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TacticAI: an AI assistant for football tactics
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Identifying key patterns of tactics implemented by rival teams, and developing
effective responses, lies at the heart of modern football. However, doing so
algorithmically remains an open research challenge. To address this unmet
need, we propose TacticAI, an AI football tactics assistant developed and
evaluated in close collaboration with domain experts from Liverpool FC. We
focus on analysing corner kicks, as they offer coaches the most direct
opportunities for interventions and improvements. TacticAI incorporates both
a predictive and a generative component, allowing the coaches to effectively
sample and explore alternative player setups for each corner kick routine and
to select those with the highest predicted likelihood of success. We validate
TacticAI on a number of relevant benchmark tasks: predicting receivers and
shot attempts and recommending player position adjustments. The utility of
TacticAI is validated by a qualitative study conducted with football domain
experts at Liverpool FC. We show that TacticAI’s model suggestions are not
only indistinguishable from real tactics, but also favoured over existing tactics
90% of the time, and that TacticAI offers an effective corner kick retrieval
system. TacticAI achieves these results despite the limited availability of gold-
standard data, achieving data efficiency through geometric deep learning.

Association football, or simply football or soccer, is a widely popular
and highly professionalised sport, in which two teams compete to
score goals against each other. As each football team comprises up to
11 active players at all times and takes place on a very large pitch (also
known as a soccer field), scoring goals tends to require a significant
degree of strategic team-play. Under the rules codified in the Laws of
the Game1, this competition has nurtured an evolution of nuanced
strategies and tactics, culminating in modern professional football
leagues. In today’s play, data-driven insights are a key driver in deter-
mining the optimal player setups for each game and developing
counter-tactics to maximise the chances of success2.

When competing at the highest level the margins are incredibly
tight, and it is increasingly important to be able to capitalise on any

opportunity for creating an advantage on the pitch. To that end, top-
tier clubs employ diverse teams of coaches, analysts and experts,
tasked with studying and devising (counter-)tactics before each game.
Several recent methods attempt to improve tactical coaching and
player decision-making through artificial intelligence (AI) tools, using a
wide variety ofdata types fromvideos to tracking sensors and applying
diverse algorithms ranging from simple logistic regression to elabo-
rate neural network architectures. Suchmethods have been employed
to help predict shot events from videos3, forecast off-screen move-
ment from spatio-temporal data4, determine whether a match is in-
play or interrupted5, or identify player actions6.

The execution of agreed-upon plans by players on the pitch is
highly dynamic and imperfect, depending on numerous factors
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including playerfitness and fatigue, variations inplayermovement and
positioning, weather, the state of the pitch, and the reaction of the
opposing team. In contrast, set pieces provide an opportunity to exert
more control on the outcome, as the brief interruption in play allows
the players to reposition according to one of the practiced and pre-
agreed patterns, and make a deliberate attempt towards the goal.
Examples of such set pieces include free kicks, corner kicks, goal kicks,
throw-ins, and penalties2.

Among set pieces, corner kicks are of particular importance, as an
improvement in corner kick executionmay substantially modify game
outcomes, and they lend themselves to principled, tactical and
detailed analysis. This is because corner kicks tend to occur frequently
in football matches (with ~10 corners on average taking place in each
match7), they are taken from a fixed, rigid position, and they offer an
immediate opportunity for scoring a goal—no other set piece simul-
taneously satisfies all of the above. In practice, corner kick routines are
determined well ahead of each match, taking into account the
strengths and weaknesses of the opposing team and their typical tac-
tical deployment. It is for this reason that we focus on corner kick

analysis in particular, and propose TacticAI, an AI football assistant for
supporting the human expert with set piece analysis, and the devel-
opment and improvement of corner kick routines.

TacticAI is rooted in learning efficient representations of corner
kick tactics from raw, spatio-temporal player tracking data. It makes
efficient use of this data by representing each corner kick situation as a
graph—a natural representation for modelling relationships between
players (Fig. 1A, Table 2), and these player relationships may be of
higher importance than the absolute distances between them on the
pitch8. Such a graph input is a natural candidate for graph machine
learning models9, which we employ within TacticAI to obtain high-
dimensional latent player representations. In the Supplementary Dis-
cussion section, we carefully contrast TacticAI against prior art in
the area.

Uniquely, TacticAI takes advantage of geometric deep learning10

to explicitly produce player representations that respect several
symmetries of the football pitch (Fig. 1B). As an illustrative example, we
can usually safely assume that under a horizontal or vertical reflection
of the pitch state, the game situation is equivalent. Geometric deep

Fig. 1 | A bird’s eye overview of TacticAI. A How corner kick situations are con-
verted to a graph representation. Each player is treated as a node in a graph, with
node, edge and graph features extracted as detailed in themain text. Then, a graph
neural network operates over this graph by performing message passing; each
node’s representation is updated using the messages sent to it from its neigh-
bouring nodes. B How TacticAI processes a given corner kick. To ensure that
TacticAI’s answers are robust in the face of horizontal or vertical reflections, all

possible combinations of reflections are applied to the input corner, and these four
views are then fed to the core TacticAI model, where they are able to interact with
each other to compute the final player representations—each internal blue arrow
corresponds to a single message passing layer from (A). Once player representa-
tions are computed, they can be used to predict the corner’s receiver, whether a
shot has been taken, as well as assistive adjustments to player positions and velo-
cities, which increase or decrease the probability of a shot being taken.
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learning ensures that TacticAI’s player representations will be identi-
cally computed under such reflections, such that this symmetry does
not have to be learnt from data. This proves to be a valuable addition,
as high-quality tracking data is often limited—with only a few hundred
matches played each year in every league. We provide an in-depth
overview of howwe employ geometric deep learning in TacticAI in the
“Methods” section.

From these representations, TacticAI is then able to answer
various predictive questions about the outcomes of a corner—for
example, which player is most likely to make first contact with the
ball, or whether a shot will take place. TacticAI can also be used as a
retrieval system—for mining similar corner kick situations based on
the similarity of player representations—and a generative recom-
mendation system, suggesting adjustments to player positions and
velocities to maximise or minimise the estimated shot probability.
Through several experiments within a case study with domain expert
coaches and analysts from Liverpool FC, the results of which we
present in the next section, we obtain clear statistical evidence that
TacticAI readily provides useful, realistic and accurate tactical
suggestions.

Results
To demonstrate the diverse qualities of our approach, we design
TacticAI with three distinct predictive and generative components:
receiver prediction, shot prediction, and tactic recommendation
through guided generation, which also correspond to the benchmark
tasks for quantitatively evaluating TacticAI. In addition to providing
accurate quantitative insights for corner kick analysis with its pre-
dictive components, the interplay between TacticAI’s predictive and
generative components allows coaches to sample alternative player
setups for each routine of interest, and directly evaluate the possible
outcomes of such alternatives.

We will first describe our quantitative analysis, which demon-
strates that TacticAI’s predictive components are accurate at predict-
ing corner kick receivers and shot situations on held-out test corners
and that the proposed player adjustments do not strongly deviate
from ground-truth situations. However, such an analysis only gives an
indirect insight into how useful TacticAI would be once deployed. We
tackle this question of utility head-on and conduct a comprehensive
case study in collaboration with our partners at Liverpool FC—where
we directly ask human expert raters to judge the utility of TacticAI’s
predictions and player adjustments. The following sections expand on
the specific results and analysis we have performed.

In what follows, we will describe TacticAI’s components at a
minimal level necessary to understand our evaluation. We defer
detailed descriptions of TacticAI’s components to the “Methods” sec-
tion. Note that, all our error bars reported in this research are standard
deviations.

Benchmarking TacticAI
We evaluate the three components of TacticAI on a relevant bench-
mark dataset of corner kicks. Our dataset consists of 7176 corner kicks
from the 2020 to 2021 Premier League seasons, which we randomly
shuffle and split into a training (80%) and a test set (20%). As previously
mentioned, TacticAI operates on graphs. Accordingly, we represent
each corner kick situation as a graph, where each node corresponds to
a player. The features associated with each node encode the move-
ments (velocities and positions) and simple profiles (heights and
weights) of on-pitch players at the timestampwhen the corresponding
corner kickwas being taken by the attacking kicker (see the “Methods”
section), and no information of ball movement was encoded. The
graphs are fully connected; that is, for every pair of players, we will
include the edge connecting them in the graph. Each of these edges
encodes a binary feature, indicating whether the two players are on
opposing teams or not. For each task, we generated the relevant
dataset of node/edge/graph features and corresponding labels
(Tables 1 and 2, see the “Methods” section). The components were
then trained separatelywith their corresponding corner kick graphs. In
particular, we only employ a minimal set of features to construct the
corner kick graphs, without encoding the movements of the ball nor
explicitly encoding the distances between players into the graphs. We
used a consistent training-test split for all benchmark tasks, as this
made it possible tobenchmark not only the individual components but
also their interactions.

Accurate receiver and shot prediction through geometric deep
learning
One of TacticAI’s key predictive models forecasts the receiver out of
the 22 on-pitch players. The receiver is defined as the first player
touching the ball after the corner is taken. In our evaluation, all
methods used the same set of features (see the “Receiver prediction”
entry in Table 1 and the “Methods” section). We leveraged the
receiver prediction task to benchmark several different TacticAI base
models. Our best-performing model—achieving 0.782 ± 0.039 in top-
3 test accuracy after 50,000 training steps—was a deep graph
attention network11,12, leveraging geometric deep learning10 through
the use of D2 group convolutions13. We supplement this result with a
detailed ablation study, verifying that both our choice of base
architecture and group convolution yielded significant improve-
ments in the receiver prediction task (Supplementary Table 2, see the
subsection “Ablation study” in the “Methods” section). Considering
that corner kick receiver prediction is a highly challenging task with
many factors that are unseen by our model—including fatigue and
fitness levels, and actual ball trajectory—we consider TacticAI’s top-3
accuracy to reflect a high level of predictive power, and keep the base
TacticAI architecture fixed for subsequent studies. In addition to this

Table 1 | Summary of the features used in the correspond-
ing tasks

Benchmark task Node features Edge features Global
features

Receiver prediction
(Node classification)

Player positions Teammate or
opponent

None

Player velocities

Player weights

Player heights

Ball possession

Shot prediction
(Graph classification)

Same as above Same as above Receiver ID

Guided generation
(Node regression)

Same as above Same as above Shot indicator

Receiver ID

Table 2 | Summary of the details of the features used to
construct graphs

Feature Feature type Explanation

Player positions Node XY-positions of 22 players on the pitch.

Player velocities Node XY-velocities of 22 players on the pitch.

Player weights Node Weights of 22 players.

Player heights Node Heights of 22 players.

Ball possession Node Binary indicator to indicate whether this
player is possessing the ball.

Teammate or
opponent

Edge One-hot encoding to indicate the rela-
tionship between two players.

Receiver ID Global One-hot encoding to indicate the index
of the receiver.

Shot indicator Global Binary indicator to indicate if therewas a
threatening shot attempt.
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quantitative evaluation with the evaluation dataset, we also evaluate
the performance of TacticAI’s receiver prediction component in a
case study with human raters. Please see the “Case study with expert
raters” section for more details.

For shot prediction, we observe that reusing the base TacticAI
architecture to directly predict shot events—i.e., directlymodelling the
probabilityPð shotjcorner Þ—proved challenging, only yielding a test F1
scoreof 0.52 ± 0.03, for a GATv2 basemodel. Note that hereweuse the
F1 score—the harmonicmeanof precision and recall—as it is commonly
used in binary classification problems over imbalanced datasets, such
as shot prediction. However, given that we already have a potent
receiver predictor, we decided to use its output to give us additional
insight into whether or not a shot had been taken. Hence, we opted to
decompose the probability of taking a shot as

Pð shotjcornerÞ=
X

i2players
Pð shotjreceiver = i, corner ÞPð receiver= ijcorner Þ

ð1Þ

where Pð receiverjcorner Þ are the probabilities computed by Tacti-
cAI’s receiver prediction system, andPð shotjreceiver,corner Þ models
the conditional shot probability after a specific player makes first
contact with the ball. This was implemented through providing an
additional global feature to indicate the receiver in the corresponding
corner kick (Table 1) while the architecture otherwise remained the
same as that of receiver prediction (Supplementary Fig. 2, see the
“Methods” section). At training time,we feed the ground-truth receiver
as input to the model—at inference time, we attempt every possible
receiver, weighing their contributions using the probabilities given by
TacticAI’s receiver predictor, as per Eq. (1). This two-phased approach
yielded a final test F1 score of 0.68 ± 0.04 for shot prediction, which
encodes significantly more signal than the unconditional shot

predictor, especially considering the many unobservables associated
with predicting shot events. Just as for receiver prediction, this
performance can be further improved using geometric deep learning;
a conditional GATv2 shot predictor with D2 group convolutions
achieves an F1 score of 0.71 ± 0.01.

Moreover, we also observe that, even just through predicting the
receivers, without explicitly classifying any other salient features of
corners, TacticAI learned generalisable representations of the data.
Specifically, team setups with similar tactical patterns tend to cluster
together in TacticAI’s latent space (Fig. 2). However, no clear clusters
are observed in the raw input space (Supplementary Fig. 1). This indi-
cates that TacticAI can be leveraged as a useful corner kick retrieval
system, and we will present our evaluation of this hypothesis in the
“Case study with expert raters” section.

Lastly, it isworth emphasising that the utility of the shot predictor
likelydoes not come from forecastingwhether a shot eventwill occur—
a challenging problem with many imponderables—but from analysing
the difference in predicted shot probability across multiple corners.
Indeed, in the following section, we will show how TacticAI’s gen-
erative tactic refinements can directly influence the predicted shot
probabilities, which will then corresponds to highly favourable eva-
luation by our expert raters in the “Case study with expert raters”
section.

Controlled tactic refinement using class-conditional
generative models
Equipped with components that are able to potently relate corner
kicks with their various outcomes (e.g. receivers and shot events), we
can explore the use of TacticAI to suggest adjustments of tactics, in
order to amplify or reduce the likelihood of certain outcomes.

Specifically, we aim to produce adjustments to the movements of
players on one of the two teams, including their positions and

Fig. 2 | Corner kicks represented in the latent space shaped by TacticAI. We
visualise the latent representations of attacking and defending teams in 1024 cor-
ner kicks using t-SNE. A latent team embedding in one corner kick sample is the
meanof the latent player representationson the sameattacking (A–C) ordefending
(D) team. Given the reference corner kick sample (A), we retrieve another corner
kick sample (B) with respect to the closest distance of their representations in the
latent space.Weobserve that (A) and (B) are both out-swing corner kicks and share

similar patterns of their attacking tactics, which are highlighted with rectangles
having the same colours, although they bear differences with respect to the
absolute positions and velocities of the players. All the while, the latent repre-
sentation of an in-swing attack (C) is distant from both (A) and (B) in the latent
space. The red arrows are only used to demonstrate the difference between in- and
out-swing corner kicks, not the actual ball trajectories.
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velocities, which wouldmaximise orminimise the probability of a shot
event, conditioned on the initial corner setup, consisting of the
movements of players on both teams and their heights and weights. In
particular, although in real-world scenarios both teams may react
simultaneously to themovements of eachother, in our study, we focus
on moderate adjustments to player movements, which help to detect
players that are not responding to a tactic properly. Due to this reason,
we simplify the process of tactic refinement through generating the
adjustments for only one teamwhile keeping the other fixed. The way
we train amodel for this task is through anauto-encodingobjective:we
feed the ground-truth shot outcome (a binary indicator) as an addi-
tional graph-level feature toTacticAI’smodel (Table 1), and thenhave it
learn to reconstruct a probability distribution of the input player
coordinates (Fig. 1B, also see the “Methods” section). As a con-
sequence, our tactic adjustment system does not depend on the pre-
viously discussed shot predictor—although we can use the shot
predictor to evaluate whether the adjustments make a measurable
difference in shot probability.

This autoencoder-based generative model is an individual com-
ponent that separates from TacticAI’s predictive systems. All three
systems share the encoder architecture (without sharing parameters),
but use different decoders (see the “Methods” section). At inference
time, we can instead feed in a desired shot outcome for the given
corner setup, and then sample new positions and velocities for players
onone teamusing this probability distribution. This setup, in principle,
allows for flexible downstream use, as human coaches can optimise
corner kick setups through generating adjustments conditioned on
the specific outcomes of their interest—e.g., increasing shot prob-
ability for the attacking team, decreasing it for the defending team

(Fig. 3) or amplifying the chance that a particular striker receives
the ball.

We first evaluate the generated adjustments quantitatively, by
verifying that they are indistinguishable from the original corner kick
distribution using a classifier. To do this, we synthesised a dataset
consisting of 200 corner kick samples and their corresponding con-
ditionally generated adjustments. Specifically, for corners without a
shot event, wegenerated adjustments for the attacking teamby setting
the shot event feature to 1, and vice-versa for the defending teamwhen
a shot event did happen.We found that the real and generated samples
were not distinguishable by an MLP classifier, with an F1 score of
0.53 ± 0.05, indicating random chance level accuracy. This result
indicates that the adjustments produced by TacticAI are likely similar
enough to real corner kicks that the MLP is unable to tell them apart.
Note that, in spite of this similarity, TacticAI recommends player-level
adjustments that are not negligible—in the following section we will
illustrate several salient examples of this. Tomore realistically validate
the practical indistinguishability of TacticAI’s adjustments from rea-
listic corners, we also evaluated the realism of the adjustments in a
case study with human experts, which we will present in the following
section.

In addition, we leveraged our TacticAI shot predictor to estimate
whether the proposed adjustments were effective. We did this by
analysing 100 corner kick samples in which threatening shots occur-
red, and then, for each sample, generated one defensive refinement
through setting the shot event feature to 0. We observed that the
average shot probability significantly decreased, from 0.75 ± 0.14 for
ground-truth corners to 0.69 ±0.16 for adjustments (z = 2.62, p <
0.001). This observation was consistent when testing for attacking

Fig. 3 | Example of refining a corner kick tactic with TacticAI. TacticAI makes it
possible for human coaches to redesign corner kick tactics in ways that help
maximise the probability of a positive outcome for either the attacking or the
defending team by identifying key players, as well as by providing temporally
coordinated tactic recommendations that take all players into consideration. As
demonstrated in the present example (A), for a corner kick in which there was a
shot attempt in reality (B), TacticAI can generate a tactically-adjusted setting in

which the shot probability has been reduced, by adjusting the positioning of the
defenders (D). The suggested defender positions result in reduced receiver prob-
ability for attacking players 2–5 (see bottom row), while the receiver probability of
Attacker 1, who is distant from the goalpost, has been increased (C). The model is
capable of generating multiple such scenarios. Coaches can inspect the different
options visually and additionally consult TacticAI’s quantitative analysis of the
presented tactics.
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team refinements (shot probability increased from 0.18 ± 0.16 to
0.31 ± 0.26 (z = −4.46, p <0.001)). Moving beyond this result, we also
asked human raters to assess the utility of TacticAI’s proposed
adjustments within our case study, which we detail next.

Case study with expert raters
Although quantitative evaluation with well-defined benchmark data-
setswas critical for the technical development of TacticAI, the ultimate
test of TacticAI as a football tactic assistant is its practical downstream
utility being recognised by professionals in the industry. To this end,
we evaluated TacticAI through a case study with our partners at
Liverpool FC (LFC). Specifically, we invited a group of five football
experts: three data scientists, one video analyst, and one coaching
assistant. Each of them completed four tasks in the case study, which
evaluated the utility of TacticAI’s components from several perspec-
tives; these include (1) the realismofTacticAI’s generated adjustments,
(2) the plausibility of TacticAI’s receiver predictions, (3) effectiveness
of TacticAI’s embeddings for retrieving similar corners, and (4) use-
fulness of TacticAI’s recommended adjustments. We provide an
overview of our study’s results here and refer the interested reader to
Supplementary Figs. 3–5 and the Supplementary Methods for addi-
tional details.

We first simultaneously evaluated the realism of the adjusted
corner kicks generated by TacticAI, and the plausibility of its
receiver predictions. Going through a collection of 50 corner kick
samples, we first asked the raters to classify whether a given sample
was real or generated by TacticAI, and then they were asked to
identify the most likely receivers in the corner kick sample (Sup-
plementary Fig. 3).

On the task of classifying real and generated samples, first, we
found that the raters’ average F1 score of classifying the real vs. gen-
erated samples was only 0.60 ±0.04, with individual F1 scores
(FA

1 = 0:54,F
B
1 = 0:64,F

C
1 = 0:65,F

D
1 = 0:62,FE

1 = 0:56), indicating that the
raters were, in many situations, unable to distinguish TacticAI’s
adjustments from real corners.

The previous evaluation focused on analysing realism detection
performance across raters. We also conduct a study that analyses
realism detection across samples. Specifically, we assigned ratings for
each sample—assigning +1 to a sample if it was identified as real by a
human rater, and 0 otherwise—and computed the average rating for
each sample across the five raters. Importantly, by studying the dis-
tribution of ratings, we found that there was no significant difference
between the average ratings assigned to real and generated corners
(z = −0.34, p >0.05) (Fig. 4A). Hence, the real and generated samples

Fig. 4 | Statistical analysis for the case study tasks. In task 1, we tested the
statistical difference between the real corner kick samples and the synthetic ones
generated by TacticAI from two aspects: (A.1) the distributions of their assigned
ratings, and (A.2) the corresponding histograms of the rating values. Analogously,
in task 2 (receiver prediction), (B.1) we track the distributions of the top-3 accuracy
of receiver prediction using those samples, and (B.2) the corresponding histogram
of themean ratingper sample. No statistical difference in themeanwas observed in
either cases ((A.1) (z = −0.34,p >0.05), and (B.1) (z =0.97, p >0.05)). Additionally,
we observed a statistically significant difference between the ratings of different
raters on receiver prediction, with three clear clusters emerging (C). Specifically,
Raters A and E had similar ratings (z =0.66, p >0.05), and Raters B and D also rated
in similar ways (z = −1.84, p >0.05), while Rater C responded differently from all

other raters. This suggests a good level of variety of the human raters with respect
to their perceptions of corner kicks. In task 3—identifying similar corners retrieved
in termsof salient strategic setups—therewereno significant differences among the
distributions of the ratings by different raters (D), suggesting a high level of
agreement on the usefulness of TacticAI’s capability of retrieving similar corners
(F1,4 = 1.01, p >0.1). Finally, in task 4, we compared the ratings of TacticAI’s strategic
refinements across the human raters (E) and found that the raters also agreed on
the general effectiveness of the refinements recommended by TacticAI
(F1,4 = 0.45,p >0.05). Note that the violin plots used in B.1 and C–E model a con-
tinuous probability distribution and hence assign nonzero probabilities to values
outside of the allowed ranges. We only label y-axis ticks for the possible set of
ratings.
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were assigned statistically indistinguishable average ratings by human
raters.

For the task of identifying receivers, we rated TacticAI’s predic-
tions with respect to a rater as +1 if at least one of the receivers iden-
tified by the rater appeared in TacticAI’s top-3 predictions, and 0
otherwise. The average top-3 accuracy among the human raters was
0.79 ±0.18; specifically, 0.81 ± 0.17 for the real samples, and 0.77 ± 0.21
for the generated ones. These scores closely line up with the accuracy
of TacticAI in predicting receivers for held-out test corners, validating
our quantitative study. Further, after averaging the ratings for receiver
prediction sample-wise, we found no statistically significant difference
between the average ratings of predicting receivers over the real and
generated samples (z = 0.97, p > 0.05) (Fig. 4B). This indicates that
TacticAI was equally performant in predicting the receivers of real
corners and TacticAI-generated adjustments, and hence may be
leveraged for this purpose even in simulated scenarios.

There is a notably high variance in the average receiver prediction
rating of TacticAI. We hypothesise that this is due to the fact that
different raters may choose to focus on different salient features when
evaluating the likely receivers (or even the amount of likely receivers).
We set out to validate this hypothesis by testing the pair-wise similarity
of the predictions by the human raters through running a one-away
analysis of variance (ANOVA), followed by a Tukey test. We found that
the distributions of the five raters’ predictions were significantly dif-
ferent (F1,4 = 14.46, p < 0.001) forming three clusters (Fig. 4C). This
result indicates that different human raters—as suggested by their
various titles at LFC—may often use very different leads when sug-
gesting plausible receivers. The fact that TacticAI manages to retain a
high top-3 accuracy in such a setting suggests that it was able to cap-
ture the salient patterns of corner kick strategies, which broadly align
with human raters’ preferences. We will further test this hypothesis in
the third task—identifying similar corners.

For the third task, we asked the human raters to judge 50 pairs of
corners for their similarity. Each pair consisted of a reference corner
and a retrieved corner, where the retrieved cornerwas chosen either as
the nearest-neighbour of the reference in terms of their TacticAI latent
space representations, or—as a feature-level heuristic—the cosine
similarities of their raw features (Supplementary Fig. 4) in our corner
kick dataset. We score the raters’ judgement of a pair as +1 if they
considered the corners presented in the case to be usefully similar,
otherwise, the pair is scored with 0. We first computed, for each rater,
the recall withwhich they have judged a baseline- or TacticAI-retrieved
pair as usefully similar—see description of Task 3 in the Supplementary
Methods. For TacticAI retrievals, the average recall across all raterswas
0.59 ±0.09, and for the baseline system, the recall was 0.36 ±0.10.
Secondly, we assess the statistical difference between the results of the
two methods by averaging the ratings for each reference–retrieval
pair,finding that the average ratingof TacticAI retrievals is significantly
higher than the average rating of baseline method retrievals
(z = 2.34, p < 0.05). These two results suggest that TacticAI significantly
outperforms the feature-space baseline as amethod formining similar
corners. This indicates that TacticAI is able to extract salient features
from corners that are not trivial to extract from the input data alone,
reinforcing it as a potent tool for discovering opposing team tactics
from available data. Finally, we observed that this task exhibited a high
level of inter-rater agreement for TacticAI-retrieved pairs
(F1,4 = 1.01, p > 0.1) (Fig. 4D), suggesting that human raters were largely
in agreement with respect to their assessment of TacticAI’s
performance.

Finally, we evaluated TacticAI’s player adjustment recommen-
dations for their practical utility. Specifically, each rater was given 50
tactical refinements together with the corresponding real corner kick
setups—see Supplementary Fig. 5, and the “Case study design” sec-
tion in the Supplementary Methods. The raters were then asked to
rate each refinement as saliently improving the tactics (+1), saliently

making them worse (−1), or offering no salient differences (0). We
calculated the average rating assigned by each of the raters (giving us
a value in the range [− 1, 1] for each rater). The average of these values
across all five raters was 0.7 ± 0.1. Further, for 45 of the 50 situations
(90%), the human raters found TacticAI’s suggestion to be favourable
on average (by majority voting). Both of these results indicate that
TacticAI’s recommendations are salient and useful to a downstream
football club practitioner, and we set out to validate this with
statistical tests.

We performed statistical significance testing of the observed
positive ratings. First, for each of the 50 situations, we averaged its
ratings across all five raters and then ran a t-test to assess whether the
mean rating was significantly larger than zero. Indeed, the statistical
test indicated that the tactical adjustments recommended by TacticAI
were constructive overall (tavg49 = 9:20,p<0:001). Secondly, we verified
that each of the five raters individually found TacticAI’s recommen-
dations to be constructive, running a t-test on each of their ratings
individually. For all of the five raters, their average ratings were found
to be above zero with statistical significance (tA49 = 5:84,p

A <0:001;
tB49 = 7:88, p

B <0:001; tC49 = 7:00, p
C <0:001; tD49 = 6:04, p

D <0:001;
tE49 = 7:30,p

E <0:001). In addition, their ratings also shared a high level
of inter-agreement (F1,4 = 0.45, p > 0.05) (Fig. 4E), suggesting a level of
practical usefulness that is generally recognised by human experts,
even though they represent different backgrounds.

Taking all of these results together, we find TacticAI to possess
strong components for prediction, retrieval, and tactical adjustments
on corner kicks. To illustrate the kinds of salient recommendations by
TacticAI, in Fig. 5 we present four examples with a high degree of inter-
rater agreement.

Discussion
Wehave demonstrated anAI assistant for football tactics and provided
statistical evidence of its efficacy through a comprehensive case study
with expert human raters from Liverpool FC. First, TacticAI is able to
accurately predict the first receiver after a corner kick is taken as well
as the probability of a shot as the direct result of the corner. Second,
TacticAI has been shown to produce plausible tactical variations that
improve outcomes in a salient way, while being indistinguishable from
real scenarios bydomain experts. Andfinally, the system’s latent player
representations are a powerful means to retrieve similar set-piece
tactics, allowing coaches to analyse relevant tactics and counter-tactics
that have been successful in the past.

The broader scope of strategy modelling in football has pre-
viously been addressed from various individual angles, such as pass
prediction14–16, shot prediction3 or corner kick tactical classification7.
However, to the best of our knowledge, our work stands out by com-
bining and evaluating predictive and generative modelling of corner
kicks for tactic development. It also stands out in its method of
applying geometric deep learning, allowing for efficiently incorporat-
ing various symmetries of the football pitch for improved data effi-
ciency. Our method incorporates minimal domain knowledge and
does not rely on intricate feature engineering—though its factorised
design naturally allows for more intricate feature engineering
approaches when such features are available.

Our methodology requires the position and velocity estimates of
all players at the time of execution of the corner and subsequent
events. Here, we derive these from high-quality tracking and event
data, with data availability from tracking providers limited to top lea-
gues. Player tracking based on broadcast video would increase the
reach and training data substantially, but would also likely result in
noisier model inputs. While the attention mechanism of GATs would
allow us to perform introspection of the most salient factors con-
tributing to themodel outcome, ourmethoddoes not explicitlymodel
exogenous (aleatoric) uncertainty, which would be valuable context
for the football analyst.
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While the empirical study of our method’s efficacy has been
focused on corner kicks in association football, it readily generalises to
other set pieces (such as throw-ins, which similarly benefit from simi-
larity retrieval, pass and/or shot prediction) andother teamsportswith
suspended play situations. The learned representations and overall
framing of TacticAI also lay the ground for future research to integrate
a natural language interface that enables domain-grounded con-
versations with the assistant, with the aim to retrieve particular situa-
tions of interest,make predictions for a given tactical variant, compare
and contrast, and guide through an interactive process to derive tac-
tical suggestions. It is thus our belief that TacticAI lays the groundwork
for the next-generation AI assistant for football.

Methods
We devised TacticAI as a geometric deep learning pipeline, further
expanded in this section. We process labelled spatio-temporal football
data into graph representations, and train and evaluate on bench-
marking tasks cast as classification or regression. These steps are
presented in sequence, followed by details on the employed compu-
tational architecture.

Raw corner kick data
The raw dataset consisted of 9693 corner kicks collected from the
2020–21, 2021–22, and 2022–23 (up to January 2023) Premier League
seasons. The dataset was provided by Liverpool FC and comprises four
separate data sources, described below.

Our primary data source is spatio-temporal trajectory frames
(tracking data),which tracked all on-pitchplayers and the ball, for each
match, at 25 frames per second. In addition to player positions, their
velocities are derived from position data through filtering. For each
corner kick, we only used the frame in which the kick is being taken as
input information.

Secondly, we also leverage event stream data, which annotated
the events or actions (e.g., passes, shots and goals) that have occurred
in the corresponding tracking frames.

Thirdly, the line-up data for the corresponding games, which
recorded the players’ profiles, including their heights, weights and
roles, is also used.

Lastly,wehave access tomiscellaneousgamedata,which contains
the game days, stadium information, and pitch length and width in
meters.

Graph representation and construction
Weassumed thatwewereprovidedwith an input graphG= ðV, EÞwith a
set of nodes V and edges E � V ×V. Within the context of football
games, we took V to be the set of 22 players currently on the pitch for
both teams, andwe set E =V ×V; that is, we assumed all pairs of players
have the potential to interact. Further analyses, leveraging more spe-
cific choices of E, would be an interesting avenue for future work.

Additionally, we assume that the graph is appropriately fea-
turised. Specifically, we provide a node feature matrix, X 2 RjVj × k , an
edge feature tensor, E 2 RjVj× jVj× l , and a graph feature vector,g 2 Rm.

Fig. 5 | Examples of the tactic refinements recommended by TacticAI. These
examples are selected from our case study with human experts, to illustrate the
breadth of tactical adjustments that TacticAI suggests to teams defending a corner.
The density of the yellow circles coincides with the number of times that the
corresponding change is recognised as constructive by human experts. Instead of
optimising the movement of one specific player, TacticAI can recommend
improvements for multiple players in one generation step through suggesting
better positions to block the opposing players, or better orientations to track them
more efficiently. Some specific comments from expert raters follow. In

A, according to raters, TacticAI suggests more favourable positions for several
defenders, and improved tracking runs for several others—further, the goalkeeper
is positioned more deeply, which is also beneficial. In B, TacticAI suggests that the
defenders furthest away from the cornermake improved covering runs, which was
unanimously deemed useful, with several other defenders also positioned more
favourably. In C, TacticAI recommends improved covering runs for a central group
of defenders in the penalty box, which was unanimously considered salient by our
raters. And inD, TacticAI suggests substantially better tracking runs for two central
defenders, along with a better positioning for two other defenders in the goal area.
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The appropriate entries of these objects provide us with the input
features for each node, edge, and graph. For example, xu 2 Rk would
provide attributes of an individual player u 2 V, such as position,
height and weight, and euv 2 Rl would provide the attributes of a
particular pair of players ðu, vÞ 2 E, such as their distance, and whether
they belong to the same team. The graph feature vector,g, canbe used
to store global attributes of interest to the corner kick, such as the
game time, current score, or ball position. For a simplified visualisation
of how a graph neural network would process such an input, refer
to Fig. 1A.

To construct the input graphs, we first aligned the four data
sourceswith respect to their game IDs and timestamps and filtered out
2517 invalid corner kicks, for which the alignment failed due tomissing
data, e.g., missing tracking frames or event labels. This filtering yielded
7176 valid corner kicks for training and evaluation.We summarised the
exact information that was used to construct the input graphs in
Table 2. In particular, other than player heights (measured in cen-
timeters (cm)) and weights (measured in kilograms (kg)), the players
were anonymous in the model. For the cases in which the player pro-
files were missing, we set their heights and weights to 180 cm and
75 kg, respectively, as defaults. In total, we had 385 such occurrences
out of a total of 213,246( = 22 × 9693) during data preprocessing. We
downscaled the heights and weights by a factor of 100. Moreover, for
each corner kick, we zero-centred the positions of on-pitchplayers and
normalised themonto a 10m× 10mpitch, and their velocities were re-
scaled accordingly. For the cases in which the pitch dimensions were
missing, we used a standard pitch dimension of 110m× 63m as
default.

We summarised the grouping of the features in Table 1. The actual
features used in different benchmark tasks may differ, and we will
describe this in more detail in the next section. To focus on modelling
the high-level tactics played by the attacking and defending teams,
other than a binary indicator for ball possession—which is 1 for the
corner kick taker and 0 for all other players—no information of ball
movement, neither positions nor velocities, was used to construct the
input graphs. Additionally, we do not have access to the player’s ver-
tical movement, therefore only information on the two-dimensional
movements of each player is provided in the data. We do however
acknowledge that such information, when available, would be inter-
esting to consider in a corner kick outcome predictor, considering the
prevalence of aerial battles in corners.

Benchmark tasks construction
TacticAI consists of three predictive and generativemodels, which also
correspond to three benchmark tasks implemented in this study.
Specifically, (1) Receiver prediction, (2) Threatening shot prediction,
and (3) Guided generation of team positions and velocities (Table 1).
The graphs of all the benchmark tasks used the same feature space of
nodes and edges, differing only in the global features.

For all three tasks, ourmodels first transform the node features to
a latent node feature matrix, H= f GðX,E,gÞ, from which we could
answer queries: either about individual players—in which case we
learned a relevant classifier or regressor over the hu vectors (the rows
of H)—or about the occurrence of a global event (e.g. shot taken)—in
which case we classified or regressed over the aggregated player vec-
tors, ∑uhu. In both cases, the classifiers were trained using stochastic
gradient descent over an appropriately chosen loss function, such as
categorical cross-entropy for classifiers, and mean squared error for
regressors.

For different tasks, we extracted the corresponding ground-truth
labels from either the event stream data or the tracking data. Specifi-
cally, (1) We modelled receiver prediction as a node classification task
and labelled the first player to touch the ball after the corner was taken
as the target node. This player could be either an attacking or defen-
sive player. (2) Shot prediction wasmodelled as graph classification. In

particular, we considered a next-ball-touch action by the attacking
team as a shot if it was a direct corner, a goal, an aerial, hit on the
goalposts, a shot attempt saved by the goalkeeper, or missing target.
This yielded 1736 corners labelled as a shot being taken, and 5440
corners labelled as a shot not being taken. (3) For guided generation of
player position and velocities, no additional label was needed, as this
model relied on a self-supervised reconstruction objective.

The entire dataset was split into training and evaluation sets with
an 80:20 ratio through random sampling, and the same splits were
used for all tasks.

Graph neural networks
The central model of TacticAI is the graph neural network (GNN)9,
which computes latent representations on a graph by repeatedly
combining them within each node’s neighbourhood. Here we define a
node’s neighbourhood, N u, as the set of all first-order neighbours of
node u, that is,N u = fv j ðv,uÞ 2 Eg. A single GNN layer then transforms
the node features by passingmessages between neighbouring nodes17,
following thenotationof relatedwork10, and the implementationof the
CLRS-30 benchmark baselines18:

hðtÞ
u =ϕ hðt�1Þ

u ,
M
v2N u

ψ hðt�1Þ
u ,hðt�1Þ

v , evu,g
� �0

@
1
A ð2Þ

where ψ : Rk ×Rk ×Rl ×Rm ! Rk 0
and ϕ : Rk ×Rk0 ! Rk0

are two
learnable functions (e.g. multilayer perceptrons), hðtÞ

u are the features
of node u after t GNN layers, and ⨁ is any permutation-invariant
aggregator, such as sum, max, or average. By definition, we
set hð0Þ

u =xu, and iterate Eq. (2) for T steps, where T is a hyperpara-
meter. Then, we let H= f GðX,E,gÞ=HðTÞ be the final node embeddings
coming out of the GNN.

It iswell known that Eq. (2) is remarkably general; it can be used to
express popularmodels such as Transformers19 as a special case, and it
has been argued that all discrete deep learning models can be
expressed in this form20,21. This makes GNNs a perfect framework for
benchmarking various approaches to modelling player–player inter-
actions in the context of football.

Different choices of ψ, ϕ and ⨁ yield different architectures. In
our case, we utilise a message function that factorises into an atten-
tional mechanism, a : Rk ×Rk ×Rl ×Rm ! R:

hðtÞ
u =ϕ hðt�1Þ

u ,
M
v2N u

a hðt�1Þ
u ,hðt�1Þ

v , evu,g
� �

ψ hðt�1Þ
v

� �0
@

1
A ð3Þ

yielding the graph attention network (GAT) architecture12. In our work,
specifically, we use a two-layer multilayer perceptron for the
attentional mechanism, as proposed by GATv211:

a hðt�1Þ
u ,hðt�1Þ

v , evu,g
� �

= softmax
v2N u

a>LeakyReLU W1h
ðt�1Þ
u +W2h

ðt�1Þ
v +Weevu +Wgg

� �

ð4Þ
where W1,W2 2 Rk ×h, We 2 Rl ×h, Wg 2 Rm×h and a 2 Rh are the
learnable parameters of the attentional mechanism, and LeakyReLU is
the leaky rectified linear activation function. This mechanism com-
putes coefficients of interaction (a single scalar value) for each pair of
connected nodes (u, v), which are then normalised across all neigh-
bours of u using the softmax function.

Through early-stage experimentation, we have ascertained that
GATs are capable of matching the performance of more generic
choices ofψ (such as theMPNN17)whilebeingmore scalable. Hence,we
focus our study on the GAT model in this work. More details can be
found in the subsection “Ablation study” section.
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Geometric deep learning
In spite of the power of Eq. (2), using it in its full generality is often
prone to overfitting, given the large number of parameters contained
in ψ and ϕ. This problem is exacerbated in the football analytics
domain, where gold-standard data is generally very scarce—for exam-
ple, in the English Premier League, only a few hundred games are
played every season.

In order to tackle this issue, we can exploit the immense regularity
of data arising from football games. Strategically equivalent game
states are also called transpositions, and symmetries suchas arriving at
the same chess position through different move sequences have been
exploited computationally since the 1960s22. Similarly, game rotations
and reflections may yield equivalent strategic situations23. Using the
blueprint of geometric deep learning (GDL)10, we can design specia-
lised GNN architectures that exploit this regularity.

That is, geometric deep learning is a generic methodology for
deriving mathematical constraints on neural networks, such that they
will behavepredictablywhen inputs are transformed in certainways. In
several important cases, these constraints can be directly resolved,
directly informing neural network architecture design. For a compre-
hensive example of point clouds under 3D rotational symmetry, see
Fuchs et al.24.

To elucidate several aspects of theGDL framework on a high level,
let us assume that there exists a group of input data transformations
(symmetries), G under which the ground-truth label remains unchan-
ged. Specifically, if we let y(X, E, g) be the label given to the graph
featurised with X, E,g, then for every transformation g 2 G, the fol-
lowing property holds:

yðgðXÞ, gðEÞ, gðgÞÞ= yðX,E,gÞ ð5Þ

This condition is also referred to asG-invariance. Here, by gðXÞwe
denote the result of transforming X by g—a concept also known as a
group action.More generally, it is a function of the formG×S ! S for
some state set S. Note that a single group element, g 2 G can easily
producedifferent actions ondifferentS—in this case,S couldbeRjVj× k

(X),RjVj × jVj× l (E) and Rm (g).
It is worth noting that GNNs may also be derived using a GDL

perspective if we set the symmetry group G to SjV j, the permutation
group of jVj objects. Owing to the design of Eq. (2), its outputs will not
be dependent on the exact permutation of nodes in the input graph.

Frame averaging
A simple mechanism to enforce G-invariance, given any predictor
f GðX,E,gÞ, performs frame averaging across all G-transformed inputs:

f invG ðX,E,gÞ= 1
jGj

X
g2G

f GðgðXÞ, gðEÞ, gðgÞÞ ð6Þ

This ensures that all G-transformed versions of a particular input
(also known as that input’s orbit) will have exactly the same output,
satisfying Eq. (5). A variant of this approachhas alsobeen applied in the
AlphaGo architecture25 to encode symmetries of a Go board.

In our specific implementation, we set G=D2 = fid, $ , l , $lg,
the dihedral group. Exploiting D2-invariance allows us to encode
quadrant symmetries. Each element of the D2 group encodes the
presence of vertical or horizontal reflections of the input football
pitch. Under these transformations, the pitch is assumed completely
symmetric, and hencemany predictions, such aswhich player receives
the corner kick, or takes a shot from it, can be safely assumed
unchanged. As an example of how to compute transformed features in
Eq. (6),↔(X) horizontally reflects all positional features of players in X
(e.g. the coordinates of the player), and negates the x-axis component
of their velocity.

Group convolutions
While the frame averaging approach of Eq. (6) is a powerful way to
restrict GNNs to respect input symmetries, it arguably misses an
opportunity for the different G-transformed views to interact while
their computations are being performed. For small groups such as D2,
a more fine-grained approach can be assumed, operating over a single
GNN layer in Eq. (2), which we will write shortly asHðtÞ = gGðHðt�1Þ,E,gÞ.
The condition thatweneed a symmetry-respectingGNN layer to satisfy
is as follows, for all transformations g 2 G:

gGðgðHðt�1ÞÞ, gðEÞ, gðgÞÞ= gðgGðHðt�1Þ,E,gÞÞ ð7Þ

that is, it does not matter if we apply g it to the input or the output of
the function gG—the final answer is the same. This condition is also
referred to asG-equivariance, and it has recently proved to be a potent
paradigm for developing powerful GNNs over biochemical data24,26.

To satisfy D2-equivariance, we apply the group convolution
approach13. Therein, views of the input are allowed to directly interact
with their G-transformed variants, in a manner very similar to grid
convolutions (which is, indeed, a special case of group convolutions,
setting G to be the translation group). We use HðtÞ

g to denote the
g-transformed view of the latent node features at layer t. Omitting E
and g inputs for brevity, and using our previously designed layer gG as
a building block, we can perform a group convolution as follows:

HðtÞ
g = gequiv

G ðHðt�1Þ
g Þ= 1

jGj
X
h2G

gG Hðt�1Þ
h k Hðt�1Þ

g�1h

� �
ð8Þ

Here, ∥ is the concatenation operation, joining the two node fea-
ture matrices column-wise; g�1 is the inverse transformation to g

(which must exist as G is a group); and g�1h is the composition of the
two transformations.

Effectively, Eq. (8) implies our D2-equivariant GNN needs to
maintain a node feature matrix HðtÞ

g for every G-transformation of the
current input, and these views are recombined by invoking gG on all
pairs related together by applying a transformation h. Note that all
reflections are self-inverses, hence, in D2, g= g�1.

It is worth noting that both the frame averaging in Eq. (6) and
group convolution in Eq. (8) are similar in spirit to data augmentation.
However, whereas standard data augmentation would only show one
view at a time to the model, a frame averaging/group convolution
architecture exhaustively generates all views and feeds them to the
model all at once. Further, group convolutions allow these views to
explicitly interact in a way that does not break symmetries. Here lies
the key difference between the two approaches: frame averaging and
group convolutions rigorously enforce the symmetries in G, whereas
data augmentation only provides implicit hints to the model about
satisfying them. As a consequence of the exhaustive generation,
Eqs. (6) and (8) are only feasible for small groups like D2. For larger
groups, approaches like Steerable CNNs27 may be employed.

Network architectures
While the three benchmark tasks we are performing have minor dif-
ferences in the global features available to the model, the neural net-
work models designed for them all have the same encoder–decoder
architecture. The encoder has the same structure in all tasks, while the
decoder model is tailored to produce appropriately shaped outputs
for each benchmark task.

Given an input graph, TacticAI’s model first generates all relevant
D2-transformed versions of it, by appropriately reflecting the player
coordinates and velocities. We refer to the original input graph as the
identity view, and the remaining three D2-transformed graphs as
reflected views.

Once the views are prepared, we apply four group convolutional
layers (Eq. (8)) with a GATv2 base model (Eqs. (3) and (4)) as the gG
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function. Specifically, thismeans that, in Eqs. (3) and (4), every instance
of hðt�1Þ

u is replaced by the concatenation of ðhðt�1Þ
h Þ

u
k ðhðt�1Þ

g�1h
Þ
u
. Each

GATv2 layer has eight attention heads and computes four latent fea-
tures overall per player. Accordingly, once the four group convolu-
tions are performed, we have a representation of H 2 R4×22×4, where
the first dimension corresponds to the four views
(Hid,H$,Hl,H$l 2 R22 ×4), the second dimension corresponds to the
players (eleven on each team), and the third corresponds to the
4-dimensional latent vector for eachplayer node in this particular view.
How this representation is used by the decoder depends on the spe-
cific downstream task, as we detail below.

For receiver prediction, which is a fully invariant function (i.e.
reflections do not change the receiver), we perform simple frame
averaging across all views, arriving at

Hnode =
Hid +H$ +Hl +H$l

4
ð9Þ

and then learn a node-wise classifier over the rows of Hnode 2 R22 ×4.
We further decode Hnode into a logit vector O 2 R22 with a linear layer
before computing the corresponding softmax cross entropy loss.

For shot prediction, which is once again fully invariant (i.e.
reflections do not change the probability of a shot), we can further
average the frame-averaged features across all players to get a global
graph representation:

hgraph =
1
22

X22

u= 1

hnode
u ð10Þ

and then learn a binary classifier over hgraph 2 R4. Specifically, we
decode the hidden vector into a single logit with a linear layer and
compute the sigmoid binary cross-entropy loss with the
corresponding label.

For guided generation (position/velocity adjustments), we gen-
erate the player positions and velocities with respect to a particular
outcomeof interest for the humancoaches, predicted over the rowsof
the hidden feature matrix. For example, the model may adjust the
defensive setup to decrease the shot probability by the attacking team.
The model output is now equivariant rather than invariant—reflecting
the pitch appropriately reflects the predicted positions and velocity
vectors. As such, we cannot perform frame averaging, and take only
the identity view’s features, Hid 2 R22 ×4. From this latent feature
matrix, we can then learn a conditional distribution from each row,
which models the positions or velocities of the corresponding player.
To do this, we extend the backbone encoder with conditional varia-
tional autoencoder (CVAE28,29). Specifically, for the u-th row of Hid, hu,
we first map its latent embedding to the parameters of a two-
dimensional Gaussian distribution N ðμujσuÞ, and then sample the
coordinates and velocities from this distribution. At training time, we
can efficiently propagate gradients through this sampling operation
using the reparameterisation trick28: sample a random value
ϵu ∼N ð0,1Þ for each player from the unit Gaussian distribution, and
then treat μu + σuϵu as the sample for this player. In what follows, we
omit edge features for brevity. For each corner kick sample Xwith the
corresponding outcome o (e.g. a binary value indicating a shot event),
we extend the standard VAE loss28,29 to our case of outcome-
conditional guided generation as

Lðθ,ϕÞ= �Ehu ∼ qθðhujX,oÞ½logpϕðxujhu,oÞ�+KLðqθðhujX,oÞ k pðhujoÞÞ
ð11Þ

wherehu is the player embedding corresponding to the uth rowofHid,
andKL is Kullback–Leibler (KL) divergence. Specifically, the first term
is the generation loss between the real player input xu and the
reconstructed sample decoded from huwith the decoder pϕ. Using the

KL term, the distribution of the latent embedding hu is regularised
towards p(hu∣o), which is a multivariate Gaussian in our case.

A complete high-level summary of the generic encoder–decoder
equivariant architecture employed by TacticAI can be summarised in
Supplementary Fig. 2. In the following section, we will provide
empirical evidence for justifying these architectural decisions. This will
be done through targeted ablation studies on our predictive bench-
marks (receiver prediction and shot prediction).

Ablation study
We leveraged the receiver prediction task as a way to evaluate various
base model architectures, and directly quantitatively assess the con-
tributions of geometric deep learning in this context. We already see
that the raw corner kick data can be better represented through geo-
metric deep learning, yielding separable clusters in the latent space
that could correspond to different attacking or defending tactics
(Fig. 2). In addition, we hypothesise that these representations can also
yield better performance on the task of receiver prediction. Accord-
ingly, we ablate several design choices using deep learning on this task,
as illustrated by the following four questions:

Does a factorised graph representation help? To assess this, we
compare it against a convolutional neural network (CNN30) baseline,
which does not leverage a graph representation.

Does a graph structure help? To assess this, we compare against a
Deep Sets31 baseline, which onlymodels each node in isolation without
considering adjacency information—equivalently, setting each neigh-
bourhood N u to a singleton set {u}.

Are attentional GNNs a good strategy? To assess this, we compare
against a message passing neural network32, MPNN baseline, which
uses the fully potent GNN layer from Eq. (2) instead of the GATv2.

Does accounting for symmetries help? To assess this, we compare
our geometric GATv2 baseline against one which does not utilise D2

group convolutions but utilises D2 frame averaging, and one which
does not explicitly utilise any aspect of D2 symmetries at all.

Each of these models has been trained for a fixed budget of
50,000 training steps. The test top-k receiver prediction accuracies of
the trained models are provided in Supplementary Table 2. As already
discussed in the section “Results”, there is a clear advantage to using a
full graph structure, as well as directly accounting for reflection sym-
metry. Further, the usage of the MPNN layer leads to slight overfitting
compared to the GATv2, illustrating how attentional GNNs strike a
good balance of expressivity and data efficiency for this task. Our
analysis highlights the quantitative benefits of both graph repre-
sentation learning and geometric deep learning for football analytics
from tracking data. We also provide a brief ablation study for the shot
prediction task in Supplementary Table 3.

Training details
We train each of TacticAI’s models in isolation, using NVIDIA Tesla
P100 GPUs. Tominimise overfitting, eachmodel’s learning objective is
regularised with an L2 norm penalty with respect to the network
parameters. During training, we use the Adam stochastic gradient
descent optimiser33 over the regularised loss.

All models, including baselines, have been given an equal hyper-
parameter tuning budget, spanning the number of message passing
steps ({1, 2, 4}), initial learning rate ({0.0001, 0.00005}), batch size
({128, 256}) and L2 regularisation coefficient ({0.01, 0.005, 0.001,
0.0001, 0}). We summarise the chosen hyperparameters of each Tac-
ticAI model in Supplementary Table 1.

Data availability
The data collected in the human experiments in this study have
been deposited in the Zenodo database under accession code
https://zenodo.org/records/10557063, and the processed data
which is used in the statistical analysis and to generate the relevant
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figures in the main text are available under the same accession
code. The input and output data generated and/or analysed during
the current study are protected and are not available due to data
privacy laws and licensing restrictions. However, contact details of
the input data providers are available from the corresponding
authors on reasonable request.

Code availability
All the core models described in this research were built with the
Graph Neural Network processors provided by the CLRS Algorithmic
Reasoning Benchmark18, and their source code is available at https://
github.com/google-deepmind/clrs. We are unable to release our code
for this work as it was developed in a proprietary context; however, the
corresponding authors are open to answer specific questions con-
cerning re-implementations on request. For general data analysis, we
used the following freely available packages: numpy v1.25.2, pandas
v1.5.3, matplotlib v3.6.1, seaborn v0.12.2 and scipy v1.9.3.
Specifically, the code of the statistical analysis conducted in this study
is available at https://zenodo.org/records/10557063.
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