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Accurate global and local 3D alignment of
cryo-EM density maps using local spatial
structural features

Bintao He 1,5, Fa Zhang2,5, Chenjie Feng3, Jianyi Yang 1, Xin Gao 4 &
Renmin Han 1

Advances in cryo-electron microscopy (cryo-EM) imaging technologies have
led to a rapidly increasing number of cryo-EM density maps. Alignment and
comparison of density maps play a crucial role in interpreting structural
information, such as conformational heterogeneity analysis using global
alignment and atomic model assembly through local alignment. Here, we
present a fast and accurate global and local cryo-EM density map alignment
method called CryoAlign, that leverages local density feature descriptors to
capture spatial structure similarities. CryoAlign is a feature-based cryo-EM
map alignment tool, in which the employment of feature-based architecture
enables the rapid establishment of point pair correspondences and robust
estimation of alignment parameters. Extensive experimental evaluations
demonstrate the superiority of CryoAlign over the existing methods in terms
of both alignment accuracy and speed.

Density maps obtained through cryo-electron microscopy (cryo-EM)
provide key information for protein structure determination and
function analysis1,2. The Electron Microscopy Data Bank3, a public
database, has accumulated more than thirty thousand entries as of
October 2023, with a fourfold increase since 2018. Moreover, with the
advancement of cryo-EM technology,most of the recently solved cryo-
EM structures have high resolution, ranging from 2Å to 10Å. Many
important works4–6 explore the continuous conformation changes to
reconstruct a series of high-resolutionmaps, sufficiently enriching and
characterizing the landscape of molecular states. All these factors
indicate the coming of a high-resolution and big-data cryo-EM era. To
extract and interpret the underlying structural information from cryo-
EMdensitymaps, there is a strong demand for accurate alignment and
comparison of cryo-EM maps, especially for entries with high resolu-
tion. For example, comparison of superimposed densitymaps helps to
identify variable areas associated with heterogeneity and to integrate
3D classification to establish conformational landscapes7–13. In protein

macromolecular complex modeling, accurate local alignment effec-
tively accelerates the chain assembly process14–17, as the density of a
subunit structure is simulated to find the best matching regions in
experimental maps18–21. Additionally, similarity scores derived from
alignment can serve as feasible metrics for cryo-EM map retrieval
problems22,23. However, density maps with high and medium resolu-
tions contain a substantial amount of rich and clear structural infor-
mation, placing high requirements on alignment accuracy and
efficiency.

Several works have been developed to address the cryo-EM map
alignment problem. gmfit24,25 represents cryo-EM density maps with
Gaussian mixture models (GMM) and utilizes maximization of the
correlation between Gaussian functions to optimize the global trans-
formation parameters. The balancebetween speed and approximation
accuracy of GMM is determined by the number of Gaussian kernels
used. gmfit utilizes a combination of Gaussian functions far less than
the total number of raw atoms to represent a map, providing fast and
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robust, but less accurate alignment results, whichmakes gmfit suitable
for low-resolution maps. Chimera, a widely used software for mole-
cular manipulation and visualization, offers a map fitting method
known as fitmap26. fitmap directly performs local optimization to
maximize the correlation between voxels, starting from multiple ran-
domly generated initial placements of the source map. However, due
to the significant influence of the initial location of the maps, fitmap
typically requires users’ intervention or the use of preset locations to
achieve satisfactory results. Recently, a vector-based cryo-EM density
map alignment method called VESPER27 was proposed for better
alignment and retrieval performance. VESPER utilizes a collection of
vectors that are specifically oriented toward the local density max-
imum to capture the intricate 3D structures embedded in the maps28.
Using the sum of dot products between matched vectors from two
maps, VESPER finds the best alignment parameters via exhaustive
search of both rotational and translational intervals. Compared to
gmfit and fitmap, the point distribution retains abundant information
about spatial structures and the orientations of vectors explicitly
depict local density trends. However, the parameter optimization of
VESPER is based on an exhaustive search on spatial rotation and
translation with a given search interval, which leads to inflexible and
insufficient optimization and considerable execution time.

Here, we propose a global and local cryo-EM density map align-
ment method, CryoAlign, to achieve fast, accurate and robust com-
parison of two cryo-EM density maps by utilizing local spatial feature
descriptors. In CryoAlign, the density map is sampled to generate a
point cloud representation, and a clustering process is applied to the
point cloud to extract key points based on local properties such as the
density value distribution and the connectivity of points. Once the key
points are identified, CryoAlign calculates local feature descriptors by
collecting the distribution of density directions in their vicinity. These
feature descriptors capture rich information about the local structural
characteristics of the density map, significantly reducing the number
of points to be considered, and leading to a more efficient alignment
process. Meanwhile, the local feature descriptors computed based on
the statistical distributions provide a comprehensive representation of
the local structural variations. Using these feature descriptors,
CryoAlign employs a mutual feature-matching strategy to establish
correspondences between keypoints in different density maps,
enabling stable alignment parameter estimation. To further refine the
alignment, CryoAlign applies a point-based iterativemethod, aiming to
bring overlapping point pairs closer together. To assess the perfor-
mance of CryoAlign, comprehensive evaluations were conducted on
diverse test sets, which demonstrate its high alignment accuracy for
both global and local cryo-EMmap alignment. In comparison to other
alignment methods such as gmfit, fitmap, and VESPER, CryoAlign
stands out byprovidingmore precise superimposition ofdensitymaps
while maintaining a lower failure ratio.

Results
Overview of the CryoAlign procedure
Figure 1a illustrates the workflow of CryoAlign. When provided with a
density map, CryoAlign applies uniform sampling to generate a set of
initial grid points, which act as the starting positions for the sub-
sequent alignment process. At each sampled grid point, a corre-
sponding density vector is assigned to reflect the trend of changes in
density within its vicinity. These density vectors are derived from
VESPER, which demonstrates their effectiveness as a representation of
the local density variations around the grid points. However, the
excessive number of initial grid points and the limited representation
range of density vectors make them unsuitable for direct alignment.
CryoAlign uses a mean shift algorithm29 to identify local dense points
and applies a density-based spatial clustering method30 to find cluster
centers as the key points of point clouds (see the “Methods” section).
The key points extracted by CryoAlign are chosen to consider both the

distribution of density values and the connectivity of points, providing
a rough representation of the protein backbones. Next, local spatial
structural feature descriptors are calculated on the extracted key
points by block-wise analyzing the distribution of density vectors
within their vicinity. Compared to vectors, local feature descriptors
capture structural information from multiple neighboring points
instead of just a single grid point. This approach provides a more
distinctive and comprehensive description of the local region, effec-
tively improving the accuracy of the alignment results. Finally,
CryoAlign implements a two-stage alignment approach to achieve
accurate superimposition from coarse to fine. In the first stage,
CryoAlign utilizes a mutual feature-matching strategy in the feature
domain to establish correspondences between key points and effi-
ciently estimate initial poses. This stage enables fast and stable align-
ment, laying the foundation for subsequent refinement. In the second
stage, CryoAlign focuses on achieving the best possible super-
imposition. It considers the point-to-point correspondences between
the initial grid points in the spatial domain and employs an iterative
process to bring these points closer together. By iteratively adjusting
the positions of overlapping points, CryoAlign continues to improve
the alignment and strives for optimal alignment accuracy.

For a more illustrative explanation, a visual example of local
alignment is provided on the right side in Fig. 1a. The two input cryo-
EM maps represent the structures of RNA polymerase-sigma54
holoenzyme with promoter DNA closed complex. Notably, there is an
additional transcription activator PspF intermediate present in the left
map (EMD-3696, PDB ID:5nss), while it is absent in the right one (EMD-
3695, PDB ID:5nsr). The top rowof the visual exampledisplays the grid-
sampling point clouds of twomaps, represented by dark points, along
with their corresponding density vectors. The second row showcases
the extracted key points, represented by colored points, and presents
an example of a spatial structural feature histogrampair. These feature
histogram pairs are used for alignment by filtering and selecting the
most relevant and informative feature pairs. Following the direction of
the hollow arrows, the two point clouds are aligned based on the
filtered feature pairs. The coarse alignment stage provides an initial
alignment that is approximately correct, although imperfect, with a
high degree of overlap between the structures. Subsequently, the
point-based stage is employed to refine the alignment and achieve the
best possible superimposition by minimizing the distances between
corresponding point pairs. Furthermore, for better visual evaluation,
the corresponding PDB atom structures transformed by the alignment
parameters are also attached in the example.

Datasets of density maps and metrics
Datasets. To evaluate the performance of global and local alignment,
we utilized the cryo-EM maps from the datasets provided by VESPER,
which are specifically designed for global and local density map search.
We began by filtering maps without fitted PDB atom models31 and
focused on collecting maps with a resolution higher than 10Å. As a
result of the filtering process, we obtained two datasets for evaluation:
the global alignment dataset, which consists of 64 pairs of cryo-EM
maps, and the local alignment dataset, which contains 201map pairs. In
Table 1, we present the statistical information for these map pairs. The
first column, labeled “Res. range”, indicates the resolution range of the
inputmaps. The column labeled “Cross res.” indicateswhether the input
pairs are from different resolution ranges. Using these two datasets, we
assessed the performance of our alignment method indirectly by ana-
lyzing the fitted PDB models, both quantitatively and qualitatively.
Furthermore, to evaluate the algorithm’s performance in atomic model
fitting, we also utilized intermediate-resolution protein complexes
datasets provided by He14. We selected eight protein complexes of
4.0–8.0Å, and each has 2–5 single chains. By leveraging these diverse
datasets, we are able to comprehensively evaluate the alignment per-
formance of our method across different scenarios and applications.
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Alignment metric. To quantitatively evaluate the alignment perfor-
mance, the ground truth for the superimposition is defined by com-
puting the transformation parameters usingMM-align32 on fitted atom
models. We then calculated the root mean square distance (RMSD)
between the ground truth and the alignment results obtained by dif-
ferentmethods. Notably, we considered an alignment as a failure if the
RMSD exceeds 15 Å. This threshold helps to identify cases where the
alignment deviates significantly from theground truth. Additionally, to
provide a more intuitive visualization, the fitted PDB structures were
transformed using the alignment parameters, enabling a direct com-
parison of the aligned structures.

Global alignment accuracy
First, we thoroughly assessed the alignment performance of CryoAlign
in thepre-collecteddataset.We initially sampled the densitymapswith
an interval of 5 Å, which provides sufficient spatial distribution infor-
mation for global alignment. Figure 2a shows the mean number of
initial sampling points and extracted key points as the size of inputted
density maps increases. After key point extraction, the point clouds
typically decrease in size to around 10–20% of the initial points, mak-
ing subsequent calculations more efficient. Furthermore, the dis-
tribution of key points roughly follows the structures of protein
backbones, leading to more stable and accurate feature
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Fig. 1 | Overview of CryoAlign. a Flowchart of CryoAlign. A visual example of RNA
polymerase-sigma54 holoenzyme and promoter DNA closed complex with (EMD-
3696, PDB ID:5nss, left) and without (EMD-3695, PDB ID:5nsr, right) transcription
activatorPspF intermediate is providedon the right. The input ofCryoAlign is a pair
of cryo-EM density maps. First, initial point clouds are sampled by a given interval
and density vectors are computed for all points. Then, clustering algorithms are
applied to extract key points that represent the rough backbones of the structures.
Local spatial structural feature descriptors are calculated to capture the local
structures around these key points. Using the extracted feature descriptors and the
mutual feature matching technique, CryoAlign robustly and efficiently computes

the initial pose parameters. Finally, CryoAlign generates the best superimposition
by iteratively shifting the corresponding points closer together. The alignment
parameters are then applied to the fitted atom models, directly illustrating the
alignment performance.bTheproportionof correct correspondences. In the visual
example, the lines between points represent the estimated correspondences, with
correct correspondences labeled in red and false ones labeled ingreen. From top to
bottom, four cases with only initial points, with only extracted key points, with a
combination of initial points and mutual matching, and with a combination of key
points and mutual matching are listed.
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correspondence establishment. Figure 2b presents a comparison of
the feature correspondence accuracy under different scenarios,
including different point cloud representations and the utilization of
mutual feature matching. The orange and red curves are consistently
positioned to the right of the other two curves, indicating that the
utilization of key points can mitigate feature mismatches caused by
excessive sampling. Additionally, themutual featurematching strategy
considers point pairs that are closest to each other in the feature
domain, further enhancing the accuracy of correspondence estima-
tion. The red curve, which represents the combination of key points

andmutual strategy in Fig. 2b, demonstrates that the correctmatching
ratio generally falls within the 20–50% range, which is acceptable for
robust initial pose estimation.

CryoAlign adopts a two-stage alignment architecture to achieve
precise pose estimation. The aforementioned key points based feature
matching is utilized in the first stage, and provides a robust but rela-
tively coarse pose. This stage serves as a foundation for the alignment
process. In the second stage, CryoAlign shifts its focus to the initial
sampling points after transformation, aiming to bring the two points
sufficiently close. By combining these two stages, CryoAlign generates
a more accurate superimposition of the density maps. Figure 2c col-
lects the RMSD distributions of one-stage alignment and two-stage
alignment. Almost all data points are located along or above the
dashed line, illustrating that the second stage refinement consistently
improves the alignment accuracy. Meanwhile, the larger bubbles are
mostly concentrated in the range ≤3 Å, showing the key role of point-
based correspondences in the spatial domain in high precision align-
ment. Moreover, thanks to the initial pose estimation provided by the
first stage, the second stage of point-based alignment requires less
time to converge. Figure 2dpresents the distribution of execution time
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Fig. 2 | Global alignment performance of CryoAlign. aThe number of points with
the increasing density map size. Initial points (blue box) and key points (orange
box). Formap size groups “<=50MB”, “50–100MB”, “100–200MB”, “200–300MB”
and “>300MB”, the sample sizes N = 27, 17, 54, 80 and 15. The center, lower and
upper lines in each box indicate themedian, the first quartile and the third quartile,
respectively. The number inside each box refers to the mean value. The whiskers
show the 2.5% and 97.5% quantiles. b The correct ratio distribution of four different

feature matching strategies. Only initial points (blue line), only key points (orange
line), initial points +mutual matching (green line) and key points +mutual match-
ing (red line). c Comparison of accuracy between one-stage alignment and two-
stage alignment. Each data point’s size corresponds to the count of combinations
within specific RMSD ranges. d The execution time distributions of one-stage
alignment and two-stage alignment.

Table 1 | Resolution statistical distribution of datasets

Res. range Global alignment Local alignment

<5 Å 35 122

5–10 Å 16 14

Cross res. 13 65

Res. range, resolution range. The “Cross res.” means that the input pairs are from different
resolution ranges. The number of density maps is counted based on the resolution range.
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for the alignment processes, revealing that the duration of the second
stage is acceptable considering the improvement in accuracy.

Figure 3a presents the RMSD distributions of CryoAlign and other
comparative methods VESPER, gmfit and fitmap in global alignment
datasets. For VESPER, the sampling and initial rotation intervals were
set to 5 Å and 10°, respectively. gmfit was run with 20 Gaussians and
parameter -maxsize 64, which are the settings in the Omokage map

web server. For fitmap, we took 20 random poses as the initial place-
ments. The pie charts provide an overview of the alignment results for
different methods, with the dark sections representing the failure
proportion (RMSD larger than 10Å) and the shallow sections repre-
senting acceptable results. The results from fitmap exhibit a highly
polarized distribution, with a majority of cases falling into the >10.0 Å
and <2.0 Å ranges. This indicates strong dependence on the quality of
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the initial poses provided. gmfit shows a relatively average distribu-
tion, but it has the smallest section in the <1.0 Å range, suggesting
lower accuracy due to its blurred Gaussian representation. Compared
to gmfit and fitmap, VESPER exhibits a significant improvement in the
success rate, reducing the failure proportion to 28%. However, its grid-
sampling interval (5 Å) leads to RMSD values primarily falling within
the 3.0–10.0Å range. In contrast, CryoAlign achieves the lowest failure
ratio and highest accuracy, with the majority of RMSD values con-
centrated below 3.0 Å. The violin plot in Fig. 3b displays the fitted
distributions of RMSDvalues in successful alignment for the compared
methods. The blue segments reflect the RMSD values of input maps,
both having resolution higher than 5 Å. The brown segments represent
the remaining scenarios. Notably, all methods exhibit lower RMSD
values in blue areas than in brown areas, consistent with the expecta-
tion that higher-resolution maps yield more reliable density values.
However, compared to fitmap, both VESPER and gmfit tend to gen-
erate more results with RMSD values in the range above 6Å in blue
areas. This suggests their limited ability to exploit the advantage
offered by high resolution, primarily due to their neglect of local
structural characteristics. gmfit, for example, relies on merely 20
Gaussians to fit the overall shape of density maps, ignoring detailed
local structures. Despite the utilization of density vectors in VESPER,
the summation operation significantly dilutes the influence of small
structures. In contrast, CryoAlign aims to capture detailed structural
information using local spatial feature descriptors. Higher-resolution
maps bring clearer structures, making the corresponding feature
description more distinctive. As shown in Fig. 3b, the blue area of
CryoAlign is primarily below 3Å, showing the powerful ability to cap-
ture detailed structural information.

Table 2 summarizes the average RMSD for different resolution
ranges and execution times of CryoAlign and the compared methods.
Thefirst columnof the table represents the resolution range of the two
input density maps, and “Cross resolution” indicates that the maps
have different resolution ranges. Notably, we define an RMSD larger
than 10Å as an alignment failure. Among the methods evaluated, fit-
maphas the lowest average RMSD in the first two rows, but it also has a
failure rate of ~50%. This is because fitmap relies heavily on the given

initial poses,whichare basedon thedomain knowledgeof researchers.
Without accurate initial poses, fitmap tends to produce poor align-
ment results. VESPER effectively reduces the failure ratio by exploring
a large number of candidate alignment parameters. However, the 5 Å
grid sampling significantly constrains the upper limits of its alignment
accuracy. CryoAlign achieves the second-lowest average RMSD after
fitmap, demonstrating the ability of feature descriptors to overcome
the limitations derived from sampling intervals. The clustering process
detects the key backbone positions as anchor points, forming the solid
foundation for sub-voxel accuracy estimation. The subsequent para-
meter estimation based on correct point correspondences ensures the
implementation of this precision. Regarding the failure ratio, the
improvement of CryoAlign over VESPER is mainly attributed to its
utilization of density vectors. VESPER collects vectors located on the
same grid points to measure similarity, eliminating the influences of
non-overlapping regions. Combined with a rough rotation estimation,
this process makes VESPER easily neglect the small structures, which
could be the key to distinguishing the difference between similar
chains. In contrast, CryoAlign utilizes information from nearly all
points by collecting neighboring points in local spatial feature con-
struction. Furthermore, establishing correspondences in the feature
domain forces CryoAlign to focus on the points with unique or dis-
tinguished descriptions. These key structures help the algorithm
locate the correct superimposition. We also collected execution time
information for the point generation process and the alignment stage
of the four methods. gmfit models the density maps via combinations
of multiple Gaussian kernels, which provide a rough representation of
the 3D shape. Due to a relatively small number of weights and para-
meters used, it executes the fastest but with lower accuracy. The
execution time of fitmap depends mainly on the number of initial
poses, and in our experiments, using 20 initial poses strikes a balance
between accuracy and efficiency. Compared to other methods,
CryoAlign takes considerable time in point extraction due to the
additional key point descriptor computation. However, in the align-
ment stage, CryoAlign executes much faster. This is mainly because
CryoAlign directly estimates the transformation parameters based on
point correspondences, while VESPER needs to scan the entire trans-
lation/rotation spaces. In summary, CryoAlign outperforms the com-
pared methods in terms of both accuracy and efficiency in global
alignment, with comprehensive consideration of both accuracy and
efficiency.

Examples of global alignment
For a direct and fair comparison, we collected test examples of dif-
ferent resolutions in VESPER (Table 2 in its manuscript). Table 3 sum-
marizes the RMSD of the best superimposition achieved by CryoAlign
compared to VESPER, gmfit, and fitmap. The parameter combination
used for VESPER was set to (1 Å, 10°), and the performances of gmfit
and fitmap were directly taken from the recommendations from their
paper. In cases where the input maps have the same resolution range
(either <5 Å or 5–10Å), CryoAlign achieves results that are closest to
the ground truth superimposition. Even when the given maps have
different resolutions, CryoAlign still provides acceptable pose esti-
mation. This comparison demonstrates the effectiveness of CryoAlign
in achieving accurate and reliable alignment results, especially when

Fig. 3 | Global alignment performance of compared methods. a The RMSD
distribution of the compared methods CryoAlign, VESPER, gmfit and fitmap. The
sectors colored dark are the failure proportion (RMSD larger than 10Å) of the
methods, with CryoAlign/VESPER/gmfit/fitmap being 12%/28%/40%/58%, respec-
tively. Meanwhile, RMSD smaller than 3 Å can be considered as high-quality align-
ment, with CryoAlign/VESPER/gmfit/fitmap being 69%/36%/30%/35%, respectively.
b The violin plot illustrates the RMSD values in successful alignment for each
method, split by map resolution. Each line represents a data point. Notably, the
regions below zero hold no meanings, which are merely the result of distribution

estimation. c The left example is the density map pair for the same state of Yeast
V-ATPase (EMD-6286, PDB ID:3j9v and EMD-6284, PDB ID:3j9t). There is little dif-
ference between the twomaps. The alignment accuracy is evaluated by FSC curves
on the right. The RMSD of CryoAlign/VESPER/gmfit/fitmap is 2.30/4.47/4.46/
66.12 Å, respectively.dThe right example is thedensitymappair for different states
of Cyclic Nucleotide-Gated Ion Channel (EMD-8632, PDB ID:5v4s and EMD-8511, PDB
ID:5u6o). Accurate rotation estimation is needed here. The RMSD of CryoAlign/
VESPER/gmfit/fitmap is 4.75/8.85/63.56/54.12 Å, respectively.

Table 2 | Alignment evaluation in global dataset

Res. range CryoAlign(Å)/
failure

VESPER(Å)/
failure

gmfit(Å)/
failure

fitmap(Å)/
failure

<5 Å 1.69/18.4% 2.853/25.71% 3.01/37.14% 0.78/48.57%

5.0–10.0 Å 2.88/6.25% 5.09/25% 7.59/25% 0.82/50%

Cross res. 2.23/0% 4.53/23.08% 3.58/46.15% 3.9/61.54%

Time CryoAlign(s) VESPER(s) gmfit(s) fitmap(s)

Extract
points

18.9 3.1 5.35 -

Alignment 0.94 202.5 0.213 60.12

Total time 19.84 205.6 5.56 60.12

Thereare twometricscalculated in thealignment evaluation, averageRMSDand failure ratio. For
RMSD, the smaller valuemeans better alignment accuracy; for the failure ratio, the smaller value
indicates higher stability. In the tables of thismanuscript, for better presentation, the best results
are marked in bold and the second best ones are underlined.
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dealing with maps of the same resolution range. Meanwhile, it show-
cases the robustness ofCryoAlign inhandling different resolutions and
its ability to estimate accurate poses even in challenging scenarios.

Furthermore, Fig. 3c, d shows two classic examples of global
alignment. The first involves a density map pair representing the same
state of Yeast V-ATPase (EMD-6286, PDB ID:3j9v and EMD-6284, PDB
ID:3j9t). These maps are nearly identical, with only minor differences
caused by molecular dynamics or imaging variations. In this case, the
accuracy of translation parameter estimation plays a crucial role in
alignment accuracy. Both CryoAlign and VESPER show excellent visual
performances in terms of superimposition. However, the difference in
RMSD is reflected mainly in the Fourier Shell Correlation (FSC) curve.
The FSC figure below the example illustrates that the blue curve,
representing CryoAlign, is consistently positioned to the right of the
red curve, indicating more accurate alignment parameters. This is
because the grid sampling interval (5 Å) limits the upper bound of
translation estimation in VESPER, while CryoAlign gets rid of it by
estimating parameters in the feature domain. The second example
involves a density map pair representing different states of the Cyclic
Nucleotide-Gated Ion Channel (EMD-8632, PDB ID:5v4s and EMD-8511,
PDB ID:5u6o). These maps exhibit structural similarities but have sig-
nificant contour differences. Additionally, there is rotational invar-
iance around an axis, which imposes higher requirements on rotation
parameter estimation. For comparison, we provide two different
viewing directions of the PDB atom model superimposition. The left
view represents the ordinary viewing direction, while the right view
represents the rotation axis view. From the ordinary viewing direction,
both CryoAlign and VESPER demonstrate accurate translation para-
meter estimation. However, from the rotation axis viewing direction,
VESPER exhibits a larger RMSD, indicating poor rotation parameter
estimation. One possible reason for this discrepancy is that the fixed
rotation interval of VESPERmay constrain the fine rotation estimation.
Meanwhile, density vectors, reflecting the trend of density around
merely a small area, cannot provide sufficient discrimination on the
overall rotation. In contrast, CryoAlign utilizes the orientation dis-
tribution of local regions as features, allowing for a more accurate
estimation of rotation parameters.

Local alignment accuracy
Regarding the local alignment, it is important to consider the size dif-
ference between the input density maps. If the size of the smaller map
occupiesmore than40%of the size of the largermap (volume ratio), the
accuracyof featurematching remains similar to that of global alignment
in most cases. However, if the size difference is too large, it becomes
challenging for feature-based alignment to find an acceptable super-
imposition in a single attempt. Figure 4a illustrates the higher failure
probability as the volume ratio decreases. This is because the candidate
feature descriptors from the larger map can easily interfere with the
smaller number of feature queries. To address accurate local alignment,

CryoAlign treats it as a global retrieval problemwithin a small “dataset”.
It adopts a translational mask as a simple segmentation scheme for the
larger point cloud, as shown in Fig. 4c. The two-stage alignment process
is then used to calculate a series of pose parameters. Based on this
collection of parameters, CryoAlign measures the similarity scores
across all superimpositions and selects the top one as the output.
Moreover, Fig. 4b demonstrates the masking strategy not only helps to
find the best superimposition in cases with low volume ratios but also
improves the alignment accuracy in cases with high volume ratios. This
discovery suggests the presence of numerous mismatches in feature
matching, even within the context of global alignment, of which a dis-
cussion is made in “Exploration of local spatial features”. Similar to
global alignment, the violin plots of successful alignment’s RMSDvalues
for compared methods are demonstrated in Fig. 4d. VESPER exhibits
highly-close-shaped blue and brown areas, suggesting the exhaustive
searchmethods are not sensitive to resolution, in which the predefined
rotation/translation intervals limit the exploration of high-resolution
information. fitmap shows lower accuracy than global alignment as
voxel-based cross-correlation can be easily affected by neighboring
voxels, especially in small volume ratio situations. In the case of
CryoAlign, the majority of its brown areas are close to the blue ones,
whichmeans similar accuracy in different resolution, and indicates that
themasking strategy in CryoAlign, to some extent, compensates for the
impact of relatively low resolution.

The average RMSD and failure information for local alignment
are presented in Table 4. In comparison to global alignment, both
gmfit and fitmap exhibit high failure ratios, ranging from80% to even
100%. This highlights the difficulty of directly aligning two density
maps in local alignment. Non-overlapping regions significantly affect
the correlation calculation and further destroy the correspondence
establishment. In contrast, VESPER employs a similarity measure-
ment based on matched vectors in overlapping regions to eliminate
that interference, enabling its applicability in the local alignment.
Similarly, CryoAlign generates a series of candidate parameters using
a translational mask and selects the best one. This straightforward
segmentation strategy effectively transforms the local alignment
problem into multiple global alignment problems, ensuring the
accuracy of the feature-matching stage to a certain extent. Notably,
the feature construction based on neighboring points is inevitably
influenced by points beyond overlapping regions, especially when
the smaller volume is entirely embedded within the larger one. For-
tunately, the extracted key points are mostly located in the internal
regions of point clouds due to clustering processes. This ensures the
predominance of useful points in the vicinity and prevents the failure
of feature matching. Similar to global alignment, CryoAlign demon-
strates lower average RMSD values, indicating superior performance
compared to VESPER within the same sampling interval.

Two examples of local alignment are shown in Fig. 4e, f. In the first
example, we aim to superimpose the Vo region of the V-ATPase (EMD-

Table 3 | Examples of global map alignment

Res. range Map 1 IDs Map 2 IDs PDB RMSD(Å) RMSD(Å)

CryoAlign VESPER(1 Å) gmfit fitmap

<5 Å 3240/5fn5 2677/5a63 1.91 1.53 2.21 2.63 2.9

8881/5wpq 8764/5w3s 2.08 0.68 1.12 1.19 56.99

9515/5gjw 6475/3jbr 4.37 0.72 2.31 2.95 97.48

5–10 Å 8744/5vy8 8267/5kne 3.44 0.39 0.86 2.3 73.67

6284/3j9t 8724/5vox 5.13 1.06 2.79 5.05 1.04

3342/5fwm 3341/5fwl 1.45 0.51 0.56 3.6 4.98

Cross res. 8784/5w9i(3.6) 8789/5w9n(5.0) 8.33 0.05 2.84 4.69 79.51

9515/5gjw(3.9) 6476/3jbr(6.1) 4.37 4.31 3.12 6.06 64.19

3238/5fn3(4.1) 2678/5a63(5.4) 0.68 2.73 3.34 3.22 3.68
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8409, PDB ID:5tj5) onto the complete V-ATPase (EMD-8726, PDB
ID:5voz). Despite EMD-8409 occupying less than 40% of the volume of
EMD-8726, its distinct fence-like 3D structuremakes it stand outwithin
the complete V-ATPasemap. Both CryoAlign and VESPER achieve high
alignment accuracy, with RMSD values of ~2 Å, significantly lower than
the sampling interval of 5 Å. gmfit fails to capture the local structures
by using merely 20 Gaussians, and completely misplaces the source

map. fitmap, despite accepting an approximate initial pose, also fails
due to excessive focus on the overlapping region. The changes of
density depict the local structures better than voxel values. Upon
observing the enlarged PDB models, we can see that fitmap attempts
to align the right side better while neglecting the left side. The second
example involves the alignment of the 26S proteasome regulatory
particle (EMD-8675, PDB ID:5vhh) and the 26S proteasome of
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Saccharomyces cerevisiae in the presence of BeFx (EMD-3537, PDB
ID:5mpc). The failures of gmfit and fitmap demonstrate that when the
smallermapoccupies approximatelyor less than 50%of the larger one,
it becomes challenging for conventional methods to correctly align
them. VESPER tries to eliminate interference from non-overlapping
regions by scanning the entire rotation/translation space, but the fixed
translation and rotation intervals limit its precision. In contrast,
CryoAlign employs a correspondence-basedmethod to estimate “sub-
voxel” transformation parameters, resulting in a lower RMSD.

Application in map comparison
Accurate alignment of density maps is an essential step in hetero-
geneity analysis or 3D classification. Existing software often employs
cross-correlation-basedmethods to directly quantify voxel differences
between maps. This approach typically works well when the maps are
roughly pre-aligned or the differences are not sufficiently significant.
In fact, cross-correlation methods still encounter issues arising from
inadequate initial poses. As a point cloud based approach, CryoAlign
might not provide the same level of precise superimposition as cross-
correlation methods, due to information loss resulting from the point
sampling process. However, CryoAlign has the ability to achieve a
sufficiently close map superimposition, which could potentially serve
as an initial pose for subsequent refinement processes.

In Fig. 5, we present examples showing different states of bL17-
limited ribosome assembly intermediates33. Figure 5a presents a com-
parison between state #16 (EMD-24492) and state #20 (EMD24491).
These two states are quite similar, with the primary distinction being an
area in the upper right corner. We computed the difference maps for
both scenarios: source map—target map and target map—source map.
The differences were defined as changes in molecular weight, which
directly correspond to the voxel-based difference densities and are
calculated using 0.81Da/Å3. Notably, CryoAlign achieves a comparable
superimposition tofitmap,whileVESPERproduces a less accurate result.
In Fig. 5b, we analyze the comparison between state #1 (EMD-24671) and
state #28 (EMD-24561). Substantial differences exist between the two
maps, posing a challenge for cross-correlation-based methods such as
fitmap. Compared to VESPER, CroAlign offers a better superimposition,
which can serve as an acceptable initial position for the subsequent
refinement. In the “Difference map 2” column, the molecular weight of
CryoAlign is significantly lower than theweight of VESPER. Furthermore,
the combination of CryoAlign and fitmap yields the lowest weight,
demonstrating the feasibility of integrating these two methods.

Additionally, the high-precision alignment of CryoAlign enables an
accurate map comparison of compared maps and helps the user more
easily locate the variable regions and further analyze the conformation
change. We collected a dataset of in total 42 different states of bL17-
limited ribosome assembly intermediates from EMPAIR 10841. The 3D
variancemap was computed by fixing EMD-24491 as the referencemap
and aligning the remaining 41 conformations to it. Some examples of
different states are presented in the top row of Fig. 5c. Notably, fitmap
occasionally encounters alignment failures, as illustrated in Fig. 5b.
Consequently, the resulting variance images exhibit a uniform

numerical distribution lacking differentiation, impeding the observa-
tion of conformational changes. VESPER delivers alignment results,
albeit with less accuracy, facilitating the rough identification of variable
regions with higher variances in the range [20, 30]. For example, the
discernible changes in the upper parts of maps are apparent through
analysis of the variance image in the y-z plane. However, the relatively
lower alignment accuracy of VESPER introduces potential confusion
between variable and stable areas, as variances in some stable regions
also fall within the range [15, 20]. In contrast, the variance slice gener-
ated by CryoAlign reveals more pronounced distinctions between
variable and stable regions. Here, larger variance values are con-
centrated in the range [20, 35], while smaller ones predominate in the
range [0, 10]. These distinguished variance differences are the key to
locating the conformational changes and moving regions.

Application in atomic model fitting
Local alignment plays a crucial role in the assembly of single chains in
protein complex atom modeling. To facilitate this process, we gath-
ered a set of density maps representing protein complexes along with
their associated PDB entries. From each fitted PDB atom model, we
extracted all single chains present. For every single chain, we simulated
a corresponding density map using the “molmap” command in Chi-
mera, ensuring that the resolutionmatches that of the target complete
map. To achieve higher alignment accuracy, we set the initial sampling
interval to 3 Å for bothCryoAlign andVESPER. This choice ismotivated
by the small size of the single protein chains, where a smaller sampling
interval can provide more detailed structural information.

We present two representative examples of atomic model fitting
using CryoAlign. The first example involves the pentameric ZntB trans-
porter (EMD-3605, PDB ID:5n9y), which consists of five single chains
labeled A to E (Fig. 6a). Due to the structural similarity among the five
chains, they exhibit a certain degree of rotation invariance. To account
for this invariance, we provide the top five scoring parameters and
indicate the rank of the best superimposition. In Fig. 6a, the rank is
denoted by “(#2)” next to the RMSD value in red. The unselected top-
ranked alignment results are attached in the Supplementary Material
section “Ranked results in atomic model fitting”. If no ranking infor-
mation is given, the RMSD was calculated based on the top-scoring
alignment (i.e., by default, the RMSD of the first ranking alignment was
calculated). In this example, gmfit and fitmap generally fail to produce
satisfactory results, highlighting the challenges of correlation con-
struction between maps with significant volume differences. Although
VESPER finds acceptable alignment parameters, the rankings of three
chain results A, B and D are low. This is primarily due to the given
rotation interval, which is set to 10 degrees for efficiency in the para-
meter searching.When the candidate chains exhibit structural similarity
in rotation, the less accurate alignment provided by VESPER fails to
capture the detailed structural differences by measuring the directions
ofmatched vectors. Consequently, this leads to a lack of discrimination
among the top candidate alignments. CryoAlign, on the other hand,
establishes the point correspondences in the feature domain. The high-
quality feature descriptors ensure the consistency and accuracy of

Fig. 4 | Local alignment. a The relation between failure probability and volume
proportion of the smaller map to the larger one. The blue curve is direct alignment
without cutting. The orange curve is multiple alignment with a translational mask.
b Comparison of alignment accuracy between two alignment strategies, direct
alignment and multiple alignment with mask. For volume ratio groups “<=0.2”,
“0.2–0.4”, “0.4–0.6”, “0.6–0.8”, and “>0.8”, the sample sizesN = 7, 33, 77, 29, and 55.
The center, lower and upper lines in each box indicate themedian, the first quartile
and the third quartile, respectively. The number inside each box refers to themean
value. The whiskers show the 2.5% and 97.5% quantiles and each black dot repre-
sents a data point. c Sketch of the translational mask. The mask moves in a given
interval along the axis and part of the larger point cloud is taken for alignment. The
extracted points are labeled in red and the remaining ones are black. d The violin

plot illustrates RMSD values in successful alignment for each method, split by map
resolution. Each line represents a data point. Notably, the regions below zero hold
no meanings, which are merely the result of distribution estimation. e The first
example is superimposing the Vo region of the V-ATPase (EMD-8409, PDB ID:5tj5)
on the complete V-ATPase (EMD-8726, PDB ID:5voz). Although the volume ratio is
smaller than 50%, the distinct fence-like 3D structure makes EMD-8409 distinctive
from EMD-8726. The RMSD of CryoAlign/VESPER/gmfit/fitmap is 1.9/2.2/135.64/
25.46Å, respectively. f The second example is to align 26S proteasome regulatory
particle (EMD-8675, PDB ID:5vhh) and 26S proteasome of Saccharomyces cerevisiae
in thepresenceofBeFx (EMD-3537, PDB ID:5mpc). The volume ratio is ~50%, but it is
still difficult to align them using traditional methods. The RMSD of CryoAlign/
VESPER/gmfit/fitmap is 3.05/6.39/125.38/121.59Å, respectively.
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feature matching, enabling CryoAlign to estimate the same parameters
across different masking regions. This helps CryoAlign effectively dis-
tinguish the best superimposition among candidate alignments com-
pared to VESPER. The second example (Fig. 6b) involves the kinase
domain-like (MLKL)protein (EMD-0868, PDB ID:6lba). It shouldbenoted
that if no ranking is provided alongside the RMSD, none of the top five
scoring parameters yielded successful alignments. For instance, the
second and third rows of VESPER in the example demonstrate its
inability to find the correct position due to the rotational invariance.
Using the same sampling interval, CryoAlign achieves more accurate
alignment performance in terms of RMSD compared to VESPER. Addi-
tionally, we provide more atomic model fitting results in the Supple-
mentary Material section “More atomic model fitting results” to
demonstrate the superior alignment accuracy of CryoAlign.

Moreover, through accurate rigid transformations, multiple
chains are all placed into appropriate positions, serving as the initial
assembling model. This well-assembled initial model is a crucial
foundation for subsequent flexible fitting, an indispensable step in
high-precision atomic modeling. CroAlign can conveniently integrate
with existing point cloud-based approaches34–36 to address this
requirement. A protein structure typically consists of multiple chains.
First, in CryoAlign, each chain is transformed into a point cloud, and
aligned to the fixed map. CryoAlign transforms these point clouds
representing chains respectively and merges them into a compre-
hensive and larger point cloud. The assembly of point clouds is an
initial model representation of the protein structure. Then, the inte-
grated point cloud as a whole, is compared to the fixed reference to
estimate displacements for each point. Finally, the motion of point
clouds can be coherently translated into the atomic coordinates, as
both point clouds and atoms share the same coordinate system.
Interested researchers can refer to the SupplementaryMaterial section
“Extended results in flexible fitting” for the visual examples.

Discussion
In this study, we introduced CryoAlign, a highly accurate method for
aligning cryo-EMdensitymaps at both global and local levels. CryoAlign
operates by transforming the input maps into 3D points and leveraging
local spatial structural feature descriptors to capture the underlying
structural information effectively. The alignment process in CryoAlign is
conducted in twostages. In thefirst stage,CryoAlignemploys clustering-
based key point extraction and mutual feature matching techniques to
establish correspondences between the extracted key points in the
feature domain. This enables CryoAlign to set a solid foundation for
achieving fast and robust superimposition. In the second stage, CryoA-
lign focuses on establishing correct point-to-point correspondences
between the sampled points in the spatial domain. By carefully building
these correspondences, CryoAlign calculates the final transformation
parameters, resulting in a highly precise superimposition.

CryoAlign surpasses existing methods in terms of alignment
accuracy for global alignment tasks, while maintaining a good execu-
tion time. By achieving more precise density map superimposition,
CryoAlign enables researchers to identify and analyze differences or
changes between two maps, leading to a better understanding of
biological structures. While the parameter settings used in the
experiment results demonstrate the superior alignment performance
of CryoAlign, it is worth noting that these settings are not necessarily

optimized for all tasks or imaging environments. Users have the flex-
ibility to explore different parameter configurations based on their
specific requirements (“Parameter settings” in Supplementary Mate-
rial). In addition to alignment accuracy, CryoAlign offers a scoring
function that measures the similarity between two maps. This scoring
function can be used in map retrieval tasks, allowing researchers to
search for maps with similar characteristics or features.

For local alignment, CryoAlign employs local spatial structural
feature descriptor-based alignment combined with a segmentation
approach. The simple segmentation strategy using translationalmasks
has demonstrated its effectiveness in experiments, but it may suffer
from redundancy. By incorporating domain knowledge and develop-
ing a more advanced segmentation scheme, CryoAlign can achieve
faster and more accurate results in local alignment tasks. Local map
alignment plays a crucial role in the subunit assembly of protein
macromolecular atom modeling. Since identical single chains may
exist in the structure, CryoAlign provides multiple transformation
candidates ranked by similarity scores. Users can evaluate each alter-
native superimposition and select themost suitable one based on their
domain knowledge and expertise.

CryoAlign is designed to assist in further comparing, mining and
modeling of the reconstructed cryo-EM density maps. Extracting valid
spatial structures relies on informative density values and corre-
sponding contour levels. Extremely low signal-to-noise ratios may
make CryoAlign unable to distinguish structural information. Thus,
CryoAlign cannot be applied to tasks such as sub-volume alignment in
subtomogram averaging, which have been affected by extremely high
noise and the “missingwedge” effect. Fortunately, the cryo-EMmaps in
EMDB usually have a relatively high SNR, and real-world experiments
show that CryoAlign is accurate enough to handle the general cryo-EM
map alignment tasks and robust to the initial orientation choice of the
3D maps and cross-resolution comparison.

In conclusion, CryoAlign offers a robust and accurate alignment
solution for cryo-EM density maps with a resolution higher than 10Å.
Its capabilities in both global and local alignment make it a valuable
tool for studying and analyzing structural biology cryo-EM maps.
CryoAlign’s ability to accurately superimpose maps enables research-
ers to gain deeper insights into the structural details and variations
present in the maps.

Methods
Point cloud generation
CryoAlign starts by converting the input density map into a point cloud
through uniform sampling, assigning density vectors using the mean
shift equation. It then identifies key points within the point cloud using
clustering techniques and computes local spatial structural feature
descriptors. These key points and feature descriptors are utilized in the
subsequent alignment stages to achieve accurate alignment.

Initial density-based point generation. The successful application of
VESPER demonstrates the intensive unit vectors have the ability to
capture the local structures of density maps. CryoAlign regards the
uniformly sampled grid points as the point cloud and calculates unit
vectors as the “density vectors” for these points. The unit vector is
computed for each grid point xiði= 1,:::,NÞ with a density value that no

less than author-recommended contour level. The direction yi�xi
��!
yi�xij j of

unit vector reflects the trend of density values around the grid point xi,
of which the yi is calculated by the following formula:

yi =

PN
n= 1k xi � xn

� �
Φ xn
� �

xnPN
n0 = 1k xi � xn0

� �
Φ xn0
� � , ð1Þ

where kðpÞ is a Gaussian kernel function andΦðxiÞ is the density value
of the grid point xi. The kðpÞ adjusts the influence of neighboring

Table 4 | Alignment evaluation on the local dataset

Res. range CryoAlign(Å)/
failure

VESPER(Å)/
failure

gmfit(Å)/
failure

fitmap(Å)/
failure

<5 Å 3.77/9.02% 6.07/0.0% 8.05/92.6% 2.34/91.8%

5.0–10.0 Å 3.24/0.0% 6.48/14.29% 12.62/57.1% 6.55/85.7%

Cross res. 4.92/12.31% 7.02/13.8% −/100% 4.15/75.4%
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Fig. 5 | Examples for map comparison. a, b The difference map is calculated for
both scenarios: source map—target map and target map—source map. The mole-
cular weights are computed to quantify the difference. c 3D variance map of 42
different states of bL17-limited ribosome assembly intermediates. Some

representative ribosome assembly intermediates of different states are selected in
the top row. The 3D variancemap is displayed in the central slice of the yz plane, xy
plane, and xz plane for visualization. The color intensities correspond to the var-
iance values, with brighter colors indicating higher variances.
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Fig. 6 | Examples of atomic model fitting. a Chain structure fitting of pentameric
ZntB transporter (EMD-3605, PDB:5n9y), which consists of five single chains A, B, C,
D and E. For rotational invariance caused by similarity of chains, we collected the
five top-scoring results of CryoAlign or VESPER as candidates and selected the best
one. The red “#2” beside the RMSD value represents the ranking of the best

superimposition in the candidate list.bChain structurefitting of kinase domain-like
(MLKL) protein (EMD-0868, PDB:6lba), which consists of four single chains A, B, C
and D. Note that if the RMSD value is large but no ranking is listed for CryoAlign or
VESPER, none of the five top-scoring parameters resulted in a successful alignment.
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points according to the input distance p and a bandwidth σ:

k pð Þ= exp �1:5
p
σ

��� ���2
� �

ð2Þ

Clustering-based key point and descriptor extraction. In cryo-EM
maps, the density value corresponds to the integration of density
functions related to atoms, and regions with high density can be
indicative of protein backbones. CryoAlign employs the mean shift
algorithm, a nonparametric clustering method, to effectively identify
these dense regions in the map. Different from the density vector
generation, CryoAlign determines the local density maximum points
by the convergent results of the following iteration:

yt + 1i =

PN
n = 1k yti � xn

� �
Φ xn

� �
xnPN

n0 = 1k yti � xn0
� �

Φ xn0
� � , ð3Þ

To enhance the representation capability and reduce the size of
the point cloud, CryoAlign incorporates the DBSCAN (density-based
spatial clustering of applications with noise) algorithm30. This algo-
rithm clusters points that are located within a specified threshold
distance, typically equivalent to the sampling space. By applying
DBSCAN, CryoAlign groups nearby points together, effectively redu-
cing the redundancy and capturing the essential structural informa-
tion in amore compact form. The remaining points serve as key points
for subsequent alignment stages.

Based on identified key-points and initial points assigned with
“density vectors”, CryoAlign proceeds to calculate density-based sig-
nature of histograms of orientations (SHOT) feature descriptors37 for
each key point (see Section “Density-based SHOT descriptor calcula-
tion” in Supplementary Material). CryoAlign examines the local
neighborhood points surrounding each key point to calculate the
modified SHOT descriptors. The orientations of the assigned density
vectors at these neighboring points are quantized into discrete bins,
and a histogram is constructed to collect the distribution of these
orientations. This histogram effectively summarizes the local geo-
metric characteristics of the density map concisely and informatively.

Two-stage alignment
After the sampling and clustering stages, two input density maps are
efficiently transformed into point clouds and corresponding keypoints,
denoted as fSi, Skeyi g for source (moving) map, and fTj ,T

key
j g for target

(fixed) map. In the first stage of alignment, CryoAlign utilizes a feature-
based approach to estimate the initial transformation parameters. This
involves collecting the key points and their corresponding feature
descriptors fromboth the source and target point clouds. To efficiently
reduce the size of the candidate set, CryoAlign employs a bidirectional
nearest point matching strategy. This strategy assigns a binary value,
denoted as δði,jÞ, to each pair of key points, indicating whether they
should be considered as a potential match. When δ i,jð Þ= 1, the corre-
sponding feature pair between key point Si and key point Tj is con-
sidered a valid match. In contrast, when δ i,jð Þ=0, it means that the
corresponding feature pair is discarded. The feature matching process
is performed by bidirectionally checking the nearest neighbors:

δ i,jð Þ=NN Skeyi ,Tkey
j

� 	
^ NN Tkey

j , Skeyi

� 	
, ð4Þ

whereNNð�,�Þ determines whether the latter point is the nearest one to
the former point in the feature domain. In other words, CryoAlign
compares the Euclidean distances between the feature descriptors of

key point Skeyi and all the feature descriptors of key points fTkey
j g in the

target point cloud, and select the one with smallest distance as the
nearest neighbor. Given the filtered feature point correspondences

fSkeyi ,Tkey
i gMi= 1, truncated least squares estimation and semidefinite

relaxation (TEASER)38 are used to estimate the initial rigid transfor-
mation parameters, by optimizing the following objective function:

min
R2SO 3ð Þ,t2R

XM
i= 1

min Tkey
i � RSkeyi � t

��� ���2, ϵ2
� �

, ð5Þ

where R is the 3 × 3 rotation matrix and t is the 3D translation vector.
The feature-based method provides a rough initial super-

imposition, while the point-based method aims to align the point
clouds more closely. Accounting for the different distributions of the
point clouds, CryoAlign utilizes the sparse-icp algorithm39 in the sec-
ond stage. This algorithm replaces the L-2 norm with the L-p norm
(where p < 1), allowing for a higher tolerance for outliers. Unlike the
first stage, which focuses on key point pairs, in the second stage,
CryoAlign considers the initial point pairs Si,Ti


 �N
i = 1 generated by the

nearest neighbor algorithm in 3D space. The optimization function
based on point correspondences is formulated as:

min
R2SO 3ð Þ,t2R

XN
i= 1

Tkey
i � RSkeyi � t

��� ���2 + ISO 3ð Þ Rð Þ, ð6Þ

where p < 1 and ISO(3) constraints for the rotation matrix R.

Similarity measuring function
The similarity measuring function in CryoAlign is based on the aligned
point clouds. Once the point clouds are transformed using the esti-
mated alignment parameters, they are effectively superimposed. The
similarity between the transformed point clouds Si


 �
and fTjg, is

measured along with their corresponding density vectors ui


 �
and vj :

Similarity S,Tð Þ= 1� DJS SjTð Þ� �
*

PN
k I uk ,vk
� �
N

, ð7Þ

I uk ,vk
� �

=
1 uk*vk > ϵ

0 otherwise

�
, ð8Þ

where DJSð�Þ is the Jensen-Shannon divergence, measuring the global
similarity of the spatial distributions;N in the denominator represents
the number of overlapped point pairs; and Ið�,�Þ is an indicator
function, evaluating whether the dot product of two vectors is greater
than a predefined threshold ϵ. Notably, in local alignment, the Jensen-
Shannon divergence is discarded because the segmented maps under
masking operations reflect less distinction in spatial distributions.

Exploration of local spatial features
The combinations of keypoint detectors and feature descriptors are
indeedcrucial for achieving fast andeffective initial alignment. There are
several popular combinations available, such as keypoint detectors: 3D
Harris40, 3D SIFT (scale-invariant feature transform41,42), ISS (intrinsic
shape signatures43); featuredescriptors: SHOT (signatures of histograms
of orientations37), FPFH (fast point feature histograms44), PFH (point
feature histograms45), 3DSC (3D shape context46), USC (unique shape
context47), ROPS (rotational projection statistics48). These algorithmsare
all computed with the PCL library42. In the case of CryoAlign, density
vectors are utilized as the geometry attribute for each point, replacing
the commonly used surface normals in point cloud processing. Com-
paring density vectors with surface normals is also an important aspect.

In the section “Local spatial feature descriptors” of Supplementary
Material, we comprehensively analyze the performances of the afore-
mentioned combinations and compare them with the results of CryoA-
lign’s approach on the global alignment dataset. The analysis includes
evaluations of surface normals and density vectors for their orientation
consistency, as measured by cosine distances between matched points.
Meanwhile, the performance of point correspondence establishment
was assessed for different combinations of keypoint detectors and
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descriptors throughmetrics such as failure ratios and the proportion of
correct feature matching. Different feature matching strategies, includ-
ing direct nearest neighbor and mutual feature matching, were also
tested for all combinations. Through our analysis, we affirm that density
vectors provide a better representation of geometric attributes com-
pared to surface normals. The clustering-based keypoint extraction
method also demonstrates superior performance. These methods con-
sider the physical meaning of density values, making them more
applicable to density maps. To encode geometric attributes into a fea-
ture vector for each keypoint, we utilize the SHOT descriptor archi-
tecture, resulting in a 352-dimensional feature representation of local
structures. The experiments detailed in the Supplementary Material
demonstrate that the SHOT architecture exhibits robustness and accu-
racy, particularly when used in the mutual feature matching strategy.

Mask strategy for local alignment
In the local alignment, we take a moving spherical mask strategy to
segment large volumes simply. The moving mask M is created by
configuring parameters such as the radius r, center c and step distance
d. For this study, the r and c values were adjusted to cover the small
volume, while the step d was set as half of the radius. By uniformly
moving the mask, a series of alignment results and their respective
similarity scores are obtained. The effectiveness is demonstrated in
Table 4. In fact, most masks are redundant, and the mask strategy can
be enhanced with provided initial poses. For example, existing
exhaustive search methods are employed in larger intervals to obtain
approximate rotation and translation values. Then CryoAlign utilizes
the sphericalmaskwithin small regions around the initial pose, thereby
significantly reducing the subsequent searching scope. In the section
“Initial mask localization” of Supplementary Material, we take the
results of exhaustive search method VESPER as the initial state and
analyze the alignment performance under different sampling intervals.
We find that CryoAlign consistently achieves the high-precision
alignment and the initial position ofmask only affects the success rate.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. The datasets of cryo-EMmaps for global or local
alignment are provided in Supplementary data. The cryo-EMmaps and
fitted PDB entries can be downloaded from EMDB and PDB, respec-
tively. The source data underlying Figs. 2, 3a, b, 4a–d, and Supple-
mentary Figs. S1, S2, S4, S5 are provided as Source Data files. Global
and Local alignment data can also be found in the SourceData files. For
the illustration, an example dataset and corresponding analysis code
are available [https://github.com/HeracleBT/CryoAlign/tree/main/
data/example_dataset]. Source data are provided with this paper.

Code availability
The CryoAlign program is freely available for academic use [https://
github.com/HeracleBT/CryoAlign].
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