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Design of target specific peptide inhibitors
using generative deep learning and
molecular dynamics simulations

Sijie Chen1,8, Tong Lin2,3,8, Ruchira Basu4, Jeremy Ritchey4, Shen Wang 1,
Yichuan Luo5, Xingcan Li6, Dehua Pei 4 , Levent Burak Kara2 &
Xiaolin Cheng 1,7

We introduce a computational approach for the design of target-specific
peptides. Our method integrates a Gated Recurrent Unit-based Variational
Autoencoder with Rosetta FlexPepDock for peptide sequence generation and
binding affinity assessment. Subsequently, molecular dynamics simulations
are employed to narrow down the selection of peptides for experimental
assays. We apply this computational strategy to design peptide inhibitors that
specifically target β-catenin and NF-κB essential modulator. Among the twelve
β-catenin inhibitors, six exhibit improved binding affinity compared to the
parent peptide. Notably, the best C-terminal peptide binds β-catenin with an
IC50 of 0.010 ±0.06μM, which is 15-fold better than the parent peptide. For
NF-κB essential modulator, two of the four tested peptides display sub-
stantially enhanced binding compared to the parent peptide. Collectively, this
study underscores the successful integration of deep learning and structure-
based modeling and simulation for target specific peptide design.

The computational design of peptides for exploration of vast amino
acid sequence spaces has gained popularity in antibiotics discovery
and biomaterial design. Despite progress, designing peptide inhibitors
that target-specific protein-protein interactions (PPIs) remains a sig-
nificant challenge. Two broad categories of computational approa-
ches, namely structure-based and sequence-based methods, have
emerged for this purpose1–4. Structure-based approaches start design
from a protein pocket or an existing peptide motif bound to the pro-
tein. For instance, Rosetta FlexPepDock, employing extensive con-
formational search and a template-based strategy, has demonstrated
effectiveness in modeling diverse peptide–protein complexes5–7.
Rooklin et al. proposed a method to identify pockets near the peptide
motif and design inhibitors that optimize pocket occupation8. How-
ever, starting from a structural template may introduce biases or

constraints in the sequence search, potentially resulting in suboptimal
solutions9.

Moreover, the computational cost associated with structure-
based peptide design, involving tasks such as peptide structure pre-
diction, docking and binding energy evaluation, poses scalability
challenges for extensive peptide libraries. Particularly, the dynamic
nature of peptide–protein interactions and the conformational flex-
ibility of proteins as well as the need for considering solvent effects
make the accurate prediction of binding poses a daunting task.
Molecular Dynamics (MD) simulations have been increasingly utilized
in peptide design10. While Rosetta FlexPepDock11 samples efficiently
the space of possible peptide conformations and rigid-body orienta-
tions on a given target protein surface,MDsimulations offer a dynamic
and detailed view of peptide–protein interactions at the atomic level,
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providing a rigorous framework for binding pose refinement and
affinity calculation12–15.

On the other hand, Recurrent Neural Network (RNN)-based Var-
iational Autoencoder (VAE) models that offer a robust framework for
sequence analysis and optimization have emerged as a cutting-edge
approach in protein and peptide design. VAE, known for automated
text processing and generation16, has found success inmodeling latent
spaces of sequential data, particularly in language translation17–19. In
peptide design, VAEs are trained to represent amino acid sequences in
a continuous latent space, which, combined with a sampling method,
suchas theMetropolisHasting (MH) algorithm, allow thegenerationof
peptides with desired properties. Lim et al. utilized a conditional VAE
to generate simplified molecular-input line-entry system (SMILES)
strings of molecules with targeted chemical properties20. Das et al.
combined VAE and MD simulations to generate experimentally vali-
dated antimicrobial peptides, demonstrating significant time savings
in the drug discovery process21. Transformer models have also
emerged as powerful tools in protein and peptide design, leveraging
attention mechanisms to capture long-range dependencies and con-
textual information within sequences22. Notably, AlphaFold has
demonstrated success in identifying high-affinity peptide binders from
a given set of peptides23–25. However, its computational demands and
limitations to natural amino acids poses challenges for sequence
searches and compatibility with popular peptide affinity maturation
strategies.

Compared to structure-based methods, sequence-based approa-
ches are more likely to face constraints stemming from the limited
availability of peptide–protein-binding data, leading to a more limited
adoption in peptide design. As of 2021, the PDB database contains
186,892 peptide-containing protein structures, of which only 13,299
entries provide detailed information on peptide–protein
interactions26. To overcome this limitation, a protein generative pre-
trained transformer (GPT) model was devised to generate authentic
protein sequences based on a small labeled dataset27. This strategy
resembles that in natural language processing (NLP), where a gen-
erative model is pre-trained with unlabeled data and fine-tuned for a
specific task28.

In this study, we present a multi-step sequence generation
algorithm that combines a deep learning-based generative model
with structure-based modeling and simulation to efficiently gen-
erate high-affinity peptide binders targeting specific protein sur-
faces. The first step of our model involves a Gated Recurrent Unit
(GRU)-based VAE and the Metropolis Hasting (MH) sampling
algorithm to generate potential peptide sequences. Termed the
VAE-MH process, this step effectively reduces the sequence
search space from millions or billions to hundreds. The second
step involves the rapid binding assessment of the VAE-MH-
generated peptides using physics-based methods to fine-tune
these peptides towards binding specific proteins. To balance
speed and accuracy, peptide binding affinity is evaluated in a
hierarchical manner: rank-ordering peptides using Rosetta Flex-
PepDock, followed by re-evaluation of high-ranked peptides with
MD simulation. Specifically, each peptide generated by the VAE-
MH process is superimposed onto a template structure bound to
the target protein. The resulting peptide–protein complex
structure is refined, allowing full flexibility to the peptide back-
bone and side chains, and its binding score is evaluated using
Rosetta peptide–protein scoring functions. Subsequently, each
high-ranked complex obtained from FlexPepDock undergoes
binding energy calculation with the molecular mechanics/gen-
eralized Born surface area (MM/GBSA) method29. We demonstrate
the effectiveness of our computational models by designing
peptide inhibitors targeting β-catenin and Nuclear Factor (NF)-κB
essential modulator (NEMO), yielding promising results in testing
with fluorescence-based binding assays.

Results
Improving β-catenin binding by peptide extension
The canonical Wnt/β-catenin signaling pathway regulates cell pro-
liferation primarily through β-catenin (Fig. 1a)30. Therefore, disrupting
the interaction between β-catenin and Wnt effectors, such as T-cell
factor/lymphoid enhancer factor (TCF/LEF) represents a promising
strategy to curb β-catenin hyperactivity and inhibit cell proliferation31.
Various approaches, including hydrocarbon- and thioether-stapled
peptides, have been developed to specifically target β-catenin and
interfere with the β-catenin/TCF interaction32. For instance, the
hydrocarbon-stapled peptide StAX-35, mimicking Axin, exhibited
binding to β-catenin (Kd = 0.013 ± 0.002μM) and inhibited cell pro-
liferation at 10sμM concentrations. Using Axin as the template,
Diderich et al. employed phage display to select thioether-stapled
peptides with Kd as low as 5.2 nM33. However, these peptides exhibited
limited biological activity due to low cell permeability and short half-
life time. Additionally, researchers have explored bicyclic β-sheet, β-
hairpin and macrocyclic peptidomimetics to target β-catenin34,35.
Schneider et al. employed the Rosetta suite of protein design tools to
identify peptoid–peptide macrocycles capable of binding β-catenin
and inhibiting the β-catenin–TCF interaction36. Although these pepti-
domimetics showed improved binding affinity, their biological activity
remained modest, likely due to poor cell permeability. Given the
availability of numerous peptide inhibitors, β-catenin could serve as an
ideal system to validate our generative model. Our objective was to
designN- and C-terminal extensions for a previously reported peptidyl
inhibitor, Peptide 9 (Supplementary Table 1), with the aim of enhan-
cing potency against the β-catenin/TCF interaction37.

Superimposition of Peptide 9 onto the structure of a previously
reported stapled α-helical peptide StAX-35R bound to β-catenin
(PDBid: 4DJS32) reveals that theβ-catenin-binding cleft beneath Peptide
9 has a length of 24–28Å, which is 8–12Å longer than the peptide
(Fig. 1b, c). Particularly, a void is observed at the N-terminus of β-
catenin, allowing accommodation of an extra peptide fragment. These
observations suggest that extending the α-helical peptide by 4–7
residues on either N- or C-terminus could potentially enhance the
interaction of the peptide with β-catenin. Peptide 9was derived from a
highly potent but membrane-impermeable peptidyl inhibitor of β-
catenin, FAM-GGYPECILDCHLQRVIL-NH2 (Kd = 0.018μM)33. It was
shown that the modified Peptide 9 was rendered highly cell-perme-
able, but bound to β-catenin with reduced affinity
(IC50 = 0.15 ± 0.04μM)37. The conjugation to a cyclic cell-penetrating
peptide was shown to have a minimal effect on the peptide-β-catenin
binding, so the decreased binding seems to arise primarily from the
replacement of the two cysteine residues with an aspartic acid and a
lysine that were stapled with a DK linker as well as the removal of the
N-terminal FAM dye. To this end, we aimed to improve the binding
affinity of Peptide 9 for β-catenin by generating N- or C-terminal
extensions composed solely of natural amino acids.

Further inspection of the Peptide 9-β-catenin-binding mode
indicates that the two N-terminal glycine residues do not interact with
the protein, but could increase the flexibility of the peptide, impairing
its binding potency and specificity. Without the two glycine residues, a
similar Peptide 14 shows slightly higher affinity (IC50 = 0.11μM) (Sup-
plementary Table 1). Therefore, we removed the two glycines from
Peptide 9 and chose the resulting peptide YPEDILDKHLQRVIL as the
base model for extension (also referred to as the parent pep-
tide below).

To test the idea of binding affinity maturation by terminal
extension, we first employed Rosetta Design38,39 to add 2–7 residues at
either N- or C-terminus of the parent peptide and used Rosetta
FlexPepDock11 to evaluate the binding energies of the extended pep-
tides using three metrics, including interface energy (I_sc), root-mean-
square of interface atoms (rmsAll_if), and buried surface area of the
interface (I_bsa). We report the differences in the three metrics
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between the extensions and the parent peptide in Supplementary
Fig. 1. Overall, a large fraction of the extended peptides showed more
favorable binding than the parent peptide, as evidenced by the pre-
sence of many negative values for I_sc and rmsAll_if and many positive
values for I_bsa. In addition, as shown in Fig. 1d, the binding scores
(I_sc) appear to correlate well with the interface contact areas (I_bsa).
These results suggest that the improved binding affinity comes from
the additional contacts formed between the extended peptides and
the protein, substantiating the feasibility of terminal extension for
affinity maturation of Peptide 9.

VAE-MH peptide extension
Our goal is to extend the parent peptide at the N- or C-terminus by up
to seven amino acids to obtain peptideswith improved binding affinity
for β-catenin. We call these added amino acids peptide extensions,
which have over billions of combinatorial possibilities even if only the
20 natural amino acids are considered. To reduce this enormous

search space, we designed a latent space sampling algorithm com-
prising two components to generate peptide extensions that aremore
likely to be strong PPI binders (Fig. 2a).

The first component is to use a variational autoencoder (VAE) to
represent peptides in a latent space.Weprepared anunlabeled dataset
for VAE training. This dataset combines protein sequences from three
public databases, Uniprot40, PixelDB41, and THPdb42. Sequences longer
than 22 residues were removed, yielding a dataset of around 4 million
peptide sequences.We used VAE to embed a peptide sequence into an
encoding, a concise continuous latent space vector that can be deco-
ded back to the original representation of the sequence. The structure
of the VAE is shown in Fig. 2b. The encoder module consists of an
embedding network, a gated recurrent unit (GRU) and linear layers to
output the mean and variance of the learned encodings. The
Kullback–Leibler (KL) divergence is used as a distribution discrepancy
measure between the encoding and a Gaussian distribution, which
serves as a regularization term for the encodingdistribution. Themean
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Fig. 1 | Illustrations of the Wnt/β-catenin pathway and the binding mode of β-
catenin and a stapled peptide. a Wnt signal on/off pathways. Cartoons were
created with BioRender.com. b Crystal structure of a stapled peptide StAX-35R
bound to β-catenin viewed from theN-orC-terminus of the peptide (PDBid: 4DJS32).
c Helical length comparisons of the stapled peptide with the three interacting

helices of β-catenin. dCorrelation plots of I_bsa vs. I_sc and rmsALL_if vs. I_sc for 20
Rosetta Design generated N- or C-terminal extensions. For each peptide, 100
conformations were sampled, with each conformation represented by a scatter on
the scatterplot. The sample sizes in (d) are n = 2000. Source data are provided as a
Source Data file.
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Fig. 2 | Overview of the peptide designmethodology. aWorkflow illustrating the
design ofβ-catenin specific peptide inhibitors. The black arrow line path represents
the C-terminal extension, and the green arrow line path indicates an additionalfine-

tuning process for C-terminal extension. b VAE-MH sequence encoding and
decoding. c VAE-MH Pretrain and fine-tuning models for peptide extension.
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of the encoding is decoded back to the original discrete representa-
tion. The reconstruction error is evaluated using the cross-entropy.
Further details are presented in “Methods”.

The second component is to use the Metropolis-Hastings (MH)
algorithm togenerate newpeptide sequences by approximatingq(z∣c),
wherez is the encodingof anextension, c is the variable corresponding
to a desired molecular property (i.e., a PPI binder), and q(. ) is a
probability distribution function (Fig. 2c). We chose the MH algorithm
because it allowsq(. ) not to be limited to any specificdistribution form
for a long vector z. To use the MH algorithm, we need to know q(z∣c)
that is proportional to the product of q(c∣z) and q(z). To obtain q(c∣z),
we prepared a dynamic labeled dataset, in which each peptide is
labeled as a potential PPI binder (c = positive) or not a potential PPI
binder (c = negative). For q(z), we used a Gaussian mixture model
(GMM) to approximate the probability distribution of the extension
encoding in all the training sequences. After obtaining q(c∣z) and q(z),
we utilized the MH algorithm to sample positive z from q(z∣c = 1), and
then decoded it back to the original representation of a peptide
extension. The details of the MH algorithm are presented in
“Methods”.

Peptide extensions are sampled in an iterative manner. In the first
iteration, no target-specific binding data are available for both exten-
sions. Thus, we used two datasets of potential PPI binders from
PixelDB41 and THPdb42 that contain experimentally validated peptide
binders to pretrain the peptide generationmodel. All the sequences in
the two PPI datasets were labeled as positive (potential PPI binder),
while all negative sequences (not potential PPI binder) were obtained
from random sampling of the Uniprot database40. This model is
referred to as the Pretrain model below. In the subsequent iterations,
the labeled dataset was updated with the Rosetta FlexPepDock eva-
luation results of all peptide extensions generated in the preceding
iterations. The top 10% scored peptides were considered as positive
while the rest was taken as negative. Through this reinforcement
learning-like strategy, our model, referred to as the Fine-tune model,
was enabled to generate target-specific peptide extensions.

To reduce the variance of q(c∣z), we bootstrapped the labeled
dataset to create four labeled datasets. A machine-learning model was
trained on each of the four datasets to obtain four sets of model
parameters. Using the four trainedmodels, the classificationof zbased
on the input c was performed four times. The overall q(c∣z) was finally
obtained as the average of the four results of q(c∣z). For better esti-
mation of q(c∣z), we tested severalmachine-learningmodels and found
that the support vector classifier (SVC) worked the best for N-terminus
extension and the extreme gradient boosting (XGBoost) achieved the
best performance in C-terminus extension. The results of the various
classifier models are summarized in Supplementary Table 2.

Rosetta FlexPepDock evaluation of N-terminal peptide exten-
sions targeting β-catenin
We first tested the VAE-MH Pretrain model that was trained with a
general dataset on N-terminal extension of the parent peptide. In total,
100 peptide extensions were generated for each length of 2–5 resi-
dues; the total length of the extended peptides thus ranges from 17 to
20 residues. Binding evaluation with Rosetta FlexPepDock shows that
the probability distributions of I_sc and rmsALL_if shift to the left-hand
side while the distributions of I_bsa shift to the right-hand side with the
increasing peptide length (Fig. 3a), indicating that the N-terminal
extension tends to boost the peptide–protein binding with only small
perturbation to the binding pose of the parent peptide.

Previous studies have demonstrated that N-terminally extended
peptides could enhance antibody affinity or activity by a factor of up to
20 compared to the parent peptide33,43. However, the computational
study by Sood and Baker that aimed to increase the affinity of a
protein–peptide complex by designing N- or C-terminal extensions
only led to modest affinity increases7. It was hypothesized that the

modest affinity improvement might stem from the highly polar
extensions interactingwith the solvent rather thanwith the protein. To
shed light on the N-terminal extensionmechanism, we plot I_sc versus
I_bsa for all the extended peptides in Fig. 3b. I_sc shows a better cor-
relation (r2 = 0.4) with I_bsa than with rmsALL_if (r2 = 0.2). Further-
more, rmsALL_if shows a skewed probability distribution centered
around −0.8Å, indicating that the extensions do not perturb the par-
ent peptide binding pose. These results suggest that the improved
binding arises primarily from a better engagement of the N-terminally
extended residueswith the protein, rather than a rearrangement of the
peptide-β-catenin-binding conformation (Fig. 3b).

Most peptide design relies on mutation to simultaneously opti-
mize the sequence and structure for affinity maturation7. However,
local permutation of amino acids limits search of a global energy
minimum. Ourmethod represents the first deep learning-basedmodel
for peptide extension, which reduces the search space by learning
from examples of good PPIs and then conducts a more focused search
instead of a random search. To compare the performance of our VAE-
MH model with that of a traditional computational design approach,
we plot the probability distributions of I_sc, I_bsa and rmsALL_if from
our design along with those from the Rosetta Design in Fig. 3c. Our
VAE-MHPretrainmodel outperformed Rosetta Design as evidenced by
the significantly decreased I_sc and increased I_bsa scores. Not sur-
prisingly, rmsALL_if showed similar distribution patterns for the two
models. Taken together, these data substantiate the effectiveness of
our VAE-MH Pretrain model in designing N-terminal extensions with
increased protein-binding affinity.

Downward hierarchical selection of N-terminal peptide exten-
sions targeting β-catenin
We next used a hierarchical strategy to select N-terminally extended
peptides for experimental testing. Peptide ranking was performed
sequentially with two binding affinity calculation methods, Rosetta
FlexPepDock44 followed by MM/GBSA45. Both methods provide an
efficient way to evaluate the binding energy of a peptide–protein
complex based on a known binding mode. Rosetta FlexPepDock per-
forms structural refinement (minimization) of a peptide–protein
complex using a Monte Carlo method and then estimates the binding
energy for each minimized conformation using a Rosetta scoring
function, while MM/GBSA samples an ensemble of peptide–protein
complex conformations through molecular dynamics (MD) simula-
tions and the binding energy is computed as a sumof gasphase energy
(MM), electrostatic solvation energy (GB), and nonpolar solvation
energy (SA). The MM/GBSA method capable of capturing both con-
formational flexibility and solvent effect is more accurate than the
scoring function-based FlexPepDock, but remains computationally
demanding. Therefore, the combination of the two methods in a
hierarchical manner is expected to improve our prediction accuracy
and speed.

To test the performanceof Rosetta FlexPepDock andMM/GBSA in
predicting the binding energies of our β-catenin-binding peptides, we
collected 14 β-catenin inhibitory peptides that have been experimen-
tally assayed, and computed the Rosetta and MM/GBSA-binding
energies for ten peptides comprising only natural amino acids (Sup-
plementary Table 1). The computed binding energies versus the
experimental IC50 values are plotted in Supplementary Fig. 2a. Rosetta
FlexPepdock can only distinguish good binders from poor binders
since most peptides have their binding scores greater than −30 REU
and only 4 peptides have their binding scores below −35 REU. On the
other hand, the MM/GBSA results correlate reasonably well with the
experimental values. These results support our two-stage selection
strategy—Rosetta FlexPepdock is used for initial screening, which is
followed by more accurate rank-ordering with MM/GBSA. Specifically,
we first ranked the 300 N-terminally extended peptides (100 peptides
for each of the 3, 4, and 5 residue extension lengths) generated by the
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VAE-MH Pretrain model based on their collective Rosetta binding
scores, and the 10 top-ranked peptides were then each subjected to
binding free energy calculation with MM/GBSA. Table 1 summarizes
the MM/GBSA results for the ten peptides. Compared to the parent
peptides, the FlexPepDock scores of the top ten extendedpeptides are
improved by 5–10 REU, and their MM/GBSA-binding energies
improved by 4–8 kcal/mol. Interestingly, the Rosetta FlexPepDock
results show little or no dependency on the peptide length, while the
MM/GBSA results are slightly biased toward longer extensions.

To guide the selection of peptides for experimental testing, we
computed the MM/GBSA-binding energies for all the 14 β-catenin
inhibitory peptides in Supplementary Table 1. The MM/GBSA and IC50

rankings show a good correlation r2 of 0.6 (Supplementary Fig. 2b).
Thus, the mean MM/GBSA-binding free energy of 43 ± 3 kcal/mol for
the positive control group (with an IC50 < 0.15μM) was taken as a
threshold filter to select peptides likely with improved potency. For
robustness of the selection, the threshold was set to −40 kcal/mol that
is one standarddeviation higher than themean value. Accordingly, two
peptides NAL-2 and NAL-3 that have an MM/GBSA-binding energy
greater than the threshold value were discarded (Table 1).

Besides the downward hierarchical selection strategy, we also
explored alternative ways to optimize the VAE-MH-generated peptides
for increased β-catenin-binding affinity. Since it is impractical to
compute the gradient of binding affinity with respect to amino acid
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Fig. 3 | Rosetta FlexPepDock evaluation of the VAE-MH generated N-terminal
peptide extensions. a Kernel density distribution plots for interface score (I_sc),
interfacebinding solvent accessible area (I_bsa) and root-mean square deviations of
interface backbones (rmsALL_if) of N-terminally extended peptides (17–20 resi-
dues. b Correlation plots of rmsALL_if vs. I_sc and I_bsa vs. I_sc for the N-terminally
extended peptides, with each point representing a peptide. For each peptide, 100
conformations are sampled for each peptide–protein complex, and their Flex-
PepDock scores are averaged. c Violin plots of rmsALL_if, I_sc and I_bsa for
N-terminal peptide extensions generated by the VAE-MH Pretrain model in com-
parison with Rosetta Design. FlexPepDock scores were computed as the difference
score between the extended peptide and the parent peptide. Sample sizes in (a, b)
are n = 300. Coefficients of determination in (b) for I_bsa vs. I_sc are r2 = 0.4, and for

I_bsa Vs. rmsALL_if are R2 = 0.2. The minima, maxima, center (median) bounds of
I_bsa are 130, 283, 203 for Rosetta Design, and 118, 314, 241 for VAE-MH pretrain.
Whiskers represent the interquartile rangeQ1 = 162 andQ3= 237 for RosettaDesign
and the interquartile range Q1 =192 and Q3 =314 for VAE-MH pretrain. The minima,
maxima, center bounds of _sc are −5.8, −0.068, −2.7 for Rosetta Design, and −10,
−3.1, −5.4 for VAE-MH pretrain. Whiskers represent the interquartile range Q1 =−4.5
and Q3 =−1.9 for Rosetta Design, and the interquartile range Q1 =−6.6 andQ3 =−4.1
for VAE-MH pretrain. The minima, maxima, center bounds of rmsALL_if are −0.20,
0.23, −0.071 for Rosetta Design, and −0.2, 0.24, 0.027 for VAE-MH pretrain. Whis-
kers represent the interquartile rangeQ1 = −0.13 andQ3= −0.17 for Rosetta Design,
and the interquartile range Q1= −0.14 and Q3=0.15 for VAE-MH pretrain. Source
data are provided as a Source Data file.
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composition, we chose two evolutionary algorithms (EAs)—genetic
algorithm (GA) and simulated annealing (SA). However, neither
method yielded more potent peptide inhibitors. Compared to those
obtained directly from VAE-MH (Supplementary Tables 3 and 4),
peptides optimized by GA or SA show significantly higher (less favor-
able) MM/GBSA-binding energies (Supplementary Fig. 3). We suspect
that the reason is twofold. First, there is a discrepancy between the
Rosetta-style loss function used in the optimization and themolecular
mechanics (MM) energy function used in MD simulation. In our opti-
mization algorithms, the less accurate loss function cannot fully cap-
ture the conformational flexibility of the peptide–protein complexes,
leading to the failure of the two EA-basedmethods. Second, unlike the
VAE-MHmodel that samples in the encoded space, GA and SA operate
directly in the amino acid sequence space. That means, peptide
properties can change rapidly and irregularly, and even deviate sig-
nificantly from the initial peptide sequence, thus losing the advantage
of GA and SA in local optimization.

Experimental validation and structural investigation of
N-terminally extended β-catenin-binding peptides
Eight top-ranked peptides were prioritized for experimental testing
from the combined Rosetta FlexPepDock and MM/GBSA evaluation
(Fig. 4a, b). In addition, we inspected the polarity of thesepeptides and
discarded four peptide extensions composed primarily of hydro-
phobic residues, which are more likely to cause non-specific binding.
Finally, 4 peptide candidates were selected, synthesized, and assayed
for their binding affinities for β-catenin through competitive fluores-
cence polarization (FP)-based binding experiments. Our experimental
results (Table 1 and Supplementary Fig. 4) revealed that two out of the
four designed peptides show improved potency over the parent pep-
tide (IC50 = 0.15μM), with an IC50 of 0.084μM for the best peptide
NAL-9 (“EGEKQ”, Fig. 4c), which is approximately twofold better than
the parent peptide. Only one of the designed peptides NAL-10
(“AGSQP”) shows much worse performance than the parent peptide,
with an unexpectedly high IC50 value >3μM. Inspection of the Flex-
PepDock poses indicates that the poor binding of the peptide can be
attributed to the low helicity of the extension. The added N-terminal
alanine and glycine residues do not form a stable secondary structure
and appear to interact more extensively with the solvent rather than
the protein (Fig. 4d). The best extension “EGEKQ” on the other hand
comprises primarily charged residues glutamic acid and lysine, which
tend to interact strongly with the protein (Fig. 4e).

To gain further insight into how the extended residues interact
with β-catenin, we performedMD simulations of β-catenin bound with
the four designed peptides, each for 500 ns. We analyzed the contact
maps between the extended residues and the protein (Supplementary
Fig. 5). The potent binders with an IC50 < 0.15μM all appear to make

close contact with V208 and E209, which are however not involved in
the interaction with the less potent peptide. Inspection of the binding
poses of the best (NAL-9) and the worst (NAL-10) peptides reveals that
R212 interacts favorably with the extended E1 and E3 of peptide NAL-9
(Fig. 4d), but forms an intramolecular salt-bridge with E209 and is not
engaged in any interaction with peptide NAL-10 (Fig. 4e). Comparison
of the MD results of the two peptide–protein complexes suggests that
binding of negatively charged residues in the binding pocket dis-
sociates R212 from E209 and releases E209 to the solvent. Interest-
ingly, the resulted local conformational change could affect the
solvent accessibility of a nearby residue C213. C213 appears to engage
the third N-terminal residue of both peptides as if the extended helical
turn is flipped to interact with the β-catenin-binding cleft (Fig. 4d, e).
Thus, our computational results suggest a possibility of exploiting the
solvent-exposed C213 for the development of potential covalent inhi-
bitors targeting β-catenin.

N-terminally extended β-catenin-binding peptides from library
screening
Given the modest affinity improvement of the VAE-MH-derived
peptides, we next explored the limit of the N-terminal extension
strategy by chemically synthesizing and screening a combinatorial
peptide library against β-catenin to see if more potent peptide inhi-
bitors can be identified. We designed a one bead-one compound
(OBOC) peptide library in the form of Ac-X1X2X3X4-YPEDILDKHLQRV-
BBRM-resin, where each library member contained the core β-cate-
nin-binding motif, YPED ILDK HLQRV (the underlined residues
formed a lactam staple), an N-terminal extension of four random
residues (X1–X4), and a C-terminal linker sequence (BBRM; B is β-
alanine) for the purpose of library screening and hit identification.
Each random position (X1–X4) was constructed with a set of 29 amino
acids, including 7 proteinogenic amino acids (Gly, Ala, Ser, Ile, Asp,
Gln, and His), 12 α-D-amino acids (D-Ala, D-Pro, D-Val, D-Thr, D-Leu, D-
Asn, D-Lys, D-Glu, D-Phe, D-Arg, D-Tyr, and D-Trp), and 9 non-
proteinogenic amino acids amino acids (β-Ala, D-β-homoAla, L-
homoproline (Pip), cis-2-aminocyclopentylcarboxylic acid (cis-Acp),
aspartic acid α-tert-butyl ester (Isa), L-phenylglycine (Phg), D-2-
naphthylalanine (D-Nal), L-4-fluorophenylalanine (Fpa), L-norleucine
(Nle), and L-ornithine (Orn)). The inclusion of noncanonical amino
acids was intended to increase the structural diversity as well as the
proteolytic stability of the library members.

Note that the parent motif, YPEDILDKHLQRV was modified from
Peptide 9 by removing the two C-terminal residues to facilitate the
identification of any library member of improved affinity caused by
N-terminal extension. The shortened Peptide 11 (Supplementary
Table 1) binds β-cateninwith ~tenfold lower affinity than Peptide 9. The
library has a theoretical diversity of ~710,000 unique compounds and

Table 1 | MM/GBSA-binding energy and experimental IC50 results for the top 10 N-terminally extended β-catenin-binding
peptides ranked by Rosetta FlexPepDock*

Peptide Extended residues Rosetta FlexPepDock (REU) MM/GBSA (kcal/mol) in vitro IC50 (μM)

NAL-1 RYSYPEDILDKHLQRVIL −39.9 ± 6.0 −46.2 ± 8.5 Not tested

NAL-2 LYDYPEDILDKHLQRVIL −38.5 ± 6.1 −33.9 ± 5.9 Not tested

NAL-3 WHSYPEDILDKHLQRVIL −39.5 ± 6.4 −35.9 ± 3.0 Not tested

NAL-4 SQRPYPEDILDKHLQRVIL −38.6 ± 5.9 −44.2 ± 8.2 0.17

NAL-5 IWWWYPEDILDKHLQRVIL −39.3 ± 6.2 −46.8 ± 6.7 Not tested

NAL-6 SGKVSYPEDILDKHLQRVIL −37.5 ± 5.2 −48.0 ± 8.9 0.10

NAL-7 RALRLYPEDILDKHLQRVIL −38.2 ± 6.0 −43.6 ± 8.5 Not tested

NAL-8 VYFWQYPEDILDKHLQRVIL −39.0 ± 6.5 −44.1 ± 5.4 Not tested

NAL-9 EGEKQYPEDILDKHLQRVIL −38.2 ± 5.3 −46.1 ± 8.1 0.084

NAL-10 AGSQPYPEDILDKHLQRVIL −37.9 ± 6.3 −42.2 ± 2.0 >3
*Peptide extensions are underlined.
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was synthesized on 1 g of TentaGel S NH2 resin (90μm, 100 pmol
peptide/bead). Approximately 300mg of the library (~8.6 × 105 beads)
was subjected to two rounds of screening for binding to β-catenin as
detailed in “Methods” (magnetic screening followed by enzyme-linked
assay). Surprisingly, during the enzyme-linked assay, most of the
library beads developed similar, intense turquoise color during the 20-
min incubation time, suggesting that these library members bind to β-
catenin with similar affinities. We collected 25 most intensely colored
beads (which were slightly more colored than the remaining beads),
released the peptides by CNBr cleavage (after Met), and determined
the peptide sequences by MALDI/TOF mass spectrometry. Out of the
25 beads, 24 produced unambiguously sequences (Supplementary
Table 5). Inspection of the sequences showed that β-catenin prefers a
cationic residue (e.g., D-Arg and Orn) at position X4 but no obvious
preference at positions X1–X3 (Supplementary Fig. 6).

We selected five representative sequences for resynthesis and
binding analysis, based on the above preferences as well as the inclu-
sion of noncanonical amino acids for proteolytic stability (Supple-
mentary Table 6). It turns out that four out of the five sequences (L2,
L12, L17, L19) bind β-catenin with a slightly lower affinity than the core
sequence (by 1.5–2-fold) while the remaining one (L20) has a similar
affinity to the parent peptide (Supplementary Fig. 4). These results
suggest that the N-terminal extensionmay not be an effective strategy
to significantly improve peptide potency as the OBOC random
extension library failed to discover any peptides that are more potent
than the parent peptide. On the other hand, these unsuccessful library
screening results also demonstrate the power of our combined AI and
structure-based design in identifying promising peptide binders from
a very large pool of peptides, as two out of the four computationally
designed peptides showed improved (likely the maximal possible)
affinity for N-terminally extended peptides.

Iteratively fine-tuning VAE-MH for the design of C-terminally
extended β-catenin-binding peptides
Given the limitation of N-terminal extension, we shifted our focus to
C-terminal extension to design significantly more potent β-catenin
binders than the parent peptide. In peptides isolated from phage dis-
play libraries33, only two C-terminal positions did not have a strong
preference for a specific residue (positions 14 and 15 of the peptide
1YPEDILDKHLQRV14I15L). Most StAx peptides have Trp and Arg at the
last two C-terminal positions, of which the Trp residue at position 14
was thought to increase the binding affinity by engaging recognition
pockets of the surface of β-catenin while the terminal Arg residue was
disordered in the crystal structure, and did not contact β-catenin32. In
addition, our in-house data indicate substitution of the C-terminal “IL”
with bulkier unnatural amino acids, such as TertLeucine, 3-Bta, and 2-
Nal, increases the binding affinity by fivefold to the 0.03μM range
while removal of both residues reduces the binding affinity by tenfold
(Supplementary Table 1). Therefore, we extended the parent peptide
“YPEDILDKHLQRVIL” by adding up to seven amino acid residues to the
C-terminus of the peptide to probe if we can discover extended pep-
tides with significantly improved binding affinity (Fig. 5a). Given the
importance of the two terminal residues Ile and Leu for binding, we
removed these two residues to yield a short-formed parent peptide
“YPEDILDKHLQRV”, and extended this truncated parent peptide by
adding up to nine amino acid residues to the C-terminus to see if our
computational design can recover the affinity loss of the two terminal
residues.

Our Pretrain model trained on a large peptide database has
learned the sequence representation rule to represent peptide
sequences in a continuous latent space. However, valid peptide
sequences are not necessarily peptide inhibitors that bind specifically
to β-catenin. Thus, we need to feed themodel with target-specific data
to obtain probability distributions of peptide sequences that are
conditioned to a specific protein target, β-catenin. Unfortunately,

specific peptide-β-catenin-binding data are scarce. To tackle this issue,
we iteratively fine-tuned our model with the Rosetta FlexPepDock
scores of the already generated peptide sequences in two
cycles (Fig. 5a).

Since Rosetta FlexPepDock scoring is used as the first layer to
filter out peptides for the second layer evaluationwithMM/GBSA, only
those top-scored regions aremost relevant. To test if this strategy can
enrich the best peptide candidates, we first used the three FlexPep-
Dock scores I_bsa, I_sc, and rmsALL_if to rank-order the peptides from
the best to the worst with rank scores ranging from 0 to 1. Only those
top-ranked peptides were used in the fine-tune cycles. We trained four
models: Pretrain trained on a general dataset, Fine-tune1 fine-tuned
with the Pretrain results, Fine-tune2 and Fine-tune3 both fine-tuned
with the Pretrain and Fine-tune1 results. The difference between Fine-
tune2 and Fine-tune3 is that the latter was trained on 600 additional
Pretrain peptides. Random conserved mutations of Ile and Leu at
positions 14 and 15, such as Val, Ala, Ile, and Leu were introduced to
these peptides to test the importance of these two hydrophobic resi-
dues for potent peptide-β-catenin interaction.

We computed the rank scores for peptides generated by each of
the Pretrain, Fine-tune1, Fine-tune2, and Fine-tune3 models and then
combined all peptides together to compute their overall rank scores.
For each peptide, the rank difference is taken as each of the four
individual rank scores (for Pretrain, Fine-tune1, Fine-tune2, and Fine-
tune3 models, respectively) minus the overall rank score. The higher
the rank difference, the better the corresponding model can enrich
top-rankedpeptides. As shown in Fig. 5a, both YPEDILDKHLQRVIL- and
YPEDILDKHLQRV-based extensions show a clear trend of increasing
rank differences during fine-tuning, demonstrating that our fine-
tuning strategy can enrich “good” peptide binders and is thus more
likely to generate peptides with higher affinity for β-catenin. Interest-
ingly, no distinct shift to higher rank differences is observed after Fine-
tune1 (Fig. 5a). Nevertheless, for YPEDILDKHLQRVIL-based extension,
the Fine-tune3 model did improve its overall rank compared to Fine-
tune2 and Fine-tune1.

We plot the probability distributions of the FlexPepDock scores in
Fig. 5b, c for peptides generated by the three Fine-tunemodels and the
Pretrain model. Compared to the Pretrain model, the probability dis-
tributions of I_sc and rmsALL_if shift to the left-hand side while the
distributions of I_bsa to the right-hand side for all three fine-tune
modes, indicating that the C-terminal extension could boost the
peptide–protein interaction for both parent peptides when the VAE-
MHmodel was fed withmore specific data. We further set three cutoff
values of -6 REU, 250Å2 and −0.2Å for I_sc, I_bsa, and rmsALL_if,
respectively, and plot in scatter plots the peptides that have the
FlexPepDock scores above the corresponding cutoff values (Supple-
mentary Fig. 7). As illustrated in the pie charts, all three Fine-tune
models show a clear enrichment of top-ranked peptides compared to
the Pretrain model.

A total 162 peptides with their FlexPepDock scores above the
cutoff values were subjected to MM/GBSA calculation (Fig. 6a). The
MM/GBSA results show that the YPEDILDKHLQRV-based extensions
have a wider binding energy distribution than the YPEDILDKHLQRVIL-
based extensions (Fig. 6b). Ten top-rankedpeptide extensions for each
of the twoparent peptideswere chosen for experimental synthesis and
binding assay (Fig. 6c). Sequence alignment of the top 10
YPEDILDKHLQRV-based extensions indicates that our pipeline can
recapitulate the binding favorable hydrophobic property of the
C-terminus of the parent peptide (position 14 and 15) to propose
hydrophobic/aromatic residues, such as Trp, Phe and Tyr for these
positions. Surprisingly, Asp and Glu are also frequently observed in
these positions (Fig. 6e). Why are negatively charged Asp and Glu
residues favored in these positions and often followed by aromatic
residues? Inspection of the crystal structures of the β-catenin bound
with TCF, LEF1 and TCF446–48 reveals that all the peptide motifs bound
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to the binding site 3 ofβ-catenin are enriched in Asp andGlu, and these
negatively charged residues appear to form very favorable interaction
with Q302 and R376 of β-catenin (Fig. 6d). Since all of the TCF
sequences were included in our training dataset, it is thus not sur-
prising that our VAE-MH model learned to conditionally generate
negatively charged residues followed by aromatic residues in these

positions. Unlike the YPEDILDKHLQRV-based extensions, Asp or Glu
does not occur frequently in the YPEDILDKHLQRVIL-based extensions,
instead, aromatic residues Trp, Phe and Tyr are obviously more
abundant (Fig. 6e, f).We suspect that the differencemay arise from the
fact that the two additional hydrophobic residues increase the prob-
ability of the occurrence of hydrophobic residues in the following
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positions as their generation is not only learned from the training data
but also depends on the preceding sequences.

Finally, eight peptide candidates were selected, synthesized, and
assayed for their binding affinities for β-catenin through competitive
fluorescencepolarization (FP)-basedbinding experiments (Table 2 and
Supplementary Fig. 4). Four of our designed peptides show improved
potency over the parent peptide, with the best peptide CAL-2 having

an IC50 of 0.010μM, which represents a 15-fold improvement over the
truncated parent peptide. Three of our designed peptides show
slightly decreased binding affinity than the parent peptide, with their
IC50 values in the 0.3μM range. Interestingly, all these three peptides
are derived from the full-length parent peptide and contain Ile-Leu at
positions 14 and 15, while the best extension CAL-2 (14WWFTDDH21W)
has two Trp residues at positions 14 and 15. Interestingly, when
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transferring our designed sequences to experimental lab for synthesis
and binding assays, a mistake was made on the CAL-7 sequence. Upon
realizing the mistake, we decided to continue to test this “mistaken”
peptide and use its result as a control. As expected, the peptide fails to
show any affinity improvement and has a similar affinity (IC50 = 1.4μM)
to the parent peptide (Table 2). Given the small difference between
CAL-7 (Fine-tune3) and CAL-7 (error), this result highlights the ability
of our computational approach in designing highly specific β-catenin
binders.

To gain further insight into how the extended residues, especially
the two Trp residues in positions 14 and 15, improve the β-catenin
affinity, we investigated the binding pose of the best peptide CAL-2
with β-catenin (Fig. 6g).W14 is found to engagewith R376 through api-
cation interaction, and W21 forms a π–π stacking interaction with
W338, a hot spot residue on β-catenin. On the other hand, W15 does
not interact with β-catenin and instead points away to the solvent.
During the MD simulation, the side chains of all these residues rear-
range themselves significantly. W21 moves slightly away from W338,
but the engagement is maintained throughout the simulation. W14
forms a new interaction with W338 while interacting simultaneously
with R376. These results provide an explanation why the C-terminal
extensions starting with aromatic residues followed by negatively
charged residues can increase the β-catenin-binding affinity of the
parent peptide.

Iteratively fine-tuning VAE-MH for the design of NEMO-binding
peptides
To demonstrate its broad applicability, we further applied our com-
putational strategy to a more challenging and less explored system:
the NF-κB essential modulator (NEMO). NF-κB is a transcription factor
responsible for activating genes involved in inflammation, immune
response, and cell survival49. Abnormal NF-κB signaling is implicated in
various autoimmune diseases and cancers. Under physiological con-
ditions, NF-κB signaling is regulated through the interaction between
the inhibitor of κB (IκB)-Kinase (IKK) and NF-κB essential modulator
(NEMO)50–52. Binding of IKK to NEMO activates IKK, leading to the
phosphorylation and degradation of IκB, resulting in increased NF-κB
activity. One strategy to target elevated NF-κB activity is to inhibit the
NEMO-IKK interaction, thereby increasing IκB activity and reducing
NF-κB activity53.We aimed to designN-terminal extensions for a known
NEMO-binding peptide to enhance its potency against the NEMO-IKK
interaction.

We employed the 11-residueNEMO-bindingdomain (NBD) of IKKβ
(735TALDWSWLQT745E in IKKβ numbering) as a template for extension
(Fig. 7a). The parent peptide, NBD, which includes the conserved
hexapeptide LDWSWL, exhibits weak binding to NEMO, with an
IC50≫ 100μM. The NEMO/IKKβ peptide complex presents a structure
of an asymmetrical, parallel four-helix bundle. Each NEMO molecule
resembles a crescent-shaped α-helix, and two of these helices form a

dimer by packing head-to-head53. The dimeric NEMO features a flat slit,
forming two broad and extensive IKK-binding pockets. NBD peptides
are wedged between the interfaces of the NEMO dimer at the C-ter-
minus, with the IKK-binding surfaces extending from the N to C ter-
mini. NBD occupies only the C-terminus pocket, leaving a substantial
cavity in the middle of the helix bundle for N-terminal exten-
sion (Fig. 7a).

Consequently, we applied our VAE-MH workflow to design
N-terminally extended NBD peptides, aiming to enhance their binding
affinity for NEMO (Fig. 7b). However, designing peptide inhibitors for
NEMO presents a substantial challenge for two primary reasons. First,
both NEMO and IKK exhibit considerable conformational flexibility, as
demonstrated by the crystal structure. The lack of a regular secondary
structure in themajority of NBDmakes it difficult to predict accurately
the interaction strengths between designed peptides and NEMO.
Second, the flat and extensive binding surface of NEMO/IKK lacks
distinct pockets or grooves that could be targeted by peptide inhibi-
tors, complicating the design of smaller-sized peptide inhibitors to
disrupt this interaction.

In light of these challenges, we placed greater emphasis on
sequence space sampling rather than extensive structural space
refinement with MD simulations (Fig. 7b). We adopted the second
computational pipeline used in the design of C-terminally extended β-
catenin inhibitors, which combined VAE-MH sampling with multiple
fine-tuning cycles. In each cycle, we sampled random sequences and
calculated their interface energies using PyRosetta with the Rosetta
energy function54. The energy distribution from one cycle guided the
sampling of the next batch of sequences in the subsequent cycle.
During the fine-tuning cycles, the interface distributions shifted
towards a more favorable direction (Fig. 7c).

Unlike the β-catenin system, we did not rely solely on the MM/
GBSA method for ranking and prioritizing peptides for synthesis and
assays. Instead, we scrutinized the interaction modes of the top 67
peptides generated from VAE-MH with NEMO. We also considered the
polarity, diversity, and length of these peptides. Following MD simu-
lation and structural inspection, we selected four peptide sequences
with favorable binding poses and other properties for synthesis and
binding assays. As summarized in Table 3, two of the tested peptides
(NBD+2 andNBD+12) exhibited significantly improved binding relative
to NBD, with IC50 values of ~50μMand ~75μM, respectively. The other
two peptides (NBD+1 and NBD+4) were only slightly more potent than
NBD, with IC50 values exceeding 100μM (Supplementary Fig. 8).

The binding structures of our four designedpeptides inNEMOare
illustrated in Fig. 7d. Notably, noneof these peptide extensions adopt a
regular secondary structure. The binding site for the NBD extension is
quite polar, consisting of residues K90, R87, Q86, and F82, favoring
negatively charged residues. This explains why NBD+2, primarily
composed of polar residues with the N-terminus capped by a Trp
residue that stacks against F82, and NBD+12, comprising two Asp

Fig. 6 | Computational and experimental evaluationofour designedC-terminal
peptide extensions. a Workflow of our C-terminal extension design process.
b MM/GBSA energy distributions for top peptides generated by the four VAE-MH
models. c MM/GBSA energies of top ten peptides for each of the two C-terminal
extensions. Error bars represent standard deviations. d Crystal structures of TCF-
bound β-catenin (PDBid: 1G3J, 2GL7, and 3OUW). e Sequence alignment of selected
peptide extensions (with MM/GBSA-binding energy below −40kcal/mol) for
YPEDILDKHLQRV-based extension (4–9 residues). f Sequence alignment of selec-
ted peptide extensions (with MM/GBSA-binding energy below −40 kcal/mol) for
YPEDILDKHLQRVIL-based extension (2–7 residues). g Initial and final structures
along with their superimposition of the best peptide CAL-2 bound to β-catenin
during the MD simulation. Extension residues and β-catenin residues crucial for
binding are labeled and represented in stick. Sample sizes in (b) for
YPEDILDKHLQRVIL-based extension and YPEDILDKHLQRV-based extension are
n = 45 andn = 54, respectively. In the left panel of (b), boxes bound the interquartile

range of (Q1 = −45.3, median = −41.5, Q3 = −37.8) for Pretrain, (Q1 = −43.8, med-
ian = −40.8, Q3 = −39.2) for Fine-tune1, (Q1 = −44.6, median= −43.6, Q3 = −44.6) for
Fine-tune2, and (Q1 = −46.5, median= −45.4, Q3 = −43.2) for Fine-tune3; whiskers
represent the most extreme values of (minima = −45.3, maxima = −37.8) for Pre-
train, (minima= −47.1, maxima = −37.2) for Fine-tune1, (minima = −49.1, maxima =
−39.4) for Fine-tune2, and (minima= −49.2, maxima= −39.9) for Fine-tune3. In the
right panel of (b), boxes bound the interquartile range of (Q1=-47.0, median =
−44.2, Q3 = −42.9) for Pretrain, (Q1 = −45.4, median=-41.4, Q3 = −39.1) for Fine-
tune1, (Q1 = −48.6, median=-44.3, Q3 = −42.5) for Fine-tune2, and (Q1 = −49.8,
median = −45.8, Q3 = −43.7) for Fine-tune3; whiskers represent the most extreme
values of (minima = −50.2, maxima = −33.2) for Pretrain, (minima = −54.4, max-
ima = −34.7) for Fine-tune1, (minima= −55.3, maxima= −35.5) for Fine-tune2, and
(minima = −53.3, maxima= −37.9) for Fine-tune3. In (c), whiskers indicate standard
deviations for tripletmeasurements. Source data are provided as a SourceDatafile.
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residues, exhibited stronger binding than the other two peptides.
Remarkably, even without structural attention, our sequence-based
VAE-MH model successfully captured the favorable interaction pat-
terns and generated two peptide sequences with improved NEMO-
binding compared to the parent peptide.

Discussion
Deep generative models have achieved remarkable success in natural
language processing, enabling the modeling of complex distributions
in real-word audio and text data16,18. They have also proven to be a
powerful tool for generating novel chemical and biological structures
with desiredproperties55,56. Yet, to our knowledge, this strategy hasnot
been extensively explored in the design of high-affinity peptide inhi-
bitors targeting specific proteins. We introduce two integrated com-
putational pipelines that combine deep learning, peptide docking, and
molecular dynamics (MD) simulation to enhance the binding affinity of
a parent peptide for β-catenin and NEMO, respectively, through the
design of N- or C-terminal extensions.

Our first computational pipeline relies on a hierarchical down-
ward selection strategy to rank-order the peptide extensions

generated by VAE-MH. This is necessary because the VAE-MH Pretrain
model is not trained on the β-catenin specific binding data, so two-step
evaluation with Rosetta FlexPepDock and MM/GBSA is leveraged to
select peptides that have a high affinity for β-catenin. We employed
this workflow to design N-terminal extensions. Two of the four
designed peptides exhibited enhanced binding affinity for β-catenin,
whereas the improvement was modest (e.g., twofold). Why was the
affinity increase so modest? In the best N-terminal extension NAL-9,
two of the five extended residues are negatively charged, com-
plementary to the highly polar surface of the β-catenin-binding cleft.
Consequently, both the extension and the protein likely face compe-
titive interaction from the solvent, attenuating the peptide–protein
binding. This finding is further supported by our library screening
data, inwhich none of the N-terminally extended peptides showed any
affinity improvement relative to the parent peptide. These results
suggest that the N-terminal extension may not be an effective way to
design peptides with significantly enhanced potency, probably due to
its limited design space.

In our second computational pipeline, the VAE-MH model was
iteratively fine-tuned to generate β-catenin-binding C-terminal
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Fig. 7 | Design of NEMO/IKK-binding peptide extensions. a Crystal structure of
theNEMO/IKK complex (PDBid: 3RBT53).bWorkflow illustrating the peptide design
process. c Distribution of interface energy (REU) throughout fine-tuning cycles.

d Visualization of peptide-NEMObinding poses for the four tested peptides. NEMO
helices are depicted in gray, and peptide inhibitors are represented in distinct
colors. Source data are provided as a Source Data file.

Table 2 | MM/GBSA and experimental IC50 results of the eight C-terminally extended β-catenin-binding peptides*

Peptide Peptide sequence MM/GBSA (kcal/mol) in vitro IC50 (μM)

CAL-1(Fine-tune3) YPEDILDKHLQRVWCWDDNT −52.9 ± 3.2 0.078 ±0.01

CAL-2 (Fine-tune3) YPEDILDKHLQRVWWFTDDHW −52.9 ± 2.8 0.010 ± 0.006

CAL-3 (Fine-tune1) YPEDILDKHLQRVEYYYFRWHH −54.4 ± 3.2 0.089 ± 0.013

CAL-4 (Fine-tune2) YPEDILDKHLQRVFVWCDDE −55.3 ± 4.6 0.070 ±0.021

CAL-6 (Fine-tune2) YPEDILDKHLQRVILYYYIIG −49.1 ± 4.7 0.24 ±0.038

CAL-9 (Fine-tune3) YPEDILDKHLQRVILYYFSIE −49.2 ± 3.3 0.30 ± 0.037

CAL-10 (Fine-tune2) YPEDILDKHLQRVILFFC −47.2 ± 3.8 0.20 ± 0.064

CAL-7 (Fine-tune3) YPEDILDKHLQRVILFHFFCL −47.9 ± 4.5 Not tested

CAL-7 (human error) YPEDILDKHLQRVILFHFCIL Not calculated 1.4 ± 0.39
*Peptide extensions are underlined.
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extensions. Unlike the N-terminal extension, we observed a significant
improvement in binding affinity with the C-terminal extension. Out of
the eight tested C-terminal extensions, four exhibited enhanced
binding affinity for β-catenin, with the best one, CAL-2, showing a
remarkable 15-fold improvement over the parent peptide. Encouraged
by this superior performance, we extended the application of the
second computational pipeline to design N-terminal extensions tar-
geting NEMO. As anticipated, two out of the four designed peptides
demonstrated substantially enhanced binding affinity for NEMO
compared to the parent peptide, NBD. These findings underscore the
effectiveness of our transfer learning strategy in the design of target-
specific peptide inhibitors. Our iterative fine-tuning VAE-MH model
not only learns sequence representation within a large and general
dataset, but also captures target-specific features within a small and
target (i.e., β-catenin, NEMO)-focused dataset. While transfer learning
has been utilized to design small molecule drugs and antimicrobial
peptides to address data scarcity issue57,58, its potential in the design of
small molecules or peptides targeting specific proteins has remained
largely unexplored, primarily due to the limited availability of target-
specific data.

Overall, our computational models were able to generate hun-
dreds of potential peptide sequences from an enormous residue
sequence space (i.e., 205–209). These sequences were subsequently
subjected to peptide docking and MD simulations, resulting in the
prioritization of a much reduced number (tens) of peptide candidates
for experimental evaluation. Notably, half of the designed β-catenin
inhibitory peptides, 6 out of 12, exhibited improved binding affinity
compared to the parent peptide. Particularly remarkable was the
performance of the C-terminally extended peptide CAL-2, which
bound to β-catenin with an IC50 of 0.010 ± 0.06 μM. This represents a
15-fold improvement over the parent peptide (0.15 ± 0.04μM) and a
threefold improvement over the most potent binder
(0.037 ± 0.02μM) in our training dataset. These results are particularly
promising given that our designed peptides are composed solely of
natural amino acids, in contrast to the utilization of unnatural amino
acids and peptide stapling, which are commonly used for affinity
maturation59. Furthermore, for the NEMO system, two out of the four
designed peptide extensions demonstrated significantly enhanced
binding to NEMO. This outcome is noteworthy for two reasons. First,
the parent peptide, NBD, is unstructured and exhibits weak binding
with an IC50≫ 100μM. Second, the NEMO/IKKβ complex is char-
acterized by an elongated, loosely packed four-helix bundle, and
NEMO and NBD do not make extensive contact at the dimer interface.
Taken together, these findings underscore the effectiveness of our
integrated computational pipelines in the design of potent peptidyl
inhibitors tailored for specific protein targets.

Peptides hold a tremendous potential for targeting large and flat
protein-protein interactions (PPIs)60. More than 80 therapeutic pep-
tides are on global market and more than 100 peptides are in the
various stages of preclinical or clinical studies61. As such, peptides have
become a unique drug class for treating a wide range of diseases,
including cancer, infectious diseases, diabetes, and gastrointestinal
diseases62. Given this, robust approaches that leverage recent advan-
ces in deep learning are urgently needed to accelerate the design of

target-specific peptide inhibitors. To this end, our computational
pipeline that combines deep learning-based VAE-MH sampling with
biophysics-based Rosetta docking and MD simulation provides a
promising way to enable the design of peptide extensions with sig-
nificantly improved binding affinity for a specific protein target.
Besides peptide extension, our computational pipelines will also be
useful for the de novo design of peptides where a well-defined peptide
template exists for the protein of interest.

Methods
Data preparation
We created two datasets; one is labeled, and the other is unlabeled.We
hypothesized that the co-crystallized peptides in protein–peptide
complexes possess hidden features to learn for the design of novel
protein-binding peptides. Thus, we considered these peptides as
potential PPI binders and labeled them as positive. These “positive”
peptides come from two main sources. The first is THPdb, which
contains FDA-approved peptide drugs42. The original size of the data-
set is 188. However,most of the peptides have length greater than 100.
We randomly sliced these peptides into 80K peptide fragments of
length up to 50 and considered these peptide fragments as potential
PPI binders. The second source is PixelDB63. This dataset contains 1966
protein–peptide complex structures. We computed the interface
energy ΔG using the Rosetta Interface module64 to annotate these
protein–peptide complexes. We kept the peptides whose ΔG is < −35
Rosetta Energy Unit (REU) and labeled them as potential PPI binders,
whichyielded 290potential peptides. Since the lengths of all these 290
peptides are within 50, we did not slice this dataset. The rest of pep-
tides were discarded instead of being labeled as negative. We denoted
this dataset as PixelDB. The “negative” samples come from randomly
sampling the Uniprot protein sequence database. In Uniprot, some
sequences are “reviewed”, meaning that the information on the cor-
responding proteins has been extracted from literature, and the rest is
“unreviewed”, meaning that the corresponding sequences were only
computationally analyzed. We combined both reviewed and unre-
viewed sequences to create a unified Uniprot dataset. After filtering
out peptides longer than 50 amino acids, we obtained a dataset of
around 95K sequences. Since almost none of these peptides are known
to exist in a peptide–protein complex structure, we considered the
wholeUniprot dataset asnegative samples.We randomly sampled80%
of the positive and negative sequences to form the training samples.
The rest 20% is the test dataset. From the training samples, we ran-
domly sampled 80% of them four times to form four labeled training
datasets. The unlabeled dataset contains protein sequences from
Uniprot, PixelDB and sliced THPdb. This dataset serves for training
peptide sequence encoding. We remove all the sequences whose
length is less than 17 and greater than 50. This reduces the size of our
final unlabeled dataset to around 160K.

Sequence representation
In many NLP tasks, a word is embedded into high-dimensional vectors
for a meaningful representation65. We used word-embedding techni-
ques similar to thoseused inNLP to represent peptide sequences. First,
we split a peptide sequence into a base peptide (the central 15

Table 3 | MM/GBSA and experimental IC50 results of the four tested NEMO inhibitors*

Peptide Peptide sequence MM/GBSA (kcal/mol) in vitro IC50 (μM)

NBD+1 (Fine-tune3) IKKSSTALDWSWLQTE −19.2 ± 1.5 > 100

NBD+2 (Fine-tune3) WSHSSHTALDWSWLQTE −17.9 ± 1.1 50

NBD+4 (Fine-tune3) LNQQQSSTALDWSWLQTE −14.9 ± 1.2 > 100

NBD+12 (Fine-tune3) LKSDDSSTALDWSWLQTE −16.3 ± 1.1 75
*Peptide extensions are underlined.
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residues) and an extension (the rest N- or C-terminal residues). Then
we tokenize the two parts. We create a vocabulary of size 24. The
vocabulary contains 24numbers from0 to 23,where0–3 represent the
start, the end, an unknown residue, and a blank space padding of the
sequence, respectively, and 4–23 each represent one of the 20 natural
amino acids. We map each part onto these number representations.
For the base peptide, the length is fixed to 15. For the extension, we
limit our sequence length to 35. Any sequences shorter than 35 will be
padded with number 3 until the total length reaches 35. Second, we
embed each of these numbers in their one-hot representation into a
high-dimensional continuous vector space as the final representation
of the peptide sequences. For example, for a tokenized extension of
length N and embedding size M, the representation will be N ×M
dimensional. This feature transformationprocess is done using a linear
layer that is a part of our VAE network. Finally, the representation will
be learned through the VAE training.

Latent space encoding
Themodel components for the base peptide encoding and the peptide
extension encoding are the same. The only difference is that the input
for the base peptide model has a fixed length while the input for the
peptide extension model has a varying length. Thus, the following
description of the VAE model applies to both models.

In the encoding task, a gated recurrent unit (GRU) based varia-
tional autoencoder (VAE) is used, which involves an encoder E and a
decoder D. E encodes a sequence x into a latent space vector z. D
decodes this latent space vector z and outputs ~x such that it is as
similar to x as possible. Thus, the whole autoencoder is optimized
based on a reconstruction error. VAE makes the autoencoder a gen-
erative model by learning the encoder D such that DKL(qD(z∣x)∥p(z∣x))
is minimized, where qD(z∣x) is the distribution of z produced by the
encoder D and p(z∣x) is the true distribution of z. Such an objective
function cannot be optimized directly. However, minimizing this
objective is the same asminimizing the negative evidence lower bound
(ELBO)66.

�ELBO= � EqDðzjxÞ logpðxjzÞ+DKLðqDðzjxÞ k pðzÞÞ ð1Þ

Equation (1) is used as a loss function for learning our VAEmodel.
The first term is the reconstruction error.We use cross-entropy (CE) to
measure the error since our final output x is discrete. The second term
is the distribution difference between the generated latent space
vector z and some known prior of z. In a typical setup, the prior p(z) is
set to be a unit Gaussian N(0, 1) for each dimension. Thus, the final
expression of our loss function is shown in Eq. (2),

Lossðx,~xÞ= �
XL

l = 1

XV

v= 1

xlv logðpð~xlvÞÞ+
XK

k = 1

qDðzk jxÞ log
qDðzk jxÞ
pðzkÞ

� �
ð2Þ

where,
L is the length of the sequence and V is the size of the tokens,
xlv is the value of the vth dimension of the lth token. Note here,
each xl is represented as a one-hot vector.
pð ~xlvÞ is the probability that the vth dimension of the lth
token is one.
qD(zk∣x) = N(μk, σk) is the normal distribution of the kth dimension
of the encoding and the mean and variance are outputs of the
encoder.
p(zk) = N(0, 1) is a one dimensional unit Gaussian distribution.
Since the input of the VAEmodel isN ×M sequential data,we use a

GRU network to process the data. The GRU network is a type of
recurrent neural network (RNN) that is specially designed to process
order-dependent data. It is a frequently used architecture in text
processing, but faces significant challenges in processing long
sequential data due to the vanishing gradient problem67. GRU

addresses this issue by adding gate mechanisms68. Compared to
another frequently used long-short-termmemory (LSTM) model, GRU
has fewer parameters and, is thus computationally lighter. In our
model, the encoder receives embeddings as inputs and uses the GRU
network to process the embeddings. The initial hidden state is set to 0.
The output of the GRU network is connected to two linear layers. One
layer outputs the mean estimation of the encodings. The other layer
outputs the variance of the encodings. The decoder of the network
receives the mean estimation of the encodings and the embedding of
the sequences as the inputs, which are processed by another GRU
network. The mean of the encodings is treated as the initial hidden
state of the GRU. A linear layer is connected to the output of the GRU.
The result of the linear layer is N × 24 dimensional, indicating the
probability of the occurrence of 24 individual vocabularies in each
position of the protein sequence. The ground truth sequences are
represented using N × 24 dimensions, and one-hot vector is used for
the second dimension. Thus, the cross-entropy loss is calculated using
the output of the decoder and the ground truth in this representation.

Conditional sequence generation
The generation of desired peptide sequences is done by using the
Metropolis Hasting (MH) algorithm69. To generate a peptide extension
that is a potential PPI binder given the base peptide, we need a con-
ditional distribution q(z∣c), where c is the label, z is the latent space
encodingof the extension.However, thedistribution formofq(z∣c) can
be arbitrary and the dimension of z needs to be high enough to reduce
the reconstruction error in VAE. Thus, we use the MH algorithm, a
Markov Chain Monte Carlo method known for high-dimensional
sampling, to sample z from an unknown distribution q(z∣c). This is
achieved via the following observation. From the Bayes rule, q(z∣c) can
be written as,

qðzjcÞ= qðcjzÞqðzÞ
qðcÞ ð3Þ

In Eq. (3), c is fixed. Thus, q(c) is constant independent of z. As a result,
to calculate the acceptance probability in the MH algorithm, the two
terms that need to be computed are q(c∣z) and q(z). Although VAE
regulates z to a unit distribution, the distribution q(z) is not accurately
represented by a unit Gaussian21. Thus, we approximate q(z) using a
Gaussian mixture model.

For q(c∣z), a support vector classifier (SVC) with a fivefold cross-
validation and bootstrap strategy is used. For each of the four labeled
training datasets, we fit SVC to obtain qn(c∣z), where n = 1, 2, 3, 4. Then,

qðcjzÞ=
P

n= 1
4qnðcjzÞ
4 . We measure the algorithm performance on the

unified test dataset. In Supplementary Table 2, we compare the dif-
ferent algorithms for estimating q(c∣z) in different iterations. The
comparison shows that SVC with bootstrap yields the best result.

Details of the potential binder sampling process are given in
Supplementary Methods 1 and 2. We consider a Gaussian distribution
as the proposal distribution for qðzt + 11 jzt1Þ. We use 500 burn-in itera-
tions to initialize the MH sampling chain. Since Gaussian is symmetric,
the proposal distribution is not involved in our acceptance rate cal-
culation. To ensure computational stability, we compute the accep-
tance rate in a log scale. After a desired encoding is sampled, we
decode it to a peptide extension sequence via our extension decoder.
The decoding process is completed in a recursive fashion:
sequencei = decoder(sequence0, sequence1,…, sequencei−1), where
sequencei stands for the sequence token at the ith position of the
sequence. sequence0 is set to 0, which is the token to signal the start of
the sequence. This process is recursive because we do not know the
input sequence at the beginning. In the N-terminal extension, we only
require peptide extensions of 2–5 residues. Thus, we loop over theMH
algorithm to sample potential binders of a length up to 5 that do not
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belong to the peptide extensions in the labeled dataset until 100
peptide extensions are obtained for each length. Finally, we con-
catenate the extensions with the base peptide to form complete
peptides.

Rosetta FlexPepDock
Rosetta FlexPepDock11 was employed to estimate thebinding energyof
a peptide–protein complex structurewith theRosetta scoring function
using the following four metrics: interface energy (I_sc), peptide score
(pep_sc), root-mean-square of interface atoms (rmsALL_if), and buried
surface area of the interface (I_bsa) that have been widely used for the
evaluation of protein-protein interface energies70. I_sc is calculated by
summing over the energies contributed by the interface residues of
the peptide and the protein. The lower the I_sc and pep_sc values, the
stronger the binding. I_bsa is calculated by subtracting the sum of the
solvent accessible surface area (SASA) of each monomer from that of
the complex. A larger I_bsa indicates a stronger peptide–protein
interaction. RmsALL_if is the root-mean-square-deviation (RMSD)
between an output model and the reference structure, so a smaller
rmsALL_if value usually indicates better binding of the peptidewith the
protein. For each input peptide–protein complex, the interface ener-
gies are computed for the top 50 conformations sampled with Rosetta
FlexPepDock11, and their mean values are reported as the binding
energies for the complex. Finally, we define a combined binding score
as pep sc�I sc�I bsa

rmsALL if to rank the VAE-MH-generated peptides. We also
define an overall ranking score as the sum of the individual ranks for
pep_sc, I_sc, I_bsa, and rmsALL_if.

MM/GBSA-binding free energy calculation
Each of the top-ranked peptides based on their Rosetta FlexPepDock
combined scores was subjected to MD simulation and MM/GBSA-
binding free energy calculation. All MD simulations were conducted
with the CHARMM27 force field using Gromacs 5.071,72. MD simulations
were started from the lowest REU conformations of the corresponding
peptide–protein complexes sampled by Rosetta FlexPepDock. All
peptide–protein complexes were solvated in a TIP3P water box with
12Å padding on each side of the box and were neutralized with the
appropriate number of sodium and chloride ions. The resulting sys-
tems were first minimized with the steepest descent algorithm for
5000 steps, and then by the conjugated gradient algorithm for
10,000 steps. Afterminimization, the systemswereheated to 310K and
equilibrated for 1 ns in the NPT ensemble at a pressure of 1 atm using
the Parrinello-Rahman pressure coupling73. The Particle Mesh Ewald
(PME)method74 with a cutoff distance of 14Åwas employed to handle
the long-range electrostatic interactions, and a cutoff distance of 10Å
was also used for the truncation of the Lennard–Jones potentials. All
bonds involving a hydrogen atom were constrained by the LINCS
algorithm75. Finally, three independent production simulations were
carried out each for 10 ns for each peptide–protein complex. In total,
1000 snapshots were evenly taken from each trajectory and then
subjected to the endpoint binding energy calculation using
GMX_MMPBSA29. The mean and standard deviation of the MM/GBSA-
binding free energy were calculated over the three simulation runs.
The modified Generalized Born model GB-OBC176 was used. The salt
concentration was 0.15M. The internal dielectric constant was 2 and
the external dielectric constantwas80. Themolecular surfaceareawas
calculatedwith a probe radius of 1.4Å using the Linear Combination of
Pairwise Overlaps (LCPO) algorithm77. The surface tension was set to
0.0072 kcal/(mol ⋅Å2) for the nonpolar contribution.

β-Catenin peptide library synthesis
The peptide library was synthesized on 1.0 g of TentaGel S NH2 resin
(90μm diameter, 0.26mmol/g; Supplementary Fig. 9). Each coupling
reaction was performed at RT using 5 equiv of Fmoc-amino acids and
HATU/HOBt/DIPEA (5/5/10 equiv) for 1 h unless otherwise mentioned.

The N-terminal Fmoc were removed using 20% piperidine in DMF. A
linker sequence (β-Ala-β-Ala-Arg-Met)wasfirst synthesized followedby
the common peptide region YPEDILDKHLQRV using the above con-
ditions. Next, the variable region (X1–X4) was synthesized using the
split-and-pool synthesis method78. In brief, the resin was divided into
29 equal portions by volume and each portion was transferred into a
separate reaction vessel. To each vessel, 4.5 equiv of a different Fmoc-
amino acid was added along with HATU/HOBt/DIPEA (5/5/10 equiv).
Capping agents CD3CO2H, CH3CD2CO2H, and/orCH3CO2Hwereadded
into each coupling reaction to generate 10% chain termination (for the
synthesis of X1–X4 positions only) to facilitate sequence determination
by mass spectrometry79,80. For amino acids with unique residual mas-
ses, 0.5 equiv of CD3CO2H was used, whereas 0.25 equiv of CH3CO2H
and 0.25 equiv of CD3CO2H were included into the coupling reactions
for D-Ala, D-Leu, D-Lys, Orn, Acp, Isa and0.25 equiv of CH3CD2CO2H and
0.25 equiv of CD3CO2H were added to the reactions for βAla and Nle.
After the addition of theX4 position, all the resinportionswerepooled,
exhaustively washed with DMF, and treated with 20% piperidine for
Fmoc removal. The split-and-pool process was repeated to couple
residues X1-X3. After the addition of the X1 residue, the N-terminal
Fmoc group was removed, and the N-terminus was acetylated by the
treatment with 10 equiv of acetic anhydride. For peptide stapling, the
Mtt and O-2-PhiPr protecting groups on Lys and Asp residues,
respectively, were selectively deprotected using 2% TFA/1% TIPS in
DCM (5min× 6 times). The resulting Asp and Lys side chains were
crosslinked by the treatment of PyBOP/HOBt/DIPEA (5/5/10 equiv) for
1.5 h twice at RT. The peptidesweredeprotectedwith reagent K for 3 h,
washed thoroughly with DCM/DMF, and stored at− 20 °C in DMF.

β-Catenin peptide library screening
For the first round of screening (magnetic sorting), 300mg of the
library resin waswashed extensively with H2O and HBST-gelatin buffer
(30mMHEPES, 150mMNaCl, pH 7.4, 0.05% Tw-20, 0.1% gelatin, 2mM
DTT and 3% BSA). Biotinylated β-catenin protein was added to the
HBST-gelatin buffer at a concentration of 100 nM and incubated with
the resin for 6 h at 4 °C. The solution was drained and washed three
times with the HBST-gelatin buffer to remove any excess biotinylated
protein. In total, 50μL of SA-coated Dynabeads (Invitrogen) in the
HBST-gelatin buffer was added to the resin and incubated with gentle
mixing for 20min at 4 °C. After washing with the HBST-gelatin buffer
to remove unbound magnetic particles, the resin was slowly added
along the side of a 15-mL Falcon tube set in a magnetic particle con-
centrator (TA Dynal MPC-1). Positive beads (beads with Dynabeads on
their surface) were attracted to the concentrator wall while the nega-
tive beads settled at the bottom of the tube. The positive beads were
transferred to a 0.8-mL Bio-Rad column and washed with the HBST-
gelatin buffer. For the second round of screening, 10 nM biotinylated
β-catenin in the HBST-gelatin buffer wasmixedwith the positive beads
from above and incubated for 6 h at 4 °C. Next, the resin was drained
gently and incubated with 1μg/mL streptavidin-alkaline phosphatase
(SA-AP) in the HBST-gelatin buffer at 4 °C for 10 min. After washing
with the HBST-gelatin buffer (3 × ) and staining buffer (30mMTris, pH
8.5, 100 nM NaCl, 5 mM MgCl2, 20μM ZnCl2) (3 × ), the beads were
transferred to a Petri dish using 1mL of staining buffer. To the Petri
dish, 100μL of 5mg/mL of 5-bromo-4-chloro-3-indolyl phosphate
(BCIP) was added, and the mixture was incubated at RT on a rotary
shaker. An intense turquoise color developed on positive beads in
20min and the staining reaction was quenched by the addition of 1mL
of 1MHCl. Themost intensely colored beads (25 beads) weremanually
isolated with a micropipette under a dissecting microscope. The
sequences were determined using MALDI-TOF mass spectrometry79.

Individual peptide synthesis and labeling
β-Catenin peptides were manually synthesized by SPPS on Rink amide
resin by using Fmoc chemistry and 2-(7-aza1H-benzotriazole-1-yl)-
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1,1,3,3-tetramethyluronium hexafluorophosphate (HATU) as the cou-
pling agent. Coupling reactions typically involved Fmoc-amino acids (5
equiv.), HATU (5 equiv.) and diisopropylethylamine (DIPEA; 10 equiv.),
and were carried out at room temperature (RT) for 45min. Peptides
were cleaved off the resin and deprotected by treatment with 92.5%
TFA, 2.5% water, 2.5% triisopropylsilane (TIPS), and 2.5% 1,3-dime-
thoxybenzene at RT for 3 h. The solvents were removed by flowing a
stream of N2 over the solution, and the residue was triturated three
times with cold Et2O. The crude peptides were purified by reversed-
phase HPLC equipped with a Waters XBridge C18 column, which was
eluted with linear gradients of acetonitrile (containing 0.05% TFA) in
ddH2O (containing 0.05% TFA). For peptides containing a side-chain
lactam cross-link, Lys(Mtt) and Asp(O-2-PhiPr) were incorporated at
their designated positions during manual SPPS using the previously
indicated coupling reagents. Following completion of the linear
sequence, the N-terminal Fmoc group was removed and acylated with
Ac2O (10 equiv.) and DIPEA (10 equiv.) in DCM for 10min twice. Acid-
labile side-chain protecting groups were removed by incubating the
resin with 2% TFA and 1% TIPS in DCM three times for 5min. Lactam
formation was performed using PyBOP (5 equiv.) and DIPEA (5 equiv.)
in 1:1 (v/v) DMF/DCM for 2 h followed by overnight incubation. Pep-
tides were washed, and any remaining amine was acylated using Ac2O
(10 equiv.) and DIPEA (10 equiv.) in DCM (2 × 10 min). For peptides
containing a fluorescent label, precursor peptides were first synthe-
sized and purified. Approximately 1mg of lyophilized peptide was
incubated with 5 equiv. of an activated fluorescent labeling reagent
(e.g., FITC or 5(6)-carboxyfluorescein succinimidyl ester) and 5 equiv.
of DIPEA in 150μL of 1:1 (v/v) DMF/150mM sodium bicarbonate (pH
8.5) for 2 h. The reaction was quenched by TFA, the labeled peptides
were purified again by HPLC, and their authenticity was confirmed by
MALDI-TOF mass spectrometry.

NEMO peptides were synthesized on a CEM Liberty Blue
microwave-assisted peptide synthesizer at 25μmol scale with CEM
ProTide Rink amide resin using standard Fmoc chemistry. Each cou-
pling reaction consisted of 8 equivalents of diisopropylcarbodimide, 4
equivalents Oxyma pure, and 4 equivalents Fmoc-amino acid and were
carried out at 90 °C for 4min, except for arginine (which was coupled
twice at 90 °C for 4min), cysteine and histidine (the latter two were
coupled once at 50 °C for 10min to reduce epimerization). Depro-
tection of Fmoc was performed immediately at room temperature
following the coupling of aspartate residues to reduce aspartimide
formation. For biotinylation of IKKβ, the peptide, while still resin-
bound, was treated with 4 equivalents of NHS-Biotin and 10 equiva-
lents of DIPEA for 1 h at RT. Peptides were deprotected and cleaved
from resin with a 90:2.5:2.5:2.5:2.5 solution of TFA, DODT, H2O,
thioanisole, and TIPS for 3 h at room temperature, followed by pre-
cipitation in cold ether. Crude peptides were dissolved in a minimal
volumeofDMF, diluted in 50:50water and acetonitrile, and purifiedby
reversed-phase HPLC. Peptide purity (>95%) and authenticity were
confirmed on a Waters Acquity UPLC system connected to an SQD2
ESI-MS. The peptide concentration was determined from their absor-
bance at 280 nm. The chromatographic and mass spectrometric data
of all peptides synthesized in this work are provided in Supplementary
Figs. 10 and 11.

GST-NEMO expression and purification
E. ColiBL21 (DE3) cells were transformedwith a pGEX4T3-NEMO(1-196)
expression vector and grown at 37 °C in Luria-Bertani broth supple-
mented with 75 mgL ampicillin. Expression was induced with 0.25mM
isopropyl-β-D-1-thiogalactopyranoside (IPTG) when cells reached an
OD600 of 0.6, and were allowed to proceed for 5 h at 30 °C. The cells
were pelleted by centrifugation for 30min at 4230 × g. The cell pellet
was resuspended in 50mLof lysis buffer (25mMTris, 150mMNaCl, 5%
glycerol, pH 7.4) supplemented with two tablets of cOmplete™, EDTA-

free Protease Inhibitor Cocktail (Roche), 15mg of lysozyme, and 25mg
of phenylmethylsulfonyl fluoride dissolved in 50μL of DMSO. The cell
lysate was briefly sonicated and clarified by centrifugation for 30min
at 26900 × g. The supernatant was then loaded onto 2mL of
glutathione-agarose resin (Pierce). The resin was washed with 20 col-
umn volumes of wash buffer (25mM Tris, 150mM NaCl, 5% glycerol,
pH 7.4). Protein was eluted with 5-column volumes of elution buffer
(25mM Tris, 150mM NaCl, 5% glycerol, 10mM glutathione, pH 8) and
exchanged into the wash buffer by using a VivaSpin 10-kDa MWCO
centrifugal unit. Protein concentration was determined by Bradford’s
assay and absorbance at 280 nm.

Peptide inhibitor binding assays
The in vitro IC50 of the predicted peptides against β-catenin was
measured through a fluorescence polarization (FP)-based binding
assay. Expression and purification of GST-β-catenin has been
reported previously37. FAM-labeled probe peptide (10 nM) was
incubated with 50 nM GST-β-catenin in 20mM Tris, 300mM NaCl,
pH 8.8, 0.01% Triton-X-100 for 1 h. Serial dilutions of a competitor
peptide were prepared in 20mM Tris, 300mM NaCl, pH 8.8, and
0.01% Triton-X-100. After 1 h, aliquots of the equilibrated probe
peptide-β-catenin solution were added to serially diluted peptide
solutions and incubated for 1 h at RT. Samples were transferred into
black-on-black 384-well nonbinding microplates (Greiner), and FP
was measured using a Tecan M1000 Infinite plate reader. The data
were analyzed using GraphPad Prism v. 8.0 and normalized to FP
values corresponding to the fully bound/unbound probe. All raw
data from FP-based competition assays are provided in Supple-
mentary Fig. 4.

The binding affinities of the designed peptides for NEMO were
measured by a competitive homogeneous time-resolved fluores-
cence (HTRF) assay. GST-NEMO (20 nM), biotin-IKKβKK/RR (aa701-745,
50 nM), streptavidin labeled with d-2 acceptor (Cisbio; 1.3 μg/mL),
and anti-GST monoclonal antibody labeled with Tb donor (Cisbio;
0.06 μg/mL) were mixed in PBS (pH 7.4) containing 1 mM TCEP and
0.01% Triton X-100. The anti-GST monoclonal antibody (Revvity
Health Sciences, catalog number: 61GSTTLA, lot number: 16RA) has
been validated by Revvity QA using an HTRF assay with GST-biotin
and compared to a reference batch. Varying concentrations of pep-
tide (0–100 μM) were added in a white, shallow-well 384-well plate
(Grenier) to a total volume of 20μL. HTRF signal was measured on a
Tecan Infinite M1000 plate reader using the manufacturer’s recom-
mended setting for Terbium HTRF. HTRF signal was normalized and
analyzed using GraphPad Prism 6 software. All experiments were
performed in triplicates (n = 3). All raw data from the HTRF assays are
provided in Supplementary Fig. 8.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The peptide sequence datasets used for training VAE models and PPI
binder classifiers in the VAE-MH process in this study are accessible on
Zenodo at https://doi.org/10.5281/zenodo.10587692, under the
Attribution-NonCommercial (CC BY-NC) license. Source data are pro-
vided with this paper.

Code availability
The code associated with this study has been published on Zenodo at
https://doi.org/10.5281/zenodo.10587692, under the Attribution-
NonCommercial (CC BY-NC) license. Our sample code can be exe-
cuted through Code Ocean at https://codeocean.com/capsule/
5785222/tree.
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