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Predicting proximal tubule failed repair
drivers through regularized regression
analysis of single cell multiomic sequencing
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Renal proximal tubule epithelial cells have considerable intrinsic repair capa-
city following injury. However, a fraction of injured proximal tubule cells fails
to undergo normal repair and assumes a proinflammatory and profibrotic
phenotype that may promote fibrosis and chronic kidney disease. The healthy
to failed repair change is marked by cell state-specific transcriptomic and
epigenomic changes. Single nucleus joint RNA- and ATAC-seq sequencing
offers an opportunity to study the gene regulatory networks underpinning
these changes in order to identify key regulatory drivers. We develop a reg-
ularized regression approach to construct genome-wide parametric gene
regulatory networks using multiomic datasets. We generate a single nucleus
multiomic dataset from seven adult human kidney samples and apply our
method to study drivers of a failed injury response associated with kidney
disease. We demonstrate that our approach is a highly effective tool for pre-
dicting key cis- and trans-regulatory elements underpinning the healthy to
failed repair transition and use it to identify NFAT5 as a driver of the mala-
daptive proximal tubule state.

Chronic kidney disease (CKD) exacts an immense medical and
financial burden, affecting 37 million people in the United States
alone1. There are limited options for managing the progression
from CKD to end-stage renal disease (ESRD), leading to an annual
national incidence of 125,000 ESRD cases1. A better molecular
understanding of kidney pathology could lead to the development of
new treatments.

Recent work has increasingly identified different proximal tubule
states as key players in the progression of kidney disease across acute
and chronic etiologies2–5. In acute kidney injury (AKI), proximal tubule

cells adopt a dedifferentiated and proliferative phenotype, providing
the kidney with some regenerative capacity post-injury6. These cells
are marked by phosphatidylserine receptor KIM1 (HAVCR1) expres-
sion, which binds apoptotic cell fragments to clear debris from the
tubular lumen7. During the repair process, a small proportion of
injured PT cells fail to undergo full repair and restoration of a healthy
PT phenotype2,3,6,8,9. These so-called failed repair PT (FR-PT) cells take
on a proinflammatory, profibrotic, senescent-associated secretory
pathway (SASP) phenotype, thus providing a possible mechanism for
AKI to CKD transition2,3,9.
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A similar cell state is present in control, non-AKI, human kidney10.
We called one of these cell states PT_VCAM1 based on its expression of
VCAM1. PT_VCAM1 resembles the failed repair proximal tubule state
that arises following AKI. The PT_VCAM1 population appears to
increase with age and in diabetic kidney disease3,10,11. These findings
raise the possibility that subacute injuries incurred over a patient’s life
could lead to a gradual accumulation of FR-PT cells, resulting in a
progressive increase in proinflammatory and profibrotic stimuli that
drives CKDprogression.We hypothesize that FR-PT and PT_VCAM1 are
similar cell states that fail to repair following sustained PT injury.

Transcriptional control is coordinated through the binding of
trans-acting transcription factors (TFs) to DNAmotifs present in short,
nucleosome-free genomic cis-regulatory elements (CREs)12. These
CREs allow the binding of different sets of transcription factors and
subsequent recruitment of co-activators and transcription complex
factors through dynamic regulatory activity and looping interactions
with target gene promoters13–15. Misregulation of gene transcription
has the potential to drive disease12,16–18, so we also hypothesize that
identifying disease-associated CREs and their gene targets, as well as
the key set of transcription factors coordinating this regulatory action,
will improve our understanding to identify therapeutic targets that
limit kidney functiondecline by inhibitingor reversing transition to the
FR-PT or PT_VCAM1 state.

Single cell sequencing has been successfully applied to character-
ize the transcriptional changes associated with specific cell types and
cell states in a variety of human kidney diseases2–4,11,19–22. Several current
challenges limit our ability to leverage these datasets for the identifi-
cation of regulatory factors coordinating gene expression changes. For
example, it is difficult to prioritize the handful of transcription factors
responsible for a particular cell process among the hundreds of
expressed TFs and cognate motifs that can be detected23. Single cell
multiomic sequencing generates joint RNA- and ATAC-sequencing data
from the same cell. In particular, it provides the ability to couple distal
cis-regulatory element (CRE) activity to gene transcription24. We hypo-
thesized that this could be used to identify the regulators of injury and
repair responses driving the disease-associated FR-PT state, where a PT
cell-specific healthy-to-FR trajectory with associated transcriptional
changes is known.

We generated single nucleus multiomic (simultaneous RNA-seq
and ATAC-seq) datasets from healthy human adult kidney samples.
Although FR-PT arise after acute injury, the transcriptionally similar
PT_VCAM1 state is present even in healthy kidneys andwe hypothesize
it represents a wear and tear or injury in situ state, even in the absence
of clinical AKI. We developed a computational tool, RENIN (Regulatory
Network Inference), to construct genome-wide parametric gene reg-
ulatory networks that generate predicted weights for both CREs and
TFs to rank and prioritize themost important regulatory elements. We
then applied RENIN to identify regulators of the healthy-PT_VCAM1
transition thatmay drive fibrosis and inflammation, thereby increasing
risk for CKD. Several excellent tools have been developed to accom-
plish similar tasks24–29, however we chose to tailor our method to
prioritize ranking of regulatory elements for further investigation by
applying a parametric adaptive elastic-net estimator for gene reg-
ulatory network model training to increase model sparsity and thus
improve critical regulatory element prioritization30. We then used
motif data to identify transcription factors binding to these putative
CREs and introduced a second step to correlate expression of pre-
dicted binding transcription factors (TFs) to expression of H-FR genes
in the proximal tubule population. RENIN therefore simultaneously
predicts CRE- and TF-gene regulatory interactions from single cell
multiomic datasets to predict detailed genome-wide gene regulatory
networks.

Using RENIN, we found evidence supporting the similarity in
phenotype and function of the FR-PT and PT_VCAM1 states and
the hypothesis that FR-PT formation contributes to CKD risk with

partitioning heritability analysis. We also predicted key drivers of the
H-FR transition, including protective TFs such as PPARA and pro-FR
TFs including NFAT5, HIVEP2, and CREB5. We validated these TFs
with siRNA knockdown and CUT&RUN experiments that supported
the accuracy of our modeling predictions. We also found that our
approach enriched for and predicted more regulatory connections
than other testedmethods. These findings demonstrate that the FR-PT
state is present in control, non-AKI adult human kidneys and provide
additional evidence that the FR-PT regulatory elements are associated
with increased CKD risk. We also have identified several drivers of the
failed repair state that may be targeted therapeutically to treat CKD.

Results
Simultaneous single-nucleus transcriptional and chromatin
accessibility profiling of the adult human kidney resolves high-
quality cell type-specific profiles
We performed single nucleus multiomic sequencing on seven control
adult kidney samples. Five samples were nephrectomy-derived, and
two samples were back-bench biopsies taken from pre-transplant
healthy kidneys. Patient samples were heterogenous in age, sex, and
race: median 64 years old (range: 45-76) 2 male and 5 female, and 3
Black and 4 White. Five of these patients had normal kidney function
and two of them had advanced chronic kidney disease (Source Data).
Histologic scoringof interstitialfibrosis and tubular atrophy (IFTA)was
1-10% for all but one sample which had 10-20% IFTA in the setting of a
serum creatinine of 4.73mg/dL. Nuclei isolation was performed
for each sample one at a time, followed by library generation and
sequencing. Expression profiles were corrected to remove ambient
RNA contamination with CellBender, predicted doublets were
removed, then batch correctionwasperformedwithHarmony onboth
the split RNA-seq and ATAC-seq portions of the dataset31–34. A total of
50,768 nuclei were annotated with cell types following quality control
filtering. Among these nuclei, 29,758 genes and 193,787 accessible
chromatin regions were identified. 150,237, or 77.5%, of peaks over-
lapped with a previously published snATAC-seq dataset10, confirming
quality (Supplementary Fig. 1V). Overall, correlation between snRNA-
seq expression and snATAC-seq gene activity was 0.552 (p < 2e-16), but
was higher between shared variable features in the RNA and ATAC
datasets (r = 0.749, p < 2e-16; Supplementary Fig. 1b). To compare the
value added by single cellmultiome versus performing snRNA-seq and
snATAC-seq on separate samples, we tested Seurat’s cell transfer
annotationmethod35 on ourmultiome data as though it was generated
separately. Performance was high for certain cell types, such as the
loop of Henle (LH), but low for other cell types, including podocytes
(POD) andmesangial cells (MES). For example, 93.8% of the mesangial
cells were predicted to be endothelial cells (Supplementary Fig. 1c).
These findings suggest multiome sequencing improves the ability to
resolve cell types and states without sacrificing gene and peak detec-
tion sensitivity.

Weperformedweighted nearest neighbor clustering, anapproach
that learns relative cell type specific mRNAs and chromatin peaks to
define cell types and states in the dataset36. All major renal cortex cell
types described in previous studies were successfully identified by
annotating clusters based on snRNA-seq marker expression: proximal
convoluted tubule (PCT), proximal straight tubule (PST), KIM1+ prox-
imal tubule (KIM1 + PT), parietal epithelial cells (PEC), loop of
Henle (LH), distal tubule and collecting tubule (DCT, DCT/CNT, CNT),
collecting duct (PC, ICA, ICB), podocytes (POD), endothelium (ENDO),
mesangium (MES), fibroblasts (FIB), and immune cells (Immune)
(Fig. 1a). Notably, our multiomic clustering allowed separate annota-
tion of PCT and PST clusters, which had been previously difficult to
resolve using snRNA-seq alone10. Cell type specific marker expression
and gene activity, measured by aggregating accessible peaks within
the gene body and promoter, were broadly similar between data-
sets (Fig. 1b).
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Doublet calling algorithms identify non-overlapping putative
doublets
Droplet-based microfluidic methods commonly result in multiplets
when more than one nucleus is encapsulated within the same
droplet32. When this happens, nucleotide fragments from multiple
nuclei are tagged with the same barcode and thus appear as the same
individual nucleus in downstream clustering, cell type annotation, and
analysis. Several bioinformatic approaches have been developed to
identify which barcodes are multiplets, including DoubletFinder,
AMULET, and ArchR32,33,37. DoubletFinder, using scRNA-seq data, and
ArchR, using scATAC-seq data, both simulate artificial doublets by
averaging profiles frompairs of randomly selected barcodes. Barcodes
are identified as doublets, rather than single nuclei, by a high pro-
portion of artificial doublets to dataset barcodes in neighboring
points in a low dimensional projection of the dataset. Unlike Dou-
bletFinder and ArchR, AMULET’s algorithm takes advantage of the
fact that each individual nucleus contains only two copies of each
genomic locus. In the absence of copy number variation, the max-
imum number of reads mapping to a given region should be two in a
scATAC-seq dataset. AMULETdetermines the number of regionswith
greater than two overlapping fragments and identifies as multiplets
barcodes with higher-than-expected numbers of these regions
(Supplementary Fig. 2a). It is difficult and costly to test these
approaches with biological ground-truth datasets, so simulated
datasets have been used to compare performance of doublet iden-
tification methods38. We reasoned that simultaneous multimodal
single nucleus sequencing provides a unique opportunity to cross-
assess doublet calling algorithms using data from different mod-
alities. We performed doublet calling with AMULET and generated
artificial doublets from the same pairs of starting nuclei, using either

the RNAmodality for DoubletFinder or the ATACmodality for ArchR.
Unexpectedly, while overlap between the three tested methods was
greater than random chance, it was still very low (<20%), consistent
with previously reported ArchR-AMULET differences (Supplemen-
tary Fig. 2b)33. AMULET-derived doublets averagedhighATACunique
molecular identifier (UMI) counts, concordant with the algorithm’s
approach, whereas ArchR-doublets averaged low ATAC UMI counts
(Supplementary Fig. 2c). Unlike ArchR or DoubletFinder, AMULET
can call homotypic doublets (Supplementary Fig. 2d), so we removed
AMULET-predicted doublets. Furthermore, when comparing doub-
lets detected by DoubletFinder vs. ArchR, doublets predicted
by ArchR were evenly spread throughout all clusters whereas
those predicted by DoubletFinder were enriched between and on
the edges of clusters, where we would expect them to be located
(Supplementary Fig. 2d). For this reason, we additionally removed
DoubletFinder-predicted doublets.

Partial nephrectomy kidney samples are similar to live donor
samples and both contain FR-PT cells
Failed repair proximal tubule cells (FR-PTC) have been identified in
healthy human kidney samples derived from tumor-adjacent tissue
after partial nephrectomy10,11. We hypothesize that FR-PTC in appar-
ently healthy kidneys is attributable to subacute injury or stress sus-
tainedover a patient’s lifetime, leading to accumulation of FR-PTCcells
and a fibrosis-promoting phenotype. An alternative hypothesis is that
tumor mass effect in partial nephrectomy samples elicits an acute
injury stimulus that drives FR-PTC accumulation. Since living donor
kidney biopsies are the gold standard source of healthy human kidney
tissue, wewould predict that these samples would not contain FR-PTC
if the alternative hypothesis were true.

Fig. 1 | Simultaneous single nucleus multiomic RNA-seq and snATAC-seq of
adult human kidney. a WNN UMAP plot of multiome dataset prepared from
7 samples and totaling 50,768 nuclei. PST, proximal straight tubule; PCT, proximal
convoluted tubule; KIM1 + PT, KIM1-expressing injured/failed repair proximal
tubule, PEC parietal epithelial cell, LH loop of Henle, DCT distal convoluted tubule,
CNT connecting tubule, PC principal cell, ICA intercalated alpha, ICB intercalated
beta, POD podocyte, ENDO endothelial, MES mesangial, FIB fibroblast. b Above,

RNA expression of cell type markers by cell type; below, gene activity, of cell type
markers by cell type. Gene activity calculated by aggregating promoter and gene
body peaks in snATAC-seq dataset. c UMAP plot of aggregate snRNA-seq dataset
generated from a total of 15 samples (5 from living donor biopsies from3 individual
donors and 10 from nephrectomy tissue), containing 80,634 nuclei. d Heatmap of
cell type marker expression for each cell type by sample type—nephrectomy or
biopsy.
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We generated snRNA-seq and snATAC-seq (separately, not mul-
tiome) libraries from three additional human donors to increase sen-
sitivity. We also added 5 previously published snRNA-seq and snATAC-
seq datasets from nephrectomy samples for the same reason. We then
compared nephrectomy-derived samples (n = 10) to living donor kid-
ney biopsy samples (n = 5 from 3 individual donors) to test this alter-
native hypothesis. Aggregation of these samples yielded 80,634 cells
from snRNA-seq and 120,679 cells from snATAC-seq. We could still
clearly detect KIM1+/VCAM1 + FR proximal tubule cells even when
clustering cells solely from living donor kidney biopsies, consistent
with recent analysis of living donor kidneys39, indicating that tumor
mass effect alone does not explain FR-PTC accumulation (Fig. 1c,
Supplementary Fig. 3a–d). More broadly, cell type-specific RNA
expression and ATAC accessibility profiles were similar between living
donor kidney biopsies and nephrectomy samples (Fig. 1d, Supple-
mentary Fig. 3e). KIM1 + PT cells derived from either tissue source
expressed a set of genes that were not expressed in healthy PT cells.
These findings suggest there may be differences between partial
nephrectomy and living donor kidney-derived cell populations, like
KIM1+/VCAM1 + PT, although these differences may be influenced by
the lower number of living donor samples included and the limited
sample size of our dataset. Detection of FR-PT cells in living donor-
derived samples supports our usageof both tissue sources in analyzing
the FR-PTC multiome.

Regulatory network inference with adaptive elastic-net model
A major advantage of simultaneous RNA-seq and ATAC-seq measure-
ments from the same cell is the ability to identifying peak-gene pairs
with correlated accessibility and expression. Instead of using overall
accessibility or expression levels to predict CREs and TFs, this
approach can reduce false positive rates by selecting only elements
with accessibility and expression, respectively, correlated to target

gene expression. This correlational analysis generates hypotheses for
CREs that are forming distal looping interactions with target gene
promoters. We reasoned that TF motifs in candidate CRE provide
additional information beyond chromatin accessibility alone. There-
fore our model uses a second step, in which putative trans-regulatory
elements (TFs) are linked to a gene through TF binding motif infor-
mation using the filtered cisBP motif database provided with the
chromVAR package to annotate each CRE and gene promoter region
with predicted TF binding sites23,40. Then expression of these TFs is
used to predict the target gene’s expression (Fig. 2). Both modeling
steps use an adaptive elastic-net estimator in order to handle
collinearity present in single cell datasets and maximize accuracy of
regulatory element predictions, leaving fewer but higher quality can-
didate TFs for biological validation30. With this two-step approach, our
model can select both key CREs and key TFs to construct gene reg-
ulatory networks for a given gene of interest.

Identifying cis-regulatory elements driving healthy-failed repair
PT transition
In the first modeling step, CREs regulating target gene expression are
predicted. We modeled marker gene expression of the healthy (PCT
and PST) and failed repair (KIM1 + PT) cell clusters to predict key CREs
underpinning each PT state (Supplementary Dataset 1). We identified
15,237 unique CREs regulating PT state marker gene expression (Sup-
plementaryDataset 2). In order to validateRENIN’sCREpredictions,we
performed Cleavage Under Targets and Release Using Nuclease
(CUT&RUN) sequencing on cultured RPTECs41. CUT&RUNuses histone
modification-specific antibodies to target MNase cleavage to nearby
DNA, allowing localization of histone modification peaks in the gen-
ome. We performed CUT&RUN for two histonemodifications marking
active chromatin: H3K27ac and H3K4me3. Peaks were called with
MACS2 to generate ground-truth PT CRE sets to assess RENIN’s per-
formance. Chromatin landscapes in in vivo and in vitro systems can
differ substantially, so we first compared RPTEC histone modification
CUT&RUN and previously generated ATAC-seq data11 to proximal
tubule cell snATAC-seq profiles to assess whether RPTECs shared
enough chromatin accessibility to be used to validate CRE predictions.
We generated a PT ATAC profile by taking the top 75% of accessible
peaks in PT cells in our multiomic dataset. Approximately 59% of
RPTEC ATAC peaks, 63% of H3K27ac peaks, and 87% of H3K4me3
peaks overlapped the snATAC PTpeak set (Supplementary Fig. 4a).We
also identified H and FR PT differentially accessible regions (DARs) by
using Seurat’s FindMarkers function to identify peaks with increased
accessibility in healthy (PCT and PST) or failed repair (KIM1 + PT)
proximal tubule cells, respectively. We found that approximately 52%
of snATAC-seq PT peaks, 73% of healthy PT DARs, and 91% of FR PT
DARs overlapped RPTEC ATAC peaks (Supplementary Fig. 4b). These
findings suggest that while the RPTEC chromatin landscape may con-
tain epigenetic features that are not found in primary kidney tissue,
RPTEC accessible peaks include themajority of both healthy and FR PT
DARs. Furthermore, the higher representation of FR PTDARs in RPTEC
ATAC-seq data supports previous findings that RPTECs cultured on
plastic partially recapitulate the FR phenotype10. Therefore, despite
in vitro differences in chromatin accessibility, these findings sup-
ported the use of RPTECs instead of whole kidney epigenetic profiling
to validate CRE predictions in order to preserve PT element specificity.

We constructed receiver operating characteristic (ROC) curves of
RENIN’s ability to recover CUT&RUN peaks. FR-PT (PT_VCAM1) and
healthy (PCT and PST) PT predictions both performed better than
random chance for recovery of H3K4me3 peaks: area under the curve
(AUC) for PT_VCAM1 predictions was 0.696 and 0.607 for healthy PT
(Fig. 3a). The higher AUC of PT_VCAM1 predictions again suggests that
cultured RPTECs partially recapitulate the FR phenotype. This differ-
ence is increased when using the H3K27ac peak set: PT_VCAM1 AUC is
0.694 and healthy AUC is 0.570 (Fig. 3b). Since H3K27ac may bemore

Fig. 2 |Overviewofmodeldesign.Clusteredmultiomedataset contains chromatin
accessibility and gene expression profiles for each nucleus. Themodel’s first step is
to learn gene expression predicted by accessibility of peaks within 500kbp of the
gene TSS. This step identifies cis-regulatory elements (CREs) as peaks with acces-
sibility changes correlated with target gene expression. The second step annotates
peaks with potential binding transcription factors (TFs) by scanning for TF motifs.
TFs with predicted motifs in predicted CREs are aggregated as putative regulatory
TFs for a target gene. The third step is a repeated training step in which the model
learns gene expression predicted by expression of TFs selected in the second step.
This step identifies putative regulatoryTFs based on the correlationbetween target
gene and TF expression in the multiome dataset. For both learning steps, an
adaptive elastic-net regression model is used.
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of a marker of enhancer accessibility than H3K4me342, RENIN may be
particularly useful for identifying distal CREs, which may vary more in
accessibility depending on cell states whereas gene body accessibility
is more static.

We also compared RENIN with other methods that predict CREs
using single cell datasets including Signac’s LinkPeaks, DIRECT-NET25,

FigR28, SCENIC+29, Cicero43, and scMEGA44. The univariable approach
taken by LinkPeaks resulted in sub-0.500 AUCs with PT_VCAM1 and
healthy CREs for both H3K27ac and H3K4me3 peaks (Fig. 3c, d). The
sub-0.500 AUC in comparison with the AUC computed with RENIN-
predicted CREs confirms that a multivariable approach is best suited
for the study of chromatin accessibility due to correlations in
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accessibility between peaks. RENIN also marginally outperformed
DIRECT-NET on recall of histone peaks with predicted FR-CREs.
DIRECT-NET performed well, predicting PT_VCAM1 and healthy CREs
resulting in AUCs of 0.631 and 0.621, respectively, using the H3K27ac
peak set and AUCs of 0.649 and 0.644 using the H3K4me3 peak set
(Fig. 3e, f). Notably, the PT_VCAM1-healthy AUC difference decreased
when using DIRECT-NET predictions. Since RPTECs appear to have an
expression profile resembling the FR-PT/PT_VCAM1 state, RENIN may
have improved resolution between cell states relevant in disease.

Relative to other methods, FigR, SCENIC+, Cicero, and scMEGA,
our configuration had favorable results as well. Most notably, RENIN-
predicted FRCREs had the highest recall of RPTEC histonemodification
peaks (Fig. 3g, Supplementary Fig. 5). To favor enrichment of regulatory

function, we favored a smaller value of , 0.25, to increase the relative

weighting of the adaptive regularization for this modeling step.

As expected, larger valuesof reduceAUCbut increase thenumberof

predicted CREs (Supplementary Fig. 6). Therefore, for research ques-
tions that require larger numbers of CREs, other methods such as the
gradient boosting-based DIRECT-NET should be considered as well.

We confirmed RENIN’s ability to identify important CREs by par-
titioning heritability of kidney related GWAS loci into predicted heal-
thy and FR PT CREs. Proximal tubule cells have been previously
reported to enrich for heritability of CKD and eGFR11. Cell type parti-
tioning is closely related to cell-specific function and gene expression.
Wehypothesized thatRENIN-identifiedCREsof cell type-specific genes
would enrich for heritability of these traits45. We found statistically
significant enrichment of both traits in both healthy and PT_VCAM1
CREs, supporting RENIN’s utility in identifying functional CREs for
traits with a genetic component (Fig. 3h, Supplementary Fig. 7). We
binned healthy and PT_VCAM1 CREs by decreasing regulatory score
(1st bin to 3rd bin, splitting the CRE set into equally sized thirds) and
calculated partitioned heritability into each bin, finding a trend of
increasing enrichment of CKD heritability45 with increasing PT_VCAM1
CRE score.We also binnedDIRECT-NET-identified CREs by Importance
score and LinkPeaks-identified CREs by score. RENIN predictions had a
statistically significant increase in enrichment relative to DIRECT-NET
and a trending increase relative to LinkPeaks. We also observed a
trending decrease in enrichment from the 1st to 3rd bin for both
PT_VCAM1 and healthy CREs (p = 0.163 and p = 0.069, respectively, by
two-tailed t-test of difference between enrichmentmeans), suggesting
the parametric ranking may prioritize CKD-relevant CREs. Relative to
other methods, RENIN predictions had the highest enrichment of

partitioned heritability, although FigR and SCENIC+ also had high
enrichment for bothCKDand eGFRheritability (Supplementary Fig. 8).
Taken together, these findings validate our approach to enrich for
important regulatory regions and highlight the potential relevance of
the PT_VCAM1 state in renal disease and declining kidney function.

Cell type-specific regulatory elements can be predicted
with RENIN
Beyond our main focus on modeling regulators of PT state, we asked
whether RENIN could be applicable to other more general uses. In our
multiomic dataset, we identified an average of 893 (range: 612-1304)
cell type-specific genes per cell type (Supplementary Dataset 1). For
each of these genes, ourmodeling identified 32,304 total unique CREs,
with an average of 4263 CREs predicted to be active (range: 3016-
11006) per cell type (Supplementary Dataset 2). Most (27,934) CREs
had one target gene, with 4,370 having two or more targets (Supple-
mentary Fig. 9a). Of the 6,105 modeled genes, 5,038 had at least one
linked CRE, with the majority having multiple predicted CREs, sug-
gesting that CRE accessibility is an important regulatorymechanism in
human adult kidney (Supplementary Fig. 9b). As expected, predicted
CREs were not uniform across cell types, suggesting predictions were
able to preserve cell type differences (Supplementary Fig. 9c). Pre-
dicted regulatory scores ofCREs annotated as promoters (peakswithin
2kbp of the target gene TSS) were higher on average than either gene
body or intergenic peaks, suggesting our approach assigns quantita-
tive regulatory scores appropriately, although higher baseline acces-
sibility of promoter regions may partially contribute to higher scores
(Supplementary Fig. 9d). Beyond the promoter, regulatory scores for
intergenic and gene body CREs did not decline with distance, sug-
gesting that RENIN identifies functional CREs rather than regions that
are accessible simply due to proximity to anopen and transcribed TSS.

We then performed the secondmodeling step and calculated cell
type-specific regulatory scores for each TF by summing their reg-
ulatory coefficients for cell type marker genes weighted by their mean
expression in each cell type. This allowed us to identify cell type-
defining TFs for each renal cell type that replicated known biology
(Supplementary Fig. 10a). For example, WT1, TCF21, and MAFB are
known podocyte-specific TFs46–48 and were identified as key podocyte
TFs. PPARA and HNF4A, both well-characterized as driving PT differ-
entiation and function49,50, were top key proximal convoluted and
straight tubule TFs. In contrast, PPARA and HNF4A had lower reg-
ulatory scores in FR-PTCs, consistent with their dedifferentiated PT
phenotype. Notably, RENIN could also be used to predict TFs for rarer
cell types: for example, candidate PEC-specific TFs include RFX2 and

Fig. 3 | Cell type CREs identified with RENIN. a ROC curve calculated for RENIN-
predicted healthy-failed repair (FR) proximal tubule (PT) cis-regulatory elements
(CREs) against RPTEC H3K4me3 peaks identified with CUT&RUN performed on
n = 3 independent samples. FR CREs determined by predicted regulation of a
marker gene of the KIM1+ cluster and healthy CREs determined by predicted reg-
ulation of a PCT and/or PST cluster marker gene. Source data are provided in the
Source Data file. b ROC curve calculated for RENIN-predicted healthy-FR PT CREs
against RPTEC H3K27ac peaks identified with CUT&RUN performed on n = 3
independent samples. Sourcedata are provided in theSourceDatafile. cROCcurve
calculated for LinkPeaks-predicted healthy-FR PT CREs against RPTEC H3K4me3
CUT&RUN peaks. Source data are provided in the Source Data file. d ROC curve
calculated for LinkPeaks-predicted healthy-FR PT CREs against RPTEC H3K27ac
CUT&RUN peaks. Source data are provided in the Source Data file. e ROC curve
calculated for DIRECT-NET-predicted healthy-FR PT CREs against RPTEC H3K4me3
CUT&RUN peaks. Source data are provided in the Source Data file. f ROC curve
calculated for DIRECT-NET-predicted healthy-FR PT CREs against RPTEC H3K27ac
CUT&RUN peaks. Source data are provided in the Source Data file. g Area under
curve (AUC) calculations for all tested methods against H3K27ac CUT&RUN peaks
(left) and H3K4me3 CUT&RUN peaks (right). Each tested method’s quantitative
metric was used. FigR CREs were scored by rObs, SCENIC+ CREs were scored by

summed R2G_importance_x_abs_rho across all target genes, Cicero CREs were
sorted by summed coaccessibility score, and scMEGA CREs were sorted by the
TStat metric summed across all target genes. AUCs for H3K27ac peaks: RENIN (FR
CRE: 0.694, Healthy CRE: 0.570), LinkPeaks (FR CRE: 0.435, Healthy CRE: 0.422),
DIRECT-NET (FRCRE: 0.630,HealthyCRE: 0.621), FigR (FRCRE:0.622, HealthyCRE:
0.552), SCENIC+ (FR CRE: 0.559, Healthy CRE: 0.450), Cicero (FR CRE: 0.536,
Healthy CRE: 0.552), and scMEGA (H-FR trajectory CRE: 0.570). AUCs for H3K4me3
peaks: RENIN (FR CRE: 0.696, Healthy CRE: 0.607), LinkPeaks (FR CRE: 0.350,
Healthy CRE: 0.388), DIRECT-NET (FR CRE: 0.649, Healthy CRE: 0.644), FigR (FR
CRE: 0.637, Healthy CRE: 0.564), SCENIC+ (FR CRE: 0.489, Healthy CRE: 0.428),
Cicero (FR CRE: 0.585, Healthy CRE: 0.587), and scMEGA (H-FR trajectory CRE:
0.513). Source data are provided in the Source data file. h Comparison of RENIN,
LinkPeaks, and DIRECT-NET by enrichment of partitioned heritability of CKD in
model-predicted healthy (PCT+ PST) and FR (failed repair—KIM1 + PT) CREs. N = 7
biologically independent samples containing 50,768 cells were examined in a joint
analysis. Error bars represent standard errors around estimates of enrichment by
LDSC with a block jackknife over n = 200 equally sized blocks of adjacent SNPs. P
values shown for two-tailed t-test of difference between enrichment means with
degrees of freedom = 199. Source data are provided in the Source Data file.
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TP63. Intriguingly, evidence implicates PECs as progenitor cells and
TP63 is a p53 family member implicated in regulation of stem cell
state51–54. We could also use this approach to identify broader tubular
and glomerular TFs, such as HNF1B, suggesting this approach is not
restricted to cell type-specific analyses (Supplementary Fig. 10b).

In order to determine whether RENIN’s regularized approach
provided additional information by integrating motif and expression
data, we quantitated differences between top predictions by RENIN,
ChromVAR40, a powerful tool that can be used to identify cell type-
specific TFs from scATAC-seq sequence data alone, and TF RNA
expression. To do so, we calculated the Jaccard index (ranges from0 to
1, denoting zero and perfect overlap, respectively) on the top 25 cell
type TF predictions by each method. This revealed a low overlap
between RENIN and ChromVAR (Supplementary Fig. 10c). The Jaccard
indexwas higher betweenRENIN predictions and the top 25 TFs per cell
type based on their RNA expression alone, in line with our weighting of
TFs by mean cell type expression, but under 1, indicating RENIN still
predicted cell type TFs that would not have been prioritized with TF
expression alone. So, while RENIN’s regression approach still relies on
high quality expression data, it may still be applicable to lowly expres-
sed genes or rare cell types due to its design and integration ofmultiple
modalities. Motif enrichment approaches such as ChromVAR are very
powerful, particularly with access only to scATAC-seq data alone, and
may be useful for identifying factors that affect CRE accessibility. These
findings demonstrate that RENIN or other similar approaches may be a
complementary addition to single cell analysis by integrating both TF
expression data and motif data to generate high quality hypotheses
about key cell type-defining TFs if multiomic data are available.

CRE analysis of healthy-failed repair axis reveals coordinated
regulatory element remodeling
Next, we applied RENIN to study the gene regulatory networks
involved in the healthy to failed repair transition. We hypothesized
that expression changes along this transition would allow RENIN to
identify cis- and trans-regulatory elements driving the change in cell
state. Using the proximal tubule subset of our dataset, we identified
1666 genes differentially expressed (adjusted p-value < 0.05) between
healthy (PCT and PST) PT and FR-PTC (Supplementary Dataset 3). Of
these, 1516 were non-mitochondrial and present in our EnsDb.Hsa-
piens.v86 genome annotation reference. We generated multiomic
pseudocells using a version of VISION’s micropooling algorithm55,
modified to use multiomic WNN graphs to counter limitations intro-
duced by the sparsity of snATAC-seq datasets, and performed the first
modeling step. RENIN’s first step identified 15,434 Healthy to FR-PTC
CREs regulating 1,488 of 1,516 input genes, with an average of 11.4 CREs
per differentially expressed gene (Supplementary Fig. 11a). These
findings strongly implicate distal chromatin remodeling in the devel-
opment of the FR-PT state. On average, RENIN explained a proportion
of variance of 0.417 for pseudocell gene expression with at least one
linked CRE, with a negative r2 for only 89 modeled genes (Supple-
mentary Fig. 11b). Thus RENIN was able to generate a list of candidate
CREs implicated in the H-FR transition.

We then asked what factors might be driving changes in accessi-
bility of these CREs, resulting in differential expression along the H-FR
transition. We classified CREs as either healthy- (H CREs) or failed
repair-promoting (FR CREs) based on their predicted enhancer or
repressor role on differentially expressed genes; a CRE was labeled
healthy-promoting if it enhanced a healthy-upregulated gene or
repressed a FR-upregulated gene and vice-versa. We further hypothe-
sized thatmotif enrichmentmight identify factors thatwere candidate
pioneering TFs driving healthy- and failed-repair-promoting CRE
accessibility. We calculated motif enrichment within H and FR CREs.
The most enriched H CRE motifs were HNF4A/G, while the most
enriched FR CRE motifs were AP-1 subunit motifs (Supplementary
Fig. 11c). HNF4A/G and AP-1 subunit motifs were the least enriched in

the other CRE peak set, suggesting theymay be involved in adversarial
processes promoting normal differentiation or fibrosis and a failed
repair-associated phenotype. Stimuli altering the balance between the
two may influence the likelihood of H-FR transition through the
opening of new regulatory TF-FR gene links.

We also performed footprinting analysis to determine whether
Tn5 insertion enrichment around motifs in H CREs and FR CREs was
different. We found that Tn5 insertion was higher in regions adjacent
to HNF4A and PPARA motifs in H CREs relative to those found in FR
CREs, while Tn5 insertion was enriched near JUN motifs in FR CREs
relative to those in HCREs (Supplementary Fig. 11d). NFKB1, previously
identified as a likely factor in the H-FR transition10, motifs also showed
slight increased adjacent Tn5 enrichment relative to H CRE NFKB1
motifs, supporting the identification of these CREs as FR-associated or
promoting (Supplementary Fig. 11e). We also performed footprinting
analysis for other TF motifs, and did not find the same differential
insertion enrichment, demonstrating that this differential insertion
enrichment is not due to non-specific differences in H and FR CRE
accessibility (Supplementary Fig. 11f). One possible mechanism
affecting differences in binding of certain transcription factors may be
methylation. We found that RENIN-predicted CREs were overlapped
withCKD-associatedmethylated regions at a higher rate than the set of
all called peaks in our dataset with an odds ratio of 1.322 (95%
CI = 1.229–1.421, p = 2.138e-13 by Fisher’s exact test, Supplementary
Dataset 4). Our dataset thus contains evidence that epigenetic remo-
deling of specific CREs, such as methylation, can lead to altered TF
binding associated with the H-FR transition.

Identification of healthy- and FR-promoting TFs with RENIN
The failed repair PT cell state is distinct from healthy proximal tubule
cells and the aberrantphenotype is stable longafter recovery from renal
injury2,3. We hypothesized that gene regulatory network activity in the
proximal tubule could play a role in establishing and/ormaintaining the
failed repair population, and that there is a subset of key TFs regulating
the transition.We constructed parametric gene regulatory networks for
genes differentially expressed between healthy PTs and PT_VCAM1 cells
to prioritize candidate TFs for this H-FR axis. We ranked TFs by the sum
of their regulatory coefficients across all input genes, weighted by
whether the target gene was FR-upregulated (negative score) or
H-upregulated (positive score) and TF average expression (Fig. 4a,
Supplementary Dataset 5). Top healthy-promoting TFs included cano-
nical PT TFs, HNF4A and PPARA, as well as other factors that have been
demonstrated to be protective against kidney disease: ESRRG and
RREB149,56–58. The top FR-promoting predictions included NFAT5, a TF
that has been previously identified as upregulated following ischemia-
reperfusion injury in a mouse model of AKI3, and KLF6, previously
shown to contribute to proximal tubule injury59. Thus, RENINprioritizes
plausible TFs involved in the H-FR transition for further investigation.

Next, we assembled predicted gene regulatory networks into a
directed graph representation (Fig. 4b). We ranked TFs by two mea-
sures of centrality, betweenness and PageRank, to prioritize most
central TFs in the H-FR gene regulatory landscape (Fig. 4c–e, Supple-
mentary Fig. 12a). Top central TFs included similar predictions of TF
importance—e.g. ESRRG, PPARA, HNF4A, RREB1, NFAT5, CREB5,
NFKB1, KLF6, HIVEP2 were all within the top 25 central TFs by both
measures. Simulated upregulation of the top 5 predicted failed-repair
promoting TFs caused simulated healthy PCT and PST cells to
approach KIM1+ PT cells, while simulated upregulation of the top 5
predicted healthy-promoting TFs in KIM1+ PT cells caused simulated
cells to approach healthy PCT and PST cells, providing further com-
putational evidence that these top predicted TFs are relevant in the
H-FR transition (Supplementary Fig. 12b, c). We designed RENIN to
prioritize key TFs and the consistency between multiple methods of
ranking supports its usage in identifying disease-relevant TFs for bio-
logical validation.
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We also assessed the ability of RENIN and other regression-
based methods to predict H-FR gene expression in an independent
dataset generated by the Kidney PrecisionMedicine Project60 (KPMP,
n = 29 specimen snRNA-seq dataset) after being trained on our mul-
tiome dataset to compare performance with less dataset-specific
overfitting.We compared themean r2 of genes that were successfully
modeled by eachmethod in each comparison. For modeled genes by
both Pando and RENIN, RENIN predictions yielded a mean r2 of .080,
relative to .065 for Pando. For genes modeled by both RENIN and
CellOracle, the mean r2 was .055 and .026, respectively (Fig. 4e, f).

RENIN was also able to predict more gene regulatory interactions
than the other methods (Fig. 4g). We also trained the three methods
on the Gerhardt 2023 multiome dataset. Results were similar, with
RENIN outperforming both methods in predicting expression in
the independent Kirita 2020 dataset (Supplementary Fig. 13a, b).
RENIN and CellOracle fit models for similar numbers of genes, while
Pando fit models for far fewer genes (Supplementary Fig. 13c). It
is very likely that different methods perform better or worse in
different contexts and for different research questions. However,
for the identification of gene regulatory networks and key TFs

Fig. 4 | Predictions of key TFs involved in healthy to failed repair PT transition.
a Transcription factors (TFs) sorted by regulatory score, computed as the sum of
predicted regulatory coefficients for healthy-FR PT DEGs multiplied by mean TF
expression in PT (PCT, PST, KIM1 + PT) clusters. Negative scores indicate FR-
promoting TFs—positive regulation of DEGs upregulated in FR PT or negative
regulation of DEGs downregulated in FR-PT—and positive scores indicate
H-promoting TFs—positive regulation of DEGs upregulated in H PT (PCT and PST)
or negative regulation of DEGs downregulated in H PT. Similar TF rankings and
scores replicated over n = 5 independent trials. b. Graph visualization of gene
regulatory networks predicted by RENIN. TF node size represents centrality of TFs
computed by PageRank, top 20 TFs are labeled. Source data are provided in the
Source Data file. c Top 25 TFs ranked by betweenness. Source data are provided in

the Source Data file. d Top 25 TFs ranked by PageRank. Source data are provided in
the Source Data file. e r2 calculated for RENIN- and Pando-predicted H-FR gene
expression compared to target gene expression in an independent KPMP snRNA-
seq dataset for genes that were successfully modeled by bothmethods. For shared
genes, mean RENIN r2 was .080 and mean Pando r2 was .065. Source data are
provided in the Source Data file. f r2 calculated for RENIN- and CellOracle-predicted
H-FR gene expression compared to target gene expression in an independent
KPMP snRNA-seq dataset for genes that were successfully modeled by both
methods. For shared genes, mean RENIN r2 was .055 and mean CellOracle r2 was
.026. Source data are provided in the Source Data file. g Number of H-FR differ-
entially expressed genesmodeled by eachmethod. Source data are provided in the
Source Data file.
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underpinning the H-FR PT transition, these findings demonstrate
RENIN is a viable option.

Modeling large datasets can be computationally intensive, there-
fore we explored whether the use of pseudocell aggregation could be
used without deleterious changes to the main predictions. Reassur-
ingly, the same top 5 healthy- and FR-promoting TFs were predicted
when aggregating 5 and 10 cells per pseudocell (Supplementary
Dataset 5). The top 20 healthy- and FR-promoting TFs were also highly
consistent with the use of pseudocells, measured by Jaccard index,
with FRTFpredictions showing less consistencywith a Jaccard indexof
0.74 between predictions with no pseudocells and targeting 10 cells
per pseudocell (Supplementary Fig. 13d–e). These findings suggest the
useof pseudocells has a small effectonTF rankings, particularly for the
most highly predicted TFs, so we used 10 cells per pseudocell
when testing and exploring different model configurations. If unable
to use individual cells due to computational resource restraints, then
pseudocell aggregation is an effective way to reduce computational
burden during exploratory analysis with only small changes to model
predictions.

Many gene regulatory network modeling tools use motif enrich-
ment to identify TFs of interest. This has utility in omitting TF-gene
putative links from less frequent computationally predicted motifs,
whichmay bemore likely to be false positive connections.While this is
a very powerful approach, particularly in developmental contexts,
there may be active TF-gene interactions that do not rely on enriched
concentrations of conjugate motifs to regulate target genes, particu-
larly for disease processes that may not undergo positive selective
pressure. So wemodified RENIN to select for enriched, rather than all,
motifs present in a gene’s predicted set of CREs, relative to a GC-
matched background peak set to determine whether top TF predic-
tions differed. Of the 1,516 modeled genes with at least one predicted
CRE, 660 were not able to be modeled with this approach, which is
consistent with the usage of the more stringent requirement of motif
enrichment rather than simply presence. Despite fewer predicted TF-
gene regulatory interactions, the top predicted TFs on successfully
modeled genes were very similar to our original list: the top five FR TFs
were the same between rankings with only differences in ordering and
four of five H TFs were shared between rankings. (Supplementary
Fig. 14, Supplementary Dataset 6). Since we applied a regularized
regression specifically to reduce the number of linked CREs to mini-
mize false positive predictions and because overall top predictions are
similar, these results suggest our approach is viable in the adult kidney
context.

Given the coordinated chromatin remodeling previously descri-
bed, we hypothesized that non-promoter CREs comprising a cis-
coaccessibility network (CCAN) for a target gene have non-redundant
regulatory influence due to the presence of additional TF binding sites
that regulate the H-FR transition. We compared RENIN’s performance
when using motifs present in CREs, as well as the promoter, to the
promoter alone. We found that regulatory scores of ESRRG, PPARA,
NFAT5, and HNF4A decreased, while TCF12 and RREB1 scores
increased (Supplemental Fig. 15a). The addition of non-promoter CREs
improves the proportion of variance of pseudocell H-FR gene
expression explained by RENIN, measured by coefficient of determi-
nation (Supplemental Fig. 15b). While the model training results in a
sparse list of putative TFs for each gene (mean: 33.2, range: 4-125,
relative to initial list based solely onmotif presencewithin a linkedCRE
averaged 392.2 TFs per gene, range: 18-602. Supplemental Fig. 15c), the
improved proportion of gene expression variance explained could be
partially due tooverfitting as a result of the inclusionofmoreTFswhen
scanning distal CREs for putative TFs. So, we compared the likelihoods
of RENIN models when incorporating all CRE information versus pro-
moter peak information alone by Akaike Information Criterion (AIC).
For 1,323 genes that could be modeled with promoter-only and CCAN
configurations, the vast majority—1,184 genes—were modeled more

accurately with the distal CRE inclusion, and we calculated the mean
DAIC to be −1293 (Supplementary Fig. 15d, Supplementary Dataset 7).
These findings strongly support the relevance of distal regulation, as
the inclusion of the information they provide improves model fit. For
the remaining 165 genes without any accessible promoter peaks using
our reference annotation, RENIN was able to identify CREs and sub-
sequently TFs with the inclusion of distal interactions. These results
demonstrate the added utility of implementing the first step of RENIN
to identify both distal and proximal CREs in improving accurate
modeling of gene regulatory networks with single cell datasets.

While our model configuration seemed reasonable, it remained
unclear whether top predicted TFs were generalizable or specific to
our dataset of limited (n = 7) sample size.We therefore sought to apply
RENIN toother datasets to determinewhether anyof the toppredicted
TFs were shared across single cell datasets.We still performed the first
CRE-gene prediction step with our multiomic dataset, as we do not
have access to additional single nucleus multiomic datasets. First, we
included additional snRNA-seq datasets generated from the human
biopsies in this manuscript (n = 3) and from a previous study on con-
trol human adult kidney (n = 5)10. After modeling the healthy (PCT and
PST)-FR (KIM1+ PT) transition in this aggregated n = 15 dataset, we
found highly similar top TF predictions (Supplementary Fig. 16a, b,
Supplementary Dataset 8). Eight of the ten original top FR-promoting
predictions were within the top 10 predictions from modeling the
merged dataset: MEF2A, NFAT5, GLIS3, TCF12, KLF6, FOXP1, HIVEP2,
and SOX6. To better test the external validity of these TF predictions,
we also modeled the healthy-FR transition in the independent
n = 29 specimen KPMP snRNA-seq dataset. We preserved the KPMP
investigators’ cell type annotations, rather than transferring cell type
annotations from our datasets to avoid introducing any bias due to
differences in preprocessing strategies. Therefore we assessed whe-
ther any cell type annotations in the KPMP dataset resembled our
KIM1 + PT cluster. The aPT cluster had a similar expression profile, with
reduced healthy PT marker expression and increased expression of
VCAM1, TPM1, and HAVCR1, so we modeled differential gene expres-
sion between the aPT cluster and other PT clusters (Supplementary
Fig. 16c, d). Here too, we found highly similar top TF predictions, with
the top ten predicted FR TFs including GLIS3, TCF12, FOXP1, SOX6,
NFAT5, CREB5, MEF2A, and KLF6. For both datasets, top predicted
healthy-promoting TFs included ESRRG, PPARA, RREB1, and HNF4A
(Supplementary Dataset 8). Repeat top predicted TFs may therefore
drive shared gene regulatory mechanisms promoting FR formation
across human populations with different demographic characteristics.

We also askedwhether any TFswere conserved across species and
in more acute modes of kidney injury. We modeled regulation of dif-
ferentially expressed genes between cells annotated as healthy and
injured PT in a chronic ischemia-reperfusion injury (IRI) mouse single
cell multiomic dataset (referred to as Gerhardt 2023 dataset)9. Again,
we preserved the investigators’ original clustering and cell type
annotations, modeling regulation of the differentially expressed genes
between the PTS1-3 clusters and the Injured PT cluster, which showed
expression of FR-PT markers, Tpm1 and Vcam1, and lower expression
of Havcr1 (Supplementary Fig. 17a). Top FR predictions for the
Gerhardt 2023 dataset included many targets identified in the human
datasets: Glis3, Nfat5, Foxp1, Nfkb1, Pax8, Tcf12, and Klf6 (Supple-
mentary Fig. 17b, Supplementary Dataset 8). We also modeled a
separate snRNA-seq mouse IRI dataset (referred to as Kirita 2020
dataset)2. As above, we used the CRE-gene regulatory connections
from the multiomic Gerhardt 2023 dataset modeling. We removed
control samples to enrich for post-acute injury repair mechanisms. We
then modeled differential gene expression between healthy PT clus-
ters and the NewPT2 cluster, which has a FR expression profile (Sup-
plementary Fig. 17c). Top predictions for the Kirita 2020 dataset
included Pax8, Nfat5, Glis3, and Nfkb1 (Supplementary Fig. 17d, Sup-
plementary Dataset 8). Between the human andmouse datasets, there
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were some differences that may represent repair mechanism differ-
ences in different species and modes of injury or differences in sub-
population composition of different investigators’ annotations. For
example, Pax8was the 6th and 1st predicted FRTF in these two datasets.
So while the presence of shared, predicted top transcription factors
across both human and mouse datasets indicates conservation of
transcriptional programs across modes of injury and species, there
may be important differences in mechanisms between different spe-
cies and modes of injury.

We also assessed overall similarity between toppredictions across
all 5 modeled datasets by calculating pairwise Jaccard indexes for each
dataset’s top 10 predicted FR and healthy TFs. Similarity between
human datasets was high: at least 7 top 10 FR and H TFs were shared
between human datasets (Supplementary Fig. 18a, b). Similarity
between human and mouse IRI datasets was lower, likely due to dif-
ferent mechanisms in different species and modes of injury. We also
counted the number of times any top 10 TFwas predicted in any of the
5 modeled datasets. Twelve of 24 FR-associated TFs and 15 of 21
healthy PT-associated TFs were top TFs in at least 2 datasets (Supple-
mentary Fig. 18c, d). Two FR TF predictions, NFAT5 andGLIS3, and two
healthy TF predictions with well-described function in the proximal
tubule, HNF4A and PPARA, were top predictions in all 5 datasets18,49.
TF predictions conserved across datasets are of interest in ther-
apeutically targeting mechanisms of proximal tubule injury and failed
repair in kidney disease. Furthermore, shared TFs and gene regulatory
mechanisms provide further support that the PT_VCAM1 state present
in control, non-AKI human adult kidney and the FR-PT state that
develops after AKI share similar transcriptional regulationmechanisms
and may thus be targetable by similar strategies. Although the use of
additional single cell multiomic datasets would be the best approach
to assessing external validity of our predictions here, we believe that
the consistency in top TF predictions across datasets, species, and
modes of injury is encouraging and increases the likelihood that some
of these repeatedly predicted TFs are relevant to the healthy-failed
repair transition.

NFAT5 knockdown partially reverts failed repair phenotype
RENIN identified NFAT5 as the top TF driving the H-FR transition. We
next used the RENIN-predicted NFAT5 gene regulatory network to
simulateNFAT5upregulation in healthy PCTandPST cells topredict the
resulting effect on cell phenotype. Visualizing cells in the low dimen-
sional PCA space computedby Seurat, simulated upregulation ofNFAT5
in a sample of PCT and PST cells caused them to move towards
KIM1 + PT cells, consistent with NFAT5’s predicted FR-promoting effect
(Supplementary Fig. 19). We then asked whether actual siRNA knock-
downofNFAT5 inRPTECswould reduce theFR-PTphenotype in culture.
We targetedNFAT5 for siRNA knockdown and achieved a 78% reduction
inNFAT5mRNA levels, which was associatedwith decreased expression
of the FR-PTC marker VCAM1, consistent with its predicted role in
contributing to the FR phenotype (Fig. 5a). Next, we performed bulk
RNA-seq onNFAT5 siRNAknockdown samples compared to control.We
found reduced expression of NFAT5 targets involved in one of its roles
in driving transcriptional expression in response to hyperosmolar
conditions61–63, suggesting that experimental knockdown levels were
sufficient to disrupt NFAT5 regulatory activity (Supplementary Fig. 20).
We also found reduced expression of fibrosis-associated genes includ-
ing TGFB1, TGFB1R, COL1A1, and COL4A1 (Fig. 5b). Knockdown of two
other top predicted FR TFs, CREB5 and HIVEP2, resulted in similar
changes in expression. CREB5 knockdown by siRNA resulted in
decreased expression of VCAM1, TGFB1, and IL6 and increased expres-
sion of healthy PT markers such as PPARA, HNF4A, and SLC4A4 (Sup-
plementary Fig. 21a). HIVEP2 knockdown resulted in decreased
expression of another FR marker, CCL2,2,3 and increased expression of
healthy PT-expressed genes SLC4A4,MAF, andACSM2B (Supplementary
Fig. 21b). We also tested the results of knocking down PPARA, a top

predicted healthy PT TF. We saw transcriptional changes including
reduced expression of proximal tubule-expressed solute-carrier genes
SLC3A1, SLC16A12, and SLC22A2 and increased expression of pro-
inflammatory genes such as IL1A and IL1B (Supplementary Fig. 21c).
For each of the four tested TFs, we also performed KEGG enrichment
analysis on RENIN-predicted direct target genes and on the genes
differentially expressed in siRNA knockdown samples relative to
non-targeting siRNA samples. RENIN predictions identified enriched
inflammatory pathways that have been associatedwith failed repair and
kidney injury such as ferroptosis, necroptosis, and glutathione meta-
bolism (Supplementary Fig. 22a–d)64–66. In siRNA knockdown samples,
we identified enrichment of several shared pathways, including ECM-
receptor interaction, TGF-beta signaling, cellular senescence, necrop-
tosis, ferroptosis and other inflammation-related pathways (Supple-
mentary Fig. 22e–h). These findings are consistent with the hypothesis
that these TFs drive expression patterns with knock-on effects pro-
moting the FR phenotype. For each tested top TF, siRNA knockdown
had the anticipated effect based on modeling predictions. Knockdown
of PPARAhad the anticipated effect of reducing healthy PTmarker gene
expression and knockdownofNFAT5,HIVEP2, andCREB5 each reduced
FR-associated gene expression and increased healthy PT-associated
gene expression in RPTEC culture.

We also tested whether siRNA targeting of these specific TFs
validated predicted TF-gene regulatory interactions. Overall, 156 of
445 predictedNFAT5 targets, 84of 439predictedHIVEP2 targets, 94of
329 predicted CREB5 targets were significantly downregulated when
knocking down the respective TF (Supplementary Fig. 23a). Only 27 of
472 PPARA-predicted targets were significantly downregulated, which
may be because the RPTEC phenotype is closer to FR than it is to
healthy PT, with low healthy PT TF expression levels. Since differen-
tially expressed genes with siRNA treatment may be due to different
cellular context in vitro and secondary regulatory effects, we also
performedCUT&RUN forNFAT5 in RPTECs in order to identify directly
bound NFAT5 targets. Of 445 RENIN-predicted NFAT5 targets, 379
were bound by NFAT5 (Fig. 5c). Relative to other tested methods that
predict TF-gene regulatory connections, this was the highest number
of recovered genes, although all methods had high precision. Results
were similar for HIVEP2 CUT&RUN peaks: of 439 RENIN-predicted
HIVEP2 targets, 368 were bound by HIVEP2 (Supplementary Fig. 23b).
Pando predicted fewer targets but had similar levels of precision, and
othermethods either did not predict any H-FR differentially expressed
genes to be regulatedordidnotmodelHIVEP2 as a potential regulator.
While most ATAC-seq peaks containing computationally predicted
motifs did not overlap with CUT&RUN peaks for either NFAT5 or
HIVEP2, approximately half of NFAT5 motif- or HIVEP2 motif-
containing FR PT DARs were bound by each respective TF in our
CUT&RUN data (Supplementary Fig. 24). These results demonstrate
cell type-specific NFAT5 and HIVEP2 activity. Further improvements to
bioinformatic representations of TF binding motifs and/or binding
cofactor requirementsmay improve regulatorymodel performance by
reducing the number of false initial TF-motif-gene connections. We
were also able to identify specific distal CREs for key predicted targets
with CUT&RUN binding peaks such as the previously identified FR
gene, TPM1 (Fig. 5d)10. These findings support the use of computa-
tional gene regulatory network modeling for the study of transcrip-
tional regulation and identification of targetable mechanisms in
disease.

Finally, we sought to confirm NFAT5 expression and binding in
adult humankidney cortex, as previouswork onNFAT5 has focused on
the medulla. Immunostaining for NFAT5 showed a patchy expression
pattern, consistent with the hypothesis that FR-PTCs accumulate
progressively in a scattered fashion over time. NFAT5 expression was
anticorrelated with LTL staining, with LTL-low cells and tubules being
highest in NFAT5 expression (Fig. 5e).While NFAT5 expression in adult
human kidney proximal tubules is low in control kidneys, NFAT5
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Fig. 5 | NFAT5 promotes FR expression phenotype in cultured RPTECs.
a Expression of NFAT5 and VCAM1 in cultured RPTECs treated with (n = 3 inde-
pendent samples) non-targeting (NT) or (n = 3 independent samples) NFAT5-tar-
geting small interfering RNA (siRNA). RNA levels measured by quantitative reverse
transcription PCR (RT-qPCR) and normalized to GAPDH expression. NFAT5 siRNA-
treated cells had 22% of the NFAT5 RNA and 57% of the VCAM1 RNA levels of non-
targeting-siRNA-treated cells. P values calculatedwith two-tailed t-test withunequal
variance. Data are presented as mean± standard deviation. Source data are pro-
vided in the Source Data file. bHeatmap of select differentially expressed genes by
RNA-seq in NT and NFAT5 siRNA-treated RPTECs. c Number of predicted NFAT5
targets by each method, separated into target genes that were bound versus

unbound on NFAT5 CUT&RUN-seq performed on n = 2 independent RPTEC sam-
ples. 379/445 RENIN-predicted targets, 104/116 Pando-predicted targets, 53/67
CellOracle-predicted targets, 274/305 SCENIC + -predicted targets, and 31/40 FigR-
predicted targets were bound by NFAT5 assessed by CUT&RUN-seq on RPTEC
culture.dDistal predicted CRE forTPM1, predicted to be NFAT5 target FR gene and
downregulated with siRNA NFAT5 knockdown, bound by NFAT5.
e Immunofluorescent labeling of NFAT5 in adult human kidney. DAPI is a nucleus
marker and LTL is an apical proximal tubulemarker. * denotes examples of tubules
with low LTL intensity. Representative image of n = 3 independently analyzed
samples. Sample clinical data in Source Data. Scale bars are 50 µm in length.
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appears to colocalize with VCAM1 in CKD/ESRD (Supplementary
Fig. 25). The presence of NFAT5+, VCAM1-, LTL- tubules is consistent
with NFAT5’s known role in the kidney against osmotic stress in distal
tubular cells62,63,67. Given this known role, NFAT5 likely binds many
genes and regulatory elements that are not involved in the H-FR
transition. To test the hypothesis that NFAT5 is involved in the H-FR
process, we performed NFAT5 CUT&RUN in primary healthy and CKD
human kidney and calculated the enrichment of FR PT-associated
genes, peaks, and NFAT5 motifs in whole kidney NFAT5 CUT&RUN
peaks relative to their representation in the multiomic dataset. There
were 1,666genes identified asH-FRDEGsout of the 18,262genes (8.3%)
with genomic annotations and expression in our dataset. Of 1070
genes bound by NFAT5, 237 were in the H-FR DEG list (22.2%, Sup-
plementary Fig. 26a). Chromatin peaks with increased accessibility in
KIM1 + PT cells (FR PT DARs) represented 10,082 of the 193,787 peaks
(5.2%) in our dataset, and 437 of 1845 NFAT5-bound peaks that over-
lappedwith our dataset peakswere FR PTDARs (23.7%, Supplementary
Fig. 26b). Finally, 17,499 peaks in our dataset had at least one com-
putationally predicted NFAT5 motifs. Of these, 1,543 lie within FR PT
DARs (8.8%). 824 NFAT5 motif-containing peaks overlapped with
NFAT5 CUT&RUN binding, and 198 of these were FR-PT DARs (24%,
Supplementary Fig. 26c). NFAT5-bound genes, chromatin accessibility
peaks, and predicted motifs were all significantly enriched for H-FR-
association. Therefore, although NFAT5 is involved in several pro-
cesses in different renal cell types, a significant portion of its binding
activity and regulatory function is represented in H-FR regulatory
processes, supporting its role in promoting the failed repair PT state.
These results suggest thatNFAT5, as well as other top predictions such
as HIVEP2 and CREB5, could be a therapeutic target. They also
demonstrate a template to identify key TFs driving disease processes
using multiomic single-cell sequencing datasets.

Discussion
Profibrotic, proinflammatory PT cell states have been increasingly
predicted to play a role in CKD development following incomplete PT
repair after acute injury or during chronic progressive disease3,10,11,68.
Here we performed joint single nucleus RNA and ATAC sequencing on
adult human kidney samples to study the PT_VCAM1 state in adult
human kidney. We found that the presence of PT_VCAM1 was not
exclusively explained by sample origin, as populations were also
detected in biopsy-derived samples. These results support the use of
nephrectomy samples as adequate control tissue in human kidney
research, including for the study of the role of PT_VCAM1 cells in CKD.
While the detection of PT_VCAM1 in clinically healthy biopsy samples
could indicate the accumulation of subacute, subclinical injury over
time, an alternative hypothesis is that this represents a progenitor
population that can proliferate post-injury to replenish tubular cell
populations69. While we have previously found evidence in opposition
to this hypothesis6,70, we envision that RENIN could easily be applied to
a single-cell multiomic dataset of the proliferation process in order
to identify regulatory elements that promote or inhibit progenitor
proliferation.

We applied RENIN to ourmultiomic dataset to study both cis- and
trans-regulatory machinery in the proximal tubule. We found that
predicted CRE regulatory influence was associated with enrichment of
CKD heritability, further implicating PT_VCAM1 in CKD. Risk variants
open in PT_VCAM1 CREs may exert their effects through amplifying
profibrotic, proinflammatory signaling or increasing the accumulation
and/or persistence of the PT_VCAM1 state. We also identified a small
set of TFs predicted to regulate the healthy-PT_VCAM1 transition. Our
model suggests targeting some candidate TFs such as NFAT5, HIVEP2,
and CREB5 may attenuate the PT_VCAM1 phenotype. Examples of
protective TFs include ESRRG and PPARA, which may regulate mito-
chondrial function and metabolism in a protective capacity49,56,71.
NFAT5 has previously shown to play a protective role in AKI and

against hypertonic stress72. Our results suggest that chronic expression
of NFAT5 may instead promote a proinflammatory phenotype in
PT_VCAM1 cells.

Gene regulatory network modeling is a powerful application of
single-cell sequencing datasets. Many well-designed methods for
gene regulatory network modeling have been created, each offering
unique developments and strategies73. DIRECT-NET recovers max-
imal numbers of CREs with good true and false positive rates.
Methods like FigR and scMEGA could use pseudotemporal or tem-
poral ordering of trajectories to study regulators of chromatin
accessibility and developmental contexts. SCENIC+ introduced an
expansive motif database and a new method of motif enrichment
analysis. CellOracle introduced TF perturbation simulationmethods.
Our multiomic dataset and catalog of cell type-specific regulatory
elements will serve as a resource for modeling renal gene regulatory
networks with these methods, but we also found RENIN’s parametric
design had great utility in highlighting both CREs and TFs that are
relevant for our renal disease research interest through full integra-
tionof information fromboth expression and chromatin accessibility
data. Our adaptive elastic-net-based approach had competitive per-
formance in selection of key regulatory elements while minimizing
the risk of overfitting and misallocation of priority relative to other
methods. Model sparsity may reduce false positive rates for pre-
dicted regulators and explain the higher enrichment for risk variants
and CUT&RUN peaks. We have tailored our approach so that the
output is highly interpretable in order to facilitate intuitive under-
standing of regulatory network composition and selection of candi-
dates for biological validation. The ability to effectively prioritize
candidate regulatory factors for further investigation makes RENIN,
available at https://www.github.com/nledru/RENIN, a highly effective
computational tool for hypothesis generation and a tool to consider
using to complement other gene regulatory network methods. As
computational tool development continues, it will be important to
continue building on the strengths of different algorithms to
improve modeling of gene regulation.

With just two sequencing modalities, our modeling explained a
large portion of variance in the expression of H-FR genes of interest. In
agreement with previous studies, we found strong evidence that distal
regulatory interactions play significant roles in regulating gene
expression, which RENIN could leverage accurately to characterize
gene regulatory networks with high resolution. This work demon-
strates that increased profiling resolution can be derived from inte-
gration of different data streams, including gene expression,
chromatin accessibility, and GWAS. In the future, ranking CREs by
predicted regulatory influence may be integrated with GWAS to
increase risk variant detection and elucidate new diseasemechanisms.
Spatiotemporal control of transcription is achieved through layers of
regulatory control that tune the accessibility of CREs. For example,
histone modifications reduce DNA-histone interaction and facilitate
DNA access by transcription factors or other chromatin remodeling
proteins74. Other epigenetic modifications, such as DNA methylation,
may alter the ability of transcription factors to bind their cognate
motifs75. Due to the kidney’s high cellular complexity, single-cell
methods are essential for studying specific cell type or state processes,
which limits our ability to profile all epigenetic and transcriptional
regulation factors with cell type specificity. Future work on gene reg-
ulatory networks will benefit greatly from single-cell profiling of epi-
genetic features such as methylation and histone modifications15, in
addition to the sequence and accessibility information used in this
study. Additional single-cell epigenetic modalities will improve CRE
identification while preserving cell type specificity without the need
for in vitro cell culture models, which do not fully recapitulate in vivo
biology. Other improvements to modeling may include efforts to
model translational regulation or non-steady-state RNA dynamics76.
Computational representations of TF binding motifs that better
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model cofactor and sequence requirements may boost modeling
performance as well by reducing false positive motif annotations.
Single-cell sequencing technology continues to improve and capture
more complex data. Continued development of methods incorporat-
ing these data will facilitate exciting discoveries in disease processes
and new therapies.

Methods
Declarations
This research complies with all relevant ethical regulations and has
been approved by the Washington University Institutional Review
Board (IRB ID# 201601020).

Tissue procurement
Non-tumor kidney cortex samples were obtained from patients
undergoing partial or radical nephrectomy for renalmass at Brigham
and Women’s Hospital (Boston, MA) under an established Institu-
tional Review Board protocol approved by theMass General Brigham
Human Research Committee and at Barnes Jewish Hospital (St. Louis,
MO) under an established Institutional Review Board protocol
approved by the Washington University Institutional Review Board.
Additional kidney cortex samples were obtained from living kidney
donors prior to surgical implantation at Wake Forest University
under an established protocol approved by the Wake Forest Uni-
versity Institutional Review Board. Additional samples from kidneys
rejected for transplantation were obtained from deceased organ
donors provided by Mid America Transplant under an established
protocol approved by the Washington University Institutional
Review Board. All samples were deidentified and laboratory data
were abstracted from the medical record. All participants provided
written informed consent in accordance with the Declaration of
Helsinki. All appropriate consents, including to publish, have been
obtained in the original consent document. Samples were frozen for
storage.

Nuclear dissociation and library preparation
For single nucleus multiomic RNA- and ATAC-seq, samples were first
cut into <2mmpieces and homogenized using Dounce homogenizers
and the loose head pestle (885302-0002; Kimble Chase) in 2ml of
Nuclei EZ Lysis buffer (NUC-101; Sigma-Aldrich)with protease inhibitor
(5892791001; Roche) at 4 °C. Samples were then filtered through a
200 µm cell strainer (43-50200; pluriSelect) and homogenized in the
Dounce homogenizers with the tight head pestle. Samples were incu-
bated on ice for 5minutes in 4ml of EZ Lysis buffer, then filtered
through a 40 µm cell strainer (43-50040; pluriSelect) and centrifuged
at 500 g for 5minutes at 4 °C. The resuspendedpellet was thenwashed
with 4ml of lysis buffer and incubated for 5minutes at 4 °C. Then the
sample was centrifuged again and resuspended in Diluted Nuclei
Buffer (PN-2000153; 10X Genomics), then filtered through a 5 µm cell
strainer (43-50005; pluriSelect). After counting, nuclei suspensions
were diluted if needed to target 10,000 nuclei per lane and loaded into
a thermal cycler to begin the transposition reaction, following 10X
Genomics’ protocol. The manufacturer protocol was followed for the
completion of library preparation.

Paired single nucleus RNA andATAC libraries were prepared from
biopsies with a modification of the protocol detailed above. Biopsies
were homogenized as above, incubated for 5minutes, filtered through
a 40 µm cell strainer, then spun down at 500 g for 5minutes at 4 °C.
The pellet was then resuspended in Diluted Nuclei Buffer and strained
through a 5 µm cell strainer. An aliquot of the resulting nuclei sus-
pension was used to construct the snATAC-seq library following 10X
Genomics’ protocol. The remainder was diluted with 1x DPBS
(14190144; Gibco – Thermo Fisher) and used for snRNA-seq library
construction following 10X Genomics’ protocol.

Multiomic sequencing bioinformatics workflow
Seven single nucleus multiomic libraries were generated from 5 con-
trol human nephrectomy samples and 2 pre-transplant human biop-
sies. Libraries were sequenced on an Illumina Novaseq platform with
28-10-10-150 bp configuration forRNA-seq libraries. ATAC-seq libraries
were sequenced with either a 50-8-16-50bp configuration (N1 and N2)
or 2x150 bp configuration (rest of samples). Libraries were counted
with cellranger-arc 2.0.0 using the 10X-provided GRCh38-2020-A-
2.0.0 reference genome and were aggregated for each sample with
cellranger-arc aggr. The variational autoencoder CellBender 0.2.0 was
used to reduce ambient RNA signal in each sample. The expected
number of cells for each sample was estimated from cellranger-arc
output, and cell probabilities were calculated for approximately
10,000 additional barcodes per sample. CellBender was run usingwith
the following parameters: --epochs 150, --z-dim 100, --z-layers 500,
--learning-rate 0.0001. For two samples, b6 and b8, the learning rate
was reduced to 0.00005 to reduce training instability. Prior to doublet
removal, ArchR 1.0.1 was used for preliminary filtering (TSSEnrichment
>= 4, BlacklistRatio <= 0.01, NucleosomeRatio <= 4, nFrags >= 3000,
and nFrags <= 100000). Seurat 4.0.2 was also used for preliminary
filtering (nCount_ATAC> 3000, nCount_ATAC< 100000, nFeature_-
ATAC> 1000, nCount_RNA< 50000, nCount_RNA> 1000, nFeature_-
RNA> 500, percent.mt <5, percent.rps <2, percent.rpl <2), and cell
barcodes passing both sets of filtering criteria were retained.

After the removal of low-quality barcodes, predicted doublets,
and remaining small likely-doublet clusters, SCTransformwas used for
normalization of the snRNA-seq component, and Harmony 0.1.0 was
used for batch effect correction on the SCT output assay. Seurat’s
FindMarkers function was used on the data slot of the SCT assay with
min.pct = 0.1 to identify differentially expressed genes, both those
upregulated in each cell type relative to the rest of the dataset
and between healthy and failed repair PT cell clusters. To process
the snATAC-seq component, term-frequency inverse-document-
frequency (TFIDF) was computed, then dimensional reduction was
performed on the TFIDF matrix with singular value decomposition.
Harmony was used for batch effect correction on the resulting latent
semantic indexing reduction. A gene activity matrix was computed
with the GeneActivity function, including the 2000 bases upstream of
the TSS. Cell type-specific peaks were called with MACS2 2.2.7.1 using
the Signac CallPeaks (1.2.1) function with default parameters for CRE
analysis. Differentially accessible regions (DARs) for proximal tubule
cell states were identified with Seurat’s FindMarkers function with the
logistic regression test, min.pct = 0.1, and increased accessibility in the
PT cell cluster relative to other cells in our dataset. The healthy PTDAR
set was generated as the union of PCT and PST DARs. We removed the
bottom 25%of accessible peaks in the PCT, PST, and KIM1+ PT clusters
to derive a whole kidney proximal tubule chromatin accessibility
profile for comparisonwith RPTEC chromatin accessibility. Aweighted
shared nearest neighbor graph (SNN) was constructed on the RNA and
ATAC batch-corrected dimensional reductions. Clustering of the
weighted SNN graph was performed with smart local moving. A
WNN UMAP reduction was calculated with the RunUMAP function for
visualization.

Doublet detection algorithm comparison
The three algorithms tested were AMULET 1.1, ArchR 1.0.1, and Dou-
bletFinder 2.0.3. Output metadata of cellranger-arc count was mod-
ified for compatibility with AMULETwith a custom script. AMULETwas
run on the ATAC modality for each sample, omitting genomic regions
in the ENCODE hg38 blacklist77. Barcodes with q < 0.05 were identified
as doublets. For doublet removal with ArchR, default settings of the
addDoubletScores function are to perform 5 trials of simulating a
number of doublets equal to the number of cells in the sample. ArchR’s
addDoubletScores function was modified to use previously generated
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paired lists of randomly sampled barcodes. DoubletFinder was mod-
ified to use the same paired list of randomly sampled barcodes.

Biopsy versus nephrectomy comparison
We aggregated our multiomic library with previously generated single
nucleus RNA-seq andATAC-seq libraries from5 control nephrectomies
(GEO accession number GSE151302), as well as snRNA-seq libraries
generated from 3 pre-transplant biopsies and 2 pre-transplant biopsy-
derived snATAC libraries. The 3 snRNA-seq libraries were processed in
a similar manner to the multiome dataset, removing low quality cells
with the following filtering parameters: nFeature_RNA> 500, nFea-
ture_RNA< 6000, nCount_RNA < 16000, percent.mt <0.8, percent.rps
<0.4, percent.rpl <0.4. For the ATAC modalities, we aggregated frag-
ments in the non-multiome samples into the 193,787 accessible peaks
called on the multiome samples. We treated the multiome cell type
annotations as ground truth cell type identities and performed label
transferringwith Seurat to the singlemodality snRNA-seq and snATAC-
seq datasets in order to generate unified complete datasets. We
retained all nuclei with maximum prediction scores greater than 0.5,
then used Seurat’s FindMarkers function to identify RNA andATAC cell
type markers. We then split each dataset into subsets of cell types by
origin—pre-transplant biopsy or nephrectomy.

The adaptive elastic-net for single-cell datasets
In snATAC-seq datasets, chromatin accessibility values between
nearby peaks are not always fully independent, a feature that has
been leveraged previously to assemble networks of cis-coaccessible
peaks43. Therefore for most genes, a multivariable regression model
is more appropriate for modeling the influence of CRE accessibility
on gene expression. Additionally, it stands to reason that adjusting
for the influence of all CREs within a regulatory network facilitates
more accurate selection of key regulatory elements with lower false
discovery rates relative to a univariable modeling approach for a
given gene’s expression.

However, single cell multiome datasets have some characteristics
thatmay impedemodel performance. The sparse and high-dimensional
nature of single cell datasets makes it difficult to select a minimal set of
regulatory elements for a given gene, with hundreds of possible peaks
and TFs that may target any given gene. Within gene regulatory net-
works, groups of genes can be regulated by the same regulatory ele-
ments, and the resulting collinearities increase the difficulty of selecting
the most important regulatory elements. The adaptive elastic-net has
several features that are well-suited for single cell datasets30. First,
model complexity is penalized,which enables variable selection in high-
dimensional datasets. An adaptive L1 penalization reduces false posi-
tives in selecting regulatory elements for a given gene. Two critical
weaknesses of the lasso estimator, a common choice for modeling this
kind of dataset, are instability in variable selection and lack of oracle
property. The adaptive L1 penalty addresses these weaknesses by
introducing adaptive weights for penalizing each coefficient78. An
additional L2 penalization term increases model stability in high
dimensional datasets with collinear predictor variables, which is a
defining feature of single cell datasets. Finally, parametric model con-
struction allows for ranking of regulatory elements, thus improving
yield when selecting potential key regulatory elements for biological
follow-up and validation. The adaptive elastic-net estimator is therefore
well-suited for identificationof regulatory elements of target geneswith
single cell datasets.

Gene regulatory network modeling
Nuclei can first be aggregated into pseudocells using a modified ver-
sion of VISION’smicropooling algorithm55. We recommend this for the
first step due to high sparsity of snATAC-seq datasets and to increase
computational tractability during exploratory analysis. Briefly, the
WNN UMAP graph is used to perform Louvain clustering, then nuclei

arepartitioned intopseudocells with k-means, targeting amaximumof
100 nuclei for peak aggregation, due to the increased sparsity of
snATAC-seq data, and 10 nuclei for RNA aggregation. As cells are only
grouped withWNN graph neighbors, this approach aims to reduce the
effects of sparsity of single cell datasets whilemaximizing preservation
of variance and heterogeneity across individual cells and cell types.
Peak accessibility and RNA expression are then averaged within
pseudocells. We did not use pseudocell aggregation when attempting
to predict specific gene targets of predicted key TFs, because aggre-
gation may cause some regulatory interactions to be averaged out.
We recommend the use of individual cells for the second step,
when possible, to take full advantage of individual cell resolution in
single cell datasets for the most accurate inference of gene regulatory
networks for simulations and validation of TF-gene regulatory
relationships.

Accessibility andexpressionmatrices are thenused toperform two
regression steps. In the first, accessible peaks within 500kbp of each
modeled gene are identified as putativeCREs, awindow that earlier CRE
prediction approaches used43. An adaptive elastic-net model is trained
to predict the gene’s expressionwith non-binarizedpeak accessibility in
order to select for CREs regulating each modeled gene. Model-
predicted CREs and the gene promoter region are then scanned for
motifs in chromVAR’s filtered version of the cisBP v0.2 database
(chromVARmotifs 0.2.0)23,40. Motifs were added to the Seurat object
with the AddMotifs function and BSgenome.Hsapiens.UCSC.hg38
1.43.0 for humandatasets or BSgenome.Mmusculus.UCSC.mm10 1.43.0
for mouse datasets. Signac’s RunChromVAR function and chromVAR
1.14.0 were used to compare RENIN and chromVAR results. TFs pre-
dicted to bind a significant CRE or a peak within the gene’s promoter
region (−2000 to 0bp from TSS) are aggregated as putative regulators
of each modeled gene. A second adaptive elastic-net model is then
trained for each gene, using the expression of TFswith potential to bind
somewhere in the CRE or promoter set. In each adaptive elastic-net
step, we model the response vector y= y1,y2, . . . yn

� �T , where yi is the
expression of the target gene, y, in pseudocell i ∈ {1,2,…n} and n is the
number of pseudocells, as y = Xβ + ϵ. The predictormatrixX contains n
rows, for each pseudocell i, x = (1, x1,…xp), where p is the number of
regulatory elements, CREs for the first step and TFs for the second step,
used to predict target gene expression. Then, the following optimiza-
tion problem is solved:

β̂ = 1 +
λ2
n

� �
argmin

β
jjy� Xβjj22 + λ2jjβjj22 + λ*1

Xp

j = 1

ŵjjβjj
( )
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The adaptive elastic-net estimator, β̂= fβ1,β2 . . .βpg, is computed
for all target genes, assigning predicted weights to all included reg-
ulatory elements for each gene, with the adaptive weights,
ŵj = ðjβ̂j enetð ÞjÞ�γ

with γ > 0, first calculated with the elastic-net
estimator79, resulting in higher penalties for regulatory elements with
lowerfirst estimatedweights. Cross-validation is used todetermine the
optimal λ1 values for the elastic-net and adaptive elastic-net estimators.
Lower values of λ2 increase model sparsity. We used a value of 0.25
during CRE prediction in order to increase enrichment of regulatory
importance and partitioned heritability. For TF prediction, we used a
value of 0.5. This estimator has the benefits of both the adaptive
weighted L1 penalty and the elastic-net penalty: increasing model
sparsity, producing more interpretable gene regulatory networks with
fewer factors implicated, while maintaining the oracle property30. It
also allows us to simulate the effects of knocking downor upregulating
select TFs, Xperturb, as ŷ=Xperturb

dβTF. In order to determine significance,
we model β̂j ∼Normalðμ̂j,σ̂jÞ. We bootstrap 1000 and 100 training sets
for RENIN’s first and second steps, respectively, to estimate standard
errors of each estimated regulatory weights, and retain weights pre-
dicted to be nonzero with p < 0.05. Runtime for each step with these
parameters was under an hour on our dataset with multithreading.
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Regulatory element prioritization
The output of the twomodeling steps is a set of functions of the form:

Exprgenei =
Xn

p= 1

βp � CREp and Exprgenei =
Xn

p= 1

βp � TFp ð2Þ

In each step, eachmodeled gene’s expression is theweighted sum
of regulatory elements plus an intercept and error term.Theweights of
each regulatory element are the learned coefficients, and are a mea-
sure of that regulatory element’s influence on that gene’s expression.
We take two complementary approaches to regulatory element
prioritization. First, we chose tomultiply each regulatoryweight by the
mean accessibility and expression of predicted CREs and TFs,
respectively, as this would allow us to rank TFs by absolute regulatory
effect on a given gene. Since this approach may be biased towards
highly expressed genes, we also rank TFs by measures of centrality.
After constructing a graph containing all modeled gene regulatory
networks, TFs most central in the graph are prioritized as key candi-
date regulatory TFs. Centrality measures used for this work were
PageRank and betweenness.

Comparison with other gene regulatory network methods
We followedeachmethod’s tutorial tomodel gene regulatory networks.
For CRE modeling and benchmarking, we compared CRE detection for
marker genes of healthy (PCT and PST) and FR (KIM1+) PT clusters.
Signac’s LinkPeaks (1.2.1) function was used with default parameters,
and links for PT cluster marker genes were retained. The score for each
CRE was used, and were summed for any CREs with multiple predicted
linked genes. We ran DIRECT-NET for PT cluster marker genes, and
Importance scores were used and summed as for LinkPeaks for CREs
with multiple predicted linked genes. For Cicero, we generated coac-
cessibility scores for all pairs of coaccessible peaks in our dataset, then
generated cis-coaccessibility networks with Cicero’s (1.3.9) default set-
tings. Cicerouses snATAC-seqdata, so peak accessibility is correlated to
other peaks’ accessibility instead of gene expression. Therefore we
identified PTmarker genes with 2kbp upstreampromoter or gene body
peaks, then any CCAN peaks were retained as putative PT marker gene
CREs. Multiple coaccessibility scores were summed for any peaks with
multiple predicted coaccessible peaks, then overall coaccessibility
scoreswere used to rankpeaks bypredicted cis-regulatory function. For
FigR (0.1.0) and SCENIC+ (1.0.1), we used pycisTopic (1.0.3) to perform
topic modeling, using a 10,000-cell subset of our dataset due to com-
putational limitations. For both methods, default settings were used
and predicted CREs linked to PT marker genes were kept. For FigR, the
rObs for each predicted CRE was used for ranking. For SCENIC+, the
R2G_importance_x_abs_rho was used to rank predicted CREs, summing
multiple values forCREswithmultiple linkedgenes. For scMEGA (0.2.0),
MOJITOO 1.0 was used to integrate RNA and ATACmodalities, followed
byArchR’s AddTrajectory function to generate apseudotime trajectory.
The TStatmethodwas used, withmultiple values summed if needed, as
for previous methods.

For TF modeling and benchmarking, we identified NFAT5 and
HIVEP2 predicted targets in the set of H-FR differentially expressed
genes with eachmethod that generates TF-gene regulatory predictions.
For Pando (1.0.3) and CellOracle (0.12.1), we used default settings to
predict regulators of the H-FR differentially expressed genes in our
dataset. For FigR and SCENIC+, all genes are modeled, so we filtered
the predicted TF-gene regulatory interactions for H-FR genes. FigR
and CellOracle come with their own motif databases, cisBP_hu-
man_pfms_2021 and cisBP_ver2_Homo_sapiens, respectively, which did
not contain HIVEP2motifs. Finally, for regression-based approaches, we
also used the TF-gene regulatory network models to predict H-FR gene
expression in the n = 29 KPMP dataset60 or in the n= 18 Kirita 2020
dataset2. For RENIN-Pando and RENIN-CellOracle comparisons, r2 was
calculated for eachgene thatwas successfullymodeledbybothdatasets.

Cell culture
Human primary proximal tubular cells (RPTECs; Lonza, CC-2553) were
cultured with renal epithelial cell growth medium (REGM; Lonza, CC-
3190). Cell cultures were maintained in humidified 5% CO2 at 37 °C.

CUT&RUN sequencing
CUT&RUNonprimaryRPTEC culturewasperformedwith theCUTANA
kit (EpiCypher, 14-1048) according to the manufacturer’s instructions.
The primary RPTEC with early passages were seeded at 8 × 105−8 × 106

cells per 10 cm culture dish 24 h prior to CUT&RUN assay. 37% for-
maldehyde (Sigma-Aldrich, 25259) was directly added to the medium
of the RPTEC to achieve a final concentration of 0.5%, and then the
medium in the dish was swirled and incubated for 1min in room
temperature. Fixation reaction was quenched by adding glycine to a
final concentration of 125mM. Subsequently, the cells were scraped
from culture dishes and centrifuged at 500 × g for 5min. Pellets were
resuspended in PBS with 1% BSA and counted. The cells were cen-
trifuged at 500 × g for 5min, and resuspended with wash buffer.
500,000 cells in 100 ul wash buffer were mixed and incubated with
Concanavalin A (ConA) conjugated paramagnetic beads. Bulk human
kidney CUT&RUNwas performed on one healthy and one CKD sample
(sample data in Source Data), Nuclei were isolated as described above,
without fixation. Antibodies were added to each sample (0.5μg of
H3K27ac antibody [Epicypher, 13-0045, 1:50], H3K4me3 antibody
[Epicypher, 13-0041, 1:50], or rabbit IgG negative control antibody
[Epicypher, 13-0042, 1:50]). For transcription factor CUT&RUN librar-
ies, duplicates were prepared with 1 ug of NFAT5 antibody (Thermo
Fisher Scientific, PA1-023) or 1 ug of HIVEP2 antibody (Thermo Fisher
Scientific, PA5-100756). The remaining steps were performed accord-
ing to themanufacturer’s instructions for cross-linked samples. Library
preparation was performed using the NEBNext Ultra II DNA Library
Prep Kit for Illumina (New England BioLabs, E7645S) with the manu-
facturer’s instructions, including minor modifications indicated by
CUTANA described above. CUT&RUN libraries were sequenced on a
NovaSeq instrument (Illumina, 150bp paired-end reads). Fastq files
were trimmed with Trim Galore (Cutadapt 2.8) and aligned with
Bowtie2 2.3.5.1 (parameters: --local --very-sensitive-local --no-unal --no-
mixed --no-discordant --phred33 -I 10 -X 700) using hg38. Peak calling
was performed using MACS2 2.2.7.1 with default parameters using
samtools (1.9) and DeepTools (3.5.0). For TF CUT&RUN libraries, TFs
were determined to be bound to a given gene if a binding peak over-
lapped the 2kbp promoter region or gene body. Analysis of over-
lapping peaks between snATAC-seq, RPTEC ATAC-seq, and CUT&RUN
peaks was performed with GenomicRanges’ findOverlaps (1.44.0).

Partitioning heritability analysis of CREs
CREs that met the p-value threshold of 0.05 were sorted by the abso-
lute value of their total predicted regulatory score, then binned into
tertile peak sets. Bed files for each peak set were converted to hg19
with UCSC’s liftOver (UCSC utilities 1.04.00). For each modeling
algorithm, the LDSC (1.0.1) workflow was followed to partition herit-
ability into each healthy or FR PT CRE set using the 1000G Phase 3
reference80. GWAS summary statistics for eGFR and CKD were down-
loaded from the publicly available CKDGen database and formatted
with munge_sumstats.py45.

Jaccard index
The Jaccard index is a measure of similarity between sets. It is com-
puted as the intersection of the two sets divided by the union:

Jaccard A,Bð Þ= jA \ Bj
jA∪Bj ð3Þ

Values range from 0 in the case of no overlap to 1 in the case of
perfect overlap.
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Akaike information Criterion
The Akaike Information Criterion (AIC) can be used to evaluate model
goodness of fit while penalizing overfitting81.We adapt it by calculating
AIC= � 2 � l β̂,j,dataset

� �
+ 2k, where k is the number of nonzero

parameters for the given gene regulatory model and l is the log-liki-
hood, calculated by summing

Pn
i f yi � ŷ
� �

, where f is the probability
density function of the normal distribution. A smaller AIC value indi-
cates a model with higher likelihood for a given dataset, however
absolute values of AIC are meaningless without a comparison value82.
Therefore we calculate relative likelihoods between CCAN and pro-
moter models by calculating ΔAIC = AICCCAN − AICProm, with more
negative values indicating a larger likelihoodof theCCAN-basedmodel
relative to the promoter-only-based model. This value can be further
converted into a relative probability, e

ΔAIC
2 .

Motif analysis of healthy-FR PT CREs
CREs predicted to regulate differentially expressed genes between
healthy and FR PT cells—selected with Seurat’s FindMarkers function
—were identified as healthy-promoting if they positively regulated a
gene upregulated in healthy PT or negatively regulated a gene
upregulated in FR-PT, and failed repair-promoting if otherwise.
Enriched motifs were identified with Signac’s FindMotifs for each
CRE set. Footprinting analysis was performed on the subset of
accessible peaks that were either healthy or FR PT CREs using a
modified function adapted from Signac’s footprint functions.
We downloaded a previously compiled list of hypermethylated
regions associated with CKD11, added a flanking 1 kb window, and
identified overlapping peaks with GenomicRanges’ findOverlaps
using RENIN-predicted CREs and all 193,787 peaks called in the
multiome dataset.

Motif enrichment-based gene regulatory network modeling
The first CRE-gene modeling step was performed to identify CREs for
each H-FR gene. We then used Signac’s FindMotifs function to identify
motifs that were enriched in each gene’s CRE set relative to a GC-
matched background peak set. Enriched motifs with Benjamini and
Hochberg adjusted p values < 0.05 were retained as putative TFs for
the second TF-gene modeling step.

Modeling of other datasets
In order to model TF-gene regulatory interactions with snRNA-seq
datasets, we identified differentially expressed genes between the
healthy and failed repair clusters in each dataset using Seurat’s
FindMarkers function. We then used our multiomic dataset or the
Gerhardt 2023 multiomic dataset9 to generate CRE-gene regulatory
networks for H-FR differentially expressed genes. TFs with motifs
within each gene’s linked CRE set were aggregated, then the second
modeling step was performed using expression values for TFs and
target genes from the snRNA-seq dataset to generate TF-gene reg-
ulatory networks.

siRNA knockdown of NFAT5 in RPTECs
P2 RPTECs were switched to starvation medium for 24 hours to syn-
chronize cell cycle. RPTECs were passaged into 6-well plates at 1*105

cells and 2.5mL of REGM per well. Fifteen uL of Lipofectamine RNAi-
MAX (Thermo Fisher, 13778075) was diluted in 125 uL OptiMEM
(Thermo Fisher, 31985070) and 2.5 uL of ON-TARGETplus SMARTpool
siRNA (Horizon Discovery, L-009618-00 for NFAT5 targeting, L-
003434-00 for PPARA targeting, L-008436-00 for CREB5 targeting, L-
015324-00 for HIVEP2 targeting, and D-001810-10 for non-targeting
negative control pool) 50uM stock was diluted in 125 uL. The diluted
siRNA and diluted Lipofectamine RNAiMAX were combined and
incubated for 5minutes, then 250 ul of the siRNA-lipid complex solu-
tion was added each well. Medium was replaced at 24 hours post-
transfection, then at 48 hours, cells were harvested.

Quantitative PCR
RNAwas extracted fromRPTECswith RNeasyMini Kit (Qiagen, 74104).
Reverse transcription was performed on the RNA with High Capacity
cDNA Reverse Transcription Kit (Thermo Fisher, 4368813) to prepare
cDNA libraries. The Bio-Rad CFX96 Real-Time System was used for
quantitative PCR, using the iTaq Universal SYBR Green Supermix (Bio-
Rad). Expression of target genes were normalized to GAPDH expres-
sion, and the 2–ΔΔCtmethodwasused to analyze results. A two-sample t-
test was performed to compare non-targeting and siRNA treatment
groups, with a p value < 0.05 determined to be statistically significant.
Data are presented as mean± standard deviation. Primer sequences
used are GAPDH: Fw 5´- GACAGTCAGCCGCATCTTCT−3´; Rv 5‘-
GCGCCCAATACGACCAAATC−3´; NFAT5: Fw 5´- CCTAATGCCCTGAT
GACTCCAC−3´; Rv 5‘- GTTTGCTGAGTTGATCCAACAGAC−3´; VCAM1:
Fw 5´- GATTCTGTGCCCACAGTAAGGC−3´; Rv 5‘- TGGTCACAGA
GCCACCTTCTTG−3´.

RNA sequencing
Total RNA integrity of extracted RNA was determined by Agilent 4200
Tapestation. Library preparation was performed with 0.5 to 1 ug of
total RNA. Ribosomal RNA was removed using RiboErase kits (Kapa
Biosystems), then mRNA was fragmented in reverse transcriptase
buffer, heating to 94° for 8minutes. Reverse transcription was per-
formed with SuperScript III RT enzyme (Life Technologies) following
manufacturer instructions. Illumina sequencing adapters were ligated,
dual index tags were incorporated, and fragments were sequenced on
an IlluminaNovaSeq6000usingpaired end reads extending 150bases.
Base calls and demultiplexing were performed with Illumina’s
bcl2fastq and a custom Python demultiplexing program with a max-
imumof onemismatch in the indexing read. Reads were aligned to the
Ensembl release 101 primary assembly with STAR 2.7.9a83 and gene
counts were calculated from the number of uniquely aligned, unam-
biguous reads bySubread:featureCount 2.0.384. For eachTFof interest,
DESeq2 1.32.0 was used to identify differentially expressed genes with
siRNA treatment (n = 3 samples) versus non-targeting control treat-
ment (n = 3 samples). Genes were prefiltered for normalized counts
greater than 0.5 per million library reads in at least 3 of 6 samples.
DESeqwas run on the unnormalized gene counts forfiltered genes and
results were extracted with alpha = 0.05. Differentially expressed
genes were identified by Benjamini and Hochberg adjusted p
values < 0.05.

NFAT5 immunofluorescence
Kidney cortex from non-tumor human kidney cortex samples (sample
information in Source Data) was fixed with 10% formalin overnight,
embedded in paraffin, and cut at 5-µm thicknesses. Antigen retrieval in
antigen unmasking solution (Vector Laboratories, H-3301-250) using
was performed before staining. The sections were blocked with 1%
bovine serum albumin in PBS(−) for 60minutes at room temperature,
followed by incubation with primary antibodies for NFAT5 at 1:200
dilution (Thermo Fisher Scientific, PA1-023) and biotinylated Lotus
Tetragonolobus Lectin (LTL) at 1:200 dilution (Vector Laboratories, B-
1325) at 4 °C overnight. Next, the sections were incubated with sec-
ondary antibodies at 1:200dilution (InvitrogenA21206 and S21374) for
90minutes at room temperature. Nuclei were counterstained with
DAPI (4,6-diamidino-2-phenylindole) and mounted in ProLong gold
antifade mountant (Thermo Fisher Scientific, P36930). Fluorescence
images were captured by Nikon C2+ Eclipse confocal microscopy and
processed using Nikon Elements-AR 5.42.02 and FIJI (2.9.0/1.53t).

We modified the protocol to costain for NFAT5 and VCAM1 in
ESRD kidney cortex samples (sample information in Source Data).
After antigen retrieval, we blocked in 2.5% normal horse serum
(Vector Laboratories, MP-7401-15) for 60minutes at room tempera-
ture. Primary antibody incubation for NFAT5 at 1:10000 dilution
was performed overnight at 4 °C. After three 5min washes in PBS(-),
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incubation with anti-rabbit ImmPRESS secondary antibody reagent
(Vector Laboratories, MP-7401-15) was performed for 30minutes at
room temperature, followed by three PBS(-) 5min washes. Incubation
with Tyramide-AF488 (Thermo Fisher Scientific, B40953) diluted 1:100
in 0.0015% H2O2 was then performed for 10minutes at room tem-
perature, followed by three PBS(-) washes. After blocking for
60minutes at room temperature in 1% BSA, anti-VCAM1 antibody was
added at 1:200 dilution (Abcam, ab134047). Secondary antibody
incubation was performed for 90minutes at room temperature at
1:200 dilution (Invitrogen, A10042 and S21374).

Statistics and reproducibility
No statistical method was used to predetermine sample size, and no
data were excluded from analysis. Experiments were not randomized,
and investigators were not blinded during experiments or outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedatasets generated in this studyhavebeendeposited inGEOunder
accession codes GSE220289. A processed Seurat R object for the
multiome dataset is available at Zenodo under record number
10444715. Previously generated datasets thatwere analyzed during the
current study are available in GEO under accession codes GSE151302
and GSE195443. The results here are also in part based upon data
generated by the Kidney Precision Medicine Project. Data accessed
March 24, 2024 (https://www.kpmp.org); the Seurat object was
downloaded from the KPMP repository (https://www.kpmp.org/doi-
collection/10-48698-yyvc-ak78). GRCh38-2020-A-2.0.0 reference gen-
ome, released on May 3, 2021, was downloaded from 10X Genomics
(https://support.10xgenomics.com/single-cell-multiome-atac-gex/
software/downloads/latest). Source data are provided with this paper.

Code availability
Package code is available in a public repository at https://www.github.
com/nledru/RENIN (https://doi.org/10.5281/zenodo.10524911)85. Ana-
lysis code for this manuscript is available at Zenodo under record
number 10444715.
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