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Sequential stacking link prediction
algorithms for temporal networks

Xie He 1, Amir Ghasemian 2, Eun Lee 3, Aaron Clauset 4,5,6 &
Peter J. Mucha 1

Link prediction algorithms are indispensable tools in many scientific applica-
tions by speeding up network data collection and imputing missing connec-
tions.However, inmany systems, links change over time and it remains unclear
how to optimally exploit such temporal information for link predictions in
such networks. Here, we show that many temporal topological features, in
addition to having high computational cost, are less accurate in temporal link
prediction than sequentially stacked static network features. This sequential
stacking link prediction method uses 41 static network features that avoid
detailed feature engineering choices and is capable of learning a highly
accurate predictive distribution of future connections fromhistorical data.We
demonstrate that this algorithm works well for both partially observed and
completely unobserved target layers, and on two temporal stochastic block
models achieves near-oracle-level performance when combined with other
single predictor methods as an ensemble learning method. Finally, we
empirically illustrate that stacking multiple predictive methods together fur-
ther improves performance on 19 real-world temporal networks fromdifferent
domains.

Real-world network data are often incomplete for a variety of reasons,
such as missing relations in social networks1; inherent noise and
expensive, tedious, and time-consuming data collections in biological
networks2; and specific user privacy limitations in wireless networks3.
Link prediction algorithms have been proposed in many different
disciplinary settings, including social4, biological5, information6, and
epidemic7 networks as a way to either impute missing connections or
guide the use of limited resources for link measurement. Among
methods for link prediction, features that statistically summarize
network structures (hereafter referred to as “topological features”)
have been well studied and are widely used for prediction on static
networks8. Popular topological features include common neighbors9

and the clustering coefficient10 for social networks, Katz centrality,
resource allocation for electrical power grids and protein-protein
interaction networks11, and the local path index12 for airport transpor-
tation networks11. In static networks, recent work13 has shown that

combining14 multiple topological features using a meta-learning algo-
rithm such as stacked generalization can produce near-optimal link
prediction results.

Whereas the recording of many real-world networks has been
previously limited to a single snapshot in time, modern methods of
data collection and newer sources of network data (e.g., social media
and other digitally tracked interactions) increasingly provide detailed
temporal information on how connections change over time15. The
temporal changes in these network datasets include measurable var-
iations in their topological features over time16,17, and exploiting these
time-varying correlations should make link prediction algorithms
more accurate in this setting18–20. Here, we focus on the temporal link
prediction task of identifying missing connections in a network at a
given point in time by leveraging data from earlier times. Accurate
temporal link prediction has many real-world applications21, including
recommendation systems on socialmedia4 and the prediction of brain
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activity22. Like static link prediction, approaches have been developed
for temporal link prediction problems21, including probabilistic
modeling23,24, matrix and tensor factorization18,25, spectral clustering26,
network embedding27–29, and deep learning30.

Generally speaking, temporal link prediction methods can be
classified into four main categories: matrix factorization and
probabilistic-based techniques18,23–26, time series-based techniques31,
embedding and neural network-based algorithms27–30, and extending
static topological measures to temporally-varying networks for pre-
diction (hereafter referred as “temporal topological features”). Each
category has its own strengths and weaknesses. Tensor factorization
can capture both local and global features and transitional patterns in
dynamic networks, but it is not scalable for large graphs due to its high
computational complexity. Time series-based techniques can effec-
tively capture the dynamics of networks but struggle with capturing
non-linear temporal patterns. Deep-learning-based algorithms can
capture transitional patterns, but they may lack interpretability for
feature selection. Temporal topological features can be both effective
and interpretable, but their definitions are dataset-specific and their
calculations are computationally expensive21.

Among these, temporal topological-based methods are particu-
larly applicable for a wide variety of real-world applications because of
their interpretability. This is exceptionally important for social and
biological network analysis to understand the reasoning behind the
results21,32,33, in particular as domain experts may find it hard to
understand and trust complexmodels like neural networks because of
the lack of intuition and explanation in their predictions34,35. In con-
trast, using topological properties of networks as features in the
training and testing largely increase the interpretability of the model,

and will help explain how the results from the prediction were gen-
erated. For example, Noulas et al.32 study a human mobility network
and propose a link prediction approach influenced by temporal var-
iation and other features of the network. Ibrahim and Chen33 use
eigenvector centrality while incorporating temporal dependence to
help with link prediction in social networks. However, because of their
ambiguous definition and high computational cost, they require con-
siderable additional feature engineering work16 compared to their
corresponding static features36 (see also Results).

To address these limitations, we want to (i) find replacement
features for temporal topological features in temporal link prediction
that are fast, accurate, scalable, and retain the interpretability of the
temporal topological features; (ii) while retaining the interpretability,
design an ensemble learning framework that could learn to improve
itself based on different predictors.

To solve the first problem, we propose an approach that replaces
temporal topological features with static topological features in tem-
poral link prediction. We extend the static network stacking method
proposed byGhasemian et al.13 to temporal networks by stacking static
features from multiple sequential temporal layers (hereafter referred
to as sequentially stacked features).We construct a sequential stacking
link prediction framework (diagrammed in Fig. 1) using a multilayer
representation for temporal networks37, i.e. each layer describes
interactions at a corresponding time or time period (a window), and
utilize 41 static topological features. In this algorithm, we use two
important parameters: the “search variable” u (which we default to
u = 6 throughout the paper), giving the total number of layers back in
time that we will consider for training the predictor, and the “flow
variable” q (which we default to q = 3 throughout the paper) to be the
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Fig. 1 | A diagrammatic explanation of the sequential stacking approach for
link prediction in temporal networks.We use q consecutive temporal layers in a
stacked feature vector to predict links in the target layer; we call q the “flow vari-
able” (blue: q = 2 in the diagram; q = 3 throughout all of our experiments here). We
train the prediction (see Methods) using u layers before the target (u > q); we call u
the “search variable” (green: u = 4 in the diagram; u = 6 throughout all of our
experiments here). Features are generated for sampled dyads (node pairs) in each
layer and stacked across q consecutive layers, with edge presence/absence labels
from the following layer (green for training and red for testing). We then use

standard supervised learning algorithms to train and generate link predictions in
the target layer. As diagrammed here, no network information is used from the
target layer, only the edge presence/absence labels (the “completely-unobserved
setting''). When we consider the “partially-observed setting'', the sequentially
stacked features include static topological features as calculated from the partially-
observed target layer (throughout our partially-observed experiments here we
5-fold cross-validate the target layer, uniformly sampling 80% of node pairs to
predict links on the remaining 20%).
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number of consecutive temporal layers considered together in the
stacking of features across time (see Fig. 1 and Methods for detailed
descriptions). In place of computationally expensive temporally-
extended definitions of static features, our sequential stacking
approach computes less expensive static features within each layer
individually from sampled dyads (see “Sampling dyads for training and
testing” in Methods), and then stacks them together to form feature
vectors that capture the temporal variation of the network. Since not
all of the temporal topological features are well-defined, we compare
the sequentially stacked static features with 5 defined temporal
topological features; to further expand our comparison set, we further
compute ARIMA-based time-series predicted topological features for
all of the 41 static features and compare their performance with that
from the sequentially stacked features. We find in both comparisons
that sequentially stacked features are at least as accurate, or better, in
temporal link prediction tasks while also being both computationally
more efficient and conceptually better defined.

To solve the second problem, we extend the framework for the
sequentially stacked features to construct a meta-learning framework
for ensemble sequential stacking. The benefits of this method include
that the sequentially stacked topological features are easy to calculate
and interpret, while also incorporating possible accuracy enhance-
ments from other methods (e.g., neural network, matrix factorization,
time series methods, etc.). For clarification, hereafter we refer to
sequential stacking with topological features alone as Top-Sequential-
Stacking, and stacking with additional predictors as Ensemble-
Sequential-Stacking.

The task of temporal link prediction encompasses prediction
scenarios that are more general than those of link prediction on static
networks. For instance, the standard setting for static link prediction
requires partial observation of the static network, while in temporal
link prediction the target layer within which we make predictions of
missing links, e.g., a future period of time, might be missing entirely21,
and the task is to predict that entire layer using information from the
previous layers4,38, or the target layer might be partially observed and
the task is to predict the missing portions of that layer. We compare
and contrast our framework under the two different settings of tem-
poral link prediction: (i) a completely-unobserved target layer and (ii) a
partially-observed target layer (see Methods). Whereas somemethods
for temporal link prediction are not applicable when the target layer is
completely unobserved39,40, both Top-Sequential-Stacking and
Ensemble-Sequential-Stacking perform well in both partially observed
and completely unobserved settings.

We benchmark our Top-Sequential-Stacking and Ensemble-
Sequential-Stacking approach against a tensorial method based on
stochastic block modeling of multilayer networks39 (denoted as “Ten-
sorial-SBM”), a network embedding deep learning framework, E-LSTM-
D29, and an adapted supervised time-series ARIMA model prediction40

(denoted as “Time-Series”) (see Methods for detailed implementation
and parameter choices).

We test performance across a rich space of synthetic networks
constructed from two variants of degree-corrected multilayer tem-
poral stochastic block models (T-SBM): a multilayer SBM with com-
munity label change over time (“community-label T-SBM”) and an
“edge-correlated T-SBM”41,42 (see Methods, and see Supplementary
Information (SI)). For each of these probabilistic synthetic network
models, we carry out an analytical calculation similar to Ghasemian
et al.13 to estimate the maximum average predictability achievable by
an oracle that knows the underlying temporal random graph model
(i.e., the ground truth probabilities that govern whether each pair of
nodes is connected), and we demonstrate that Top-Sequential-
Stacking and Ensemble-Sequential-Stacking method achieve oracle
results on these synthetic networks compared to this oracle-level
performance (see Results and SI).We then evaluate its performance on
19 real-world temporal networks from social, technological,

transportation, and biological domains. We observe that, between
them, Top-Sequential-Stacking and Ensemble-Sequential-Stacking
achieve the highest accuracy on 16 of 19 real-world datasets in the
completely-unobserved setting and on 17 of 19 in the partially-
observed setting and, in the remaining cases, we observe only mini-
mal reduction in performance relative to the best predictor.

In summary, we find that (i) the sequential stacking of static fea-
tures is a highly effective replacement for temporal topological fea-
tures both in terms of performance and computational cost; (ii) the
Top-Sequential-Stacking and Ensemble-Sequential-Stacking learning
approaches to temporal link prediction are highly accurate with low
computation cost and good theoretical interpretability, with
Ensemble-Sequential-Stacking able to incorporate other predictors for
higher performance. Furthermore, our T-SBM synthetic network
experiments achieve solid results compared to those achievable by an
oracle that knows the underlying model that generated the probabil-
istic synthetic networks. Both Top-Sequential-Stacking and Ensemble-
Sequential-Stacking demonstrate strong performance across various
types of real-world and synthetic networks. By providing these meth-
ods as open-source code, scientists in various application domains can
access an accurate, efficient, and interpretable tool for temporal link
prediction. We conclude with a discussion of limitations and possible
future directions.

Results
We first consider a set of temporal topological features utilized in
previous studies on link prediction. By contrasting results between 5
different sequentially stacked features and temporal topological fea-
tures, we can assess whether including the temporal features improves
link prediction accuracy on temporal networks and, if so, assess the
induced trade-off between accuracy and computation time. We then
further consider the entire set of 41 topological features and compare
the results between sequentially stacked features and temporal fea-
tures constructed by the time-series ARIMA model to show that
sequential features outperform in both computation time and per-
formance. We demonstrate that the sequential stacking approach
achieves near-oracle-level performance under varied synthetic net-
workmodels and prediction settings, and strong performance on real-
world network data.

Temporally-extended versus sequentially-stacked features
The definitions of temporal topological features can require con-
siderable additional feature engineering work16 compared to their
corresponding static features36 in part because a single static topolo-
gical feature can often be temporally extended in multiple reasonable
ways16. For example, temporal closeness centrality is defined differ-
ently in Refs. 43 and 44. At the same time, temporal topological fea-
tures typically require significant computational resources, e.g., graph
path-based temporal topological measures16 can have long computa-
tional times with high memory usage for moderately-sized temporal
networks. Indeed, even for sparse graphs withm proportional to n, the
temporal betweenness centrality definition from Zaoli et al.45 has an
Oððn2‘Þ2logðn2‘ÞÞ time complexity, which would be prohibitively
expensive for larger networks with many temporal layers (here m
stands for the number of edges, n stands for the number of nodes, and
ℓ stands for the number of layers in the temporal network).

On the other hand, ignoring temporal variation in topological
features could potentially lead to inaccurate or even biased
predictions46. Temporal topological features have been useful in the
analysis of temporal networks in several different settings. For exam-
ple, Sett et al.47 show that using temporal features resulted in higher
accuracy scores for temporal link prediction in multi-relational net-
works; Muniz et al.48 demonstrate that unsupervised link prediction on
social networks can be improved by combining topological, temporal,
and contextual information; and Przytycka et al.20 argue that the shift
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from static to dynamic network analysis could be useful in identifying
the temporal and contextual signals underlying cell interactions, which
is essential for understanding biological cell networks because proper
cellular functioning requires huge amounts of precise time and coor-
dinate information. Temporal topological features can also be
important for answering ecological and evolutionary questions about
how biological networks change over time, and under-utilizing them
can result in incorrect conclusions46. Together, past work on temporal
topological link prediction algorithms suggests real benefits via
improved accuracy, but at a potentially high or even prohibitive cost,
and it remains unclear how to balance those factors in applications.

In contrast, a wide variety of topological features are well-defined
and computationally efficient for static networks49, and exhibit good
performance in (static) network link prediction tasks13,50. Conse-
quently, static network features are often used in temporal link
prediction51, even as completely ignoring the temporal nature of the
data can lead to biased outcomes in temporal link prediction tasks46.

Here, we explore the trade-off between the high computational
complexity of temporal features andpossible decrease inperformance
using only static topological features by developing and systematically
evaluating a sequentially stacked link prediction algorithm for tem-
poral networks that combines multiple static topological features
within a temporally-aware meta-learning framework to produce
improved temporal link predictions. This approach is motivated by
the (static network) stacking approach in Ghasemian et al.13, which
we extend to temporal networks by stacking static features from
multiple sequential temporal layers, which we refer to as sequentially
stacked features (see Methods).

For this subsection, all experiments are conducted in the par-
tially observed setting, with sequential stacking of specially selected
and identified features for comparison with using the analogous
temporally-extended features. Performance with the full set of 41
sequentially-stacked features is discussed in depth later in the
Results. We purposefully consider the stacking of the selected fea-
tures here to show that sequential stacking, even of very simple static
features, is both computationally cheap and at least as accurate for
link prediction as using a corresponding temporally-extended fea-
ture or a time-series auto-regressive feature constructed by the
ARIMA model. We demonstrate the results for temporal topological
feature comparison on a subset of small synthetic networks gener-
ated specifically for saving computational time, since some of the
temporally-extended features are particularly expensive to compute
for larger networks. We further demonstrate the comparison with
time-series ARIMA temporal features on all of our datasets to show
that sequential features are indeed better both in terms of

computational cost and performance of individual features for all of
the 41 features (see also SI).

Commonneighbors. As an illustrative example, we start by evaluating
a simple topological feature that has been widely utilized in temporal
network analysis52 and for link prediction in different domains9,50:
common neighbors. We define node j to be temporal common
neighbors of node i, if node j has been neighbors with node i in all of
the q temporal layers prior to the target layer of interest. In Fig. 2, we
compare link prediction performance using temporal common
neighbors versus stacking the sequence of common neighbors across
temporal layers. We reiterate that, in this experiment, we do not apply
the sequential stacking of the full set of 41 features, but rather only the
stacking of common neighbors, which allows a careful exploration of
performance differences between sequentially-stacked versus
temporally-extended features.

We perform these experiments on 19 real-world datasets from
different domains and 90 synthetic networks from two degree-
corrected temporal stochastic block models ("T-SBM”; see Methods):
the “community-label T-SBM” incorporates a node-level correlation in
the assigned community labels that generates temporal variation in
the community structure25,41 while the “edge-correlated T-SBM” keeps
the community labels the same through time but includes an edge
correlation between neighboring temporal layers42. We measure link
prediction performance by the area under the receiver operating
characteristic curve (AUC)53 (see Methods and SI).

This experiment indicates that the sequential and temporal
common neighbors achieve similar link prediction performance on
many real-world datasets (panel a Fig. 2), with sequential common
neighbors slightly out-performing its temporal counterpart on several
others; but we also observe several cases where temporal common
neighbors fail to provide any useful information for link prediction
(i.e., AUCs near 0.5). These findings are recapitulated in our experi-
ment using the T-SBM datasets, in which we find that sequential
common neighbors succeed at link prediction in the community-label
T-SBM cases whereas the temporal common neighbors almost always
produce AUCs near 0.5 (panel b Fig. 2). Noting that this temporal
common neighbors definition ignores all variation across sequential
layers, the inability of this feature to provide useful information about
how node assignments change over time in the community-label
T-SBM is perhaps not surprising, whereas sequentially stacking static
common neighbors explicitly tracks how these features changes
across time.

In contrast, our experiments with edge-correlated T-SBM net-
works (panel c Fig. 2) show similar AUC scores for both temporal

Fig. 2 | Comparison of link prediction performance in the partially-observed
setting using temporal common neighbors (vertical) versus sequential com-
monneighbors (horizontal). Performance is quantified here by the area under the
receiver operating characteristic curve (AUC), from each run over 5-fold cross-
validation on the target layer, on each of a 19 real-world temporal networks, b 45

random realizations from degree-corrected community-label temporal stochastic
block models (T-SBM) at different parameters, and (c) 45 random edge-correlated
T-SBM realizations at different parameters. (See Methods and Fig. 4 for the 45
different parameter combinations in each.) The diagonal line (y = x) indicates equal
performance.
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commonneighbors and sequentially stacked commonneighbors, with
the latter doing better on average. Indeed, in the vastmajority of cases,
the use of sequential stacking of static common neighbors outper-
forms temporally-combined common neighbors (Fig. 2), and the few
caseswhere temporal commonneighborsgive higher performanceare
relatively close (in contrast with themany times where using temporal
common neighbors returned AUC values near 0.5).

These results illustrate the ability of the sequential stacking of
static features to exploit the temporal correlations in common
neighbors that aid in predicting future connections, in contrast to the
simple temporal 'pooling’ behavior of the temporally-extended com-
mon neighbor feature. Moreover, the sequential stacking approach is
less computationally expensive than temporally-combined common
neighbors and yet yields comparable or higher accuracy for link pre-
diction in all cases.

Experiments with other temporally-extended features. Common
neighbors is a particularly simple topological feature. Other temporal
topological features are more complicated, and hence may capture
more predictive information for link prediction, such as network
latency and various centrality measures43,44,54–56, the corresponding
static versions of which have also been applied successfully for static
link prediction10. Following the temporal feature definitions intro-
duced inThompson et al.36 and Zao et al.45, we consider four additional
temporal features: betweenness centrality45, closeness centrality36,
degree centrality (named temporal centrality in ref. 36), and network
latency (named reachability latency in ref. 36). All of these features are
computationally expensive36,45: even using 20 parallel processes with
8 GBmemory each (on the Discovery7 cluster, see Acknowledgments),
we are not able to finish the temporal features computation within a
week for the larger real-world networks and our synthetic networks
with 250 nodes and 10 layers. We anticipated this outcome, con-
sidering the differences between the datasets used in Thompson
et al.36 and our study. The datasets in Thompson et al. consist of
10 subgraphs that represent the dissected 264 brain regions, with
approximately 26 nodes each. In contrast, our smallest networks
include 50 nodes and 10 layers, with a high edge density. The com-
putational cost of temporal features tends to grow polynomially with
the numbers of nodes and edges in the network, posing challenges
when applying the same method to larger networks. To obtain results
despite this high computational cost, we construct 45 different syn-
thetic edge-correlated T-SBM networks with 50 nodes and 10 layers

each (see SI Section A). Allowing the calculation to run for a week
(again with 20 processes at 16 GB memory each), produces the tem-
poral network features for 24 of these45 smaller synthetic networks. In
contrast, the calculation of all of the corresponding static features
finishes within 10 minutes (0.1% of the compute time) on the same
hardware (panel b Fig. 3). Despite requiring considerably more com-
putational time across these synthetic networks, our experiments
show that link prediction using these temporal extensions sub-
stantially under-performed compared to the accuracy obtained from
sequentially stacking the corresponding static features (panel a Fig. 3).
Notably, the temporal extensions of both closeness centrality and
network latency completely failed at link prediction (panel a Fig. 3,
AUCs near 0.5).

Comparison against time series features. In addition to temporal
topological features, time-series extended features are also known for
their good explainability compared to other methods21. To gain
insights, we compared the results of these features with sequentially
stacked features. Following the setup in Ozacan et al.40, we calculated
different metrics such as betweenness centrality and common neigh-
bor scores, and applied an auto-regressive integrated moving average
(ARIMA) on the previous time series data to predict future metric
scores. The original paper used 12 features to form a predicted feature
vector for the targeted temporal layer, and a supervised learning
method such as Support Vector Machine (SVM) or Random Forest for
prediction. In our study, we extended these features to all 41 features
used in ourmethod, compared single features against eachother on all
of the real and synthetic networks, and presented the full results in SI,
Section F. However, as shown in Fig. 3, even though time-series fea-
tures are computationally more efficient than temporal topological
features, they still take longer to compute than sequential features.
While the overall set of prediction results is similar to that for
sequential features, they are not better and require a higher compu-
tational cost. The same trend is also observed in all of the experiment
results presented in SI, Section F.

Near-Oracle-level performance in two temporal link prediction
settings
The theoretically optimal performance of any algorithm can only be
known when the underlying model determines the structure of
the data, i.e., the ground truth is known. We investigate the aspect of
the performance of the sequential stacking method by deriving the

Fig. 3 | Time complexity analysis for temporal topological features versus
sequentially static features. a Time in seconds to compute temporal-extended
network features, time-series modeled temporal features, and sequentially static
features for 4 different types of features on 24 random edge-correlated T-SBM
realizations with 50 nodes and 10 layers each. (20 parallel processes with 8 GB

memory, see Acknowledgments) b Comparing AUC scores for link prediction from
these temporal features (y-axis, blue) or time-series modeled features (y-axis,
orange) versus the corresponding sequentially stacked features (x-axis). Both
panels display data obtained in the partially-observed setting.
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theoretically optimal link prediction AUC score (see SI Section D) for
the community-label T-SBMand edge-correlated T-SBM (seeMethods)
that would be achieved by an “oracle” who knows and uses the
underlyingmodel specification tomake predictions. That is, the oracle
knows the particular probability Pr(i→ j∣θ), where θ is the model spe-
cification, for every pair I, j in the network, which governs the ground-
truth likelihood that a pair may or may not be connected in the link
prediction test set.

Unlike static link prediction, which assumes a network is partially
observed, with some edges missing while others are observed (i.e., for
a single layer), temporal link prediction algorithms face different
requirements for different applications. We demonstrate that the
sequential stacking method is applicable to both partially observed
and completely unobserved target layer settings (see Methods),
benchmarking its performance against three state-of-the-art methods:
the Tensorial-SBMmethod39 fromprobabilistic inferenceon stochastic
block models, the E-LSTM-D method29 from network embedding, and
the Time-Seires method from auto-correlation ARIMA on static net-
work features40. In doing so, we note that some methods cannot be
applied to a completely missing target layer; in particular, we bench-
mark with all of Time-Series, E-LSTM-D, and Tensorial-SBM for the
partially observed setting, but only with E-LSTM-D and Time-Series for
the completely unobserved setting, because Tensorial-SBM does not
support the completely missing target layer scenario39. We further
note that stacking is a meta-learning ensemble method that can
naturally add other individual predictors to improve its own perfor-
mance. As such, we also obtain results by including Tensorial-SBM
(where possible), E-LSTM-D, and Time-Series predictions as additional
features within the sequential stacking method.

Both temporal stochastic block models (T-SBM) considered here
use the same degree-corrected SBM procedure to generate the first
temporal layer, which then serves as a foundation for later layers25

generated either with node community label correlations in the
community-label T-SBM41 or on common node community labels with
edge correlations in the edge-correlated T-SBM42. For these experi-
ments, we construct 45 networks with 200 nodes and 10 layers from
eachmodel (90 temporal networks in total), adjusting the parameters
systematically to provide a variety of different underlying structures.
Specifically, we vary the dependency between layers p (community
label copy rate in the community-label T-SBM, edge copy rate in the
edge-correlation T-SBM), the fraction μ of uniformly-random edges in
the network, and the number of communities k (details in Methods).

AUC scores for link prediction on both T-SBMs are shown for the
partially-observed setting in Fig. 4 and for the completely-unobserved
setting in Fig. 5. Note the performance for both the Top-Sequential
Stacking and Ensemble-Sequential-Stacking methods are typically
close to the oracle’s theoretically optimal upper bound for all edge-
correlated T-SBMs and for the partially observed case for community-
label T-SBMs. Even though neither Top-Sequential-Stacking nor
Ensemble-Sequential-Stacking has direct information about the target
layer network features in the completely-unobserved setting, they
nevertheless achieve a high accuracy score for both synthetic models.
The best AUCs obtained for the completely-unobserved setting are
typically lower than in the partially-observed setting for the
community-label T-SBM, reflecting the lack of training data on the
target layer. For the edge-correlated T-SBM model, however, the per-
formance for the completely-unobserved case remains nearly the same
as in the partially-observed case. Precision-recall results for these
experiments are provided in Section D of the SI.

The two T-SBMs give very different oracle upper bounds due to
their different nature across the two settings (Figs. 4 and 5). In parti-
cular, the predictability is generally lower for networks with fewer
communities and with higher fractions of uniformly-random edges
added across the network, consistent with the findings in the single-
layer cases considered by Ghasemian et al.13. We note that the link

predictability for the community-label T-SBM shown in both settings
(panel a of Figs. 4 and 5) is on average higher than on static networks
with similar community structures13. This behavior is consistentwith the
node-label temporal dependency usefully accumulating information
across the previous temporal layers57. On the edge-correlated T-SBM
(panel b of Figs. 4 and 5), the predictability is even higher than on the
community-label T-SBM. This increasedperformance is plausibly due to
the enhanced impact of the temporal dependency parameter p as an
edge copy probability in this model (e.g., most of the edges are simply
preserved when p =0.8 for the edge-correlated T-SBM).

In our analysis of both types of T-SBMs, we have found that cal-
culating the temporal scalar auto-correlation score in Lacasa et al.58

(see SI Section E) is an effective way to explain the predictability and
AUC score of the synthetic dataset. A higher auto-correlation score
often means the dataset is more predictable. Edge-correlated T-SBMs
generally have higher predictability than community-label T-SBMs.We
have also observed that the predictability increases with higher values
of p and k, and decreases with higher values of μ, which corresponds
well with the randomness of the inference model setup.

Across these experiments, we find that the Ensemble-Sequential-
Stacking method outperforms the individual benchmark predictors
across almost all parameters for the T-SBMs under both partially-
observed and completely-unobserved target layer settings of temporal
link prediction, and compares well with the theoretical oracle-level
performance (Figs. 4 and 5). In addition to that, Top-Sequential-
Stacking alone also gives a decent performance across different types
of T-SBMs under both settings. Outside of the completely-unobserved
setting for the community-level T-SBM, in most cases, the Ensemble-
Sequential-Stacking achieves an almost-oracle AUC score. Moreover,
across both T-SBMs and both prediction settings, we find that adding
the available benchmark predictors to Ensemble-Sequential-Stacking
typically yields better performance than any of the three methods by
themselves, indicating that each individualmethod exploits somewhat
non-overlapping information between observed and unobserved links.
There are some exceptions where Top-Sequential-Stacking alone is
able to achieve the best score without the additional predictors, fur-
ther indicating the strong performance of this sequential stacking
method. In particular, for E-LSTM-D and Tensorial-SBM, the improve-
ment from incorporating topological features is typically substantial
over using either of these individual benchmark predictors alone.

Performance on real-world network data
On synthetic networks that try to model some of the key properties of
real-world temporal networks, the sequential stacking approach
achieves high accuracy. However, the complex nature and variety of
different types of real-world networks tend to make modeling their
structure a difficult task, as discussed in, e.g.,59,60. Methods that per-
form well on synthetic networks may not achieve the same level of
performance on real-world networks. Using 19 real-world temporal
networks from various domains (see SI Section A), we evaluate how
well the Top-Sequential-Stacking performs in realistic settings, and we
both compare it against the benchmark methods (Tensorial-SBM,
Time-Series, E-LSTM-D), and evaluate the benchmark predictors
stacked together with the sequentially stacked features, which is the
Ensemble-Sequential-Stacking method.

On these networks, the Top-Sequential-Stacking alone outper-
formsall other individual predictors in 16out of 19 real-world networks
in the partially observed setting, and 12 out of 19 in the completely
unobserved setting (Fig. 6). While in some cases for both settings,
Time-Series or E-LSTM-D or Tensorial-SBM outperforms the Top-
Sequential-Stacking alone, it is clear that none of the individual algo-
rithms alone was able to stay at the peak for different real-world net-
works, while Ensemble-Sequential-Stacking exhibits atornear the peak
performance for each temporal network. Indeed, the Ensemble-
Sequential-Stacking outperforms Tensorial-SBM, Time-Series, and
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Fig. 4 | Average AUC for partially-observed target layers on synthetic datasets.
(a) community-label T-SBM, and (b) edge-correlated T-SBM networks, each with
200 nodes and 10 layers. Each row shows results for a different fraction of random
edges, μ (seeMethods), at different copy probabilities, p (of community labels in a,

of edges in b), and numbers of communities, k. Dashed lines represent the theo-
retical maximum average link prediction performance achievable by an oracle that
knows the full T-SBM specification. Colors indicate different link prediction
methods (see legend). A random forest is used for supervised stacking ofmethods.
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Fig. 5 | Average AUC for completely-unobserved target layers on synthetic
datasets. (a) community-label T-SBM and (b) edge-correlated T-SBM networks,
with 200 nodes and 10 layers. Each row shows results for a different fraction of
random edges, μ (see Methods), at different copy probabilities, p (of community-
labels in a, of edges in b), and numbers of communities, k. Dashed lines represent

the theoretical maximum average link prediction performance achievable by an
oracle that knows the full T-SBM specification. Colors indicate different link pre-
diction methods (see legend). A random forest is used for supervised stacking of
methods.
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E-LSTM-D on 17 of 19 temporal networks in the partially observed case,
and 10 of 19 for the completely unobserved case. Moreover, between
Top-Sequential-Stacking and Ensemble-Sequential-Stacking we
achieve the best performance on 16 out of 19 of the completely
unobserved cases. Finally, even in the cases when they are not
achieving the highest score, they are very close with only small dif-
ferences in the AUC scores. In the partially observed setting, the AUC
performance scores are higher, as more information from the target
layer is added to the prediction problem than in the completely
unobserved case. We provide precision-recall results for these
experiments in Section D of the SI. The analysis of predictability can

also be linked to the calculationof temporal auto-correlation scores, as
discussed in Lacasa et al.58. The higher the auto-correlation scores are,
the higher the predictability of the real-world networks. All of the
corresponding scores for the real-world networks can be found in the
SI, Section E.

Recall that even a simple comparison demonstrates that link
prediction with temporal and static common neighbors can perform
very differently for different real-world datasets (panel a Fig. 2). We
observe similarly wide variation in performance bymore sophisticated
methods across different real-world datasets (Fig. 6). To explore these
differences, for each dataset, we computed the Gini importance score

Fig. 6 | Average AUC scores for predicting links in the final layer (the target) in
each of the 19 real-world networks. aWhen the target layer is partially observed,
we benchmark Top-Sequential-Stacking against Tensorial-SBM, Time-Series, and
E-LSTM-D, and then also include these predictors with the stacking to compare
against Ensemble-Sequential-Stacking. b When the target layer is completely

unobserved, the Tensorial-SBMmethod cannot be used, so we benchmark against
Time-Series and E-LSTM-D, and then include them as features in the stacking fra-
mework to benchmarkwith Ensemble-Sequential-Stacking. A random forest is used
for the supervised stacking of methods.

Fig. 7 | The first two principal components (PC) of the set of Gini importance
scores of the 41 learned model features for each of the 19 real-world temporal
networks, for the (a) partially-observedtarget layer setting and (b) completely-

unobserved target layer setting. The total accumulated explained variance ratios
are marked on the figure caption respectively.
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for each of the topological features used and performed principal
component analysis (PCA) on these scores (separately for each setting,
Fig. 7). The first two principal components for each of the two pre-
diction settings demonstrate somedistinct similarities in the high-level
clustering: for example, the ant colony networks cluster together
closely with fbforum and mit under both settings (as well as in Fig. 8,
described next). This distinct group also aligns with the predictability
of the temporal common neighbors (panel a Fig. 2), which further
validate the diverse structures of real-world temporal networks.

The Gini importance score is a measure of feature importance
used in Random Forest algorithms, which calculates the total
decrease in node impurities across all the trees in the forest caused
by splitting on a particular feature. A higher Gini importance score
for a feature indicates that the feature has a more significant impact
on the classification accuracy of the model, which makes it a useful
tool for identifying the most important features in a dataset and
understanding their impact61. Here, the 5 highest Gini importance
scores for each dataset show that none of the real-world datasets
share the same set of important topological features (Fig. 8). Moti-
vated by the visually apparent clustering in Fig. 7, we use vertical
lines in Fig. 8 to split the real-world networks into two groups. The
group of 8 datasets to the right of the lines typically exhibits high
importance for the dot product in a low-rank approximation (dLRA),
its “dLRA-approx” truncation, and the preferential attachment fea-
ture (PA). In contrast, the 11 datasets on the left in the figure typically
exhibit a high importance of Katz centrality (KC). Both the PCA and

the Gini importance results for temporal networks align with the
NoFreeLunch theorem62 discussed in Ghasemian et al.13 for static
networks, suggesting that the diversity of network features may
mean there is also no universal best temporal link predictors, and an
ensemble learningmethod like stacking is the only way to construct a
general-purpose algorithm.

These results all demonstrate that real-world temporal networks
exhibit different underlying patterns of structural organization, which
leads to the drastic variation in performanceof individual predictors in
Fig. 6. In particular, none of the individual methods is able to achieve
the best performance on all datasets.

Our results demonstrate the effectiveness and robustness of our
designed approach in improving the prediction performance for
temporal link prediction across various types of temporal networks.
These findings validate the reliability and applicability of our method
in different scenarios, providing a valuable contribution to the field of
temporal network analysis.

Discussion
Temporal link prediction and temporal network analysis, in general,
have attracted greater attention recentlywith the increased availability
of temporal network data. Indeed, most real-world networks have a
temporal component, though it is not always recorded. While many
measures of traditional, static network analysis have been extended to
temporal networks, our results here show that these methods are not
necessary for good temporal link prediction. Instead, using a

Fig. 8 | The 5highestGini importance scores for linkprediction in eachof the 19
real-world networks. a shows the most important features for the completely-
unobserved setting and b shows the partially observed setting. Acronyms for net-
work features (detailed in SI Section A) include: PageRank (PR), the dot product of
columns i and j in truncated low-rank approximation (dLRA-approx), average
neighbor degree (AND), shortest path (SP), betweenness centrality (BC), degree
centrality (DC), truncated low-rank approximation (LRA-approx), common neigh-
bors (CN), low-rank approximation (LRA), Katz centrality (KC), closeness centrality

(CC), the Adamic-Adar index (AA), preferential attachment (PA), eigenvector cen-
trality (EC), resource allocation score (RA), network transitivity (NT), local clus-
tering coefficients (LCC), Jaccard’s coefficient (JC), local centralities (LC), network
diameter (ND), Leichet-Holme-Newman index (LHN), average of entries of i and j’s
neighbors in low rank approximation (mLRA). The vertical lines are provided to
highlight the visually apparent separation inFig. 7 of the8datasets on the right here
from the others.
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temporally aware stacking approach to combine static features gen-
erally produces superior results to using temporally-extended features
as predictors. In addition to their definitional ambiguity, inwhich there
are multiple ways to generalize a static measure to the temporal
domain, temporal topological features typically also have significantly
higher computational cost. This higher cost makes their mediocre
performance (Figs. 2 and 3) compared to sequentially stacking static
topological features particularly unappealing. At the same time, the
sequential stacking of static features is typically easier to interpret63 for
trying to understand how different networks vary their structure over
time (Fig. 8), making sequential stacking a powerfully useful tool for
predicting missing links in temporal networks.

Moreover, our experiments suggest that our approach achieves
near-oracle-level performance, especially when combined with other
link prediction methods (Ensemble-Sequential-Stacking) as additional
features in the stacking, onboth synthetic (Figs. 4 and 5) and real-world
networks (Fig. 6), and for both partially-observed and completely-
unobserved target layer settings. To mimic the structural diversity of
real-world networks, the two temporal stochastic block models
(T-SBMs) used here are adjusted systematically to include different
community sizes, community sparsity, and most importantly, tem-
poral dependency. Our notion of optimality here derives from an
oracle that has full knowledge of the randomsynthetic networkmodel,
and thus no algorithm can do better. In analyzing the behavior of the
method on real-world networks, we find broad differences in which
particular topological predictors are most boosting the overall accu-
racy. This extends the No Free Lunch62 discussion of Ghasemian et al.13

into the temporal domain, and highlights that the flexibility of the
stacking approach in ensemble learning is a key feature, because it lets
us understand which features are helping most for any particular
network. In this way, the sequential stacking approach avoids the
strong and particular assumptions that temporally-extended features
make for how structure may change over time, and instead it learns
those variations from the data itself, making it a more flexible model.

By developing open-source code for this stacking algorithm, we
provide an efficient method that emphasizes interpretability. By
offering a range of features, our method is broadly applicable and
addresses the limitations of black box models commonly used in
temporal link prediction. Our approach not only compensates for the
computational limitations of temporal topological features but also
demonstrates the potential of incorporating individual predictors to
enhance model performance across structurally diverse networks in
various domains.

While we have demonstrated near-oracle-level link prediction
performance with sequential stacking in these synthetic and real-
world datasets, applications to novel empirical domains would ben-
efit from data-driven guidance about selecting the parameters used
in the framework. Specifically, all of our results are obtained with
“search variable” u = 6 and “flow variable” q = 3, that is, we use the
first 6 layers to predict the 7th layer in each experiment (see Fig. 1).
Since different real-world scenarios may have different temporal
dependencies, how long the data from previous temporal layers may
be useful for predicting future links should be expected to vary
between different datasets and potentially between different tem-
poral regimes within the same dataset. In general, larger values of u
and q provide greater data overall for training the predictor. Mean-
while, balancing larger u relative to smaller q provides a larger
number of cases to train on, and could be used in cross-validation for
parameter tuning specified for various applications and datasets. On
the other hand, increasing u and qmay include dynamical tendencies
from layers that are temporally far away from the target layer of
interest, which may lower predictive accuracy. Exploring the impacts
of these parameter choices in greater detail would provide better
guidance for future applications and may benefit from methods for
detecting change points in network data.

Temporal networks are an important and active area of research,
and link prediction is just one of many temporal analysis tasks. Given
its strong performance on temporal link prediction, sequentially
stacked features could provide a alternative approach to other net-
work analysis tasks on temporal networks, such as community detec-
tion, network classification, anomaly detection, and influence analysis.
That is, instead of trying to further define temporal extensions of
topological features for these different tasks, different approaches to
sequentially stacked features might achieve better results with less
computational effort. At the same time, the development of new
temporal features for network analysis that are both efficient to cal-
culate and that serve well for this and other tasks should remain an
active endeavor and sequential stacking can naturally incorporate
these new features in order to expand and enhance its predictive
accuracy across domains and settings.

Methods
Temporal network notation
For concreteness, we use the notation G = {G0,…,GL} to specify a tem-
poral network with discretized time consisting of temporal layers
Gt = (Vt,Et), where t indexes the time points/windows with node set Vt
and edge set Et in that layer. In a similar way, we define the node set
V = {V0,…,VL} and the edge set E = {E0,…,EL} to contain all layers’ nodes
and edges respectively. We assume that we know every node that
appeared in the temporal network, i.e., we assume the full node setV is
given from t =0 to t = L. The layer GL is the target layer in the temporal
link prediction: we want to predict the presence and absence of edges
on node pairs inGL. Throughout our experiments here, we only use the
last temporal layer as the target, though of course any layer might be
the target provided there are sufficient numbers of layers preceding it
to train a predictor.

Parameters: search variable and flow variable
It is important for us to use as much data as possible for training the
link prediction classifier. Nonetheless, we must be careful not to look
back too far in order to prevent the sequential stacking feature vector
from getting too long. This is because the temporal dependence of the
data from many layers back could have a decreasing effect on the
prediction we make in the target layer.

In balancing these needs, we set the “search variable” u to be the
total number of layers back in time that we will consider for training
the predictor, and the “flow variable” q to be the number of con-
secutive temporal layers considered together in the stacking of fea-
tures across time (see the visualization of the framework in Fig. 1).
These parameters then give us u − q distinct groups of layers for
training prior to the target layer.

In all of the experiments in this paper, we set u = 6 and q = 3 (and
thus u − q = 3). That is, for each of the real-world and synthetic net-
works, we are using the first 6 temporal layers for training, and pre-
dicting on the 7th layer. As noted in the Discussion, future work could
investigate the impacts of these choices in greater detail, especially
insofar as one might expect the optimal choices to vary between
datasets and possibly also within the temporal variation of a given
dataset.

Temporal link prediction: to observe or not observe part of the
target layer
Link prediction on static networks usually assumes some partial
observation of the network that is used to develop the predictor for
the missing (unobserved) part of the network. But the general setting
for temporal link prediction can be very different from that on static
networks18. We consider two different settings for temporal network
link prediction, with the network in the target layer either partially
observed or completely unobserved. Sequential stacking applies to
both cases in a similarmanner, with the following key differences: (1) if
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the stacked features include information from the partially-observed
network in the target layer, this partial observation restricts which
dyads are available for testing; and (2) in the partially observed setting
therewill be an additional groupof layers available for training, formed
from the labels and the additional stacking of features of the partially
observed target layer, denoted here by Gobserved

L .
In the completely-unobserved setting, the test labels on the dyads

(node pairs) denoting edge presence/absence inGL are associatedwith
features computed from the network layers {GL−q,…,GL−1}. To reduce
the chance of overfitting, especially insofar as edges might be expec-
ted to persist across multiple temporal layers, as well as for consistent
comparisons with our partially-observed setting (described below), we
split the dyads into 5 folds, with approximately equal edge counts in
each fold. We then restrict our test set labels to the dyads in a selected
testing fold in the target layer and restrict the training set labels to the
dyads in the other 4 training folds in earlier layers. We report cross-
validated results over repeated randomized folds.

For the partially-observed setting, the edge presence/absence test
labels on the dyads in GL are associated with features computed from
layers {GL−q,…,GL}, noting that only the testing features are computed
usingGL, while the test dyad labels are still taken from the selected test
fold, thus not leaking any information about GL because the full net-
work features are only utilized during testing. In this way, the pro-
cessing of our partially-observed and completely-unobserved settings
are as similar as possible, except we do not use any network infor-
mation from the t = L layer in the completely-unobserved setting.

Sampling dyads for training and testing
Because of the large number of dyads in some of the real-world net-
works we consider, we resample to ensure testing and training on
balanced classes (edge presence/absence)64. Specifically, we sample
10,000 edges uniformly at random with replacement to form the
positive class of our dyad test set. We similarly form the negative class
of our dyad test set by sampling (again, uniformly at random with
replacement) an equal number of not-edges in the corresponding fold.
(All networks we consider have edge density < 0.5.) Each of the edge
presence/absence test labels on these dyads is associated to stacked
network features (see “Dyadic features” below) computed on the
previous q layers (see Fig. 1), togetherwith network features calculated
from GL for the partially-observed setting (Note in particular that Fig. 1
visualizes the completely unobserved setting and sodoes not explicitly
include these features from GL.)

Our training set is similarly formed from the dyads in the 4
training folds using each of the available u − q groups of layers before
the target layer (plus the additional group including the training layer
in the partially-observed setting), as set by the specification of search
variable u and flow variable q (again, u − q = 3 in all of our results here).
For each of these available groups of layers, we repeat the same pro-
cedure as for the test set, except that we sample dyads from the
training folds instead of the test fold. For example, for the completely
unobserved case, the furthest back in time of these training groups of
layers considers sequential stacking of network measures calculated
on {GL−u,…,GL−u+q−1}, with edge presence/absence labels fromGL−u+q. In
this way, the training set for the classifier is exactly u − q times larger
than the test set for the completely unobserved case.

For the partially observed case, the furthest back training groups
of layers used for sequential stacking of network features are calcu-
lated on {GL−u,…,GL−u+q−1} alongwithGobserved

L�u+q , associatedwith edge the
“observed”part ofGL−u+q including the edges in the training folds.Note
that for thepartially observed case,wealso sample trainingdyads from
the observed part of the target layer Gobserved

L , and thus we have
an additional group of training samples with stacked features calcu-
lated on layers fGL�q, . . . ,G

observed
L g. By this procedure, the training set

is u − q + 1 times the size of the testing set for the partially
observed case.

Dyadic features
We extend the (single-layer) static topological stacking method of
Ghasemian et al.13 and train an edge/non-edge scoring function using
network properties on each of the dyads (node pairs) on which we
want topredict. That is, the topological features are calculated for each
dyad, adding to the overall interpretability of our method. This
approach is notably different from general neural network approaches
on the entire temporal dataset, which often have less interpretable
features21. On each layer we compute 41 static topological features,
listed in the SI, combining global network measures with features
calculated on each dyad and concatenations of node-level features
from both participants in each dyad. That is, the resulting feature
vector will have length 41q for the completely unobserved setting and
41(q + 1) for the partially observed setting.

Random forest classifier
For all of the experiments in this work, we utilized a standard random
forest classifier as our binary classifier65 to analyze our training and
testing sets, following the approach of Ghasemian et al.13. For Top-
Sequential-Stacking, we train a random forest classifier on all topolo-
gical predictors, and for Ensemble-Sequential-Stacking we train a ran-
dom forest classifier with all topological features as well as additional
predictors. Random Forest is an ensemble learning model that offers
the flexibility to combine other predictors to enhance prediction
results. In our case, we optimized the standard F measure to select the
best parameters for Random Forest. The robustness of Random Forest
allowed us to avoid over-fitting and gain insights into the significance of
different features in our dataset through the Gini importance score.
Admittedly, while RandomForest is a powerful and versatile classifier, it
is not the only algorithm suited for the task at hand. Depending on the
specifics of the problem and the dataset, other booster algorithmsmay
provide better performance and accuracy. Therefore, it is important to
carefully consider the strengths andweaknesses of different algorithms
and select the one that is best suited for the particular situation.

Assessment by average AUC scores
Our primary measure to evaluate link prediction performance is the
area under the receiver operating characteristic curve (AUC), a stan-
dard measure used in these problems11. The AUC (Area Under the
Curve) score is a scale-invariant and threshold invariant accuracy
metric that is widely used in machine learning for evaluating and
comparing the performance of binary classification models, such as
link prediction. The AUC is defined mathematically as the probability
that a uniformly random true positive case (missing link) is assigned a
higher score than a uniformly random true negative case (non-edge),
Pr(score(TP)) > Pr(score(TN)). It is conventionally calculated as the
area under the receiver operating characteristic (ROC) curve, which
plots the true positive rate against the false positive rate as a function
of every classification threshold. AUC values range from 0.0 to 1.0,
with a score of 0.5 corresponding to a random classifier and a score of
1.0 indicating a perfect classifier.66. The AUC score is a useful metric
because it takes into account the overall performance of a classifier
across different threshold values, rather than just a single threshold.
Additionally, AUC scores are a context-agnostic measure of the
robustness of the method, while providing easy comparison with the
current link prediction literature. All of the AUC scores reported in our
results are averages over 50 runs, with 10 randomized repeats of the
5-fold cross-validation as described above. As noted previously, all
AUC scores are computed for test dyads in the last layer of the cor-
responding dataset, sampled (as described above) to have equal-sized
classes in the test set.

Benchmarking methods and parameter choices
We compared three methods, Tensorial SBM, E-LSTM-D and Time-
Series, using the default parameters provided by the original Github
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repositories of the respective papers or methods. Tensorial-SBM39 is a
matrix (tensor) factorization model used for link prediction and
community detection, which offers two models focused on node and
edge grouping, respectively. In our study, we used the node-based
Tensorial model with three default parameters: the number of node
groupsK, node pairsJ, and layersL. The authors defaulted their para-
meters to be K = J = L = 4, while we kept K = J = 4 and varied the number
of layers according to our experiment.

E-LSTM-D29 is a deep learning method that predicts links on
dynamical networks by utilizing long-term short memory (LSTM) and
neural network. Their end-to-end encoder-decoder architecture
automatically learns network representations, and the stacked LSTM
module enhances the ability to learn temporal features. Their model
has two default parameters: the number of units in the encoder and
LSTM, set at 128 and 256, respectively. It is worth noting that although
we used the same dataset radoslaw, we dissected it into 7 different
layers, while the authors of E-LSTM-D chose to use only 2 layers,
resulting in slightly different prediction outcomes for this dataset.

Time-Series40 is a time-series auto-correlation over time method
that utlize the predicted features from the past temporal snapshots of
the network to conduct supervised learning for prediction of links.We
adapted their method and used ARIMAwith Random-Forest to predict
each of the 41 individual features separately. For the completely
unobserved case, the past temporal layers included are exactly equal
to the parameter u, and for the partially observed case, we only use
ARIMA on the test set to produce the prediction scores.

Synthetic data
We use two synthetic temporal stochastic block models (T-SBMs) to
mimic the real-world data and demonstrate the oracle performance of
the method. In our T-SBM experiments, we generate multilayer net-
works each containing 200 nodes and 10 layers (0≤t≤9). Noting our
u = 6 setting used throughout the present work and that we only test
link prediction on the last layer (i.e., t = L = 9), the 0≤t≤2 layers act to
“burn in” the dynamics of the model, with the earliest data used for
training the predictor coming from G3 here.

The first model, which we identify as the “community-label
T-SBM”, is based on the Dirichlet distribution-based temporal sto-
chastic block model presented in ref. 41 (see the reference for an
extensive discussion about the model parameters therein). We high-
light three model parameters that we vary: p is the probability of
simply copying a node label from one temporal layer to the next
(otherwise, node labels are selected uniformly at random); μ is the
fraction of edges added uniformly at random on top of the imposed
community block structure; and k is the number of communities. We
consider p∈ {0.9, 0.8, 0.7}, μ∈ {0.1, 0.2, 0.3}, and k∈ {1, 2, 5, 10, 15},
generating a single temporal network realization for each parameter
combination, yielding 45 different community-label T-SBM networks.

The second model, which we identify as the “edge-correlated
T-SBM”, is based on the edge-correlated degree-corrected temporal
stochastic block model presented in42, which we extend from two
layers to multiple layers. Importantly, the community labels of the
nodes do not change with time in this model. Instead, the correlation
between different temporal layers is the edge correlation. Noting the
full specification of the model is provided by the reference, we high-
light the three parameters that we vary: p is the edge correlation
between one temporal layer and the next (i.e., the probability that an
edge stays an edge) while μ and k retain the same meanings as in the
community-label T-SBM. By taking p∈ {0.8, 0.7, 0.6}, μ∈ {0.1, 0.2, 0.3},
k∈ {1, 2, 5, 10, 15}, we also create 45 different edge-correlated T-SBM
synthetic networks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The real world network data used in this study are publicly available as
indicated in the SI in their corresponding database. All the synthetic
network data are also publicly available at https://doi.org/10.5281/
zenodo.10530764.

Code availability
The code for implementing the method and reproducing the numer-
ical experiments presented here can be found online at https://github.
com/hexie1995/Sequential-Link-Prediction. Please refer to commit
number 23740e9 on Nov 19, 2023, which also have a DOI at 10.5281/
zenodo.10530764.
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