear transformations
within a compact diffractive volume by approximating any arbitrary
complex-valued matrix operation with an arbitrarily small error
bound13,14; such diffractive processors also enable all-optical image
classification using light diffraction through structured surfaces.
In addition to directly processing the spatial phase and amplitude
information of an input scene, diffractive optical processors can also
be trained using deep-learning to exploit other information channels,
including polarization15 and spectrum16–18, massively increasing the

Fig. 1 | Overviewof diffractive andmetasurface systems for optical computing.
Diffractive surfaces consist of thickness- and/or index-tuned units (λ/2 or larger)
while metasurfaces consist of substructured metallic and/or dielectric units

below λ/2. These free-space processors can perform polarization processing, spa-
tial processing, universal linear transformations, and spectral & temporal proces-
sing of waves.
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parallelism and bandwidth of free-space optical computing. Replacing
or augmenting dielectric-based diffractive surfaces with metasurfaces
can provide some additional degrees of freedom, including the engi-
neering of dispersion, polarization, spin, and OAM, to further enhance
the inference capacity and the computational power of free-space
optical processors.

Both diffractive surfaces and metasurfaces have received major
research interest in the past decades (Fig. 2)15,19–42. Despite this tre-
mendous progress, the synergy between the two frameworks in the
context of free-space optical computing has not been explored in
depth. This Perspective focuses on this emerging opportunity for
diffractive surfaces and metasurfaces to symbiotically shape the
future designs of free-space optical computing devices and technol-
ogies that will impact various applications such as optical machine
learning, statistical inference, computational camera and microscope
design, and telecommunications, among many others. As part of this

Perspective’s comparative analysis of free-space diffractive computing
(Fig. 1), we will also discuss four grand challenges ahead of this field of
research:
(1) Limits of computational accuracy and statistical inference cap-

ability of diffractive optical processors.
(2) Dynamic reconfigurability for on-demand tuning of the optical

processor function.
(3) Speed, ease, and scalability of diffractive processor device fabri-

cation, alignment, and integration, important for cost-effective
and large-scale manufacturing and adoption of free-space optical
processors.

(4) Diffraction efficiency and energy consumption of the optical
processor.
This Perspective focuses on these emerging opportunities and

challenges centered around optical computing in free-space. We
expect the comparatively analyzed methodologies in this Perspective
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to profoundly impact the next-generation wave-based free-space
computing technologies ranging from all-optical statistical inference
and computational imaging to wireless communications, edge com-
puting, and others.

Design principles of spatially-structured surfaces
for computing
Diffractive surfaces
A diffractive surface-based free-space optical processor is spatially
engineered at thewavelength scale (λ/2 or larger) to generate a desired
spatial distribution of the complex-valued light transmission/reflec-
tion coefficients (Fig. 3a, b, Supplementary Fig. S1a). Unlike standard
refractive optical components, e.g., lenses, such diffractive surfaces
are pixelated in 2D, and their structure contains physical thickness
and/or transmission discontinuities with a lateral period of ≥λ/2; also
see Supplementary Discussion 1. The structure of these variations
along the optical axis is typically on the order of the wavelength of the
propagating light, and therefore, they can, in general, be modeled as
2D thin optical elements. Accordingly, the relationship between the
incident monochromatic complex light field, Uinðx,yÞ, and the out-
going wavefront, Uoutðx,yÞ, transmitted by a diffractive surface can be
written as Uout x,yð Þ=Tðx,yÞUinðx,yÞ with Tðx,yÞ denoting the 2D
complex-valued transmission function of the diffractive surface at λ.
The mathematical form of Tðx,yÞ depends on the physical mechanism
of the optical light modulation and the related fabrication techniques.

In one simple form, light modulation can be achieved via ampli-
tude modulation by partially reflecting and/or absorbing the light
incident on certain pixels while allowing transmission on others. In this
case, themodulation functionTðx,yÞ is real-valued, for example, binary
(0 vs. 1 transmission). While some early research on diffractive optics
heavily relied on such amplitude-only surface designs, they present

limited diffraction efficiencies. Another commonly used diffractive
surface design approach relies on the difference between the refrac-
tive indices of the fabricationmaterial (substrate),nsurf ace and the light
propagation medium, nmedium, e.g., nmedium = 1 in air. In general, the
index contrast of a diffractive feature (with a height of h) with respect
to the background induces an optical path delay in the form of
Δφ= 2πh

λ ðnsurf ace � nmediumÞ. Typically, diffractive surfaces fabricated
using a single dielectric material have a constant nsurf ace over their
pixels, which requires the thickness of the fabrication material to be a
function of space, i.e., hðx,yÞ, leading to a 2D transmission function,
T x,yð Þ= expðj 2πhðx,yÞλ ðnsurf ace � nmediumÞÞ (Fig. 3a). With the wide avail-
ability of additive manufacturing and nanofabrication techniques43–46,
this approach has become one of the most commonly employed
methods in implementing diffractive surfaces. An alternative method
relies on the spatial engineering of the refractive index, i.e.,
nsurf aceðx,yÞ, while keeping h constant (shown in Fig. 3b)47,48. This
approach leads to a 2D transmission function in the form
of T x,yð Þ= expðj 2πhλ ðnsurf aceðx,yÞ � nmediumÞÞ.

When the optical attenuation induced by the diffractive material is
not negligible, i.e., nsurf aceðx,yÞ= κðx,yÞ+ jτðx,yÞ is complex-valued, then
T x,yð Þ applies both an amplitude and a phase modulation at every unit
cell of its design. For instance, assuming κ x,yð Þ= κ, τ x,yð Þ= τ and
nmedium = 1,T x,yð Þ canbewritten asT x,yð Þ= expðj 2πhðx,yÞλ ðnsurf ace � 1ÞÞ=
expð� 2πhðx,yÞ

λ ðτÞÞ expðj 2πhðx,yÞλ ðκ � 1ÞÞ. This strategy for the modulation
of the phase and amplitude of each diffractive unit cell, however, does
not tailor the two variables independently because they are both con-
trolled by hðx,yÞ. Independent control over both the amplitude and
phase channels of each transmission function might be realized, for
example, by spatial engineering of the material thickness and the
complex-valued refractive index at the wavelength scale, covering
thousandsof individual unit cells over adiffractive surface. In fact, this is
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an area where metasurfaces can offer some additional degrees of
freedom, which will be discussed next.

Metasurfaces
Optical metasurfaces23,30,38,49–52 are planar structured surfaces consist-
ing of unit cells with subwavelength structures that tailor the optical
wavefront by their material properties, size, and shape53,54. Based on
the target wavelength range of interest, themeta-units can bemade of
plasmonic metals (i.e., Au, Ag, and Al) or dielectric materials (i.e., Si,
GaN, and TiO2). Typically, Al and Ag are the choices of plasmonic
materials for ultraviolet and visible wavelengths where Au exhibits
large non-radiative losses due to interband transitions55,56. Au exhibits
lower losses at longer wavelengths ranging from the near-infrared to
the terahertz range55. In the visible and near-infrared parts of the
spectrum, plasmonic meta-units are typically formed by metallic
nanoparticles (NPs) with various sizes and shapes and their inverted
nanohole structures based on Babinet’s principle (Fig. 3c, Supple-
mentary Fig. S1b)31. V-shaped meta-units tailor the wavefront by
simultaneously exciting a symmetric resonant mode along the diag-
onal axis and an antisymmetric mode. The scattered light from each
meta-unit exhibits a field amplitude and phase determined by the
length l of each rod and the angle Δ between them (Fig. 3c, left)34.
In contrast, a rectangular plasmonic NP34 or nanohole57 oriented at
an arbitrary angle θ can manipulate the scattered phase by the
Pancharatnam–Berry (P-B) principle58, where the incident light with
left- or right-hand circular polarization is converted to its orthogonal
circular polarization state with an additional phase delay of 2θ on the
transmitted beam (Fig. 3c, right). For operation in the gigahertz to
terahertz range, othermeta-units withmore sophisticated geometries,
such as C- and H-shaped elements, were also used to achieve higher
cross-polarization conversion efficiencies59. Compared to dielectric
materials, metallic meta-units, in general, allow an easier fabrication
process based on lithography and lift-off processes53. One of the main
limitations of plasmonic materials for building metasurface-based
free-space optical processors is that their large losses can degrade the
output diffraction efficiency drastically, also limiting the cascadability
of such surfaces to enhance their function approximation power.

Partiallymotivated to solve this limitation, dielectricmetasurfaces
were developed to achieve better diffraction efficiencies in the near-
infrared and visible wavelengths38,60. Typically, high aspect ratio meta-
units of TiO2

38,42 and GaN40 are used in the visible range and Si meta-
units61 are used for near-infrared applications. Similar to their plas-
monic counterparts, dielectric meta-units with rectangular or elliptical
shapes can tailor the wavefront phase of circularly-polarized input
light by tuning their in-plane orientations (Fig. 3d, left)36,62. This
polarization selectivity of dielectric metasurfaces is also an effective
tool for manipulating the spin states of light and has enabled spin to
OAM conversion with high efficiency63. Polarization-insensitive phase
responses can be achieved by using high-aspect-ratio dielectric posts
by adjusting their diameters (Fig. 3d, right). To cover the 0-2π phase
range by diameter tuning, the dielectricphase elements need to be tall,
typically larger than 400 nm64. The processing of dielectric meta-
surfaces generally relies on conformal deposition techniques such as
atomic layer deposition (ALD)65 and chemical vapor deposition
(CVD)36, which are slow, expensive, and incompatible with lift-off-
based fabrication processes. Instead, anisotropic dry etching steps are
often required to produce the high aspect ratio nanoscale meta-units.
These fabrication challenges and others will be discussed in Section
“Fabrication complexity and 3D alignment requirements”.

To provide a comprehensive overview of existing free-space
optical devices, we summarized in Table 1 the material compositions
and fabrication methods of diffractive surfaces and metasurfaces
along with their optical properties, including efficiency, spectral
bandwidth, reconfigurability, and polarization responsivity. These
performance metrics are also critical for designing free-space optical

computing systems and are often the determining factors for practical
applications. Strategies to tackle the existing challenges and future
opportunities to further improve diffractive optical processors and
metasurfaces will be discussed in Section “Grand Challenges in Free-
space Optical Computing and Performance Limitations”.

Computing capabilities of free-space optical
processors using structured surfaces
Statistical inference and data classification
Deep-learning enabled optical networks of diffractive-26,66,67 and meta-
units42,62 over a series of passive surfaces have emerged as all-optical
machine learning platforms demonstrating promising capabilities in
various visual inference tasks, e.g., all-optical object detection and
classification referred to as diffractive deep neural networks (D2NN).
Similar to electronic neural networks, diffractive optical networks also
serve as parameterized function approximators. However, they pro-
cess analog optical waves of a scene propagating through structured/
engineered surfaces to perform statistical inference, instead of digi-
tized signals inside a computer. While the trainable parameters of this
optical diffractive black-box are the transmittance (and/or reflectance)
coefficients, αi exp jβi

� �
of the diffractive unit cells in a predetermined

coordinate, xi,yi,zi
� �

, within the computing volume, the complex-
valued weights of the connections between these diffractive features
are not individually trainable, directly dictated by the light diffraction
and the axial spacing between the diffractive layers. Currently, the
optimization of diffractive optical networks for a given inference task
uses deep-learning-based training implemented in a digital computer.
The transmittance coefficients of the diffractive units within the free-
space optical processor are updated using the associated gradients
with respect to a penalty term (training loss function) that is specifi-
cally devised for the targetedmachine learning task and the associated
detector configuration at the output plane. Following the training
phase, the resulting diffractive surfaces are fabricated and assembled
to form the physical diffractive optical processor, which performs the
target statistical inference taskwithout any external computing power,
except for the illumination light.

The early experimental demonstrations of diffractive optical net-
works were performed based on 3D-printed diffractive surfaces oper-
ating at THz wavelengths with e.g., 0.2 million phase-only diffractive
features distributed over five dielectric diffractive surfaces26. Since
these initial proof-of-concept demonstrations, various design advances
have been reported leading to >98% and >90% all-optical blind classi-
fication accuracies on benchmark datasets of handwritten digits
(MNIST) and fashion products (Fashion-MNIST), respectively66,68. The
inference and generalization capabilities of diffractive classifiers can
further be improved by exploiting machine learning methods that
evoke collaboration among multiple classification networks. Optical
classification systems relying on multiple class-specific diffractive
optical networks exemplify such a design strategy68. As an alternative to
these jointly-optimized class-specific diffractive network systems, one
can also use ensemble learning techniques69,70 to advance the optical
inference performance of diffractive processors; these approaches will
be further discussed in Section “Grand Challenges in Free-space Optical
Computing and Performance Limitations”.

Beyond these all-optical image classifiers comprised of dielectric
diffractive surfaces, it is alsopossible to extend theD2NN framework to
design metasurface-enabled diffractive optical image classification
networks42. An on-chip metasurface-based diffractive object classifier
operating at visible wavelengths was also demonstrated42. With meta-
atoms containing TiO2 nanopillars placed on top of a SiO2 substrate,
the physical (trainable) parameters of this diffractive network were set
as the width of the TiO2 nanopillars in x and y directions, which con-
trols the effective refractive index seen by the x- and y-polarized light
waves. The experimentally demonstrated system was restricted to a
single metasurface with 280×280 meta-atoms, optically classifying 4
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data classes from each of MNIST and Fashion-MNIST datasets, enco-
ded into two orthogonal polarization states42; with deeper archi-
tectures involving more metasurfaces, one following another, further
advances in the inference accuracy spanning a larger number of data
classes can be achieved.

The function approximation capabilities of free-space optical
processors are not limited to statistical inference or classification tasks
and canbe extended to all-optically performing other general-purpose
computational tasks, including e.g., logic operations and diffractive
NAND gates that can be optically-cascaded71,72.

In the examples discussed so far, the diffractive optical networks,
whether comprised of dielectric diffractive layers or metasurfaces,
employed linear materials and lacked any form of nonlinearity except
for the detectorplane. In general, the statistical inferenceaccuracy and
function approximation capability of diffractive processors would
benefit from power efficient and scalable integration of nonlinear
optical processes as part of the free-space diffractive processor
volume (see e.g., ref. 73), and this grand challenge will be discussed
under Section “GrandChallenges in Free-spaceOptical Computing and
Performance Limitations”.

Universal linear transformations
Optical networks have been broadly used to perform matrix opera-
tions, e.g., y=Ax, where A is an arbitrary complex-valued matrix to be
approximated by the optical network. Such universal linear transfor-
mations have been realized by integrated photonic circuits consisting
of waveguides connected with e.g., Mach-Zehnder interferometers5,8

aswell as by free-spacediffractive networks13,14. An integratedphotonic

waveguide-based crossbar array also realized universal matrix multi-
plications, achieving trillions of multiply-accumulate operations
per second74. One difference between these two main-stream
approaches (integrated photonic circuits vs. free-space) is that the
latter can directly act on the 2D or 3D optical information of an object,
without the need to vectorize or pre-process the input optical infor-
mation, and therefore provides a better fit for direct analog processing
of visual information contained in a scene.

The all-optical transformation by a diffractive free-space pro-
cessor can be modeled as a complex-valued linear matrix multi-
plication operation between the input and output wavefront fields.
It has been shown that diffractive optical processors are universal
analog computing platforms for approximating arbitrary linear
transformations13,14,75,76 which form the fundamental building blocks in
a plethora of computational applications from communications77,78

and image processing79,80 to machine learning81 and beyond. The uni-
versality of deep-learning-based diffractive processor designs in all-
optical implementations of complex-valued linear transformations has
been demonstrated through numerical studies conducted on various
types of linear operators including, (1) arbitrarily chosen complex-
valued unitary, nonunitary, and noninvertible linear matrices
(Fig. 4a)13, (2) 2D discrete Fourier transformation, (3) arbitrary 2D
permutation operations (Fig. 4b)82, and (4) high-pass filtered coherent
imaging13. While these results involved spatially and temporally
coherent illumination, free-space-baseddiffractiveprocessorswerealso
designed to implement arbitrary linear transformations in optical
intensity using spatially incoherent light83; furthermore, wavelength-
multiplexed and massively parallel universal linear transformations

Table 1 | Survey of various diffractive surface- and metasurface-enabled designs

Operation Wavelength/Task Diffractive Surfaces Metasurfaces

Thickness-tuned
units

Index-tuned
units

Plasmonic/Metallic Dielectric

Fabrication
Methods

GHz-THz 3D printing (Stereo-
lithography, Polyjet, etc.)

3D printing190 Photolithography191 or Laser
writing192

Photolithography193

Visible-NIR Nanoscribe136, etc. Implosion
Fabrication137

EBL38 or DUV194 EBL/DUV/Nanoscribe195

Materials GHz-THz Resin (Veroblack26, etc.) Polystyrene196 Au, IST192, etc. Si197, etc.

Visible-NIR Resin (IP-162136, etc.) Hydogel137 or
SiO2-TiO2

198
Au103, Al112, Ag, etc. TiO2

38, GaN40, Si36, etc.

Power Efficiency GHz-
THz

Single wavelength 26% (classification)66 31-72% (lens)199 50% (beam steering)200 68% (lens)197

Broadband 76–91% (unidirectional
imager)201

N/A N/A 30–68% (lens)202

Visible-
NIR

Single wavelength 99%203 75% (lens)204 80% (reflection, holography)98 86% (lens)38

Broadband 95% (lens)205 N/A 8.4–11%206 40%40

Reconfigurability GHz-THz Layer swapping18 N/A Electrically-tuned121,207 (single-unit-
level 0–2π phase programmability)

Optical pumping tuned by
DMD208

Visible-NIR Spatial light modulator27 N/A Substrate stretching103 1D liquid crystal
supercells100

Spectral
Bandwidth

GHz-
THz

Lens 0.3–1.5 THz209 0.4–0.6 THz210 4.2–4.5 THz211 0.3–0.8 THz202

Imaging, Beam steering,
Linear transformations

0.37–0.44 THz (unidirec-
tional imaging)201

N/A 0.4–1 THz (beam steering)212 0.6–1 THz (beam
steering)193

0.34–0.41 THz (multi-
channel linear
transformation)17

Visible-
NIR

Lens 425–700 nm205 488–1680 nm213 1200–1680nm206 400–660nm40

Holography 532–1550nm214 N/A 630–1050nm98 1.1–1.4 μm215

Beam steering 450–950 nm216 N/A 480–660nm217 1.4–1.8 μm218

Polarization
Responses

GHz-THz Multi-pixel universal polar-
ization transformations15

N/A Single-pixel polarization
conversion219

N/A

Visible-NIR N/A N/A Versatile single-pixel polarization
generation112

Subwavelength single-
pixel polarization
conversion36

Color holography220
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were also demonstrated using deep-learning-designed diffractive pro-
cessors, simultaneously covering hundreds of wavelength channels17.

In general, deeper diffractive architectures where a given number
of diffractive degrees of freedom (N) is distributed across one
diffractive surface following another present better optical approx-
imation accuracies with improved output diffraction efficiencies
compared to shallower architectures where the same N degrees of
freedom are distributed to a smaller number of diffractive layers.
Before the demonstration of this depth feature for universal linear
transformations75, its first empirical evidence was presented for image
classification tasks26, where deeper diffractive processors generalized
to classify unknown object images better than shallower diffractive
architectures.

An experimental demonstration of all-optical linear transforma-
tions e.g., an arbitrary permutation matrix with 625 input-output
connections, was reported based on diffractive free-space processors
comprised of K = 3 dielectric modulation surfaces operating at THz
wavelengths82. Deep learning-designed diffractive networks were also
used to experimentally realize data class-specific all-optical transfor-
mations and image encryption84. In these diffractive designs, the visual
information that is encoded into the intensity of the optical field was
all-optically encrypted by a data class-specific diffractive network that
implemented a separate transformationmatrix for eachdata class—i.e.,
a different linear transformation for each distinct class of objects,
performed by the same diffractive optical processor84. This all-optical
data-class-specific transformation system was experimentally demon-
strated in different parts of the electromagnetic spectrum, i.e.,
1550nm and 0.75mm wavelengths, and can enable fast, energy-
efficient data encryption using a broad range of optical sources.

As another demonstration in the visible spectrum, a single-layer Si
metasurface that could represent a linear complex-valuedS-matrixwas
reported for solving the Fredholm integral equations85. This meta-
grating structure can approximate a Neumann series based on suc-
cessive reflection between the metasurface and a semitransparent
mirror. This analog computing platform that operates in the visible
spectrum enables a highly compact and thin device that can achieve
high processing speeds, with the possibility of on-chip integration.

Optical processing of spatial information and computational
imaging
Diffractive networks that process spatially encoded information of
light present some unique opportunities for computational imaging
and display systems. For example, imaging through unknown, random

scattering, and diffusive media is a challenging problem of major sig-
nificance for various fields ranging from biomedical imaging86 to
autonomous robotic systems87–89. Diffractive networks provide a reli-
able all-optical solution to this challenge of imaging through unknown
random diffusers by learning from the scattering process of images
propagating through a large number of diffusers in a deep-learning-
based training process28. Remarkably, this technique shows strong
generalizability to unknown diffusers with a comparable correlation
length to the diffusers usedduring the training. Diffractive surfaces are
also capable of performing selective imaging, where only the desired
classes of objects are recorded while other information is all-optically
erased by the diffractive system90.

Diffractive networks also provide a powerful tool to achieve pixel
super-resolution that can contribute to the development of high-
resolution displays using spatial light modulators (SLMs) with limited
pixel density and space-bandwidth products (SBP)91. The resolution of
the displayed images can be enhanced up to 4-fold by (1) encoding the
high-resolution images into low-resolution SLM patterns using a con-
volutional neural network (CNN) and (2) decoding the low-resolution
images into the high-resolution images by a jointly-trained diffractive
network91. This all-optical pixel super-resolution system can surpass
the SBP restrictions of the wavefront modulator while maintaining its
image field-of-view. The method can also significantly reduce the data
transmission and storage burden by encoding the high-resolution
input images into compact, low-resolution representations.

The ability of diffractive networks to process spatially encoded
optical information can also enable hologram reconstruction and all-
optical recovery of quantitative phase information (Fig. 5a)67,92.
Quantitative phase imaging (QPI) is a powerful label-free imaging
method for imaging low-contrast samples with weak scattering by
visualizing the optical path length information of specimens93. By
converting the input phase information of a scene into intensity var-
iations at the output plane, diffractive networks have achievedQPI in a
compact diffractive design that axially spans ~200–300 λ93. In contrast
to digital approaches that retrieve holographic images from captured
intensity images using digital phase recovery algorithms, these passive
free-space processors enable all-optical reconstruction of holographic
images, achieving superb image quality and high diffraction efficiency
that can be generalized to classes of objects different from the training
datasets92,93.

Diffractive networks also allow the separation of spatially multi-
plexed information encoded in differentOAMchannels that profoundly
impact future telecommunication technologies94. Upon illumination by

a b

Fig. 4 | Diffractive optical networks can perform universal linear transforma-
tions. Diffractive surfaces trained to perform (a) linear operations including an
arbitrary complex-valued transform, discrete Fourier transform (DFT)13 and (b)
permutation operation82. Extensions of this framework to perform universal linear

transformations under spatially and/or temporally incoherent illumination were
also demonstrated17,83. a, b These are adapted with permission from ref. 13 and
ref. 82, respectively, by CC BY 4.0.
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vortex beams that carry OAM, the engineered surfaces produce a
selective set of images at designed spatial positions tailored by the
orbital quantum number (l) (Fig. 5b)95. Metasurface-based processors
for manipulating OAM with polarization and phase modulation have
also been demonstrated96. Although existing demonstrations focus
largely on terahertz waves and longer wavelengths, expanding to the
visible ranges is expected with the developments in nanofabrication
methods. We expect this technology to enable advances in holography
and storage with larger scalability and information density.

Metasurface spatial processors have beendemonstrated as single-
layer devices, for example, to generate hologramsbased on computer-
generated phase and amplitude profiles (Fig. 5c)97,98. By sampling with
a 2D Dirac comb function in the spatial frequency-domain, a meta-
surface allows the multiplexing of multiple holographic images in
different OAM channels by the same design (Fig. 5d)99. With integra-
tion with actively tunable optical materials, metasurfaces also allow
beam steering and focusing of free-space light tunable by external
stimuli such as mechanical deformation and electrical biases100–103. In
particular, a one-dimensional SLM has been realized by liquid crystals
(Fig. 5e)100. The ability to reconfigure metasurfaces has contributed to
adaptive holograms where the image can be tailored by chemical104

and mechanical stimuli105. Some of these wavefront modulation and
beam steering applications shown in, e.g., Fig. 5c–e are relatively lim-
ited in their computational capabilities since they perform a restricted
form of wave transformation with limited input-output representa-
tions as opposed to implementing a function that can accurately
transform infinitelymany optical inputs to the desired representations
at the output aperture (such as, e.g., Fig. 5a). With further advances in
3Dnanofabrication techniques,we expect the realizationofmulti-layer
metasurface networks to enable powerful adaptive free-space spatial
processing and function representation capabilities critical for next-
generation information processing and VR/AR applications.

Optical processing of spectral and temporal information
Diffractive surfaces also present powerful tools for processing the
spectral and temporal information of light. One area of application

that has long exploited diffractive surfaces tomanipulate the temporal
profile of light is the shaping of broadband optical pulses in a vast
range of applications, e.g., lightwave communications, biomedical
imaging, and sensing. Typically, diffractive pulse shaping systems106

consist of a dynamic/passive diffractive modulation surface sand-
wiched between two Fourier transform lenses (or concave mirrors)107.
In this conventional setup of optical pulse shaping, usingmetasurfaces
with advanced meta-units, e.g., Si nanopillars on a fused-silica sub-
strate, brings additional degrees of freedom and capabilities leading
to, e.g., ultra-wideband operation108. However, one particular draw-
back associated with this standard pulse shaping architecture is that it
often results in bulky optical systems due to the use of lenses in
paraxial regime (satisfying the condition for Fourier transformation) in
addition to other components such as gratings and mirrors109. More-
over, while high-quality lenses, mirrors, and gratings are widely avail-
able for applications in certain parts of the electromagnetic spectrum,
e.g., visible range, for optical pulses occupying some other parts of the
electromagnetic spectrum, e.g., THz, the quality of these components
is often inadequate. Deep learning-based design of diffractive optical
processors, on the other hand, offers lens-free, data-driven, and
compact alternatives for optical pulse shaping. Experimental demon-
stration of a compact, lensless pulse shaping platform that relies on
3D-printed dielectric diffractive surfaces manipulating an input
broadband THz pulse has been reported18.

In the context of broadband light processing, task-specific
dielectric diffractive surfaces structured using deep-learning can also
provide solutions to various challenging inverse design problems,
including single/multi-passband spectral filters and spatially-
controlled wavelength-demultiplexing16. The advantages of a deep-
learning-based task-specific design of diffractive optical processors
can be further exploited by replacing the dielectric modulation sur-
faces with metamaterial-based solutions developed for applications in
e.g., achromatic flat optics40,41. The additional degrees of freedom
provided by the sophisticated meta-units, e.g., GaN nanopillars Al2O3

substrate, can enhance the broadband light processing capabilities of
diffractive processors by providing e.g., simultaneous tuning of

a b

d e
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Recovery of holograms

Active beam steeringHolographic displaying Multi-channel OAM encoding

Information decoding from OAM channels 180 mm 210 mm

Fig. 5 | Diffractive networks andmetasurfaces for all-optical spatial processing
of light. All optical image recovery by diffractive networks from (a) computer-
generated holograms92 and (b) OAM information channels95. Metasurfaces for (c)
single channel98 and (d) OAM-enabled multichannel holography99. (e) Active elec-
trically tuned spatial modulation by metasurfaces in liquid crystal cells100. a This is

adapted with permission from ref. 92 by ACS. b This is adapted with permission
from ref. 95 by©TheOptical Society. cThis is adaptedwithpermission from ref. 98
by Springer Nature. d This is adapted with permission from ref. 99 by Springer
Nature. e This is adapted with permission from ref. 100 by AAAS.
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modulation response and dispersion characteristics of individual
meta-units.

Optical processing of polarization information
Since its invention, metasurfaces have been widely used for
the manipulation of polarization states using their anisotropic
subwavelength units that exhibit polarization-selective optical
responses23,30,38,49–51,53,110,111. Based on their in-plane orientations (φ),
P-B geometric phase units such as nanorods generate opposite phase
changes (±2φ) on left- and right-hand circularly-polarized light,
respectively (Fig. 6a)112. Therefore, a metasurface with a linear phase
gradient can separate a linearly polarized incident beam into two
circularly-polarized beams in the opposite direction. A combination
of two P-B supercells of meta-deflectors with opposite phase gra-
dients at a subwavelength scale can generate all polarization states
by tuning the shift distances (Fig. 6a). Polarization-sensitive meta-
surfaces can also produce holographic images encoded in different
cross-polarization channels (Fig. 6b)36,113. Existing metasurfaces have
demonstrated polarization processing by single-layer designs that
typically accept only plane-wave inputs. Although multilayered
metasurface polarization converters have been demonstrated in the
literature114,115, these reports are based on periodic lattices and form
single-pixel polarization processors.Metasurface-based networks for
versatile polarization processing are still lacking but important for
high-throughput information processing systems. This leaves sig-
nificant room for improvement: a multiscale design strategy that
concurrently optimizes the unit-level designs and the global struc-
tures of metasurfaces can provide unprecedented possibilities for
polarization processing.

We want to point out that diffractive surfaces consisting of iso-
tropic materials and unit cell designs can also realize polarization
processing. Combined with a polarizer array, an all-optically polariza-
tion-multiplexed diffractive processor14 has been demonstrated to

conduct multiple linear transformations by a series of isotropic dif-
fractive layers (Fig. 6c). Fundamentally, this diffractive processor
(composed of isotropic dielectric diffractive layers) gained its
polarization-processing capability by spatial modulation of polarized
beams generated by the polarizer array, which acts as a polarization
seed within the free-space diffractive processor. Designed by a deep-
learning training procedure, this free-space platform can perform
concurrently multiple complex-valued matrix-vector operations
through different polarization-encoded channels as long as the total
number (N) of diffractive neurons satisfies N ≥NiNoNp, where Ni, No are
the number of pixels at the input and output fields, and Np is the
number of transformations encoded as combinations of input-output
polarizations. This unique design strategy that achieves universal
polarization transformations15 with global spatial modulation at
the wavelength scale can also be combined with the unit-level polar-
ization-tuning of metasurfaces to further enhance their processing
capabilities.

Hybrid systems: Integration of free-space optical
processors with electronic computing
Free-space processors that integrate both optical and digital neural
networks62,66,102,116 can perform certain tasks with performances not
possible by purely digital or optical components alone (Fig. 7a). This
hybrid strategy has also been applied to integrated photonic
systems117,118. For pixel super-resolution, which we have discussed in
2.3, for example, the digital CNN that encodes the high-resolution
image into low-resolution SLM phase patterns not only serves as the
essential interface to wavefront modulators but also reduces the bur-
den of data transmission and storage (Fig. 7b)91. Hybrid networks have
also realized machine vision using a single-pixel detector based on
spectral encoding119. The diffractive network processes the spatial
features of an input object illuminated by a broadband source and
encodes the information into the power spectrum of the diffracted

Versatile polarization generation Polarization encoded holography

Polarization-encoded universal linear transformations

a b

c

Reflection angle (º)

C
on

ve
rs

io
n

ef
fic

ie
nc

y

Fig. 6 | Free-space polarization processors based on diffractive networks and
metasurfaces. a Metasurfaces for versatile polarization generation by nanorod
units112. b Polarization-dependent holographic images using anisotropic meta-
units36,113. c Diffractive networks enabled multichannel universal linear

transformation by polarization multiplexing using a polarizer array14. a This is
adapted with permission from ref. 112 by ACS. b This is adapted with permission
from ref. 36 by Springer Nature and ref. 113 from APS. c This is adapted with
permission from ref. 14 by CC BY 4.0.
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light that is processed by the free-space diffractive processor that is
optimized using deep-learning to communicate with a single-pixel at
its output. In addition to the classification of input objects based solely
on the spectrum detected at the single-pixel output aperture, a fully-
connected digital neural network can also reconstruct an image of the
input object from the spectrally encoded classification signal detected
by the single-pixel119.

We want to note that a single-step joint training of the optical and
electronic parts often stagnates at a local minimum with undesirable
performance. Instead, improved inference performance can be
obtained from a two-stepmethod that (1) trains the optical layers with
additional virtual optical layers that act as a placeholder for the elec-
tronic network and then (2) jointly trains the untrained digital layers
cascaded with the partially-trained optical front-end. This two-step
training strategy achieves improved performance by providing a bet-
ter initial condition for the diffractive network. Overall, this two-step
transfer-learning-like training procedure can effectively augment
the capabilities of a trained model and facilitates the integration
of optical and electronic networks. The hybrid approach is also
critical for increasing the depth of metasurface-based free-space
processors62, which have been limited to a single optical layer by cur-
rent limitations in nanofabrication. The depth advantages of optical
and hybrid networks will be further discussed in Section “Tunability
and reconfigurability”.

Digital deep-learning methods can also guide the structural
design and reconfiguration of diffractive and metasurface devices120.
Reconfigurable phase layers andmetasurfaces can be realized by SLMs
(in the visible) and programmable optoelectronic units (GHz range)
(Fig. 7c)120,121. Hybrid neural networks also provide powerful tools for

the recovery and measurement of phase-encoded information. For
example, phase-encoded images formed by overlapping two phase
images of MNIST numbers can be classified by a diffractive processor,
and each digit can be accurately reconstructed by a digital network122.
The optical network compresses the size of the input phase image to
reduce the number of pixels by 20–65 times, which facilitates the
reconstruction of both images regardless of the phase ambiguity. The
ability to process phase information also allows the hybrid systems to
manipulate OAM beams, which form a promising technology for next-
generation information processing and telecommunication (Fig. 7d).
Remarkably, this diffractive network integrated with a single fully-
connected layer can achieve high calculation speed and energy effi-
ciency where 99.98% of computations are performed optically. The
OAM reconstruction achieved an extraordinary accuracy with a mean-
squared error (MSE) of 10−5–10−3 123. The compact system (footprint
~200λ) can achieve high robustness to the atmospheric turbulence and
the spatial displacements of OAM beams, including transverse and
angular shifts. Recently, a demonstration of electrically tuned meta-
surfaces can generate the OAM beam with dynamically-tunable topo-
logical charges124. We believe that the integration of digital neural
networks with these reconfigurable (ideally jointly-trained) meta-
surfaces can contribute to a broad range of futuristic information
technologies.

Grand challenges in free-space optical computing
and performance limitations
Various practical applications of free-space optical systems, such as
imaging and computing, require tackling various challenges in device
fabrication and performance. Diffraction efficiency, in particular, is

Hybrid pixel super-resolution displayHybrid Optoelectronic Network

Dynamic Beam Forming

Artificial neural network

Digital code

Metasurface
Orbital Angular Momentum Measurement
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Fig. 7 |Hybridoptical-electronic networks for intelligent free-spaceprocessing.
aHybrid optoelectronic network for classification66.bDigital encoder enables pixel
super-resolution displaying by diffractive networks91. c Deep-learning design of
digital code for dynamic beamforming on a reconfigurable metasurface120.

d Robust, high-accuracy OAM measurement by a hybrid network123. a This is
adapted with permission from ref. 66 by CC BY 4.0. b This is adapted with per-
mission from ref. 91 by AAAS. c This is adapted with permission from ref. 120 by
IEEE. d This is adapted with permission from ref. 123 by CC BY 4.0.
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critical for enabling energy-efficient technologies ranging from QPI
and microscopy to holographic displays. Emerging innovations in the
design methods and optical materials that can improve output dif-
fraction efficiencies will be discussed in Section “Diffraction efficiency
and power requirements”. The ability to tune and reconfigure free-
space devices during their operation is also critical for various appli-
cations, including telecommunications (e.g., active beamforming) and
imaging. To discuss these challenges, we will cover the critical pro-
blems and emerging opportunities in realizing tunable and reconfi-
gurable diffractive and metasurface-based networks in Section
“Tunability and reconfigurability”.

Furthermore, the nanofabrication techniques needed for building
these 3D optical networks will be discussed in Section “Fabrication
complexity and 3D alignment requirements”. Section “Computation
speed, parallelism, and scalability” will analyze the strategies to
achieve fast, parallel free-space processors with the scalability that is
essential in modern computing platforms for solving complex pro-
blems. Lastly, for free-space processors to become a game-changer for
the next-generation of computing technologies, they need to achieve
competitive computation accuracy and precision compared to their
electronic counterparts in the computational tasks they are designed
for. Some of the potential techniques to improve the accuracy of dif-
fractive and metasurface-based networks for computation and infer-
ence tasks will be discussed in Section “Computation accuracy and
inference capability”.

Diffraction efficiency and power requirements
The overall diffraction efficiency of metasurface systems, defined as
the percentage of the optical power detected at the targeted sensor
pixels with respect to the total input power, has long been a limiting
factor for achieving competitive performance in imaging and display
technology125. Plasmonic metasurfaces operating in the transmission
mode, in particular, often exhibit low diffraction efficiencies that
prohibit their applications in imaging and spectroscopy. Plasmonic
meta-units exhibit non-radiative losses due to their materials proper-
ties and suffer from radiative modes that direct ballistic photons to
undesirable targets. While the search for low-loss plasmonic materials
in the visible and near-infrared range is still an ongoing research
effort56,126–128, designs of metasurfaces that operate in reflection mode
have realized a diffraction efficiency of >80% for holography98 and
beam steering129 by using metal-insulator-metal structures.

All-dielectric metasurfaces can realize higher power efficiencies
for transmission applications using materials such as TiO2 for the
visible range38 and Si for the near-infrared range64. By tailoring their
size and shape, the meta-units can exhibit destructive interference of
electrical and magnetic dipole modes130 in reflection to suppress
reflection losses and enhance transmission efficiency125. Ideal designs
of dielectric P-B phase elements (such as nanofins) can function as
perfect half-wave plates that shift the phase of the incident light
polarized along the long axis of themeta-units byπwith respect to the
light polarized along their short axis. Experimentally, the focusing
efficiency of such P-B devices can achieve ~86% at 405 nm38. In com-
parison, polarization-insensitive metasurfaces consisting of cylindrical
dielectric posts that tailor thewavefront phase by their diameters have
reported diffraction efficiencies higher than 90%131,132. Furthermore,
broadband, polarization-insensitive metasurfaces have recently
achieved a diffraction efficiencyof 90% in the 450–700 nmwavelength
range by dispersion-engineered meta-units133.

This relatively high efficiency of dielectric metasurfaces comes at
the cost of difficult fabrication, which will be discussed in Section
“Fabrication complexity and 3D alignment requirements”. Briefly,
commonly used dielectric materials such as TiO2 and Si are produced
by slow and costlymethods such as ALD andCVD. Realization ofmulti-
layermetasurfacedesigns by these high-temperature processes,which
preclude organic layer-to-layer spacers, is also difficult. Therefore, we

believe that there are still tremendous opportunities in the discovery
of low-loss, high-index optical materials that allow simpler fabrication.
The dielectric nanoposts with small diameters typically have a very
high aspect ratio that makes their accurate nanofabrication challen-
ging, and therefore, the experimental diffraction efficiency can be
compromised due to fabrication imperfections.

Diffractive networks and dielectric-based optical processors
composed of λ/2 lateral feature sizes (Section “Diffractive surfaces”)
exhibit power efficiencies that largely depend on their training loss
function and design process. For example, diffractive network training
for all-optical image classification using MSE loss promotes higher
signal contrast and better power efficiency (routing e.g., 25.07% of the
output photons to the correct photodetector assigned to the correct
label for MNIST image data) while the cross-entropy loss favors a sig-
nificantly better classification performance with a compromise in the
diffraction efficiency (by e.g., ~10-fold)66. In general, the output dif-
fraction efficiency of a multilayer diffractive network shows a depth
advantage where an increase in the number of diffractive surfaces/
layers improves its overall power efficiency because of the additional
degrees of freedom in the system66,134. In these cascaded optical pro-
cessor designs, the diffractive efficiency at the output plane can be
further improved by a compromise in the performanceof the network,
such as imaging contrast, signal-to-noise ratio, and test object classi-
fication accuracy. This trade-off between output diffraction efficiency
and performance can be engineered readily by the choice of loss
functions and the level of diffraction efficiency penalty18,66,92,93. For
example, for a diffractive processor design that performed all-optical
QPI through the conversion of phase-only signals into quantitative
intensity patterns93, an increased output diffraction efficiency of >11%
was achieved by increasing the weight of the diffraction efficiency
related penalty term in the loss function at the cost of a slight decrease
in the image quality (i.e., a structural similarity index reduction of
<0.06). A similar trade-off was observed in the all-optical reconstruc-
tion of holograms67,92, where the diffraction efficiency of the recon-
structed holographic images at the output plane was increased to
>26% by increasing the weight of the diffraction efficiency penalty
term in the training loss function, which resulted in a tolerable com-
promise in the reconstruction quality.

In experimental validation, however,material absorption can lead
to a larger loss with an increasing number of successive layers (or
thicker monolithic designs) if a low-loss material for the fabrication of
the 3D diffractive processor is not available for the wavelength range
of operation. In the network training process, the lossy diffractive
layers can be modeled as complex modulators (Section “Diffractive
surfaces”) using the measured extinction coefficient of the material so
that the design parameters (e.g., the number of layers, layer-to-layer
separation, etc.) can be optimized during the training. For the visible
part of the electromagnetic spectrum, this poses less of a challenge
since there are various low-loss optical materials (e.g., glasses, poly-
mers) that can be engineered at the wavelength scale in 3D135–137.
Materials such as TiO2 and Si are also suitable for building low-loss
diffractive layers in the visible and near-infrared wavelength ranges,
respectively.

Tunability and reconfigurability
The ability to fine-tune the design of free-space optical processors is
critical for adjusting their performance based on the task, which is
especially important when more than one metric needs to be opti-
mized concurrently138,139. In a typical example of an image classification
problem, the main objective to optimize is the classification accuracy,
but the power efficiency and signal contrast are also important in
practical applications. Therefore, on-demand tuning of the network
after the fabrication is critical for optimizing the performance of these
free-space processors based on the need of the specific tasks. Dif-
fractive free-space processors consisting of transmissive layers also
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allow Lego-like swapping of layers to tune their output function
(Fig. 8a)18. For example, based on a transfer learning approach, some
existing layers in a pre-trained diffractive network can be physically
replaced with newly trained and fabricated transmissive layers to
enable the on-demand synthesis of new pulses with desired pulse
shapes and durations. The connectivity of a diffractive network, which
can be tuned by the layer-to-layer distance Δz, is another important
parameter that determines the output of the diffractive optical
processor16. For terahertz pulse shaping, for example, the same set of
diffractive layers produced a tunable center frequency from0.349 THz
to 0.399 THz by physically reducing Δz from 30mm to 25mm18.
To apply this Δz tuning of diffractive and metasurface layers that
operate at the visible part of the spectrum, we expect MEMS-based
systems102,140 to become useful for the precise control over Δz at
micrometer length scales. Alternatively, the effective optical path
length between the passive layers can be tailored by modulating
the background refractive index without changing the physical

distances between the layers. This index-tunability can be realized by a
range of materials systems, including liquid crystals100, electro-optic
materials141–143, and phase-change materials144.

The tunability of metasurfaces is also important for achieving
adaptive responses in applications ranging from imaging to spectro-
scopy. Mechanical tuning, for example, is a common approach
for realizing active metasurfaces with tunable global optical
responses103,105. By patterning meta-units on a flexible electroactive
substrate, the focal point of a metalens can be shifted and stretched
upon applying electrical biases, which adjusts the spacings (a0)
between the meta-units (Fig. 8b)101. Microelectromechanical systems
(MEMS) that adjust the distance between two metasurfaces can also
tailor the output plane (Fig. 8c)102. The ability to shift and reshape the
foci of metalenses is critical for building compact microscopes and
miniaturized cameras. These mechanical systems based on adjusting
lattice constants can also modulate the spectral responses of the
metasurfaces145,146. By adjusting the spacing between the meta-units,
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Fig. 8 | Tunable and reconfigurable responses from metasurfaces and
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the layer designs18, (b) electromechanical modulation that deforms the metasur-
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field-programmable gate arrays121 and (e) reversible laser writing on phase-change
materials144. a This is adapted with permission from ref. 18 by Springer Nature.
b This is adapted with permission from ref. 101 by AAAS. c–e These are adapted
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the resonance of a plasmonic metasurface can be tuned over a wide
wavelength range (e.g., 500–600nm). In general, mechanical mod-
ulation is slow (e.g.,with a response timeof tens ofms)101 and limited to
changing the global structures of metasurfaces but can not access and
individually change their degrees of freedom. Integration with emer-
ging 2D materials such as graphene147,148 and black phosphorous149 is
also promising to enable gate-tunability within metasurface networks.
In addition, metasurfaces with a silicon-on-lithium niobate archi-
tecture demonstrated wavefront shaping and modulation based on
electro-optic tuning150.

In addition to tunability (fine-tuning the function of an optical
processor), the reconfigurability of optical processors allows these
devices to evolve and adapt to different tasks to achieve optimal
performance in a dynamic environment. For diffractive free-space
processors, fast reconfiguration at the single-neuron level can further
enable in-situ network training, where the diffractive devices are tai-
lored in real-time based on their measured responses27. This training
strategy that uses experimental results instead of simulated responses
can not only realize accurate evaluation of the optical processor per-
formance but also reduce the training time for dynamically changing
tasks whose simulation is computationally expensive. Gate-tunable
plasmonic units were realized by graphene-gold resonators with a
single-unit phase tunability of 0–1.28π in the mid-infrared range and
were used for achieving active beam steering147. A fully-programmable
metasurface network was also demonstrated for GHz wave applica-
tions using electrical field-programmable gate arrays (Fig. 8d)121. These
GHz wave processors can be reconfigured to perform a range of tasks
ranging from matrix inversion151 to image classification and informa-
tion encoding/decoding152. The ability to conduct fully-programmable
field synthesis is also valuable for beamforming andholographic image
projection applications153. For visible and near-infrared ranges, how-
ever, unit-level adjustment of the diffractive surfaces andmetasurfaces
is more challenging because the feature sizes are significantly smaller.
Unit-level reconfiguration has been realized by focused laser writing
and erasing of phase-changematerials144,154 such asGe2Sb2Te5 (Fig. 8e).
This approach, however, requires sophisticated instrumentation for
the activemodulation and can not apply tomulti-layer processorswith
current technology.

Overall, reconfigurable diffractive and metasurface processors
are expected to have more complex structures and fewer materials
choices that are harder to fabricate than their static counterparts. For
visible-range applications, in particular, the development of fully-
dynamic nanoscale meta-units with comparable fine features as static
meta-units is extremely challenging with the current nanofabrication
techniques. However, reconfigurable free-space devices with compe-
titive performances can be realized with a new paradigm of hybrid
network structure consisting of (1) fixed diffractive and metasurface
layers with carefully engineered subwavelength features that provide
the fine control over optical wavefront, (2) tunable optical super-
structures with micron-scale features sizes for introducing tunable
and reconfigurable optical responses to the system, and (3) digital
networks for the pre- and post-processing of the input/output.
We expect this hybrid framework to become the next-generation of
high-performance reconfigurable free-space processors that can be
integrated with portable devices.

Fabrication complexity and 3D alignment requirements
Precise fabrication of diffractive free-space processors is important for
ensuring the accuracy of these analog computing platforms, which do
not have the same error-correction ability as digital computing. For
these optical computing systems, in particular, the misalignments
between the diffractive or metasurface layers will introduce potential
systematic errors to the computing results and should be ideally lim-
ited to a size comparable to the illumination wavelength. The ability to
mitigate these misalignment errors is essential for fully harnessing the

computing capabilities of multilayer 3D diffractive networks. There-
fore, the fabricationof diffractive free-spaceprocessors that operate at
visible wavelengths requires the ability to create layers of nanoscale
units with accurate phasemodulation using e.g., spatial engineering of
the refractive index and/or thickness of the material. For instance, 3D
printing methods based on two-photon polymerization of photo-
sensitive materials45,46 are promising techniques for achieving sub-
wavelength feature resolution using tightly focused laser beams
(Supplementary Fig. S2a). Commercial solutions such as the Quantum
X developed by Nanoscribe135,136 and MicroFAB-3D developed by
Microlight3D43 have demonstrated the printing of sophisticated pho-
tonic structures such as photonic crystals155 with a resolution below
200nm. Implosion lithography137 can further push the resolution
limit down to 50nm by printing a magnified version of the target
structure in a hydrogel and shrinking the entire structure by dehy-
dration (Supplementary Fig. S2b). One of the major challenges in
creating visible-range diffractive free-space processors consisting of
multiple thickness-tuned layers is their mechanical robustness.
Although structural supports are added between the diffractive layers
to be printed/fabricated in the same fabrication session, the layers
during the curing process can undergo deformations that canproduce
inaccurate layer-to-layer distances and degrade the performance of
the optical processor. Therefore, monolithic architectures would
be preferred for building robust, miniaturized diffractive free-space
processors. For example, laser writing techniques48 can generate
index-tuned diffractive layers in a single dielectric volume to
achieve high mechanical robustness. A current limitation of this
technique is that the index-tuning by exposure time may have limited
spatial resolution and index-tuning range. Therefore, the discovery of
novel material platforms that allow index-tuning is critical for building
robust, monolithic diffractive optical processors.

On the other hand, optical metasurfaces are typically fabricated
by an electron beam lithography process consisting of steps including
electron beam writing, deposition, and etching (Supplementary
Fig. S2c)65. In a typical fabrication process for a visible-range meta-
surface made of TiO2 (a high-index, low-loss dielectric material), the
metasurface is fabricated by (1) electron beamwriting of the design on
the resist, (2) ALD-based fabrication of the TiO2 with excess thickness,
and (3) etching of the excess TiO2 and removal of the electron
beam resist to obtain the final metasurface pattern38,65. Si- or GaN-
metasurfaces can be fabricated by similar processes where an etch
mask with the metasurface design is produced by electron beam
lithography and then the pattern is transferred to the Si or GaN film by
anisotropic reactive-ion etching36,40.

Current fabrication methods for free-space metasurface
processors, however, can only realize single-layer designs42,62 or mul-
tilayer designs that do not require accurate (<λ/2) layer-to-layer
alignment64,156–158. An alignment technique between different fabrica-
tion layers is still lacking and this feature is essential for achieving
multilayermetasurface processors for performing e.g., universal linear
transformations in a transmissive geometry between a diffraction-
limited input field and output. Also, interlayer structural supports are
needed to construct multilayer metasurface-based optical processors.
Unlike their THz counterparts that can be assembled from free-
standing layers in the air, visible-range metasurfaces must be fabri-
catedon robust, smooth substratematerials. Therefore, dielectricfiller
materials with high transparency and mechanical stability would be
preferred spacers that separate the metasurface layers. The major
challenge is that depositionmethods such as ALD and PECVD for high-
quality transparent materials are slow (<5 nm/min for ALD of Al2O3

159

and 167 nm/min for PECVD of SiO2 by SAMCO) and expensive. The
residual stress accumulated during these high-temperature deposition
processes also makes the film vulnerable to cracking and fracture at
thicknesses larger than 15 µm160, which restricts the designs of meta-
surface processors that canbe realized. The poor thermal conductivity
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of common dielectric materials also produces cooling issues in dry
etching processes and prohibits the directional etching required for
producing high-aspect ratio dielectric meta-units161. We expect the
development of novel dielectricmaterials and nanoscale 3D alignment
methods to be crucial for realizing metasurface networks formed by
successive layers of jointly-optimized meta-layers.

In general, nanofabrication methods that allow scalable, low-cost
production of metasurface networks are essential for the wide-scale
use of such optical processors. One promising approach to realizing
large-scale parallel nanofabrication is photolithography which can
replicate the metasurface designs defined on a photomask on trans-
parent wafers (Supplementary Fig. S2d)162. Using a 193-nm light source
and liquid-immersion technology, the state-of-the-art deep-ultraviolet
(DUV) lithography processes can easily produce meta-units below
40nm163. Inverse design of photomasks using sub-resolution assist
features can further improve the quality of the fine features164. The
main disadvantage of DUV photolithography is its extremely high
instrumental cost. In contrast, soft lithography methods such as
nanoimprinting165 and solvent-assisted nanoscale embossing166 can
produce metasurfaces with features below 60nm using benchtop
(Supplementary Fig. S2e) and are suitable for usage in labs and small-
scale manufacturing. In a typical soft lithography process, an elasto-
meric stamp is obtained by molding from a template with the meta-
surface design and brought into conformal contact with a photoresist-
coated substrate. Via mechanical pressure or solvent interactions, the
metasurface designs are formed on the substrate and subsequent
pattern transfer steps such as deposition and etching are used to
produce the metasurface devices.

Besides direct improvements in instrumentation and materials,
the challenges in nanofabrication of diffractive andmetasurface-based
free-space optical processors can be resolved in the design process by
considering the imperfections in fabrication. Previously, diffractive
networks that are invariant to the scale-, shift, and rotation of input
images have been demonstrated by introducing these variations in the
training stage167. An extension of this approach can tremendously
improve the robustness of the free-space optical processor toward the
unavoidable misalignments between the layers or other imperfections
by including them as randomparameters in the training process82,90,168.
We expect this ‘vaccination’ strategy to apply to a wide range of
imperfections in fabrication and experimental systems (such as inac-
curacy in phase and amplitude modulation) and can be customized
based on the limitations of the selected fabrication method. Further-
more, in contrast to the designs that use analytic wave-optics
approaches, the deep-learning-based diffractive and metasurfaces-
based optical processors that are trained using data can be designed
based on an incomplete phase coverage (less than 2π, that can be
selected on demand) to accommodate materials-related refractive
index limitations and phase restrictions to enable simpler fabrication
methods. All in all, deep-learning-enabled designs of diffractive and
meta-material based optical processors would be able to better handle
some of these experimental restrictions due to fabrication imperfec-
tions and limitations in e.g., resolution, feature size, depth, refractive
index, and mechanical misalignments. There is still considerable work
needed for building cascaded free-space optical processors that can
operate at IR and visible wavelengths at diffraction-limited SBP, in
order to fully utilize the density of information encoding in free-space.

Computation speed, parallelism, and scalability
Free-space optical processors present a unique advantage since their
computation is completed as the input light propagates through the
optical processor and its volume/layers. While electronic processors
and integrated photonics-based processors also utilize the speed of
electromagnetic wave propagation, the free-space processors complete
all the calculations and inference tasks with a single pass of wave pro-
pagation, without any digital storage/transmission or pre-processing of

information. Therefore, the computing speed of diffractive and meta-
surface systems for the same task canbe increaseddrastically by scaling
the system down to the nanoscale feature sizes, operating at visible or
IR wavelengths, with a total axial thickness of e.g., ~100–200λ. To
manipulate this wavelength range, however, the diffractive features
used in free-space optical processors need to have dimensions of
>100nm, significantly larger than the state-of-the-art transistors on
chips made by the 3-nm process. In addition, the size of free-space
optical processors that can be accurately modeled and designed
(through e.g., a deep-learning-based training process) is still limited by
the speed of digital computers and their memory restrictions. Unlike
CPUs and GPUs that can be assembled into clusters to solve advanced
computation problems, a versatile strategy to assemble diffractive
networks into a large-scale cluster of free-space optical processors
is still lacking, but highly desired to fully utilize their advantages in
parallelism. Therefore, the ability to construct low-loss, large-scale
networks of diffractive optical processors is thus critical for building
fast, free-space computing platforms with significantly lower power
consumption.

One promising strategy to achieve a high density of processing
units in free-space optical processing is to use a diffractive volume
where every discrete cell in the 3D space is spatially engineered to
collectively process the input optical information. Such a volumetric
optical processor can have a very large number of optimized dif-
fractive features, e.g., >109 within a compact material volume, which
would normally be challenging for themultilayered designs to achieve
even with nanoscale meta-units. Such a large density of optimized
diffractive features within a 3D compact topology could be another
unique aspect of free-space-based visual informationprocessors and is
hard to match with planar integrated photonic circuit-based designs.
Such dense 3D lattices of diffractive units also have the potential to
utilize evanescent waves (containing much larger spatial frequencies)
to further increase the computation capability. However, the design of
a diffractive volume (that canprocess evanescentwaves) is challenging
not only because a fast and accurate forward model that can quantify
the scattering between these densely-packed units is lacking, but also
due to the extreme difficulties in the fabrication of such monolithic
free-space processors. For example, a nanophotonic design volume
based on simulations by finite-difference frequency-domain calcula-
tions and fabrication by laser-tuning of refractive index was demon-
strated, but the total volume is limited to4λ × 4λ × 6λ169. Thisdiffractive
computingmediumneeds to scale up significantly using e.g., emerging
nanofabrication137 and optical simulation methods170. For scaled-up
designs, the optical simulation technique used by the forward model
must be fast and accurate while allowing the computation of gradients
essential for the deep-learning training process. Well-established
numerical methods such as the finite-elements method171 and finite-
difference time-domain172 exhibit high-accuracy, but can not meet the
speed and gradient-computation requirements. One promising simu-
lation method is MaxwellNet170, a physics-driven neural network that
can solve for the optical responses of a diffractive volume. Using the
residual of Maxwell’s equations as the losses, the method can be
trained to quickly predict the phase and amplitude modulation of a
structure given the spatial distribution of the material property.

Despite the challenges above, the diffractive and metasurfaces
still have tremendous opportunities and advantages in information
processing because of their unique operation. For example, the mas-
sive parallelism of optical systems allows the same free-space optical
processor to perform multiple tasks simultaneously with the multi-
plexing of wavelength, polarization, and spin14,17. In particular, the
subwavelength structures of meta-units provide additional structural
degrees-of-freedoms that allow independent, pixel-level control over
e.g., polarization112,113 and dispersion173. We believe that rationally-
designed metasurface-based networks can form multispectral,
polarization-multiplexed free-space processors that can process each
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channel independently while providing on-demand control of the
cross-coupling among different channels—all within the diffraction
limit of light and the corresponding SBP of the input and output
apertures. In addition, free-space processors can be integrated directly
into the light path (without the need for digitization, storage/trans-
mission, and pre-processing of information) to perform tasks such as
image reconstruction and class-selective imaging with zero time
delay28,90. Therefore, we expect that free-space optics will form pow-
erful task-specific processors to perform analog computation and
imaging tasks at the speed of light.

Overall, diffractive surfaces and metasurfaces can potentially
provide a scalable free-space platform for highly parallel processing of
visual information that is difficult for integrated photonics-based sys-
tems to process directly, which are, by design, more suitable for pro-
cessing already digitized information. For example, the 2D phase
information of a scene/object can be directly processed by free-space-
based diffractive processors without the need for pre-processing of
information (such as phase retrieval and vectorization of the resulting
phase image) which would normally be required for an integrated
photonics-based processor before it can act on the phase image. Free-
space optical processors, in contrast, can directly process 2D or 3D
visual information and work with significantly larger inputs since their
physical size linearly grows with the size of the input FOV. For infer-
ence tasks such as image recognition and classification, free-space
optical processors based on diffractive and metasurface networks
allow highly dense connectivity in 3D, which is harder to achieve in
integrated photonics174. Although the number of trainable parameters
of optical neural networks, as of today, is still significantly smaller than
the state-of-the-art electronic deep neural networks175 (with, e.g., ~1012

parameters), free-space-based processors can still provide unique
advantages due to their direct access to the optical information of
input scenes/objects without the need for any digital cameras, image
recording/transmission, or pre-processing of data, providing ultra-fast
and power efficient visual information processors—potentially inte-
grated with mobile devices.

Computation accuracy and inference capability
For free-space diffractive and metasurface networks to play a key
role in next-generation technology, they must reach a computa-
tion accuracy and precision comparable to their existing elec-
tronic counterparts in the target computational tasks. In digital
electronic systems, the precision is determined by the number of
discrete states implemented by binary logic units to approximate
continuous variables176. Increasing the precision of analog devi-
ces, in general, requires significant advances in materials and
fabrication techniques, where the cost can increase exponentially
with increases in the desired precision177,178. In particular, free-
space optical processors as analog optical information processing
systems exhibit an explicit limit in their precision, practically
limited by their design, fabrication, and measurement processes.
For example, errors in diffractive computing can result from
inaccuracy in the layer thicknesses or the topology of the fabri-
cated subwavelength features due to imperfections of the 3D
printing process. Misalignments between diffractive layers can
also introduce nontrivial errors that lead to incorrect computa-
tional and inference outcomes168. Although statistical inference
and computational imaging tasks usually do not require high
precision179 and can tolerate some degrees of errors, other
applications such as linear transformations13 can be much more
sensitive. Some of these limitations in nanofabrication and mis-
alignments can potentially be addressed by appropriate design
and network training strategies that take these factors into
account during the deep-learning-based optimization and train-
ing of the free-space processor (discussed in Section “Fabrication
complexity and 3D alignment requirements”).

The computational performance of current deep neural networks
systems can be understood by the universal approximation
theorem180, which states that multi-layered networks with a sufficient
number of hidden units and adequate nonlinear activation functions
can approximate any continuous function mapping from closed,
bounded space to another one with finite dimensions180–182. To achieve
universal function approximation through free-space optical net-
works, however, materials and neuron designs that can achieve non-
linear optical responses would be needed73. Nonlinearity has been
implemented in diffractive optical processors using a combination of
photodetector/sensor arrays and dynamic electro-optic modulation
devices27,183. However, this approach not only significantly increases
the complexity of the devices but also introduces undesirable active
power consumption to the system. The speed of operation will also be
limited by the performance of the dynamic electro-optic modulation
devices. Another interesting demonstration of nonlinearity using
transitions between atomic states of 85Rb184, but the use of vulnerable
atomic systems makes this system impractical in realistic devices.
A practical material system that enables large nonlinearity and easy
fabrication is still the main challenge in developing the next-
generation of free-space machine-learning devices185. Besides the
direct implementation of nonlinear activation functions, the inference
capacity can also be improved by innovations in diffractive processor
architecture and training strategies, including class-specific network
training68 and ensemble learning69 as detailed in earlier sections.
A disadvantage of both of these strategies (class-specific diffractive
networks and ensemble learning approach) is that multiple diffractive
networks need to operate together, requiring sophisticated 3D inte-
gration and optical alignment in free-space, further complicating the
optical hardware. As an alternative approach, inspired by pixel super-
resolution microscopy using object shifts186, time-lapse image classi-
fication using a single diffractive network was reported that utilized
random or ordered lateral shifts of an object with respect to the input
aperture to achieve ~62% inference accuracy for classifying CIFAR-10
test images using a single time-lapse diffractive optical network187.

Conclusions
In this Perspective, we discussed the recent advances in dif-
fractive surface and metasurface designs as free-space optical pro-
cessors and their implications and potential impact on future analog
visual computing technologies (Fig. 9). Starting from their funda-
mental design and operation principles, we analyzed the capabilities
and potentials of optical diffractive networks as a platform for statis-
tical inference26 and universal linear transformations13,14. As discussed
earlier, we expect major advances in the design and fabrication of
diffractive and metasurface-based free-space optical processors to
achievemore competitive performance in inference tasks, especially if
the 3D alignment and assembly challenges in the fabrication of multi-
layer designs can be overcome. We also reviewed some of the emer-
ging approaches that can potentially overcome the practical chal-
lenges in implementing nonlinear activation functions184, a critical
component for free-space optical processors to achieve enhanced
performance.

As versatile analog computing platforms with machine-learning
capabilities, these free-space optical processors form powerful visual
information processing tools that can directly access and harness the
spatial, spectral, polarization and amplitude/phase information of light
waves. One critical application enabled by diffractive visual processors
is all-optical QPI that can convert phase-encoded information of spe-
cimen into intensity patterns in a quantitative manner, performing all-
optical phase recovery93, with various applications in biological ima-
ging. Similarly, the ability to perform imaging through unknown, ran-
dom diffusers using analog visual computing via spatially engineered
diffractive layers28 ormetasurfaceswill openupnewpossibilities in, e.g.,
medical imaging, security screening and free-space communication.
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As another application, the class-specific imaging capability of dif-
fractive visual processors further provides a novel solution to privacy
protection problems that can be concerning during the deployment of
data-driven imaging and surveillance technologies90. In addition to
harnessing the spatial features of a scene, their inherent ability to pro-
cess polarization14,112,132 and spectral/temporal119,133,173,188 information of
light also makes these free-space optical networks promising for the
development of next-generation sensing and telecommunication
technologies. For example, both diffractive layers and metasurface-
based designs possess the ability to manipulate structured light that
carries OAM63,95,123, which is expected to be a core component of 6G
communication technologies.

Finally, we have discussed in this Perspective some of the key
metrics for evaluating the performance of free-space optical pro-
cessors, including computation speed and scalability, power effi-
ciency, and reconfigurability aswell as the critical challenges that need
to be addressed for achieving competitive scores on these metrics. In
particular, the design and fabrication methods for massive-scale free-
space optical processors with cascaded structures in 3D are still lack-
ing. We envision that monolithic diffractive computing volumes169, as
opposed to discrete engineered surfaces or layers, will formapowerful
class of free-space computing platforms that can realize a significantly
higher density of diffractive features in 3D; but such a capability needs
a fast and accurate forward optical model in the design process, which
will also need to carefully keep a record of the evanescent waves and
their interactions with subwavelength structures within the spatially
engineered volume. We expect that physics-informed deep neural
networks170 trained to solve Maxwell’s equations rapidly would be one
promising platform to be used in the forward model of such 3D
computing platforms. These 3D designs will be capable of performing
large-scale computing and optical information processing at low
energy consumption and ideally below the diffraction limit of light.
Another expected breakthrough in free-space optical computing
would be the realization of dynamic tuning and on-demand

reconfiguration of diffractive18 or metasurface-based27,102,121,144,147 opti-
cal processors. Rapid developments in various nanofabrication tech-
niques, including nanolithography162–165 and 3D printing43,45,46,136, can
accelerate the transition of dynamic diffractive andmetasurface-based
optical networks from GHz to visible frequencies. We also expect
major advances in dynamic hybrid processors62 that combine fixed/
static diffractive layers or metasurfaces with subwavelength features
for fine control over the optical wavefront, adaptive optical super-
structures for reconfigurability27, and digital neural networks that are
jointly-optimizedwith the free-spaceoptical processor for the pre- and
post-processing66,91,119,189 of the input/output information.
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