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Understanding quantum machine learning
also requires rethinking generalization

Elies Gil-Fuster 1,2, Jens Eisert 1,2,3 & Carlos Bravo-Prieto 1

Quantum machine learning models have shown successful generalization
performance even when trained with few data. In this work, through sys-
tematic randomization experiments, we show that traditional approaches to
understanding generalization fail to explain the behavior of such quantum
models. Our experiments reveal that state-of-the-art quantumneural networks
accurately fit random states and random labeling of training data. This ability
tomemorize randomdata defies current notions of small generalization error,
problematizing approaches that build on complexity measures such as the VC
dimension, the Rademacher complexity, and all their uniform relatives. We
complement our empirical resultswith a theoretical construction showing that
quantum neural networks can fit arbitrary labels to quantum states, hinting at
their memorization ability. Our results do not preclude the possibility of good
generalization with few training data but rather rule out any possible guar-
antees based only on the properties of the model family. These findings
expose a fundamental challenge in the conventional understanding of gen-
eralization in quantummachine learning andhighlight the need for a paradigm
shift in the study of quantum models for machine learning tasks.

Quantum devices promise applications in solving computational
problems beyond the capabilities of classical computers1–5. Given the
paramount importance of machine learning in a wide variety of
algorithmic applications that make predictions based on training
data, it is a natural thought to investigate to what extent quantum
computers may assist in tackling machine learning tasks. Indeed,
such tasks are commonly listed among themost promising candidate
applications for near-term quantum devices6–9. To date, within this
emergent field of quantum machine learning (QML) a body of lit-
erature is available that heuristically explores the potential of
improving learning algorithms by having access to quantum
devices10–20. Among the models considered, parameterized quantum
circuits (PQCs), also known as quantum neural networks (QNNs),
take center stage in those considerations21–23. For fine-tuned pro-
blems in quantum machine learning, quantum advantages in com-
putational complexity have been proven over classical
computers24–27, but to date, such advantages rely on the availability of
full-scale quantum computers, not being within reach for near-term

architectures. While for PQCs such an advantage has not been shown
yet, a growing body of literature is available that investigates their
expressivity28–34, trainability35–44, and generalization45–60—basically
aimed at understanding what to expect from such quantum models.
Among those studies, the latter notions of generalization are parti-
cularly important since they are aimed at providing guarantees on
the performance of QML models with unseen data after the training
process.

The importance of notions of generalization for PQCs is actually
reflecting the development in classical machine learning: Vapnik’s
contributions61 have laid the groundwork for the formal study of sta-
tistical learning systems. This methodology was considered standard
in classical machine learning theory until roughly the last decade.
However, the mindset put forth in this work has been disrupted by
seminal work62 demonstrating that the conventional understanding of
generalization is unable to explain thegreat success of large-scale deep
convolutional neural networks. These networks, which display orders
of magnitude more trainable parameters than the dimensions of the
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images they process, defied conventional wisdom concerning
generalization.

Employing clever randomization tests derived from non-
parametric statistics63, the authors of ref. 62 exposed cracks in the
foundations of Vapnik’s theory and its successors64, at least when
applied to specific, state-of-the-art, large networks. Established com-
plexity measures, such as the well-known VC dimension or Rade-
macher complexity65, amongothers,were inadequate in explaining the
generalization behavior of large classical neural networks. Their find-
ings, in the form of numerical experiments, directly challengemany of
the well-established uniform generalization bounds for learning
models, such as those derived in, e.g., refs. 66–68. Uniform general-
ization bounds apply uniformly to all hypotheses across an entire
function family. Consequently, they fail to distinguish between
hypotheses with good out-of-sample performance and those which
completely overfit the training data.Moreover, uniform generalization
bounds are oblivious to the difference between real-world data and
randomly corrupted patterns. This inherent uniformity is what grants
long reach to the randomization tests: exposing a single instance of
poor generalization is sufficient to reduce the statements of mathe-
matical theorems to mere trivially loose bounds.

This state of affairs has important consequences for the emergent
field of QML, as we explore here. Noteworthy, current generalization
bounds in quantummachine learningmodels have essentially uniquely
focused on uniform variants. Consequently, our present comprehen-
sion remains akin to the classical machine learning canon before the
advent of ref. 62. This observation raises a natural question as to
whether the same randomization tests would yield analogous out-
comeswhen applied toquantummodels. In classicalmachine learning,
it is widely acknowledged that the scale of deep neural networks plays
a crucial role in generalization. Analogously, it is widely accepted that
current QML models are considerably distant from that size scale. In
this context, one would not anticipate similarities between current
QML models and high-achieving classical learning models56,57.

In this article, we provide empirical, long-reaching evidence of
unexpected behavior in the field of generalization, with quite arresting
conclusions. In fact, we are in the position to challenge notions of
generalization, building on similar randomization tests that have been
used in ref. 62. As it turns out, they already yield surprising results
when applied to near-term QMLmodels employing quantum states as
inputs. Our empirical findings, also in the form of numerical experi-
ments, reveal that uniformgeneralization boundsmay not be the right
approach for current-scale QML. To corroborate this body of numer-
ical workwith a rigorous underpinning, we showhowQMLmodels can
assign arbitrary labels to quantum states. Specifically, we show that
PQCs are able to perfectly fit training sets of polynomial size in the
number of qubits. By revealing this ability to memorize random data,
our results rule out the good generalization guarantees with few
training data from uniform bounds54,58. To clarify, our experiments do
not study the generalization capacity of state-of-the-art QML. Instead,
we expose the limitation of uniform generalization bounds when
applied to these models. While QMLmodels have demonstrated good
generalization performance in some settings20,47,54,58,69–71, our con-
tributions do not explain why or how they achieve it. We highlight that
the reasons behind their successful generalization remain elusive.

Results
Statistical learning theory background
We begin by briefly introducing the necessary terminology for dis-
cussing our findings in the framework of supervised learning. We
denote X as the input domain and Y as the set of possible labels. We
assume there is an unknown but fixed distribution DðX ×YÞ from
which the data originate. Let F represent the family of functions that
map X to Y. The expected risk functional R then quantifies the pre-
dictive accuracy of a given function f for data sampled according toD.

The training set, denoted as S, comprisesN samples drawn fromD. The
empirical risk R̂Sðf Þ then evaluates the performance of a function f on
the restricted set S. The difference between R(f) and R̂Sðf Þ is referred to
as the generalization gap, defined as

genðf Þ := jRðf Þ � R̂Sðf Þj : ð1Þ

The dependence of gen(f) on S is implied, as evident from the context.
Similarly, the dependenceofR(f), R̂Sðf Þ, and gen(f) onD is also implicit.
We employ CðF Þ to represent any complexity measure of a function
family, such as the VC dimension, the Rademacher complexity, or
others65. It is important to note that these measures are properties of
the whole function family F , and not of single functions f 2 F .

In the traditional framework of statistical learning, the way in
which the aforementioned concepts relate to one another is as follows.
The primary goal of supervised learning is to minimize the expected
risk R associated to a learning task, which is an unattainable goal by
construction. The so-called bias-variance trade-off stems from rewrit-
ing the expected risk as a sum of the two terms

Rðf Þ = R̂Sðf Þ|ffl{zffl}
Empirical risk, bias

+ Rðf Þ � R̂Sðf Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Generalizationgap, variance

: ð2Þ

This characterization as a trade-off arises from the conventional
understanding that diminishing one of these components invariably
leads to an increase of the other. Two negative scenarios exist at the
extremes of the trade-off. Underfitting occurswhen themodel exhibits
high bias, resulting in an imperfect classification of the training set.
Conversely, overfitting arises when the model displays high variance,
leading to a perfect classification of the training set. Overfitting is
considered detrimental as it may cause the learning models to learn
spurious correlations induced by noise in the training data. Accom-
modating this noise in thedatawouldconsequently lead to suboptimal
performance on new data, i.e., poor generalization. Concerning the
model selection problem, practitioners are thus tasked with identify-
ing amodelwith the appropriatemodel capacity for each learning task,
aiming to strike a balance in the trade-off. These notions are explained
more extensively in refs. 52,53.

The previously described scenario is no longer applicable, as
demonstrated below. Modern-day (quantum) learning models display
good generalization performance while being able to completely
overfit the data. This phenomenon is sometimes linked to the ability of
learning models to memorize data. The term memorization is defined
here as the occurrence of overfitting without concurrent general-
ization. It is essential to clarify that overfitting, in this context, means
perfect fitting of the training set, regardless of its generalization per-
formance. Furthermore, a model is considered to have memorized a
training set when both overfitting and poor generalization occur
simultaneously. Overall, a high model capacity, particularly in relation
to memorization ability, is found to be non-detrimental in addressing
learning tasks of practical significance. This phenomenon was initially
characterized for large (overparameterized) deep neural networks in
ref. 62. In thismanuscript, we present analogous, unexpected behavior
for current-scale (non-overparameterized) parameterized quantum
circuits.

Randomization tests
Our goal is to improve our understanding of PQCs as learningmodels.
In particular, we tread in the domain of generalization and its interplay
with the ability to memorize random data. The main idea of our work
builds on the theory of randomization tests from non-parametric
statistics63. Figure 1 contains a visualization of our framework.

Initially, we trainQNNs on quantum states whose labels have been
randomized and compare the training accuracy achieved by the same
learningmodel when trained on the true labels. Our results reveal that,
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in many cases, the models learn to classify the training data perfectly,
regardless ofwhether the labels have been randomized. By altering the
input data, we reach our first finding:

Observation 1. (Fitting random labels). Existing QML models can
accurately fit random labels to quantum states.

Next, we randomize only a fraction of the labels. We observe a
steady increase in the generalization error as the label noise rises. This
suggests that QNNs are capable of extracting the residual signal in the
data while simultaneously fitting the noisy portion using brute-force
memorization.

Observation 2. (Fitting partially corrupted labels). Existing QML
models can accurately fit partially corrupted labels to quantum states.

In addition to randomizing the labels, we also explore the effects
of randomizing the input quantum states themselves and conclude:

Observation3. (Fitting randomquantumstates). ExistingQMLmodels
can accurately fit labels to random quantum states.

These randomization experiments result in a remarkably large
generalization gap after training without changing the circuit struc-
ture, the number of parameters, the number of training examples, or
the learning algorithm. As highlighted in ref. 62 for classical learning
models, these straightforward experiments have far-reaching
implications:
1. Quantum neural networks already show memorization capability

for quantum data.

2. The trainability of a model remains largely unaffected by the
absence of correlation between input states and labels.

3. Randomizing the labels does not change any properties of the
learning task other than the data itself.

In the following, we present our experimental design and the
formal interpretation of our results. Even though it would seem that
our results contradict established theorems,weelucidate howandwhy
we can prove that uniform generalization bounds are vacuous for
currently tested models.

Numerical results
Here, we show the numerical results of our randomization tests,
focusing on a candidate architecture and a well-established classifica-
tion problem: the quantum convolutional neural network (QCNN)69

and the classification of quantum phases of matter.
Classifying quantum phases of matter accurately is a relevant task

for the study of condensed-matter physics72,73. Moreover, due to its
significance, it frequently appears as a benchmark problem in the
literature72,74. In our experiments, we consider the generalized cluster
Hamiltonian

H =
Xn
j = 1

Zj � j1XjX j + 1 � j2Xj�1ZjX j + 1

� �
, ð3Þ

where n is the number of qubits, Xi and Zi are Pauli operators acting on
the ith qubit, and j1 and j2 are coupling strengths. Specifically, we

Fig. 1 | Visualization of our framework. a In the empirical experiments, a dis-
tribution of labeled quantum data D undergoes a randomization process, leading
to a corrupted data distribution D̂. The training and a test set are drawn indepen-
dently from each distribution. Then, the training sets are fed into an optimization
algorithm, which is employed to identify the best fit for each data set individually
from a family of parameterized quantum circuits FQ. This process generates two
hypotheses: one for the original data foriginal and another for the corrupted data
fcorrupted.Weempiricallyfind that the labeling functions canperfectlyfit the training
data, leading to small training errors. In parallel, foriginal achieves a small test error,
indicating good learning performance, and quantifiedby a small generalization gap
gen(foriginal) = small. On the contrary, the randomization process causes fcorrupted to
achieve a large test error, which in turn results in a large generalization gap

gen(fcorrupted) = large. b Regarding uniform generalization bounds, it is worth not-
ing that this corner of QML literature assigns the same upper bound gunif to the
entire function family without considering the specific characteristics of each
individual function. Finally, we combine two significant findings: (1) We have
identified a hypothesis with a large empirical generalization gap, and (2) the uni-
form generalization bounds impose identical upper bounds on all hypotheses.
Consequently, we conclude that any uniform generalization bound derived from
the literaturemust be regarded as “large'', indicating that all such bounds are loose
for that training data size. The notion of loose generalization bound does not
exclude the possibility of achieving good generalization; rather, it fails to explain or
predict such successful behavior.

Article https://doi.org/10.1038/s41467-024-45882-z

Nature Communications |         (2024) 15:2277 3



classify states according to which one of four symmetry-protected
topological phases they display. As demonstrated in ref. 75, and
depicted in Fig. 2, the ground-state phase diagram comprises the
phases: (I) symmetry-protected topological, (II) ferromagnetic, (III)
anti-ferromagnetic, and (IV) trivial.

The learning task we undertake involves identifying the correct
quantum phase given the ground state of the generalized cluster
Hamiltonian for some choice of (j1, j2). We generate a training set
S= fð∣ψi

�
,yiÞgNi= 1 by sampling coupling coefficients uniformly at random

in the domain j1, j2∈ [ − 4, 4], with N being the number of training data
points, ∣ψi

�
representing the ground state vectors ofH corresponding

to the sampled (j1, j2), and yi denoting the corresponding phase label
among the aforementioned phases. In particular, labels are length-two
bit strings yi∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

We employ the QCNN architecture presented in ref. 69 to address
the classification problem. By adapting classical convolutional neural
networks to a quantum setting, QCNNs are particularly well-suited for
tasks involving spatial and temporal patterns, which makes this
architecture a natural choice for phase classification problems. A
unique feature of the QCNN architecture is the interleaving of con-
volutional and pooling layers. Convolutional layers consist of
translation-invariant parameterized unitaries applied to neighboring
qubits, functioning as filters between feature maps across different
layers of the QCNN. Following the convolutional layer, pooling layers
are introduced to reduce the dimensionality of the quantum state
while retaining the relevant features of the data. This is achieved by
measuring a subset of qubits and applying translationally invariant
parameterized single-qubit unitaries based on the corresponding
measurement outcomes. Thus, each pooling layer consistently redu-
ces the number of qubits by a constant factor, leading to quantum
circuits with logarithmic depth relative to the initial system size. These
circuits share a structural similarity to the multiscale entanglement
renormalization ansatz76. Nevertheless, in instances where the input
state to the QCNN exhibits, e.g., a high degree entanglement, the
efficient classical simulation of the circuit becomes infeasible.

The operation of a QCNN can be interpreted as a quantum
channel Cϑ specified by parameters ϑ, mapping an input state ρin into
an output state ρout, represented as ρout = Cϑ ρin

� �
. Subsequently, the

expectation value of a task-oriented Hermitian operator is measured,
utilizing the resulting ρout.

Our implementation follows that presented in ref. 54. The QCNN
maps an input state vector ∣ψ

�
, consisting of n qubits, into a 2-qubit

output state. For the labeling function given the output state, we use
the probabilities of the outcome of each bit string when the state is
measured in the computational basis (p00, p01, p10, p11). In particular,
we predict the label ŷ according to themeasurement outcomewith the

lowest probability according to

ψ
� 7!ðpbÞb2f0,1g2 7!ŷ := argmin

b2f0,1g2
pb : ð4Þ

For each experiment repetition, we generate data from the corre-
sponding distribution D. For training, we use the loss function

‘ ϑ; ∣ψ
�
,y

� 	� 	
:= y



∣ Cϑ ∣ψi

�
ψi



∣

� �� 	
∣y
�
: ð5Þ

This classification rule and loss function, which involve selecting the
outcomewith the lowest probability, was already utilized in ref. 54. The
authors found that employing this seemingly counter-intuitive loss
function lead to good generalization performance. Thus, given a
training set S∼DN , we minimize the empirical risk

R̂SðϑÞ=
1
N

XN
i= 1

yi



∣ Cϑ ∣ψi

�
ψi



∣

� �� 	
∣yi

�
: ð6Þ

We consider three ways of altering the original data distribution D0

from where data is sampled, namely: (a) data wherein true labels are
replaced by random labels D1, (b) randomization of only a fraction
r∈ [0, 1] of the data, mixing real and corrupted labels in the same
distribution Dr , and (c) replacing the input quantum states with ran-
dom states Dst, instead of randomizing the labels. In each of these
randomization experiments, the generalization gap and the risk
functionals are defined according to the relevant distribution
D̂ 2 fD1,Dr ,Dstg. In all cases, the correlations between states and labels
are gradually lost, whichmeans we can control howmuch signal there
is to be learned. In experiments where data-label correlations have
vanished entirely, learning is impossible. One could expect the
impossibility of learning to manifest itself during the training process,
e.g., through lack of convergence. We observe that training the QCNN
model on random data results in almost perfect classification
performance on the training set. At face value, this means the QCNN
is able to memorize noise.

In the following experiments, we approximate the expected risk R
with an empirical risk R̂T using a large test setT. This test set is sampled
independently from the same distribution as the training set S. In
particular, the test set contains 1000 points for all the experi-
ments, T ∼D1000.

Additionally, we report our results using the probability of error,
which is further elucidated below. Consequently, we employ the term
error instead of risk. Henceforth, we refer to test accuracy and test
error as accurate proxies for the true accuracy and expected risk,
respectively. All our experiments follow a three-step process:
1. Create a training set S∼DN and a test set T ∼D1000.
2. Find a function f that approximately minimizes the empirical risk

of Eq. (6).
3. Compute the training error R̂Sðf Þ, test error R̂T ðf Þ, and the

empirical generalization gap genT ðf Þ= jR̂T ðf Þ � R̂Sðf Þj.

For ease of notation, we shall employ gen(f) instead of genT(f) while
discussing the generalization gap without reiterating its empirical
nature.

Random labels. We start our randomization tests by drawing data
from D1, wherein the true labels have been replaced by random labels
sampled uniformly from {(0, 0), (0, 1), (1, 0), (1, 1)}. In order to sample
from D1, a labeled pair can be obtained from the original data dis-
tribution ð∣ψ�,yÞ∼D0, afterwhich the label y canbe randomly replaced.
In this experiment, we have employedQCNNswith varying numbers of
qubits n∈ {8, 16, 32}. For each qubit number, we have generated
training sets with different sizes N∈ {5, 8, 10, 14, 20} for both random

Fig. 2 | Phase diagramof the generalized cluster Hamiltonian. The ground-state
phase diagram of the Hamiltonian of Eq. (3). It comprises the phases: (I) symmetry-
protected topological, (II) ferromagnetic, (III) anti-ferromagnetic, and (IV) trivial.
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and real labels. The models were trained individually for each (n,N)
combination.

In Fig. 3a, we illustrate the results obtained when fitting random
and real labels, as well as random states (discussed later). Each data
point in the figure represents the average generalization gap achieved
for a fixed training set size N for the different qubit numbers n. We
observe a large gap for the random labels, close to 0.75, which should
be seen as effectivelymaximal: perfect training accuracy and the same
test accuracy as random guessing would yield. This finding suggests
that the QCNN can be adjusted to fit the random labels in the training
set, despite the labels bearing no correlation to the input states. As the
training set sizes increase, since the capacity of the QCNN is fixed,
achieving a perfect classification accuracy for the entire training set
becomes increasingly challenging. Consequently, the generalization
gapdiminishes. It is worth noting that a decrease in training accuracy is
also observed for the true labeling of data54.

Corrupted labels. Next to the randomization of labels, we further
investigate the QCNN fitting behavior when data come with varying
levels of label corruption Dr , ranging from no labels being altered
(r = 0) to all of them being corrupted (r = 1). The experiments con-
sider different number of training points N∈ {4, 6, 8}, and a fixed
number of qubits n = 8. For each combination of (n,N), we start the
experiments with no randomized labels (r = 0). Then, we gradually
increase the ratio of randomized labels until all labels are altered,
that is, r∈ {0, 1/N, 2/N,…, 1}. Figure 3b shows the test error after
convergence. In all repetitions, this experiment reaches 100% train-
ing accuracy. We observe a steady increase in the test error as the
noise level intensifies. This suggests that QCNNs are capable of
extracting the remaining signal in the data while simultaneously fit-
ting the noise by brute force. As the label corruption approaches 1,

the test error converges to 75%, corresponding to the performance
of random guessing.

The inset in Fig. 3b focuses on the experiments conducted with
N = 6 training points. In particular, we examine the relationship
between the learning speed and the ratio of random labels. The plot
shows an average over five experiment repetitions. Remarkably, each
individual run exhibits a consistent pattern: the training error initially
remains high, but it converges quickly once the decrease starts. This
behavior was also reported for classical neural networks62. The precise
moment at which the training error begins to decrease seems to be
heavily dependent on the random initialization of the parameters.
However, it also relates to the signal-to-noise ratio r in the training
data. Notably, we observe a long and stable plateau for the inter-
mediate cases r = 1/3 and r = 2/3, roughly halfway between the starting
training error and zero. This plateau represents an average between
those runs where the rapid decrease has not yet started and those
where the convergence has already been achieved, leading to sig-
nificant variance. Interestingly, in the complete absence of correlation
between states and labels (r = 1), the QCNN, on average, perfectly fits
the training data even slightly faster than for the real labels (r = 0).

Random states. In this scenario, we introduce randomness to the
input ground state vectors rather than to the labels. Our goal is to
introduce a certain degree of randomization into the quantum states
while preserving some inherent structure in the problem. To achieve
this, we define the data distributionDst for the randomquantum states
in a specific manner instead of just drawing pure random states
uniformly.

To sample data from Dst, we first draw a pair from the original
distribution ð∣ψ�,yÞ∼D0, and then we apply the following transfor-
mation to the state vector ∣ψ

�
: We compute the mean μψ and variance

Fig. 3 | Randomization tests for quantum phase recognition. a Generalization
gap as a function of the training set size achieved by the quantum convolutional
neural network (QCNN) architecture. The QCNN is trained on real data, random
label data, and random state data. The horizontal dashed line is the largest gen-
eralization gap attainable, characterized by zero training error and test error equal
to random guessing (0.75 due to the task having four possible classes). The shaded
area corresponds to the standard deviation across different experiment repeti-
tions. For the real data and random labels, we employed 8, 16, and 32 qubits, while
for the random states, we employed 8, 10, and 12 qubits. We observe that both
random labels and random states exhibit a similar trend in the generalization gap,
with a slight discrepancy in height due to the different relative frequencies of the
four classes under the respective randomization protocols. In both cases, the test
accuracy fails to surpass that of random guessing. Notably, the largest general-
ization gap occurs in the random labels experimentswhenusing a training set of up
to sizeN = 10, highlighting the memorization capacity of this particular QCNN. The

training with uncorrupted data yields behavior in accordance with previous
results54. b Test error as a function of the ratio of label corruption after training the
QCNN on training sets of size N∈ 4, 6, 8 and n = 8. The plot illustrates the inter-
polation between uncorrupted data (r =0) and random labels (r = 1). As the label
corruption approaches 1, the test accuracy drops to levels of randomguessing. The
dependence between the test error and label corruption reveals the ability of the
QCNN to extract remaining signal despite the noise in the initial training set. The
inset focuses on the caseN = 6. It conveys the optimization speed for four different
levels of corruption, namely, 0, 2, 4, and 6 out of 6 labels being corrupted, and
provides insights into the average convergence time. The shaded area denotes the
variance over five experiment repetitions with independently initialized QCNN
parameters. Surprisingly, on average, fitting completely random noise takes less
time than fitting unperturbed data. This phenomenon emphasizes that QCNNs can
accurately memorize random data.

Article https://doi.org/10.1038/s41467-024-45882-z

Nature Communications |         (2024) 15:2277 5



σψ of its amplitudes and then sample new amplitudes randomly from a
Gaussian distribution N ðμψ,σψÞ. After the new amplitudes are
obtained, we normalize them. The random state experiments were
performed with varying numbers of qubits n∈ {8, 10, 12} and training
set sizes N∈ {5, 8, 10, 14, 20}.

In Fig. 3a, we show the results for fitting random input states,
together with the random and real label experiment outcomes. The
empirical generalization gaps achieved by theQCNN for random states
exhibit a similar shape to those obtained for random labels. Indeed, a
slight difference in the relative occurrences of each of the four classes
leads to improved performance by biased random guessing. We
observe that the QCNN can perfectly fit the training set for few data,
and then the generalization gap decreases, analogously to the scenario
with random labels.

The case of random states presents an intriguing aspect. The
QCNN architecture was initially designed to unveil and exploit local
correlations in input quantum states69. However, our randomization
protocol in this experiment removes precisely all local information,
leaving only global information from the original data, such as the
mean and the variance of the amplitudes. This was not the case in the
random labels experiment, where the input ground states remained
unaltered while only the labels weremodified. The ability of the QCNN
tomemorize randomdata seems to be unaffected despite its structure
to exploit local information.

Implications
Our findings indicate that novel approaches are required in studying
the capabilities of quantum neural networks. Here, we elucidate how
our experimental results fit the statistical learning theoretic frame-
work. The main goal of machine learning is to find the expected risk
minimizer fopt associated with a given learning task,

f opt := argmin
f2F

Rðf Þ : ð7Þ

However, given the unknown nature of the complete data distribution
D, the evaluation of R becomes infeasible. Consequently, we must
resort to its unbiased estimator, the empirical risk R̂S. We let an opti-
mization algorithm obtain f*, an approximate empirical risk minimizer

f *≈ argmin
f2F

R̂Sðf Þ : ð8Þ

Nonetheless, although R̂Sðf Þ is an unbiased estimator for R(f), it
remains uncertain whether the empirical risk minimizer f* will yield a
low expected risk R(f*). The generalization gap gen(f) then comes in as
the critical quantity of interest, quantifying the difference in perfor-
mance on the training set R̂Sðf Þ and the expected performance on the
entire domain R(f).

In the literature, extensive efforts have been invested in providing
robust guarantees on the magnitude of the generalization gap of QML
models through so-called generalization bounds45–52,54,58,59,65. These
theorems assert that under reasonable assumptions, the general-
ization gap of a given model can be upper bounded by a quantity that
can depend on various parameters. These include properties of the
function family, the optimization algorithm used, or the data dis-
tribution. The derivation of a generalization bound for a learning
model typically involves rigorousmathematical calculations and often
considers restricted scenarios. Many results in the literature fit the
following template:

Generic uniform generalization bound. Let F be a hypothesis class,
and letD be any data-generating distribution. Let R be a risk functional
associated toD, and R̂S its empirical version, for a given set ofN labeled
data: S∼DN . Let CðF Þ be a complexity measure of F . Then, for any

function f 2 F , the generalization gap gen(f) can be upper bounded,
with high probability, by

genðf Þ≤ gunif ðF Þ , ð9Þ

where usually gunif ðF Þ 2 O polyðCðF Þ,1=NÞ� 	
is given explicitly. We

make the dependence of gunif on N implicit for clarity. The high
probability is taken with respect to repeated sampling fromD of sets S
of size N.

We refer to these as uniform generalization bounds by virtue of
them being equal for all elements f in the class F . Also, these bounds
apply irrespective of the probability distribution D. There exists a
singular example that does not fit the template in ref. 57. In this par-
ticular case, the authors introduce a robustness-based complexity
measure, resulting in a bound that depends on both the data dis-
tribution and the learned hypothesis, albeit very indirectly. As a result,
it presents difficulties for quantitative predictions.

The usefulness of uniform generalization bounds lies in their
ability to provide performance guarantees for a model before under-
taking any computationally expensive training. Thus, it becomes of
interest to identify ranges of values for CðF Þ and N that result in a
diminishing or entirely vanishing generalization gap (such as the limit
N→∞). These bounds usually deal with asymptotic regimes. Thus it is
sometimes unclear how tight their statements are for practical
scenarios.

In cases where the risk functional is itself bounded, we can further
refine the bound. For example, if we take Re to be the probability of
error

Reðf Þ=Pðx,yÞ∼D f ðxÞ≠y½ � 2 ½0,1� , ð10Þ

we can immediately say that, for any f, there is a trivial upper bound on
the generalization gap gen(f)≤1. Thus, the generalization bound could
be rewritten as

genðf Þ≤ min 1,gunif ðF Þ
� �

: ð11Þ

This additional threshold renders the actual value of gunif ðF Þ of con-
siderable significance.

We now have the necessary tools to discuss the results of our
experiments properly. Randomizing the data simply involves changing
the data-generating distribution, e.g., from the original D0 to a ran-
domized D̂ 2 fD1,Dr ,Dstg. As wehave just remarked, the r.h.s. of Eq. (9)
does not change for different distributions, implying that the same
upper bound on the generalization gap applies to both data coming
from D0, or corrupted data from D̂. If data from D̂ is such that inputs
and labels are uncorrelated, then any hypothesis cannot be better than
randomguessing in expectation. This results in the expected risk value
being close to its maximum. For instance, in the case of the probability
of error and a classification taskwithM classes, if each input is assigned
a class uniformly at random, then it must hold for any hypothesis f,

Reðf Þ≈ 1� 1
M

, ð12Þ

indicating that the expected risk must always be large.
A large risk for a particular example does not generally imply a

large generalization gap gen(f)≉Re(f). For instance, if a learningmodel
is unable to fit a corrupted training set S, R̂

e
Sðf Þ≈Reðf Þ, then one would

have a small generalization gap gen(f) ≈0. Conversely, for the gen-
eralization gap of f to be large gen(f) ≈ 1 − 1/M, the learning algorithm
must find a function that can actually fit S, with R̂

e
Sðf Þ≈0. Yet, even in

this last scenario, the uniform generalization bound still applies.
Let us denote N0 the size of the largest training set S for which we

found a function fr able to fit the randomdata R̂
e
Sðf rÞ≈0 (which leads to
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a large generalization gap gen(fr) ≈ 1 − 1/M). Since the uniform gen-
eralization bound applies to all functions in the class f 2 F , we have
found

gunif ðF Þ≳ 1�
1
M

ð13Þ

as an empirical lower bound to the generalization bound. This reveals
that the generalization bound is vacuous for training sets of size up to
N0. Noteworthy is also that, further thanN0, there is a regimewhere the
generalization bound remains impractically large.

The strength of our results resides in the fact thatwe did not need
to specify a complexity measure CðF Þ. Our empirical findings apply to
every uniformgeneralizationbound, irrespective of its derivation. This
gives strong evidence for the need for a perspective shift to the study
of generalization in quantum machine learning.

Analytical results
In the previous section, we provided evidence that QNNs can accu-
rately fit random labels in near-term experimental set-ups. Our
empirical findings are restricted to the number of qubits and training
samples we tested. While these limitations seem restrictive, they are
actually the relevant regimes of interest, considering the empirical
evidence. In this section, we formally study the memorization cap-
ability of QMLmodels of arbitrary size, beyond the NISQ era, in terms
of finite sample expressivity. Our goal is to establish sufficient condi-
tions for demonstrating how QML models could fit arbitrary training
sets, and not to establish that it is always possible in a worst-case
scenario.

Finite sample expressivity refers to the ability of a function family
to memorize arbitrary data. In general, expressivity is the ability of a
hypothesis class to approximate functions in the entire domain X .
Conversely, finite sample expressivity studies the ability to approx-
imate functions on fixed-size subsets of X . Although finite sample
expressivity is a weaker notion of expressivity, it can be seen as a
stronger alternative to the pseudo-dimension of a hypothesis
family45,65.

The importance of finite sample expressivity lies in the fact that
machine learning tasks always deal with finite training sets. Suppose a
given model is found to be able to realize any possible labeling of an
available training set. Then, reasonably one would not expect the
model to learn meaningful insights from the training data. It is plau-
sible that some form of learning may still occur, albeit without a clear
understanding of the underlying mechanisms. However, under such
circumstances, uniform generalization bounds would inevitably
become trivial.

Theorem 1. (Finite sample expressivity of quantum circuits). Let
ρ1,…, ρN be unknown quantum states on n 2N qubits, with
N 2 OðpolyðnÞÞ, and let W be the Gram matrix

½W �i,j = trðρiρjÞ : ð14Þ

If W is well-conditioned, then, for any y1, . . . ,yN 2 R real numbers, we
can construct a quantum circuit of depth poly(n) as an observableMy

such that

trðρiMyÞ= yi : ð15Þ

The proof is given in Supplementary Note 1. Theorem 1 gives us a
constructive approach to, given a finite set of quantum states and real
labels, find a quantum circuit that produces each of the labels as the
expectation value for each of the input states. This should give an
intuition for why QMLmodels seem capable of learning random labels
and random quantum states. Nevertheless, as stated, the theorem falls

short in applying specifically to PQCs. The construction we propose
requires query access to the set of input states every time the circuit is
executed. We estimate the values trðρiρjÞ employing the SWAP test.
The circuit that realizes the SWAP test bears little relation to usualQML
ansätze. Ideally, if possible, one should impose a familiar PQC struc-
ture and drop the need to use the input states.

Next, we propose an alternative, more restricted version of the
same statement, keeping QML in mind as the desired application. For
it, we need a sense of distinguishability of quantum states.

Definition 1. (Distinguishability condition). We say n-qubit quantum
states ρ1,…, ρN fulfill the distinguishability condition if we can find
intermediate states ρi 7!ρ̂i based on some generic quantum state
approximation protocol such that they fulfill the following:
1. For each i∈ [N], ρ̂i is efficiently preparable with a PQC.
2. The matrix Ŵ can be efficiently constructed, with entries

Ŵ i,j = trðρiρ̂jÞ : ð16Þ

3. The matrix Ŵ is well-conditioned.

Notable examples of approximation protocols are those inspired
by classical shadows77 or tensor networks78. For instance, similarly to
classical shadows, one could draw unitaries from an approximate
poly(n)-design using a brickwork ansatz with poly(n)-many layers of
i.i.d. Haar random 2-local gates. For a given quantum state ρ, one
produces several pairs (U, b) where U is the randomly drawn unitary
and b is the bit-string outcome after performing a computational basis
measurement of UρU†, and one refers to each individual pair as a
snapshot. Notice that this approach does not follow exactly the tra-
ditional classical shadows protocol. Our end goal is to prepare the
approximation as a PQC, rather than utilizing it for classical simulation
purposes. In particular, we do not employ the inverse measurement
channel, since that would break complete positivity and thus the
corresponding approximation would not be a quantum state. For each
snapshot, one can efficiently prepare the corresponding quantum
stateUy∣b

�
b



∣U by undoing the unitary that was drawn after preparing
the corresponding computational basis state vector ∣b

�
. Given a col-

lection of snapshots {(U1, b1),…, (UM, bM)}, an approximation protocol
would consist of preparing the mixed state 1

M

PM
m= 1 U

y
m∣bm

�
bm



∣Um.

Since each bm is prepared with at most n Pauli-X gates and eachUm is a
brickwork PQC architecture, this approximation protocol fulfills the
restriction of efficient preparation from Definition 1. Whether or not
this or any other generic approximation protocol is accurate enough
for a specific choice of quantum states we discuss in Methods’ sub-
section “Analytical methods”. There, we present an algorithm in Box 1
together with its correctness statement as Theorem 3. Given the input
states ρ1,…, ρN Box 1 moreover allows to combine several quantum
state approximation protocols in order to produce a well-conditioned
matrix of inner products Ŵ .

Theorem 2. (Finite sample expressivity of PQCs) Let ρ1,…, ρN be
unknown quantum states on n 2N qubits, with N 2 OðpolyðnÞÞ, and
fulfilling the distinguishability condition of Definition 1. Then, we can
construct a PQC of poly(n) depth as a parameterized observable M̂ðϑÞ
such that, for any y= ðy1, . . . ,yNÞ 2 R real numbers, we can efficiently
find a specification of the parameters ϑy such that

trðρiM̂ðϑyÞÞ= yi : ð17Þ

The proof is given in Supplementary Note 2, which uses ideas
reminiscent to the formalism of linear combinations of unitary
operations79. With Theorem 2, we understand that PQCs can produce
any labeling of arbitrary sets of quantum states, provided they fulfill
our distinguishability condition.
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Notice that Definition 1 is needed for the correctness of Theorem
2. We require knowledge of an efficient classical description of the
quantum states for two main reasons. On the one hand, PQCs are the
object of our study. Hence, we need to prepare the approximation
efficiently as a PQC. In addition, on the other hand, the distinguish-
ability condition is also enough to prevent us from running into
computation-complexity bottle-necks, like those arising from the dis-
tributed inner product estimation results in ref. 80.

Discussion
We next discuss the implications of our results and suggest research
avenues to explore in the future. We have shown that quantum neural
networks (QNNs) can fit random data, including randomized labels or
quantum states. We provided a detailed explanation of how to place
our findings in a statistical learning theory context. We do not claim
that uniform generalization bounds are wrong or that any prior results
are false. Instead, we show that the statements of theorems that fit our
generic uniform template must be vacuous for the regimes where the
models are able to fit a large fraction of randomdata.We have brought
the randomization tests of ref. 62 to the quantum level. We have
selected one of the most promising QML architectures for our
experiments, known as the quantum convolutional neural network
(QCNN).We have considered the task of classifying quantumphases of
matter, which is a state-of-the-art application of QML.

Our numerical results suggest that we must reach further than
uniform generalization bounds to fully understand quantum machine
learning (QML) models. In particular, experiments like ours immedi-
ately problematize approaches based on complexity measures like the
VC dimension, the Rademacher complexity, and all their uniform
relatives. To the best of our knowledge, essentially all generalization
bounds derived for QML so far are of the uniform kind. Therefore, our
findings highlight the need for a perspective shift in generalization for
QML. In the future, it will be interesting to conduct causation experi-
ments on QNNs using non-uniform generalization measures. Promis-
ing candidates for good generalization measures in QML include the
time to convergence of the training procedure, the geometric sharp-
ness of the minimum the algorithm converged to, and the robustness
against noise in the data81.

The structure of the QCNN, with its equivariant and pooling lay-
ers, results in an ansatz with restricted expressivity. Its core features,
including intermediate measurements, parameter-sharing, and loga-
rithmic depth, make the QCNN a smaller model than other, deeper
PQCs, like a brickwork ansatz with completely unrestricted para-
meters. In the language of traditional statistical learning, this translates
to higher bias and lower variance. Consequently, for the same task, the
QCNN tends towards underfitting, posing a greater challenge in
achieving perfect fitting of the training set compared to a more
expressivemodel. As a result, theQCNN is anticipated to exhibit better
generalization behavior when compared to the usual hardware-
efficient ansätze82. The QCNN thus is assigned lower generalization
bounds than other larger models, due to the higher variance of the
latter. Therefore, our demonstration that uniform generalization
bounds applied to the QCNN family are trivially loose immediately
implies that the same bounds applied to less restricted models must
also be vacuous. Stated differently, our findings for a small model, the
QCNN, inherently apply to all larger models, including the hardware-
efficient ansatz. Furthermore, our study adds to the evidence sup-
porting the need for a proper understanding of symmetries and
equivariance in QML58,83–85.

In addition to our numerical experiments, we have analytically
shown that polynomially-sizedQNNs are able to fit arbitrary labeling of
data sets. This seems to contradict claims that few training data are
provably sufficient to guarantee good generalization in QML, raised
e.g. in ref. 54. Our analytical and numerical results do not preclude the
possibility of good generalization with few training data but rather

indicate we cannot guarantee it with arguments based on uniform
generalization bounds. The reasons why successful generalization
might occur have yet to be discovered.

We employ the rest of this section to comment on the significance
of our randomization experiments, and also describe the parallelisms
and differences between our work and the seminal ref. 62, which
served as the basis for our experimental design. In particular, two
primary factors warrant consideration: the size of the model, and the
size of the training set. In our learning task, quantumphase recognition
problem for systems of up to 32 qubits, we use training sets comprised
of up to 20 labeled pairs. In the following paragraphs we elucidate
whether these should be considered large or small; capable of over-
fitting or memorizing; and whether the results of our experiments are
due to finite sample size artifacts.

Upon first glance, the training set sizes employed in our ran-
domization experiments may seem relatively small. However, it is
essential to consider the randomization study within its relevant
context. As previously mentioned, good generalization performance
has been reported in QML, particularly for classifying quantum
phases of matter using a QCNN architecture54. At present, this com-
bination of model and task is also among the best leading approa-
ches concerning generalization within the QML literature. The key
fact is that our randomization tests use the same training set sizes as
the original experiments which reported good generalization per-
formance. The question whether the randomization results are
caused by the relative ease to find patterns that fit the given labels
from the small set of data is ruled out by the fact that these small set
sizes suffice to solve the original problem. If the QCNN were able to
fit the random data only because of finite sample size artifacts, we
would anticipate the expected risk and the generalization gap to be
considerably large even for the original data. Given our observation
of successful generalization for data sampled from the original dis-
tribution, we conclude that these training sets are not too small, but
rather large enough.

Both our study and ref. 62 have in common that the learning
models considered were regarded as among the best in terms of
generalization for state-of-the-art benchmark tasks. Also, the rando-
mization experiments in both cases employed datasets taken from
state-of-the-art experiments of the time. Yet, and in spite of the simi-
larities, it is imperative to recognize that the learning models
employed in these studies are fundamentally different. They not only
operate on distinct computing platforms of a physically different
nature, but also the functions produced by neural networks are typi-
cally different from those produced by parameterized quantum cir-
cuits. As a consequence, caution is warranted in expecting these two
different learning models to behave equally when faced with rando-
mization experiments based on unrelated learning tasks. The fact that
the quantum and classical learning models display similar results
should not be taken for granted.

A key distinction lies in the notion of overparameterization, which
plays a critical role in classical machine learning. It is important to
distinguish thenotionof overparameterization in classicalML fromthe
recently introduced definition of overparameterization in QML42,
which under the same name, deals with different concepts. The deep
networks studied in ref. 62 have far more parameters than both the
dimensionof the input image and the training set size. This brings us to
refer to these as large models. Conversely, we argue that the QCNN
qualifies as a small model. Although the number of parameters in the
considered architectures is larger than the size of the training sets,
they exhibit a logarithmic scaling with the number of qubits. Mean-
while, the number of dimensions of the quantum states scales expo-
nentially. Hence, it is inappropriate to categorize the models we have
investigated as large in the same way as the classical models in ref. 62.
We find the ability of small quantum learning models to fit random
data as unexpected, as witnessed by the many works on uniform
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generalization bounds for quantum models published during the
aftermath of ref. 62. This observation reveals a promising research
direction: not only must we rethink our approach to studying gen-
eralization in QML, but we must also recognize that the mechanisms
leading to successful generalization in QML may differ entirely from
those in classical machine learning. On a higher level, this work
exemplifies the necessity of establishing connections between the lit-
erature on classical machine learning and the evolving field of quan-
tum machine learning.

Methods
Numerical methods
This section provides a comprehensive description of our numerical
experiments, including the computation techniques employed for the
random and real label implementations, as well as the random state
and partially corrupted label implementations.

Random and real label implementations. The test and training
ground state vectors ∣ψi

�
of the cluster Hamiltonian in Eq. (3) have

been obtained as variational principles over matrix product states in a
reading of the density matrix renormalization group ansatz86 through
the software package Quimb87. We have utilized the matrix product
state backend from TensorCircuit88 to simulate the quantum cir-
cuits. In particular, a bond dimension of χ = 40 was employed for the
simulations of 16- and 32-qubit QCNNs. We find that further increasing
the bond dimension does not lead to any noticeable changes in our
results.

Random state and partially-corrupted label implementations. In
this scenario, the test and training ground state vectors ∣ψi

�
were

obtained directly diagonalizing the Hamiltonian. Note that our QCNN
comprised a smaller number of qubits for these examples, namely,
n∈ {8, 10, 12}. The simulation of quantumcircuitswasperformedusing
Qibo89, a software framework that allows faster simulation of quantum
circuits.

For all implementations, the training parameters were initialized
randomly. The optimization method employed to update the para-
meters of the QCNN during training is the CMA-ES90, a stochastic,
derivative-free optimization strategy. The code generated under the
current study is also available in ref. 91.

Analytical methods
Here, we shed light on the practicalities of Definition 1, a requirement
for our central Theorem 2. The algorithm in Box 1 allows for several
approximation protocols to be combined to increase the chances of
fulfilling the assumptions of Definition 1. Indeed, we can allow for the
auxiliary states ρ̂1, . . . ,ρ̂N to be linear combinations of several
approximation stateswhile staying in themindset ofDefinition 1. Then,
we can cast the problem of finding an optimal weighting for the linear
combination as a linear optimization problem with a positive semi-
definite constraint.

With Theorem 3, we can assess the distinguishability condition of
Definition 1 for specific states ρ1,…, ρN and specific approximation
protocols. Theorem 3 also considers the case where different
approximation protocols are combined, whichdoes not contradict the
requirements of Theorem 2.

Theorem 3. (Conditioning as a convex program 1). Let ρ1,…, ρN be
unknown, linearly-independent quantum states on n qubits, with
N 2 OðpolyðnÞÞ. For any i∈ [N], let σi = ðσi

1, . . . ,σ
i
mÞ be approximations

of ρi, each of which can be efficiently prepared using a PQC. Assume
the computation of trðρiσ

j
kÞ in polynomial time for any choiceof i, j and

k. Call σ = (σ1,…, σN). The real numbers α = αi,k

� 	
i2½N�,k2½m� 2 RNm define

the auxiliary states ρ̂1, . . . ,ρ̂N as

ρ̂iðα;σiÞ=
Xm
k = 1

αi,kσ
k
i , ð18Þ

and the matrix of inner products Ŵ ðα; σÞ with entries

Ŵ ðα; σÞi,j
h i

i,j2½N�
:= tr ρiρ̂jðα;σjÞ

� �
ð19Þ

=
Xm
k = 1

αj,ktr ρiσ
j
k

� �
: ð20Þ

Then, k Ŵ ðα;σÞ k ≤N. Further, one can then decide inpolynomial time
whether, given ρ1,…, ρN, σ, and κ 2 R, there exists a specification of
α 2 RNm such that Ŵ ðα;σÞ is well-conditioned in the sense that
k Ŵ ðα; σÞ�1k�1 ≥ κ. And, if there exists such a specification, a convex
semi-definite problem (SDP) outputs an instance of α←SDP(ρ, σ, κ)
for which Ŵ is well-conditioned. If it exists, one can also find in
polynomial time the α with the smallest k �kl1 or k �kl2 norm.

Proof. The inequality k Ŵ ðα;σÞ k ≤N follows from Gershgorin’s circle
theorem92, given that all entries of Ŵ are bounded between [0, 1]. In
particular, the largest singular value of the matrix Ŵ reaches the value
N when all entries are 1.

The expression

Ŵ i,j =
Xm
k = 1

αj,ktr ρiσ
j
k

� �
: ð21Þ

is a linear constraint on α and Ŵ , for i, j∈ [N], while

κI≤ Ŵ ≤NI ð22Þ

BOX 1

Convex optimization state
approximation

Require:
1: ρ = (ρ1,…, ρN) ⊳ Quantum states
2: A = (A1,…,Am) ⊳ State approximation algorithms
3: κ ⊳ Condition number

Ensure: α such that Ŵ is well-conditioned if possible, 0
otherwise.
4:
5: for i∈ [N], k∈ [m] do
6: σi

k  AkðρiÞ
7: end for
8:

9: σ ðσi
kÞi2½N�,k2½m�

10:
11: α SDP(ρ,σ, κ) ⊳ From proof of Theorem 3
12:
13: if SDP fails then
14: return 0 ⊳ No suitable α found
15:
16: else

17: return α ⊳ Ŵ well-conditioned
18: end if
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in matrix ordering is a positive semi-definite constraint. Ŵ ≤NI is
equivalent with k Ŵ k ≤N, while κI≤ Ŵ means that the smallest
singular value of Ŵ is lower bounded by κ, being equivalent with

k Ŵ ðα; σÞ�1k�1 ≤ κ , ð23Þ

for an invertible Ŵ ðα;σÞ. The testwhether sucha Ŵ iswell-conditioned
hence takes the form of a semi-definite feasibility problem93. One can
additionally minimize the objective functions

α 7! k αkl1 ð24Þ

and

α 7! k αkl2 , ð25Þ

both again as linear or convex quadratic and hence semi-definite
problems. Overall, the problem can be solved as a semi-definite
problem, that can be solved in a run-time with low-order polynomial
effort with interior point methods. Duality theory readily provides a
rigorous certificate for the solution93.

In the proof, we refrain from explicitly specifying the definition of σ
in relation to the original states ρ1,…,ρN. Indeed, the success criterion is
that the resultingmatrix Ŵ is well-conditioned. As a sufficient condition,
we could have required both that the GrammatrixWi,j = trðρiρjÞ is well-
conditioned, and that for each i∈ [N] there is at least one k∈ [m] such
that σk

i is close to ρi for some distance metric. Under this condition, we
would expect Ŵ to be well-conditioned. Nonetheless, this condition is
not necessary. In general, it is plausible that each of the states ρ̂i con-
structed from σ are not close to each of the original states ρi, resulting in
Ŵ not being close to W, while Ŵ still being well-conditioned. In this
situation, the construction from Theorem 2 still holds.

We propose using Box 1 to construct the optimal auxiliary states
ρ̂1, . . . ,ρ̂N , given the unknown input states ρ1,…, ρN and a collection of
available approximation protocols A1,…,Am. The algorithm produces
an output of either 0 in cases where no combination of the approx-
imation states satisfies the distinguishability condition, or it provides
the weights α necessary to construct the auxiliary states as a sum of
approximation states. In Theorem 3, we prove the correctness of the
algorithm.

The construction of σ from the input states ρ1,…, ρN plays an
intuitive role in the success of Box 1. Let us consider two scenarios.
First, we assume the Gram matrix of the initial states W is well-condi-
tioned, and that for each i∈ [N] there is at least one k∈ [m] such that
ρi = σ

k
i . In this instance, there exists at least one specification of real

values α for which Ŵ is well-conditioned. It suffices to set αj,k = δj,k, the
latter denoting theKronecker delta. This guarantees that the algorithm
in Box 1 outputs a satisfactory α (potentially of minimal norm) in
polynomial time. Conversely, we now consider a scenario where the
approximation protocols employed to construct σ all yield failures,
resulting in σk

i = ∣0i 0h ∣ for all i∈ [N] and k∈ [m]. In this case, there is no
choice of α for which Ŵ is well conditioned and Box 1 necessarily
outputs 0, also within polynomial time.

We refer to the proof of Theorem 2, in Supplementary Note 2, for
an explanation of how to construct the intermediate states ρ̂i as a
linear combination of auxiliary states σi without giving up the PQC
framework.

Data availability
The data used in this study are available in the Zenodo database in
ref. 91.

Code availability
The code used in this study is available in the Zenodo database in
ref. 91.
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