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Pick-up single-cell proteomic analysis for
quantifying up to 3000 proteins in a
Mammalian cell

Yu Wang 1,2,3,7, Zhi-Ying Guan1,7, Shao-Wen Shi2, Yi-Rong Jiang 1, Jie Zhang4,
Yi Yang 1,2, Qiong Wu1, Jie Wu1, Jian-Bo Chen1, Wei-Xin Ying1, Qin-Qin Xu1,
Qian-Xi Fan1,Hui-FengWang2, Li Zhou5, LingWang5, Jin Fang4, Jian-ZhangPan1,2&
Qun Fang 1,2,6

The shotgun proteomic analysis is currently the most promising single-cell
protein sequencing technology, however its identification level of ~1000
proteins per cell is still insufficient for practical applications. Here, we develop
a pick-up single-cell proteomic analysis (PiSPA) workflow to achieve a deep
identification capable of quantifying up to 3000 protein groups in a mam-
malian cell using the label-free quantitative method. The PiSPA workflow is
specially established for single-cell samples mainly based on a nanoliter-scale
microfluidic liquid handling robot, capable of achieving single-cell capture,
pretreatment and injection under the pick-up operation strategy. Using this
customized workflow with remarkable improvement in protein identification,
2449–3500, 2278–3257 and 1621–2904 protein groups are quantified in single
A549 cells (n = 37), HeLa cells (n = 44) and U2OS cells (n = 27) under the DIA
(MBR) mode, respectively. Benefiting from the flexible cell picking-up ability,
we study HeLa cell migration at the single cell proteome level, demonstrating
the potential in practical biological research from single-cell insight.

Nowadays, single-cell genomic1 and transcriptomic technologies2 have
been well developed. However, the development of the single-cell
proteomic technology faces major technical challenges, because the
protein content in a single cell is extremely low and proteins are dif-
ficult to be amplified as nucleic acids. So far, a variety of protein ana-
lysis techniques at the single-cell level have been developed, including
those based on specific antibody labeling such as flow cytometry3,
fluorescence imaging4, Western blotting5 andmass cytometry6, as well
as those based on non-labeling proteomeanalysis techniquewith high-
resolution mass spectrometry (MS). At present, among the proteomic
analysis techniques based on MS, the shotgun technique using the
bottom-up strategy usually demonstrates the maximum depth and

breadth of protein identification7, with which usually 5000–7000
proteins8–10 can be identified in a single measurement with a liquid
chromatography-mass spectrometry (LC-MS) system for a sample
containing a large number of cells with a protein amount in the range
of 200–1000 ng. Therefore, in recent years, a variety of single-cell
proteome analysis approaches based on the shotgun technique have
been developed11–24.

A typical single-cell shotgun proteomic analysis process includes
the sorting of target cells from a large number of sample cells, the
pretreatment of single-cell samples, the LC injection and separation,
and ESI-MS/MS detection of the digested peptides. The sample pre-
treatment process includes multi-steps of cell lysis, protein reduction,
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alkylation, enzymatic digestion and termination of the digestion. For
such single-cell samples with extremely small protein amounts (ca.
100–500 pg per cell25), if the above-mentioned series of sample pre-
treatment operations are carried out with a microliter-scale reactor
such as a centrifuge tube11 or a multi-well plate26, obvious sample loss
will occur during the sample pretreatment and transferring process,
whichwill significantly reduce thenumber of protein identificationand
thus severely limit the identification depth of single-cell proteomics.

To break through the barriers of the identificationdepth of single-
cell proteomics, one strategy to address the above challenge is
to perform the sample pretreatment in nanoliter-scale in-situ
microreactors, such as the oil-air-droplet (OAD) chip13, the integrated
proteome analysis device (iPAD)14 and the nanodroplet sample pre-
paration (nanoPOTS) platform12,16,27–30. Compared with the conven-
tional microliter-scale reactors used in routine laboratories, these
microreactors have a volume reduction of hundreds of times, which
can avoid the excessive dilution of the trace amounts of single-cell
samples, effectively improve the reaction efficiency and reduce the
sample loss caused by the adsorption of the sample components on
the reactor surface during the pretreatment process. Based on these
methods, up to 300–1100 proteins were able to be identified from
single cells with label-free approach12,14,27,29. With the tandem mass tag
(TMT) approach, the maximum up to 1500 proteins were quantified
from single acute myeloid leukemia (AML) cells31. However, most of
the reported nanoliter-scale microreactors required to use micro-
fabricated microchips or devices as the microreactors, and needed
special sample injection devices and additional operations to com-
plete the injections of the nanoliter-volume samples. Currently, an
important emerging trend is to develop single-cell proteomic plat-
forms capable of integrating whole-process operations for promoting
the practicality and popularization of single-cell proteomic analysis.
Some integrated platforms were developed by using the combination
of commercial instruments and self-developed systems (such as the
autoPOTS platform32, T-SCP platform19, SCeptre33 and One-Pot34

workflow) or an integrated microfluidic chip17,18,35,36, to complete the

whole process of single-cell proteomic analysis, with 300–2000 pro-
teins identified from single cells.

In spite of the significant progresses obtained in single-cell pro-
teomics, how to further improve the protein identification depth and
simultaneously simplify the device and operation to achieve practical
whole-process proteomic analysis at the single-cell level still presents
great challenges.

Here, we develop a total workflow solution for single-cell pro-
teomic analysis (Fig. 1) capable of achieving deep identification quan-
tifying up to 3000 protein groups in a single mammalian cell. More
automatic and convenient operation is performed by using a probe-
based microfluidic liquid handling robot coupled with a commercial
liquid chromatograph (LC) and a trapped ion mobility spectrometry
(TIMS) QTOF mass spectrometer. The automated pick-up operation
mode based on capillary probes is adopted throughout the pick-up
single-cell proteomic analysis (PiSPA) workflow, including the sorting
of single cells andmulti-step single-cell pretreatment to digest cellular
proteins into peptides in nanoliter reactors, as well as the injection
of the peptide samples to the LC column. In addition, we utilize a
single-cell customized strategy that fully considered the effects of
the unique properties of single cells vs. bulk cells on sample
pretreatment, separation, and detection to establish the series of
measures throughout the PiSPA workflow. This strategy enables a
muchdeeper depth of protein identification in single-cell analysis than
those previously reported in the literatures. We apply this platform in
the single-cell proteomic analysis of three kinds of mammalian cells,
HeLa, A549 andU2OS cells, aswell as the single-cell proteomic studyof
migrating HeLa cells.

Results
Establishment of the PiSPA workflow
We first integrated an improved microfluidic liquid handling robot37

previously developed by the authors’ group based on the sequential
operationdroplet array (SODA) technique38,39 into thePiSPAplatform to
achieve nanoliter-scale single-cell sorting and multistep pretreatment

Fig. 1 | Schematic diagram of the PiSPA workflow for single cell proteomic
analysis. The PiSPA workflow was conducted using a probe-based microfluidic
liquid handling robot for cell sorting and pretreatment, a commercial LC system
with an autosampler, and a tims-QTOF mass spectrometer. The microfluidic liquid
handling robot (a) with an insert tube array (b) completed the sorting of single cells
and themulti-step pretreatment of the single cell sampleswith the automated pick-
up operation mode, including sorting of single target cells (c), nanoliter-scale cell
lysis (RG, RapiGest SF), protein reduction (TCEP, tris (2-carboxyethyl) phosphine),

alkylation (IAA, iodoacetamide), enzymatic digestion (Try, trypsin; Lys-C, Endo-
proteinase Lys-C) and termination of the digestion (FA, formic acid) (d). Insert
tubes coupled with sample vials were used as the nanoliter microreactors for
sample pretreatment of single cells (b). After sample pretreatment, the insert tubes
& sample vials were used as sample tubes for the autosampler of the LC system to
perform the sample injection (e), LC separation (f) and subsequentMS detection of
the digested peptide components from single cells (g, h).
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under the probe pick-up mode. The PiSPA platform performed the cell
sorting with three-step operations of single-cell identification, picking-
up and dispensing. Under the pick-upmode, it achieved the automated
bright-fieldorfluorescence imaging and identification of the target cells
in the cell suspension samples based on their bright-field apparent
property or labeled fluorescence signals, picking-up of the single target
cell by a tapered capillary probe connected with a high-precision syr-
inge pump, and dispensing the target cell into an insert tube. We eval-
uated the cell sorting performance of the PiSPA platform by using it to
pick-up20 singleHeLacells separately anddispensing them individually
intodifferent insert tubes. Under theoptimized conditions (i.e. capillary
tip diameter of 35μm, aspirating flow rate of 500nL/s, aspirating
volumeof 25 nL, and injection volumeof 400nL), at least 19 singleHeLa
cells were successfully dispensed into the insert tubes, corresponding
to a single-cell assignment rate of 95% (n = 20). To ensure the accuracy
of cellular protein analysis, we used freshly isolated or cultured cell
samples. The entire procedure of identification, picking-up and dis-
pensing for each target cell usually took 20 s. Therefore, sorting of
dozens of single cells could be achieved in 10–20min.Weobserved that
after the picked HeLa cells were dispensed into PBS droplets, the
morphology of these cells was intact and they could be attached to the
bottom surface of the vessel. A fluorescent dye for detecting cellular
activity were also used to stain the cells, showing that they could retain
their viability. Typical images of a picked HeLa cell in a droplet before
and after staining by the fluorescent dye for cell viability assay are
shown in Supplementary Fig. 1.

After the probe captured the target cell, we controlled the plat-
form todispense the cell into a commercial insert tube insteadof using
a microchip as the microreactor as previously reported13. The insert
tubes canbe seamless compatiblewith the autosampler of commercial
LC-MS systems, without the need for microfabricated microchips and
troublesome sample injection operations13,26,29. However, even for the
smallest insert tubes available on the market, their volumes are still
hundreds of microliters, which are far from a nanoliter-scale micro-
reactor required for single-cell sample pretreatment. We solved this
difficulty using the conical bottom tip (2mm inner diameter, 0.4mm
height) of the insert tubes to load the nanoliter reaction solution. In
addition, the evident evaporation effect of the nanoliter reaction
solutions during the heating reaction process was suppressed by
adding 100μL of water and a sealing cap to the sample vial outside the
insert tube to form an internal high-humidity environment. With the
precise manipulation ability for nanoliter-scale liquids, the single-cell
capture platform was continuously adopted to complete the multi-
step nanoliter-scale reagent addition operation to sequentially achieve
cell lysis, protein reduction, alkylation, digestion and reaction termi-
nation, under the pick-up operation mode. We performed a compar-
ison experiment to conduct sample pretreatment of single HeLa cells
with reaction volumes of microliters (5μL) and nanoliters (~400 nL).
The protein identificationnumber of the nanoliter reactorswas double
that of the microliter reactors (Supplementary Fig. 2). The advantage
of nanoliter-scale reactors in single cell proteomic analysis had also
been demonstrated in many previous literatures14,25,30.

In the protein digestion experiments, we studied the effect of the
enzyme/protein ratio on the protein identification number using single
HeLa cells as samples. In routine proteomic experiments, enzyme/
protein ratios between 1:100 and 1:10 are usually adopted as the opti-
mized digestion conditions. Most of the current single-cell proteomic
workflows also followed this enzyme/protein ratio range13,16,18,19,30,31.
However, our experimental results (Fig. 2a) showed that the single-cell
protein identification number showed an increasing trend with the
increase of the enzyme/protein ratio. This increasing trend showed a
rapid change in the enzyme/protein ratio range of 0-15:1, and sig-
nificantly slowed down after 15:1. When the enzyme/protein ratio was
between 40:1 and 60:1, the protein identification number reached the
highest level (~1100 protein groups) and the fluctuations (i.e. CV) in the

protein numbers identified in different single cells were also at the
lowest level. Comprehensively considering the protein identification
number and the working stability of the platform, we finally chose
an enzyme/protein ratio of 50:1 in the subsequent single-cell proteomic
analysis experiments. Such an enzyme/protein ratio largely exceeding
those used in most conventional and single-cell proteomic experi-
ments, was favorable to maintain a relatively high enzyme
concentration40,41 (e.g. ~12μg/mL trypsin in the present platform) in the
nanoliter-scale reaction solutions to increase digestion efficiency of
proteins. Another possible benefit of using larger amounts of enzymes
may be related with the scale characteristics of single-cell analysis, that
is, the largely excessive enzyme molecules in the reaction solutions
could serve as an adsorption substitute,which substantially reduced the
adsorption loss of trace cellular proteins and digested peptides on the
surfaceof themicroreactor and transmission conduit during the sample
pretreatment and injection process.

To test the possible negative effects caused by the large enzyme/
protein ratios, we first performed proteomic analysis for a control
blank sample (containing all pretreatment reagents except for the
single-cell sample), and no proteins from the two heterologous
enzymes (trypsin and Lys-C) were identified and the protein identifi-
cation number for the control samples was also at a very low level,
indicating that the enzymes and their self-cleaved peptides did not
produce misidentification of proteins. We also examined the peak
positions and intensity signals of the self-cleaved peptides of trypsin in
a proteomic analysis chromatogram of a typical single HeLa cell
(Supplementary Fig. 3). It can be observed that the signals of the self-
cleaved peptides of these enzymes appeared at only a few specific
retention time and m/z positions and had no evident effect on the
identification of the sample peptides.

The choice of gradient procedure in LC separations has a critical
impact on chromatographic separation performance and proteome
identification results. We evaluated the influence of different gradient
times on single-cell proteomics analysis using gradients of 14, 18, 21,
28, 48, and 68min with a sample of the 200pg of standard HeLa cell
digestion (Fig. 2b). The identification number reached the highest level
of ca. 600 when the 18–28min gradients were used, and then slowly
decreased as the gradient time increased. Differing from the gradients
of tens of minutes for routine proteomic analysis, the results showed
that relatively short gradients are more beneficial for obtaining high
protein identification numbers for single-cell samples. This is because
short gradients are favorable for increasing the signal peak intensities
of peptides, thereby improving the identification of some low-
abundance peptide components in the sample (Supplementary
Fig. 4). Another benefit of using short gradients is that it can increase
the throughput of proteomic analysis. However, an excessively short
gradient (such as 14min gradient) will worsen the separation perfor-
mance and result in a decrease in the number of protein identification.
Comprehensively considering the analysis throughput and identifica-
tion stability, we finally chose the 21-min LC gradient time in the sub-
sequent experiments.

Before performing single-cell proteomic analysis of mammalian
cells, we first tested the repeatability of the LC-MS system under the
optimized conditions by running 10 consecutive analysis of the 200pg
of commercialHeLa cell digest serving as a quality control (QC) sample
in data independent acquisition (DIA) and data dependent acquisition
(DDA) modes. DDA and DIA are two widely-used MS data acquisition
modes in proteomics analysis. DDA mode chooses a few most intense
precursor ions based on the MS1 spectrum for acquisition of
MS2 spectra and identification of peptides. In contrast, DIA mode
allows the fragmentation of all precursor ions within a certain range of
m/z and retention time to acquire complete record of theoretically all
peptides in a sample42,43. On average, 1469 and 618 protein groups
(Fig. 2c) with number variation coefficients of 4.7% and 2.3% were
stably quantified under the DIA and DDA mode, respectively.
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The pairwise correlation analysis (Python package Pandas, version
1.4.4) between the protein quantification data of the 10 QC samples
showed that all of the Pearson correlation coefficients were over 0.99
(DIA mode) and 0.85 (DDA mode) (Fig. 2d), demonstrating the good
stability (especially in DIA mode) of the system in the proteomic ana-
lysis at the single-cell level.

Single-cell proteomic analysis of mammalian cells
Using the present workflow and platform, we performed single-cell
proteomic analysis of three types of tumor cell lines, A549, HeLa, and
U2OS cells, using the DIA and DDA modes, with the optimal enzyme/
protein ratio of 50:1 and gradient time of 21min. Under the DIA mode,
an average of 2467 (1804–3349), 2421 (1778–3049) and 1705
(1074–2487) protein groups were quantified in single A549 cells
(n = 37), HeLa cells (n = 44) and U2OS cells (n = 27), respectively
(Fig. 3a). Using thematchbetween runs (MBR) algorithm, anaverageof
3008 (2449–3500), 2926 (2278–3257) and 2259 (1621–2904) protein
groups were quantified in the same samples of single A549, HeLa and
U2OS cells, respectively. Under the DDA mode at the same analysis
conditions, an average of 1328 (712–2129), 1290 (664–2198) and 1005
(536–1519) protein groups were quantified in single A549 cells (n = 56),
HeLa cells (n = 68), and U2OS cells (n = 24) (Fig. 3a). In the DIA (MBR)
mode, 2869, 2772, and 1889 protein groups were reproducibly quan-
tified in 80% (i.e. recurrence percentage) of the single A549, HeLa, and
U2OS cells, respectively, while only 638, 722, and 1103 protein groups
were quantified with less than 20% recurrence percentage (Fig. 3b).
These results indicated that the majority of the quantitative identifi-
cation results of single cells by the PiSPA platform had high levels of

reproducibility. In the above single-cell proteomic experiments, a total
of 143 and 172 single cells were captured for analysis in the DIA and
DDA modes, respectively, and we finally obtained 108 and 148 valid
single-cell data, corresponding to average single-cell capture/analysis
efficiencies of 76% and 86%.

We implemented a uniform manifold approximation and projec-
tion (UMAP) dimensionality reduction on the data of single A549, HeLa
and U2OS cells, three types of single-cell samples could be auto-
matically and clearly clustered (Figs. 3d, e), and all of the single cell
samples were correctly clustered.

Under the DDA mode, the label-free single-cell protein identifi-
cation numbers obtained in this work (Fig. 3a) are higher than most of
the literature reported results for the same type of cells (e.g. HeLa
cells)12,14,27–29,32, which shows the advantage of the present workflow
and platform in the identification depth of single-cell proteome ana-
lysis. Comparedwith the single-cell proteomic data set obtained under
the DIA mode, the single-cell protein identification numbers based
on the DDAmode are relatively low. From the unions of the data sets
of 37 single A549 cells, 44 single HeLa cells, and 27 single U2OS cells,
total numbers of 5093, 5048 and 4286 protein groups could be
cumulatively quantified under the DIA mode, respectively (Supple-
mentary Fig. 5). However, only 3286, 3319 and 2357 protein groups
were cumulatively quantified from the unions of the data sets of
56 single A549 cells, 68 single HeLa cells and 24 single U2OS cells
under the DDAmode, respectively (Supplementary Fig. 5). Under the
DIA and DDA modes, the ranges of protein abundance spanned
nearly 5 and 4 orders of magnitude, respectively. Some important
but low abundant proteins could only be quantified under the DIA

Fig. 2 | System optimization and performance. a Enzyme/protein ratio optimi-
zation for single-cell proteomic analysis. Under the DDA mode, an average of 251,
312, 450, 899, 911, 1022, 1057, and 1023 protein groups (n = 3) were quantified at
menzyme/mprotein of 0, 0.05, 1, 10, 20, 40, 60, and 100, respectively. Conditions:
Sample, single HeLa cells; LC gradient time, 21min. b Optimization of LC gradient
time. Under the DDA mode, an average of 529, 602, 618, 610, 516, and 412 protein
groups (n = 3) were quantified with LC gradients of 14, 18, 21, 28, 48, and 68min,
respectively. Conditions: Sample, 200pg of standard HeLa cell digestion; enzyme/

protein ratio, 50:1. In (a, b), the bars indicate themean values of the corresponding
data; the error bars indicate the standard deviations; individual data points are
overlaid. c, d Test for the repeatability of 10 consecutive analysis of 200pg stan-
dard HeLa cell digestion sample using the LC-MS system in DIA and DDA modes,
with a LC gradient time of 21min. The results of protein identification number
under the DIA and DDA mode (c) and their Pearson correlation coefficients of
pairwise analysis (d) are shown. Source data are provided as a Source Data file.
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mode (Fig. 3c), such as mismatch repair endonuclease PMS244 and E3
ubiquitin-protein ligase NEDD445.

Evaluation of quantitative accuracy and precision of the
LC-MS system
Toassess the quantitative accuracy andprecision of the present LC/MS
system, we compared the quantification results of 0.2 ng, 0.4 ng,
0.6 ng, 0.8 ng, and 1 ng HeLa digests (n = 6). Using the 0.2 ng HeLa
digest as the reference to calculate the protein abundance fold change
(FC) values obtained for each quantified protein, a proportionally lin-
ear increase in the protein fold change with the increase of the protein
amount of the HeLa digests could be observed with R2 of 0.9995
(Fig. 4a). As the protein amount increased, the quantitative precision
improved from a coefficient of variation (CV) of 25.6% with the 200pg
HeLa digest to 14.9% with the1 ng HeLa digest (Fig. 4b). These results
demonstrate the favorable quantitative accuracy and precision of the
present LC-MS system in the level of single cell and small number
of cells.

In addition, we further tested the quantitative accuracy of the
system using single cell samples spiked with different ratios of yeast
and Escherichia coli (E. coli) peptides. TheQC samples at the single-cell
level were prepared by mixing eight digested single HeLa cell samples
and then aliquoting it into eight portions. The single-cell QC samples
were divided into two groups (S1 and S2) with four samples in each

group, and were spiked with yeast peptides and E. coli peptides with
different ratios to each sample. The spiked QC samples were analyzed
with the LC-MS system, and the results showed that the median fold
change values of the proteins from the three species in the samples
closely matched the theoretical values, with a relative difference, i.e.,
(median FC - theoretical value)/theoretical value, ranging from –2% to
+15% (Fig. 4c). This further demonstrated the high level of quantitative
accuracy of the present system. Furthermore, the CV values of the
protein quantification results from the three species in both QC sam-
ple groups were below 20% (Fig. 4d), also demonstrating the good
quantitative precision in the single-cell level.

Benefiting from the ability of the present platform to flexibly and
accurately control the cell number in samples, we tested samples
containing 0, 1, 2, 3, 5, and 10 HeLa cells with the same procedures and
conditions as in single-cell proteomic analysis, to evaluate the back-
ground level in the blank control sample as well as examine the effect
of cell number on the protein identification number. Under the DIA
(MBR) mode, on average, 0, 3000, 3121, 3411, 3718, and 3864 protein
groups were quantified in 0, 1, 2, 3, 5 and 10 HeLa cells (n = 4),
respectively (Fig. 4e). The number of protein identifications did not
increase linearly with the cell number (Fig. 4e). However, the protein
abundance, as reflected by the median fold changes relative to
the single-cell sample, showed a linear relationship with the cell
number (Fig. 4f), with FC values of 1.64, 2.69, 3.26 and 6.02 and R2 of

Fig. 3 | Application of the PiSPA platform in proteomic analysis of single
mammalian cells. a Quantified protein group numbers of three types of mam-
malian cells (A549, HeLa, andU2OS cells) under theDIA andDDAmodes. Under the
DIA mode, an average of 3008 (2449–3500, median = 3013, n = 37), 2926
(2278–3257, median = 2946, n = 44) and 2259 (1621–2904, median = 2200, n = 27)
protein groups were quantified in single A549, HeLa and U2OS cells with match-
between-run (MBR) algorithm, and average of 2467 (1804–3349, median = 2409,
n = 37), 2421 (1778–3049, median = 2409, n = 44) and 1705 (1074- 2487, median =
1770, n = 27) protein groups were quantified in the same single A549, HeLa and
U2OS cells without MBR. Under the DDA mode, an average of 1328 (712–2129,
median = 1282,n = 56), 1290 (664–2198,median = 1228, n = 68) and 1005 (536–1519,
median = 984, n = 24) protein groups were quantified in single A549, HeLa and
U2OS cells, respectively. Conditions: enzyme/protein ratio, 50:1; LC gradient time,

21min. The central lines in the boxes indicate the median values of the corre-
sponding data; the boxes indicate the quartiles; the whiskers extend to amaximum
of 1.5 times interquartile range beyond the quartiles; individual data points are
overlaid. b Recurrence percentage distributions of the protein groups quantified in
single A549, HeLa, and U2OS cells in (a) under the DIA-MBR, DIA, and DDAmodes.
The bars indicate the mean values of the corresponding data; the error bars indi-
cate the standard deviations; individual data points are overlaid. c, Rank order of
protein abundance in single HeLa cells under the DIA (red dots) and DDA (blue
dots)modes. Someof the proteins only quantified in theDIAmodearemarkedwith
colored points. d, e Comparison of UMAP dimensionality reduction analysis on the
measured A549, HeLa, and U2OS cells in (a) under the DIA (d) and DDAmodes (e).
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-45659-4

Nature Communications |         (2024) 15:1279 5



0.9848 (Fig. 4f). As the “Proteomic Ruler” method46, we searched the
description of all the quantified proteins in the 1-10 cells HeLa data
using the keyword “histone”, and 40 histone-related proteins were
obtained. Using the abundances of these proteins in single-cell sam-
ples as a reference, the quantitative fold changes (medians) of these
proteins in 2, 3, 5, and 10 cells (n = 4) was 1.66, 2.30, 3.32, and 6.83,
respectively, which was linearly correlated with the number of cells
(Supplementary Fig. 6). This further demonstrates the qualified per-
formance of the PiSPA system in terms of cell capture specificity and
protein quantification accuracy.

Single-cell proteomic analysis of migrating cells
Cell migration is a common biological process, which has important
significance for the study of tumor migration, wound healing, embryo-
nic development, immune response, etc47. At present, the scratch assay
is frequently used to test the invasion andmetastasis ability of adherent
tumor cells48, while so far there is no report on the study of individual
tumor cells with different migration behaviors at the deep-coverage
proteome level. The PiSPA platform has the ability to observe the
behavior of individual migrated cells, reliably pick the target cells up,
and achieve deep-coverage proteomic analysis to these cells at the
single-cell level to highlight the individual protein differences between
cells with different apparent migratory properties.

We used HeLa cells to perform the scratch assay, and 46 single
cells with significant migratory behaviors (Fig. 5a, Supplementary
Data 1) and 43 single (control) cells without obvious migratory beha-
viors were captured and analyzed with the PiSPA platform. Under the
DIA (MBR) mode, an average of 2544 (2058–3308) and 2893
(1896–3710) protein groupswere quantified from singlemigrated cells

(n = 46) and control cells (n = 43), respectively (Supplementary Data 2,
Supplementary Data 3). Among them, over 78% of the proteins were
quantified by two or more feature peptides (Supplementary Fig. 7).

After batch correction and normalization, the data were clustered
into three distinct clusters by UMAP (Fig. 5b). Cluster 1 (n = 42) pre-
dominantly consisted of migrated cells (n = 35, 83%), while cluster 2
(n = 31) and cluster 3 (n = 16) consisted mainly of control cells (n = 26
and n = 10, 83% and 63%, respectively). By individually comparing the
three clusters, 226 significantly different proteins were screened out
(Wilcoxon test, p.adj <0.05, fold change >2). Hierarchical cluster ana-
lysis (HCA) was utilized to quantitatively assess the differences in
protein compositions among the three clusters (Fig. 5c) to feature the
heterogeneity among the different clusters.

Compared to cluster 2, there were 33 proteins significantly upre-
gulated and 13 proteins significantly downregulated in cluster 1 (Sup-
plementary Fig. 8, Wilcoxon test, p.adj <0.05, fold change > 2). Among
them, the upregulated proteins such as Orc149, TGFBI50, MSLN51,
HtrA152,53 were reported to be associated with the migration and inva-
sion of tumor cells. The expression levels of these proteins in the dif-
ferent clusters were quantified (Supplementary Fig. 9), and it was
observed that these proteins exhibited significantly downregulated in
both cluster 2 and cluster 3, which corresponded to the relatively weak
apparent migration behavior of most of the cells in the two clusters.

We further compared the protein expression differences between
cluster 1 and cluster 3. In cluster 1, there were 135 proteins exhibiting
upregulation and 36 proteins showing downregulation (Fig. 5d, Wil-
coxon test, p.adj <0.05, fold change >2). Among them, 11 upregulated
proteins, including Cdc42, Rac1, RhoA, EZR, THBS1, Itgb6, Rap1A,
MYL12A, Myl9, MSN, and Arpc1a, were involved in signal pathways of

Fig. 4 | Evaluation of quantitative accuracy and precision of the LC-MS system.
a Protein abundance fold changes (median = 1.00, 2.03, 3.14, 4.31, and 5.32) for
different amounts of HeLa digests (0.2 ng, 0.4 ng, 0.6 ng, 0.8 ng, and 1 ng, n = 6)
with reference to the average protein abundance in 0.2 ng HeLa digest. b Density
distribution of coefficient of variation (CV) for proteins in 0.2 ng, 0.4 ng, 0.6 ng,
0.8 ng, and 1.0 ng HeLa digests (median= 25.6%, 20.6%, 17.3%, 14.9%, and 14.7%,
n = 6). c Protein abundance fold changes of E. coli (n = 198), human (n = 2614) and
yeast (n = 463) measured in the two groups (S2/S1) of the QC samples of digest
single HeLa cell spiked with two other species of peptides (S1: single-cell QC added
with 50pg yeast peptides and 150pg E. coli peptides; S2: single-cell QC added with
100pgyeast peptides and 100pgE. colipeptides;n = 4).Dashedblack lines indicate

the theoretical fold change. d CV density distributions of the quantified proteins
from the three species in both QC sample groups in (c). e Quantified protein
numbers from 0, 1, 2, 3, 5 and 10 HeLa cells (n = 4) under the DIA-MBR mode. The
bars indicate the mean values; the error bars indicate the standard deviations;
individual data points are presented as red dots. f Protein abundance fold changes
for 1, 2, 3, 5 and 10 HeLa cells (median = 1.00, 1.64, 2.69, 3.26, and 6.02, n = 4) in (e),
with the average protein abundance of the 1-cell samples as the reference. In (a) (c)
and (f), the central lines in the boxes indicate themedian values; the boxes indicate
the quartiles; the whiskers extend to a maximum of 1.5 times interquartile range
beyond the quartiles. Source data are provided as a Source Data file.
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focal adhesion and regulation of actin cytoskeleton (Fig. 5e, Kyoto
Encyclopedia of Genes and Genomes (KEGG)54 enrichment analysis,
p.adj <0.05), which were reported to be closely related to cell
migration55,56. In thepreviously-reported cellmigrationmodels57–60, the
function of Cdc42 is usually recognized as inducing filopodia forma-
tion and regulating the direction of cellmigration, the function of Rac1

is to induce lamellipodia formation and establish new adhesion sites at
the leading edge to pull the cell forward, and the functionof RhoA is to
promote the contraction of the posterior actin to detach from adhe-
sions, eventually leading to the migration of cells. We clearly observed
a significant upregulation of these above-mentioned proteins in clus-
ter 1 compared to cluster 3, implying the activation of the relevant
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migration pathways, which was in agreement with the fact that the
cluster 1 cells exhibited significant apparent migration property in the
migration assay. Interestingly, we compared the expression levels of
the three proteins at the single-cell level in the three clusters (Fig. 5f)
and the results showed that the expressions of the three proteins in
cluster 2 cellswere also higher than those in cluster 3, showingobvious
heterogeneity among the control cells. This result implied that
although most cells in both cluster 2 and cluster 3 did not show sig-
nificant migration behaviors, probably the reasons for their lack of
significantmigration behavior were different. The upregulations of the
migration-associated proteins in cluster 2 cells implied the potential
strong migration activity of these cells, while they did not show actual
migration behaviors presumably due to the lack of space around these
cells for migration. Such a cell protein heterogeneity that exists within
a cell group with similar phenotypic behaviors is difficult to observe
and explore with the conventional bulk cell experiments except using
the single-cell proteomic analysis technique.

The use of the “pick-up” approach enabled the observation of
evident cellular heterogeneity in cell migration, such as the presence
of a small number of mixed cells within the same clusters. However,
limited by the relatively rough operation mode of the scratch experi-
ment in the condition control and monitoring of cell migration, the
current experimental data could not provide a definitive explanation
for these types of cellular heterogeneity, implying the possible exis-
tenceofmore complex relationships between cellmigration behaviors
and protein expression. For further validation and in-depth study on
these relationships in the future, microfluidic chips could be used to
precisely control the position and state of the initial cells and a live cell
workstation could be used tomonitor the wholemigration process for
tracking the migration paths of each tested cells.

The present application of single-cell proteomics in cell migration
experiment is just a preliminary proof-of-principle attempt, while it
could demonstrate that the PiSPA platform has the potential to reveal
the intrinsic control factors behind the apparent behaviors that were
previously difficult to detect using the conventional omics approaches
for large amounts of cell samples, and could provide an effective tool
for the cell migration studies as well as the development of anticancer
approaches and drugs.

Discussion
In the present work, we adopted the single-cell customization strategy
throughout the whole process of the platform building, methodology
development and performance improvement for single-cell proteomic
analysis, covering workflows of single-cell sorting, sample pretreat-
ment, chromatographic injection and separation, mass spectrometry
detection and data processing. A total solution was developed to
achieve a leap improvement in protein identification depth and reliable
and convenient operation of single-cell analysis. The PiSPA platform
achieved single-cell sorting using the pick-up mode, which is different
from the flow cytometry3, CellenONE61, or limiting dilution based13,62

single-cell sorting approaches. Under the pick-up mode, arbitrary cells

of interest can be selected as the target cells in the microscopic field of
view based on the bright-field or fluorescence information or other
properties of the cells, and the target cells are picked individually by the
capillary probe under microscopic monitoring. Therefore, this
approach has strong controllability, definiteness and reliability in the
selection and picking of the target cells, while retaining the phenotypic
and spatial information of these target cells. This feature has been
demonstrated in the picking of migrated cells in the cell migration
experiment, which is difficult to achieve using theflowcytometry-based
single-cell sorting techniques. Although the throughput (~20 s per cell)
of the PiSPA platform in single-cell sorting is far lower than those of the
flow cytometry-based systems, it can stillmatch the current throughput
of tens of samples per day in most of single-cell proteomic analysis
systems. If needed, the cell sorting throughput could be further
increased multiplicatively by using an array of capillary probes.

The PiSPA platform integrated the microfluidic liquid handling
robot with the insert tube array to achieve the loading of single-cell
droplets and subsequent multi-step nanoliter-scale sample pretreat-
ment, using the robot’s pick-upoperation and the conical bottom tips of
the insert tubes as the nanoliter reaction vessels. Compared with
the microchip-based reactors fabricated with special equipment and
complex procedures13,16–18,25,30,31,35, the insert tubes have the merits of
low-cost, easily available, and convenient to use. In addition, such an
arrangement also enabled the seamless integrationof single-cell sorting,
nanoliter-scale sample pretreatment and subsequent automated liquid
chromatography injection of the samples, which significantly improved
the operability, reliability and success rate of the whole workflow of
single cell proteomic analysis. This is of significance for promoting the
practical popularization of single-cell proteomic analysis.

Considering that the conventional proteomic analysis of samples
containing thousands of cells can typically identify about 5000–7000
protein groups8,18, the PiSPA platform has the ability to quantify nearly
half this level for a single mammalian cell with a significant improve-
ment over many current single-cell proteomic analysis systems. This
may imply that the single-cell proteomics research has entered a stage
of practical application in a wide range of biomedical research fields.

Looking back at the breakthrough in identification depth of
single-cell transcriptome sequencing technology ten years ago63–66, the
Smart-seq-based single-cell RNA-seq technique could identify around
30,000 transcripts from one humanmammalian cell63, accounting for
13% of the total human transcripts (ca. 230,00067). In this study, up to
3,000 proteins quantified in one human mammalian cell account for
15% of the total human proteins (ca. 20,00067), reaching the similar
level of single-cell RNA-seq technique at that time. Considering the
explosive development of the single-cell transcriptome sequencing
technology over the past decade68–70, we may now be on the eve of or
even in the outbreak of the single-cell protein sequencing technology
based on the shotgun proteomics strategy.

In the near future, the identification depth and throughput of
single-cell proteomic analysis will be further improved, reaching the
level of practical and popular application. In addition, by adopting the

Fig. 5 | Application of the PiSPA platform for proteomic analysis of single
migrated cells in scratch assay. In the scratch assay, 46 single HeLa cells with
significant migration behaviors and 43 single HeLa cells without obvious migration
behaviors as control cells were captured and analyzed in the experiment of scratch
assay. Conditions: enzyme/protein ratio, 50:1; LC gradient time, 21min.
a Micrographs showing the target-cell picking-up operation in the scratch assay
before and after the capturing of the migrated HeLa cell (n = 46) by the PiSPA
platform. b 3D UMAP clustering analysis of the tested migrated (square) and con-
trol (circle) HeLa cells, being clustered into in cluster 1 (cyan), cluster 2 (orange) and
cluster 3 (blue). cHierarchical clustering heatmap of 226 differential proteins in the
three clusters in (b). d Volcano plot showing 135 up-regulated proteins and 36
down-regulated proteins screened out in cells of cluster 1 compared to cluster 3,
including 11 proteins involved in signal pathways of focal adhesion and regulation

of actin cytoskeleton. e KEGG enrichment analysis of the differential proteins
between the cells of cluster 1 and cluster 3. Pathways of “focal adhesion” and
“regulation of actin cytoskeleton” are marked in red. The enrichment test p values
were adjusted using Benjamini-Hochberg correction. f Comparisons of the quan-
titative expression levels of Cdc42, Rac1 and RhoA proteins in cells of cluster 1
(n = 42), cluster 2 (n = 31) and cluster 3 (n = 16). The central lines in the boxes
indicate the median values of the corresponding data; the boxes indicate the
quartiles; the whiskers extend to a maximum of 1.5 times interquartile range
beyond the quartiles; individual data points are overlaid. The adjusted p values are
indicated in the figure. In (c, d, f), the differential proteins were determined by fold
change >2 and adjusted p value <0.05 (two-side Wilcoxon test with Benjamini-
Hochberg correction). Source data are provided as a Source Data file.
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microfluidic sample pretreatment technique, it will be possible to
combine it with single-cell genome, transcriptome, and metabolome
analysis technologies to form a “true” single-cell multi-omics analysis
technology for single-cell individuals. These will undoubtedly bring
unprecedented powerful tools for people to understand the variations
of cellular heterogeneity in life activities.

Methods
Cell culture
HeLa (SCSP-504), A549 (SCSP-503) and U2OS (SCSP-5030) cells were
purchased from the Cell Bank of the Chinese Academy of Sciences.
The HeLa and U2OS cells were maintained in Dulbecco’s modified
eagle medium (DMEM) with high glucose/pyruvate (Invitrogen) sup-
plemented with 10% fetal bovine serum (FBS) (Gibco). The A549 cells
were maintained in F-12K supplemented with 10% FBS. All cell lines
weremaintained in a 5%CO2 incubator at 37 °C. For single-cell analysis,
cells in a 6 cm dish were collected at 60–80% confluency using 0.25%
trypsin with 0.02% EDTA, andwashed five timeswith phosphate buffer
solution (PBS). All cell lines were authenticated by STR profiling
(BIOWING, Shanghai). No positive sign of mycoplasma contamination
for all cell lines.

Single cell capture
Themicrofluidic liquid handling robot integrated in the PiSPA platform
was developed based on a SODA system for single-cell soring37. The
SODA technique was first developed by the authors’ group in 2013 for
achieving automated picoliter to nanoliter liquid manipulation38,39 and
has been applied in high-throughput screening, single cell analysis13,37,39,
microscale cell assays, and micro-sample analysis. The liquid handling
robot consisted of a microscopic imaging module for cell observation
and identification, a capillary probe (10 cm length, 250μmo.d., 150μm
i.d., tip size, 35μm i.d.) connected with a high-precision syringe pump
(1701N, Hamilton) for nanoliter-scale liquidmetering/handling, an array
of insert tubes (4mm inner diameter, 31mm height, 300μL volume,
ALWSCICo.) for loadingnanoliter-scale single-cell droplets and reaction
solutions, an automated x-y-z translation stage for controlling the
movement of other modules, and a system control module for the
whole robot under the control of a computer program. In addition to
cell sorting, the function of the robot was extended to complete
nanoliter-scale 5-step single-cell sample pretreatment reactions. Instead
of droplet array chips13 frequently used in the previous SODA systems,
we used the array of insert tubes with their conical bottom tips as
nanoliter reactors to improve the operability and reliability of the sys-
tem as well as to facilitate the subsequent automated liquid chroma-
tography injection. Based on this improved robotic system, we
proposed the pick-up mode-based automated cell sorting and sample
pretreatment approach, whereby the whole workflow of deep single-
cell proteomic analysis was established.

For picking up target cells, 2mL of cell PBS suspension was added
in a petri dish (35mmdiameter) fixed on the translational stage of the
robot. Usually, the cell dispersion density at the bottom of the culture
dish was controlled to be less than 10,000 cells/cm2 (corresponding to
a cell suspension density of <100,000 cells/mL), for ensuring the suf-
ficient distances between the target cells and the surrounding adjacent
cells (usually >30μm) to avoid the adjacent non-target cells to be
sucked into the capillary probe. Themicroscopic imagingmodule first
took bright-field or fluorescence image of the cells in the cell suspen-
sion settled on the bottom of the petri dish. The target cells in the
image were selected based on their bright-field apparent property or
labeled fluorescence signals, and their location coordinates were
automatically calculated by the control module. Then the tapered tip
of the capillary probe was controlled to automatically align the target
cell by moving the translational stage and suck it into the probe by
aspirating 15 nL of cell suspension into the probe by the syringe pump.
Before the cell picking-up operation, the capillary probe was prefilled

with 50mM NH4HCO3 solution. After the target cell was picked up by
the capillary probe, it was then deposited to the bottom of an insert
tube by dispensing 400 nL of the solution in the probe. Since the
present pick-up mode employed the procedure of picking one target
cell at one time and immediately dispensing it into the insert tube, and
the capillary tip had an inner diameter of 35 µmwhich was larger than
the cell size, capillary blockage was rarely encountered during the cell
picking and dispensing process.

Single-cell sample pretreatment
After picking up the single target cell into the insert tube, we used the
robot to perform the subsequent sample pretreatment operations,
including cell lysis, protein reduction, alkylation, enzymatic digestion
and termination of the digestion reaction. First, 100 nL of 0.3% (w/v)
RapiGest SF (Waters) solution was added to the insert tube, and the
insert tube was inserted into a sample vial with a sealing cap and 100μL
of water prefilled in the vial. Multiple sample vials were formed an array
of vials, which was heated in an oven for 20min at 60 °C to lyse the
cells. After the sample vials were cooled to room temperature, 100nL of
20mM tris (2-carboxyethyl) phosphine (TCEP) was added to each insert
tube, for performing the protein reduction reaction for 20min at room
temperature, and 100nL of 125mM iodoacetamide (IAA) was added to
conduct the alkylation reaction to the protein cysteine residues at room
temperature for 15min in dark. Then, 100nL of a mixed enzyme
(0.05μg/μL Lys-C and 0.05μg/μL trypsin) solution was added to the
insert tube to digest the proteins for 2 h at 37 °C. Finally, 100nL of 40%
formic acid (FA) solution was added to terminate the enzymatic reac-
tion with an incubation time of 30min at room temperature. To avoid
cross-contamination between different reagents and samples, the
capillary probe was washed with water three times before aspirating
new reagents or samples. The sample vials with the insert tubes were
placed in the sample tray of the LC autosampler for LC-MS/MS analysis.

During the single-cell dispensing and reagent addition processes,
the caps of the sample vials were lifted and the sample vials were in
open state to facilitate the capillary probe inserting into the insert tube
for performing the relevant operations. Since these single-cell dis-
pensing and reagent addition operations took only 5-10 s per tube and
the sample solutions in the insert tubes were protected by the large
volume of water added to the sample vials, the evaporation of hun-
dreds of nanoliters of sample solutions during these operations was at
a negligible level. In the reaction incubation and chromatographic
injection processes, the sample vial caps were in a sealed closed
position to avoid the significant evaporation losses of the sample
solutions during prolonged processes of heating incubation or waiting
in line for LC injection. In addition, the sample vial caps were installed
with a seal membrane in each cap that could be penetrated by the
sampling probe in the autosampler to allow it to insert into the single-
cell sample solutions for sampling and LC injection.

For the condition optimizing experiments (Fig. 2), 24 HeLa cells
were analyzed for the optimization of the enzyme/protein ratio (3 cells
for each of the 8 conditions), and 18 HeLa cells for the optimization of
the LC gradient time (3 cells for each of the 6 conditions). For the
single-cell analysis (Fig. 3), 256 cells were analyzed (37 A549, 44 HeLa
and 27 U2OS cells in DIAmode; 56 A549, 68 HeLa and 24 U2OS cells in
DDA mode).

Preparation of quality control samples
Commercial HeLa protein digest powders (Thermo Scientific) were
used to prepare standard HeLa digests at concentrations of 0.2 ng/μL,
0.4 ng/μL, 0.6 ng/μL, 0.8 ng/μL, and 1.0 ng/μL, which served as quality
control (QC) samples for evaluating the performance of the LC-MS
system. For the condition optimizing experiments (Fig. 2), 20 QC
samples (0.2 ng/μL) were analyzed for LC-MS repeatability evaluation
(10 samples for DDA and 10 samples for DIA). For the quantitative
accuracy and precision evaluation (Fig. 4), 30 QC samples were
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analyzed (6 samples for eachof the 5 concentrations). TwoQC samples
were used to evaluate the effect of RapiGest SF on single cell pro-
teomic analysis (Supplementary Fig. 10).

The QC samples at the single-cell level were prepared by mixing
eight digested singleHeLa cell samples and then aliquoting it into eight
portions. The single-cell QC samples for testing the quantitative
accuracy of the system were divided into two groups (S1 and S2) with
four samples in each group. For the S1 group, 50pg of yeast peptides
and 150 pg of E. coli peptides were added to each sample; for the S2
group, 100pg of yeast peptide and 100 pg of E. coli peptide were
added to each sample. For the quantitative accuracy and precision
evaluation (Fig. 4), 8 mixed-species samples (4 samples for each of the
2 conditions) and 24 single/multi-cell samples (4 samples for each of
the 6 conditions) were analyzed (Supplementary Fig. 11).

Cell migration experiment
The cell migration experiment was performed using the scratch assay
mode. A scratch (blank area) was first drawn by a 1-mL pipette tip on a
densely growing monolayer of HeLa cells in a petri dish. After washing
with PBS, a new culturemediumwas added to thepetri dish andno cells
could be observed in the blank area. After 24-h culture at 37 °C, a small
number of cells migrated into the blank area. Utilizing the ability of the
liquid handling robot in picking up each target cell accurately and
reliably, we employed it to pick up 46 cells in the blank area and 43 cells
(control cells) outside the blank area for single-cell proteomics analysis.

LC-MS/MS analysis
A capillary LC column (10 cm length, 360 o.d., 50μm i.d.) packed
with 1.7 μmC18 particles (120Å pore size, Nanomicro Co.) was used in
the LC separation of the digested peptide samples. The single-cell
samples in the insert tubes were injected by an autosampler coupled
to an EASY-nLC 1200 LC (ThermoFisher Scientific). Mobile phases (A,
0.1% formic acid in water; B, 0.1% formic acid, 80%ACN in water) with
a 21min gradient (0–13min, 3–40% B; 13–14min, 40–100% B;
14–21min, 100% B) at a flow rate of 150 nL/min was used for the
separation of single-cell samples.

The separated peptide components of single cell samples were
detected by a trapped ion mobility-time of flight mass spectrometer
(timsTOF Pro, Bruker). Data dependent acquisition (DDA) mode and
data independent acquisition (DIA) mode were used in the MS data
acquisition of both the QC sample and single-cell samples to compare
theirperformance in single cell analysis, since itwas reportedpreviously
that the DIA mode generally has an advantage in protein identification
depth over the DDA mode under the same LC conditions19. For DDA
mode, the range of the ion mobility 1/k0 was 0.75–1.3, and the parallel
accumulation serial fragmentation (PASEF) acquisition mode was used.
Them/z acquisition range was 300–1500, the spray voltage was 1750 V,
and the ion accumulation timewas 166ms. Theprecursor ions obtained
by the primary mass spectrum underwent secondary fragmentation
through collision induced dissociation (CID). The size of the precursor
ion isolationwindowwas related to the ionm/z. For ionswithm/z below
700, the separation window was 2, for ions with m/z above 800, the
separation window was 3. The dynamic rejection time was 0.4min, and
the CID collision energywas in the range of 20–59 eV, which variedwith
ion mobility. To obtain the optimal MS detection under the DIA mode,
we tested the acquisition range of m/z = 384-1171 and the isolation
window of m/z= 20-40 with both samples of 200pg HeLa digest and
single HeLa cells, and finally selected the optimized m/z acquisition
range of 399-1124 and isolation window of m/z = 25. In addition, we
optimized the ramp time tobe 166ms, to accommodate the lowprotein
input at the single cell level.

MS data analysis
Mass spectrometry data was collected using Compass Hystar software
(version 5.1). The DDA raw files were analyzed with SpectroMine

software (version3.2, Biognosys AG, Schlieren, Switzerland) using
default settings. Protein label-free quantitative identification from the
DDA dataset was searched against the UniProt Proteomes Homo
sapiens database (accession: UP000005640, taxon ID: 9606, 20,626
entries, access date 2021-01). Peptides with a length of 7 to 52 amino
acids were considered for the search. Enzyme specificity was set to
trypsin cleaving C-terminal to arginine and lysine. A maximum of one
missed cleavagewereallowed.Cysteine carbamidomethylationwas set
as a static modification, acetylation on protein N-terminus and oxida-
tion on methionine set as variable modifications. The peptide-
spectrum matches (PSM), peptides and protein groups were filtered
at 1% false discovery rates (FDR). The DIA raw files were analyzed with
DIA-NN71 software (version 1.8) in library-free search mode using
default settings. The DIA raw data files for single cells were searched
against UniProt Proteomes Homo sapiens database. The DIA raw data
files of single-cell QC spiked with two species were searched against
UniProt Proteomes Homo sapiens, Swiss-Prot Escherichia coli (strain
K12) (taxon ID: 83333, 4530 entries, access date 2023-07) and Sac-
charomyces cerevisiae (strain ATCC 204508 / S288c) (taxon ID: 559292,
6727 entries, access date 2023-07) database. Peptides with lengths of 7
to 52 amino acids were considered for the search, and the Q-values
were controlled at 1% on precursor and protein group level.

The pairwise correlation analysis between the protein quantifica-
tion data of theQC samples were performed by Python (version 3.9.15)
and the package Pandas (version 1.4.4). The fold change in protein
abundance and density distribution of coefficient of variation were
analyzed by R (version 4.1.3). Proteins with missing values ≥ 50% were
excluded from the CV calculation. Forty histone-related proteins were
searched out among the quantified proteins from multiple-cell HeLa
data with the keyword “histone”.

Bioinformatics analysis
Single-cell proteomics data were analyzed by R (version 4.1.3) and the
Rpackage Seurat72 (version 4.3.0). Proteins quantified in <3 cellswere
excluded and missing values were imputed with zeros. The protein
quantities were normalized to sum to 10,000 for each cell, and then
transformed to natural logarithm. Batch effects of samples were
corrected by the R package harmony73 (version 0.1.1). Dimensional
reduction was performed by principal components analysis (PCA)
and the top 25 principal components were used for the uniform
manifold approximation and projection (UMAP) analysis. The cells
were divided into 3 clusters using the Louvain binning algorithm
(Supplementary Fig. 12, Supplementary Note 1). The protein quan-
tities were compared between clusters pairwisely, where only pro-
teins with no more than 75% missing values across all the compared
cells were taken into consideration. Differential proteins were
determined by the Wilcoxon test (p.adj <0.05 by the Benjamini-
Hochberg method, fold change > 2). Kyoto Encyclopedia of Genes
and Genomes (KEGG)45 enrichment was carried out by the R package
clusterProfiler74 (version 4.8.1).

The 2D-UMAP of the tumor cells was visualized by Python and the
package umap-learn (version 0.5.3). The 3D-UMAP in the cellmigration
study was visualized by the R package plot3D (version 1.4), and the
heatmap was visualized by the R package ComplexHeatmap75 (version
2.16.0). Other data were visualized by the R package ggplot2 (ver-
sion 3.3.5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mass spectrometry proteomics data generated in this study have
been deposited to the ProteomeXchange Consortium via the iProX
partner repository76,77 with the dataset identifier PXD041966 or
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IPX0006351000. Homo sapiens (accession: UP000005640, taxon ID:
9606, 20,626 entries, access date 2021-01), Escherichia coli (strain K12)
(taxon ID: 83333, 4530 entries, access date 2023-07) and Sacchar-
omyces cerevisiae (strain ATCC 204508 / S288c) (taxon ID: 559292,
6727 entries, access date 2023-07) protein databases were down-
loaded from UniProt [https://www.uniprot.org], and have also been
deposited to the ProteomeXchange/iProX repository. Source data are
provided with this paper.
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