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SQM2.20: Semiempirical quantum-
mechanical scoring function yields
DFT-quality protein–ligand binding affinity
predictions in minutes

Adam Pecina 1,2, Jindřich Fanfrlík 1,2, Martin Lepšík1 & Jan Řezáč 1

Accurate estimation of protein–ligand binding affinity is the cornerstone of
computer-aided drug design. We present a universal physics-based scoring
function, named SQM2.20, addressing key terms of binding free energy using
semiempirical quantum-mechanical computational methods. SQM2.20 incor-
porates the latest methodological advances while remaining computationally
efficient even for systems with thousands of atoms. To validate it rigorously,
we have compiled and made available the PL-REX benchmark dataset con-
sisting of high-resolution crystal structures and reliable experimental affinities
for ten diverse protein targets. Comparative assessments demonstrate that
SQM2.20 outperforms other scoring methods and reaches a level of accuracy
similar to much more expensive DFT calculations. In the PL-REX dataset, it
achieves excellent correlation with experimental data (average R2 = 0.69) and
exhibits consistent performance across all targets. In contrast to DFT,
SQM2.20 provides affinity predictions in minutes, making it suitable for
practical applications in hit identification or lead optimization.

Reliable estimation of protein–ligand (P–L) binding affinities is the
cornerstone of computer-aided drug design (CADD). In its structure-
based branch, i.e. with the availability of the three-dimensional struc-
ture of the target protein, physics-based atomisticmodels should offer
good answers for good reasons, and if they are robust and accurate
enough, they could have a true predictive ability much needed in drug
discovery1,2. Existing methods span a wide range of complexity from
approximate scoring functions (SFs) used in docking to advanced
calculations of binding free energies based on molecular dynamics
simulations or complex quantum-mechanical calculations3–6. Their
accuracy is, in general, proportional to their steeply growing compu-
tational cost, and the search for an accurate yet also efficient method
remains an unsolved challenge.

Our approach to this problem is based on semiempirical
quantum-mechanical (SQM) methods of computational chemistry7,8.
With corrections for non-covalent interactions9,10, they describe

geometries and energetics of molecular complexes better than mole-
cular mechanics (MM) force fields11, yet they are still applicable to
systems with thousands of atoms on a timescale of minutes12. Over the
last decade, we have been developing SFs based on SQM calculations
and applied them successfully to various targets and tasks, which had
been reviewed in refs. 7,8. In our previous studies, we used different
methods, often tailored to a specific problem or even to specific tar-
gets. In some cases, we opted for computationally more demanding
quantum-mechanical methods that can not be used on a larger scale.
Here, we leverage our experience to formulate a universal SQM-based
SF, named SQM2.20, for general use across diverse protein targets,
various ligand chemistries and modes of non-covalent interactions. It
is free of any empiricism (apart from system-independent parameters
in the underlying computational methods) and is neither tuned to a
specific target, nor to protein–ligand interactions in general. The
SQM2.20 SF covers the most important contributions to P–L binding
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free energy, and all these terms have been updated to the best meth-
ods available at this computational level. Together, these changes led
to a significant improvement over our previous work. Moreover, this
was achieved without compromising the excellent computational
efficiency. It is, however, still an end-point SF (using a single repre-
sentative structure of a particular P–L complex) where some terms are
neglected and error cancellation plays a role. As a result, it is applicable
to the ranking of a series of ligands of a protein, but it does not yield
absolute binding free energies (which would require extensive sam-
pling not feasible at the SQM level).

The ultimate test of an SF’s performance is its comparison with
experimentally determined binding affinities when applied tomultiple
different target proteins, each with a series of ligands. Because we aim
at high accuracy, the requirements on the experimental reference also
need to be very strict. The affinities for each ligand series must be
consistent, measured using the same method under the same condi-
tions – ideally in a single study or at the same laboratory13. Moreover,
as we strive to obtain a good answer for a good (structural) reason,
reliable experimental geometries of the P–L complexes are needed.
Data matching these requirements are rare. Therefore, in this work we
compile a unique dataset of reliable experimental structures and affi-
nities, the Protein–Ligand Refined EXperiment (PL-REX) set. It com-
prises ten diverse protein targets, each with ten to thirty ligands. No
ligands from the original sources that met the above criteria were
arbitrarily discarded, even if they were difficult to score and negatively
affected the final results. Although the PL-REX dataset comprises
multiple crystal structures of P–L complexes within each series, we
choose a single protein conformation for each target, into which all
the other ligands are inserted by overlapping the crystal structures.
The protonation states of selected proteins and ligands are meticu-
lously prepared and manually checked for non-trivial issues. Prior to
scoring, these complexes are partially optimized (only the ligand and
its close surroundings, using an SQM/MM setup) so that the protein
can conform to the geometry of each ligand. We offer the resulting
geometries to the general public as the PL-REX dataset on GitHub
(https://github.com/Honza-R/PL-REX, also archived at Zenodo14).
These geometries are referred to as ‘PL-REX geometries’ in the rest of
the paper.

The SQM2.20 score is defined as a sum of terms with clearly
defined physical meaning:

SQM2:20 score=ΔE int +ΔΔGsolv +ΔGconf ðLÞ+ΔGH+ � TΔS ð1Þ

The individual terms stand for gas-phase interaction energy
(ΔEint), the change of solvation free energy upon complex formation
(ΔΔGsolv), the change of conformational free energy of the ligand in an
aqueous environment (ΔGconf(L)), the free energy of proton transfer
between the ligand and the buffer (ΔGH+) and the loss of ligand con-
formational entropy (TΔS) uponbinding.ΔEint is computed at the PM6-
D3H4X level9,10,15 with recently reparameterized corrections16–18. In our
experience, this method provides the most accurate description of
non-covalent interactions in large systems including fragments of P–L
complexes19. Another reason for choosing PM6-D3H4X is the linear-
scaling implementation of PM6 inMOPAC20, theMOZYME algorithm12,
which provides a significant speedup compared to other SQM meth-
ods. ΔΔGsolv is evaluated using the COSMO2 model21 at the PM6 level
and represents the desolvation penalty connectedwith protein–ligand
complex formation. ΔGconf(L) is estimated by optimizing the free
ligand and evaluated at the PM6-D3H4X/COSMO2 level. ΔGH+ is only
considered if the protonation of the ligand changes upon binding (as
evidenced by the estimated pKa values of the ligands and the struc-
tures of the complexes) and is computed at the PM6-D3H4X/COSMO2
level. The entropic term, TΔS, is computed using the empirical model
LM5 fitted to SQM calculations22. For efficiency, the score is evaluated
on amodel of ~2000 atoms, comprising all residueswithin 10Å around

all the overlaid ligands in each target protein.We have verified that this
model perfectly reproduces the computationally more demanding
scoring in a whole protein (see the Supplementary Note 6). The entire
workflow, from preparing the structures for calculation to evaluating
each component of the SQM2.20 score, is outlined in Fig. 1.

The SQM2.20 SF, with an average calculation time of ~20minutes
per P-L complex, is intended to fill the gap between very fast but less
accurate SFs used in docking or virtual screening and much more
expensive quantum chemical methods such as density functional
theory (DFT).We have therefore compared it to a representative panel
of top-performing academic and commercial SFs, as identified by the
CASF-2016 update benchmarking study23, and including additional
structure-based machine-learning SFs. On top of that, we have added
MM-based SFs as well as state-of-the-art DFT calculations.

This work summarizes the construction of the benchmark PL-REX
dataset and its application to validation of various SFs for reliable
affinity predictions. The results on the PL-REX dataset demonstrate
that only SQM2.20 and DFT-based SFs perform consistently well in all
the targets; however, SQM2.20 can be computed in minutes as
opposed to DFT, which takes hours or days. SQM2.20, as the only
universal SF providing accurate affinity predictions rapidly, can be
used in hierarchical protocols for refining the results of simpler cal-
culations in the early stages of CADD or as a principal tool in the lead
optimization phase.

Results and discussion
Reference dataset for protein–ligand scoring
We have constructed the PL-REX benchmark dataset of ten protein
targets, each with a series of ligands (164 complexes in total) for which
high-quality experimental data are available. The systems and their
main characteristics are listed in Table 1; more details are provided in
the Supplementary Information (SI), Supplementary Note 2. X-ray
crystal structures were available for 147 complexes, and models of
seventeen other complexes were built by modifying ligands closely
similar to those for which crystal structures were available (following
the rules listed in the SI, Supplementary Note 1). The ligands in PL-REX
cover a large chemical space and feature linear, branched and

Fig. 1 | A diagramof theworkflowused toprepare the systems for computation
and generate the final PL-REX geometries, as well as the SQM2.20 score
evaluation itself. Steps involving SQM calculations are shown in blue.
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macrocyclic inhibitors. The total charges of the ligands range from −1
to +2, and the number of rotatable bonds ranges from 0 to 25.

A single representative protein structure per target was selected
for scoring based on the criterion that it could best accommodate all
the ligands (after the exclusion of incomplete protein structures). First,
a single protonation state of the selected protein structure was
determined with respect to the prior literature, experimental condi-
tions and all the ligands in the series. Second, the protonation of
ionizable groups in the ligands was solved and corrected manually
according to the experimental conditions, pKa calculations, the lit-
erature and, most importantly, adjusted to match the selected protein
structure. Non-trivial issues, i.e. the protonation states of 20 ligands
altered upon binding (a proton is released in 11 cases and taken up in 9
cases) are listed in the SI, Supplementary Note 2.

SQM2.20 scoring
We used the SQM2.20 SF at the PM6-D3H4X/COSMO2 level (Eq. 1) for
the scoring of the PL-REX dataset. We then evaluated the performance
of the SF by examining the correlation between the resulting scores
and binding free energies (ΔGbind

0) derived from experimental affi-
nities and quantifying it in terms of the squared Pearson coefficient, R2

(Fig. 2, Supplementary Fig. 1 and Supplementary Table 1). SQM2.20
achieved excellent performance across the whole dataset (average
R2 = 0.69) with no system failing to obtain a good correlation (the
minimal correlation of R2 = 0.56 obtained for 07-JAK1 is still better than
the average performanceof standardSFs, as detailed below). A notable
achievement is the ability to reliably rank not only structurally diverse
ligands, but even ligands with different molecular charges (found in 5
out of the 10 series).

The effect of using SQM calculations was assessed by stepwise
replacing the geometries and energy terms of the scoring protocol
with their MM equivalents (using AMBER ff19SB/GAFF2 force fields24,25

with IGB7 implicit solvent26). First, SQM2.20 scores calculated on MM-
optimized geometries resulted in a significant drop of correlation
(R2 < 0.36) in three targets, while the average R2 dropped to 0.52
(Fig. 2). This highlights the importance of the quality of the input
geometries featured in the PL-REX dataset. Second, the MM scores
(with ΔEint, ΔΔGsolv and ΔGconf(L) in Eq. 1 computed at the MM level)
calculated on MM-optimized geometries resulted in a dramatic

deterioration of the average R2 to 0.23 (Fig. 2). This is an important
finding suggesting that even a rather simple end-point scoring func-
tion benefits from accurate SQM calculations more than it would from
covering additional contributions but staying at the MM level.

These results motivated us to explore the effects of replacing the
SQM method used for the calculation of the leading term, ΔEint, in
SQM2.20 with the state-of-the-art DFT benchmark using an accurate
but also computationally much more demanding setup (range-sepa-
rated hybrid ωB97X-D3BJ functional / DZVP-DFT basis set; see the
Methods section). To make these calculations feasible, we had to trim
the systems to about 1,000 atoms (from ~2,000 atoms). The results
obtained with these trimmed models using SQM2.20 still correlated
well with experimental data (averageR2 = 0.62, Fig. 2) but at the level of
individual targets, the correlation deteriorated significantly in 06-
BACE1 (R2 = 0.37). In this target, the truncation of the active site model
results in an unphysically large molecular charge ( + 5), which is only
compensated by the inclusion of more distant anionic amino acid
residues in the larger model. This shows the importance of including
larger protein surroundings of their ligands for consistently excellent
performance, as is the case with the default model. The DFT scoring
was evaluated in eight targets (excluding 06-BACE1 for structural
reasons already demonstrated at the SQM level and 04-AR where DFT
failed to converge inmultiple iodine-containing ligands). In this subset,
SQM2.20 with the trimmedmodels reached an average R2 of 0.67, and
the DFT scoring yielded a very similar result with an average R2 of 0.64
(Fig. 2). The equivalence of SQM and DFT interaction energies (ΔEint)
was confirmed also by comparing them across the whole dataset,
which yielded a correlation with an R2 of 0.98 (Supplementary Fig. 2).
To summarize, SQM2.20 yielded similar accuracy as the benchmark
DFT scoring, but it was four orders of magnitude faster (see Supple-
mentary Note 4 and Supplementary Table 2 in the SI).

Performance of standard SFs in the PL-REX dataset
The performance of SQM2.20 scoring in the PL-REX dataset was
compared with that of eighteen standard SFs and four structure-based
machine-learning (ML) methods. To make the comparison as fair as
possible, the scoringwasperformed on PL-REX geometries as featured
in the PL-REX dataset (see Methods). The correlations (R2) averaged
over all PL-REX targets of all the standard and ML methods ranged

Table 1 | Composition and features of the benchmark protein–ligand dataset PL-REX

Target Protein Ligands Crystals pKi range Ligand
similaritya

Crystal used,
resolution

Notes

01-CA2 Human carbonic anhydrase II 10 10 2.2 0.32 5NXG, 1.2 Å – Ligand binding via Zn2+

02-HIV-PR HIV-1 protease 22 12 5.1 0.51 2AQU, 2.0 Å – Large flexible ligands
– Proton transfer upon ligand binding
– One water molecule bridging the pro-
tein and ligands

03-CK2 Zea mays casein kinase 2 16 16 1.9 0.32 3KXN, 2.0Å – Halogen bonding
– Proton transfer upon ligand binding

04-AR Human aldose reductase 14 14 2.8 0.47 4XZH, 1.0 Å – NADP cofactor
– Halogen bonding

05-Cath-D Human cathepsin D 10 3 3.5 0.71 6QCB, 1.55 Å – Macrocyclic inhibitors

06-BACE1 Human beta-secretase 1 16 16 3.6 0.48 5QCZ, 2.3 Å – Acyclic and macrocyclic inhibitors
– One water molecule bridging the pro-
tein and ligands

07-JAK1 Human Janus kinase 1 12 12 3.4 0.55 4IVD, 1.93 Å – Six water molecules bridging the pro-
tein and ligands

08-Trypsin Bovine trypsin 15 15 4.4 0.45 1K1I, 2.2 Å – Proton transfer upon ligand binding
– Ten explicit water molecules

09-CDK2 Human cyclin-dependent
kinase 2

31 31 3.6 0.65 3R9H, 2.1 Å – Flexible glycine-rich loop covering the
binding site

10-MMP12 Human matrix metallopepti-
dase 12

18 18 3.9 0.47 3EHY, 1.9Å – Ligand binding via Zn2+

– Proton transfer upon ligand binding
aThe ligand similarity is expressed as the average of the Tanimoto coefficients computed for each pair of ligands.
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from 0.13 to 0.40 as compared to the range from 0.56 to 0.81 of
SQM2.20 (Fig. 3). The best SFs were GlideSP-min and X-ScoreHPSwith
an average R2 of 0.40, but this was still well below the lowest correla-
tion achieved by SQM2.20 (R2 = 0.56). We also tested the performance
of the standard SFs on MM-optimized geometries. The results were
very similar (an average R2 also ranged from 0.13 to 0.40; the best
being PLANTS ChemPLP SF; see details in the SI, Supplementary
Note 3, Supplementary Fig. 3 and Supplementary Table 3), which
shows a smaller dependence of the classical SFs on the initial
geometries.

Analysis over the individual targets found that SQM2.20 was the
only universal SF, meaning that it was fully consistent across all ten
targets, as indicatedby the smallest standarddeviationof the averageR2

of 0.69 ±0.08. In comparison, the standard SFs and ML methods
reached considerably worse or even no correlation with experimental

data for at least some targets (see Supplementary Table 3), with the best
results found for GlideSP-min (average R2 = 0.40 ±0.34; R2 < 0.5 in five
targets), and X-Score HPS (average R2 = 0.40 ±0.26; R2 < 0.5 in five tar-
gets), followed by Smina (average R2 = 0.38 ±0.27; R2 < 0.5 in five
targets) and theΔvinaRF20ML-based approach (average R2 = 0.36 ±0.28;
R2 < 0.5 in five targets). The remaining SFs yielded poor levels of cor-
relation (R2 < 0.5) in more than half of the ten targets. Here we found
one result worth noting – the more sophisticated GlideXP scoring
function did not outperform the GlideSP; however, this is consistent
with anearlier benchmark study23.On theother hand, in sevenof the ten
targets of PL-REX, there was at least one SF with a reasonable level of
correlation (R2 > 0.50), which justifies their use in specific systems,
provided that their performance is validated beforehand.

These results can also be used to identify challenging targets in
the PL-REX dataset. The most difficult ones were 01-CA2, 03-CK2 and

Fig. 3 | Average (columns) andminimal (black circles) correlations (R2) over the PL-REX dataset. SQM2.20 in blue; AMBER/IGB7 in purple; standard SFs in green; ML
methods in orange. Source data are provided as a Source Data file.

Fig. 2 | Squared Pearson coefficient (R2) of the correlation between the
SQM2.20 SF and its MM and DFT derivatives on the one hand and experi-
mentally obtained binding free energies, ΔGbind

0, on the other, calculated for
the PL-REX dataset. SQM2.20//AMBER stands for SQM2.20 for scoring on AMBER
(ff19SB/GAFF2 force fields and IGB7 implicit solvation model, see the Methods
section) geometries obtained via optimization of the ligands and their close

surroundings. AMBER SF signifies that the ff19SB/GAFF2 force field and IGB7
implicit solvation model were used for geometry optimization of the ligands and
their close surroundings as well as scoring. DFT score means that ΔEint was calcu-
lated at the ωB97X-D3BJ/DZVP DFT level (see the Methods section). Note that
differences in R2 less than 0.1 are deemed not significant. Source data are provided
as a Source Data file.
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09-CDK2, where all standard SFs andML approaches failed completely
(R2 = 0.12 ± 0.11, 0.14 ± 0.14 and 0.15 ± 0.06, respectively, see Table 2).
Here, 01-CA2 is a zinc metalloprotein and 03-CK2 features challenging
halogen bonds; we have not, however, found any obvious explanation
for the failure in 09-CDK2. In two more targets, 02-HIV-PR (featuring
very large ligands) and 10-MMP12 (zinc metalloprotein), the standard
and ML methods failed (average R2 = 0.13 ± 0.14 and 0.16 ± 0.12), with
the sole exception of ΔvinaRF20 (R2 = 0.58) in the former case and of
NNScore2 (R2 = 0.57) in the latter. The SQM2.20 SF works well in all
these challenging cases. In the remaining five targets (04-AR, 05-Cath-
D, 06-BACE1, 07-JAK1 and 08-Trypsin), both SQM2.20 andmany of the
standard approaches performed well (R2⩾0.5). Nevertheless, only
three standard SFs showed consistent performance across these five
targets similar to the SQM2.20 SF (average R2 = 0.66 ± 0.07): Glide’s SP
with and without refinement (R2 = 0.72 ± 0.10 and 0.66 ±0.09,
respectively) and X-Score HPS (R2 = 0.63 ±0.09).

This comparison reveals the strongpoint of SQM-based scoring. It
is able to deal with diverse P–L binding motifs without any system-
specific parameters and prior data. SQM calculations treat all P–L
interactions on equal footing, capturing their physics as accurately as
possible at this computational level. This approach increases the
chance of success when working with novel targets, ligands with
unusual chemistry or in other challenging cases.

Conventional SFs and ML-based approaches are of course much
faster (taking mere seconds to complete), and SQM scoring with an
average computational time of about 20minutes is not their direct
replacement (for details on the timing, see Supplementary Note 6,
Supplementary Table 4 and Supplementary Fig. 4 in the SI). However,
SQM scoring can be used to refine results of conventional SFs when
greater accuracy is needed. Moreover, it is clear that there are cases
where the SQM scoring is the most efficient approach that brings
useful results, and this fact itself shouldmake it a tool to be considered
in practical CADD applications.

This study answers several fundamental questions of computa-
tional drug design: on the existence of a universal yet computationally
efficient physics-based scoring method, on the real performance of
scoring methods when applied to known structures for which high-
quality experimental data are available, and on the necessity to invoke
a higher level of theory and at what cost.

We have developed the universal scoring function SQM2.20
based on semiempirical quantum-mechanical calculations. It is a
purely physics-based end-point SF addressing the leading terms of
protein–ligand binding free energy, utilizing the most advanced
and highly efficient computational methods available. It does not use
any empirical parameters tailored either to a specific target or

protein–ligand binding in general, yet it describes the binding ener-
getics in P–L complexes quantitatively.

To validate the SQM2.20 scoring function, we have assembled
the benchmark dataset PL-REX consisting of carefully curated
experimental data – specifically, ten varied protein targets with at
least ten inhibitors each, featuring high-resolution crystal structures
and consistently measured affinities. This gives us confidence that
the computational results we obtain have a solid structural basis.
The PL-REX dataset is available to the general public and is
intended as a tool for the rigorous validation of existing and newly
developed SFs.

Our comparative assessment of academic and commercial stan-
dard and ML scoring methods identified SQM2.20 as the only SF
producing high-quality ranking of ligands across the diverse P–L series
featured in the PL-REX dataset. SQM2.20 achieved a very good level of
correlationwith experimentally determinedΔGbind

0, with anaverageR2

of 0.69 and the lowestR2 of 0.56. The average correlations achieved by
the other SFs did not exceed the R2 value of 0.40, and none of them
was able to describe all the targets with consistent quality. Our results
also demonstrate that in an identical workflow, the SQM method
provides a significant advantage over anMM force field, but switching
fromSQMtomuchmore expensiveDFT calculations does not improve
the results further.

As such, the SQM2.20 SF fills the gap between ultrafast standard
SFs (taking seconds to compute) and costly DFT methods (taking
days), offering accurate results on a timescale ofminutes. Thismakes it
attractive for practical applications in middle-stage refinement and in
lead optimization phases of structure-based CADD workflows. To
facilitate this, we plan to implement the SQM2.20 scoring function in a
standalone tool that would automate the entire workflow; these
developments will be announced separately in the future.

Methods
PL-REX dataset
The dataset was constructed from P–L complexes with consistently
obtained binding affinities and relevant structural data, specifically
Kd, Ki or IC50 measured ideally at one laboratory under the same
conditions and X-ray crystal structures of the respective P–L com-
plexes from the Protein Data Bank (www.rcsb.org). For crystal
structure quality metrics, see Supplementary Table 7. Ligands with-
out a crystal structure (17 out of 164) were considered only in cases
where they could be modeled with confidence based on the crystal
structure featuring a similar ligand. Additionally, we require the pKi

(−logKi) range to be greater than 1.5 and the number of ligands to be at
least 10.

For the majority of the complexes, there are available experi-
mental dissociation constants (Kd) or inhibition constants (Ki) which
we treat as being equivalent under the assumption of a competitive
mechanism of inhibition. In the remaining cases, we use experimental
IC50 values to approximate the Ki as IC50/2, assuming that the con-
centration of the substrate in the experiment is close to the Michaelis-
Menten constant. Even if this approximation was not accurate, it is a
linear relationship that would not affect the correlation between
scores and the experiment, as long as all the IC50 values come from a
consistent series of experiments under the same conditions, which we
verified in theoriginal sources. Finally,weconvert the experimentalKd,
Ki or its estimate to a free energy of binding (ΔGbind

0) that is compared
to the calculations. It should be kept inmind that in the case of the IC50

values, it is only an estimate, but because this approximation does not
affect the final results, we do notmention it explicitly in the remainder
of the paper.

For each target, a single representative protein conformation was
selected. For 9 out of 10 targets, we systematically chose the protein
structure that could best spatially accommodate all the aligned
ligands. The closest atom-atom distance between each protein

Table 2 | Average performance (squared Pearson correlation
coefficient,R2, with respect toΔGbind

0) of 22 standard SFs and
ML methods applied to PL-REX geometries of the PL-REX
dataset

Target R2, avg. ± st.dev. Best R2 (best SF) SFs with R2 > 0.50

01-CA2 0.12 ± 0.11 0.34 (Gold ASP) 0 %

02-HIV-PR 0.13 ± 0.14 0.58 (ΔvinaRF20) 5 %

03-CK2 0.14 ± 0.14 0.47 (RF-score-VS) 0 %

04-AR 0.53 ±0.22 0.84 (Gold GS) 73 %

05-Cath-D 0.51 ± 0.20 0.80 (PLANTS
ChemPLP)

64 %

06-BACE1 0.42 ± 0.23 0.76 (X-Score) 36 %

07-JAK1 0.47 ± 0.22 0.77 (Gold GS) 55 %

08-Trypsin 0.49 ±0.22 0.85 (Gold ASP) 55 %

09-CDK2 0.15 ± 0.06 0.25 (GlideSP) 0 %

10-MMP12 0.16 ± 0.12 0.57 (NNScore2) 5 %

Source data are provided as a Source Data file.
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structure and all the ligands was measured as an indication of the
ability to accommodate the ligands, and the protein with the largest
measured value was selected. Protein crystals with missing side chains
in the binding sites were discarded prior to the selection. Only in the
case of the 05-Cath-D target, where only 3 crystal structures are
available and 7 ligands were modeled, we selected the native protein
structure of a ligand that was the most similar to the manually built
compounds. To evaluate how the choice of the receptor structure
affects the results, SQM2.20 was also tested on protein structures
selected according to different criteria. In addition, in the case of the
01-CA2 target, we also scored each ligand in its own native crystal
structure. Both these analyses are discussed in the SI, Supplementary
Note 7 and Supplementary Table 5).

All non-standard residues (except the cofactor in 04-AR), ions
(except Zn2+ in 01-CA2 and Zn2+ and Ca2+ in 010-MMP12) and co-
solvents were discarded. Water molecules were retained only in cases
where they defined the bindingmode of the ligand (forming networks
in the protein structure or bridging the protein and the ligands). As a
result, explicit water molecules were included and treated as part of
the protein in the cases of four proteins (see Table 1). Hydrogens and
missing heavy atoms were added to the protein using the Leap tool of
AMBER 20 suite27. Protonation of ionizable amino acid side chains (e.g.
histidines and aspartates) in the binding sites were checked visually
with respect to the crystallographic conditions, surroundings and lit-
erature. By default, alternative residue conformations A were con-
sidered unless there were specific reasons for other conformations.
Hydrogens were added to the ligands by using the software Obabel v.
2.3 (http://openbabel.org)28. Protonations of ionizable groups in the
ligands were checked manually and corrected according to the
experimental conditions, surroundings, pKa calculations (Stardrop v.
7.0, https://optibrium.com/stardrop) and the literature. 2D structures
of all ligands, as well as schematic drawings of the bindingmode in the
representative P-L complexes, are provided in the Supplementary
Note 10 and Supplementary Figs. 32–51 of the SI.

For each target, the defaultmodelswere defined as residues of the
representative protein within 10Å of all the overlaid ligands and
amounted to 1,295–2,298 atoms (a residue is selected if at least one of
its atoms fits within the cutoff distance). The trimmed models com-
prised 6Å surroundings (only in the cases of 02-HIV-PR and 06-BACE1
it was reduced to 5 Å because of the large size of the ligands) of all the
overlaid ligands and were made up of 753–1,096 atoms. The protein
backbone was then terminated with neutral caps of the peptide bond
that introduce the least perturbation into the system (-NH-CH3 at
the C-terminus and -CH =O at the N-terminus). Truncating the active
sitemodel could expose charged amino acid residues at the boundary;
we did not neutralize these as they were far from the ligands and
were effectively screened by the solvent model. The P–L models were
gradually relaxed in a series of optimizations. First, we performed
annealing (60 ps molecular dynamics with a thermostat cooling of the
system from 300 to 0K) and optimization of the hydrogen atoms in
the protein only. Second, we formed the P-L complexes, and possible
clashes with the protein were resolved by local geometry optimiza-
tions at theMM level. The final stepwas a free gradient optimization of
the ligand and its surroundings (all protein residueswithin 4 Åof all the
ligands) in an aqueous environment using a hybrid SQM/MMapproach
where the SQM part (treated with PM6-D3H4X) comprised only the
ligand. The optimizations were performed in Cuby4 (http://cuby4.
molecular.cz)29, which also provided the interface implementing the
SQM/MM scheme. The final structures used for the scoring are avail-
able in a public repository (https://github.com/Honza-R/PL-REX) and
are referred to as PL-REX geometries.

Scoring setup
The PL-REX dataset was scored using the SQM2.20 SF as well as its MM
(AMBER SF) and DFT derivatives alongside with eighteen standard SFs

widely used in commercial or academic settings and four machine-
learning approaches. Besides the PL-REX geometries (Fig. 3; Supple-
mentary Table 3A), we also evaluated the standard SFs against locally
optimized ligand poses (using AMBER ff19SB/GAFF2 force fields24,25

with IGB7 implicit solvent26) in the rigid protein structure, referred to
as “MM-opt LIG” geometries (Supplementary Table 3B), as commonly
used in the benchmarking of standard SFs23. Neither SQM2.20 nor
most of the other scoring functions tested yield absolute binding free
energies for which error values (in comparison to experimental data)
can be expressed in energy units (the relationship between the
experimental ΔGbind

0 and the SQM2.20 score is discussed in more
detail in the SI, Supplementary Note 8, Supplementary Table 6 and
Supplementary Fig. 5). We therefore evaluate the performance of the
scoring functions in terms of the correlation of the scores they pro-
duce with binding free energies derived from experiments, reporting
the squared Pearson correlation coefficient (R2) for each target. This
captures the ability of an SF to rank different ligands of the same
protein, which is the crucial metric for practical applications. To
summarize the results for the whole PL-REX dataset, average R2 across
the ten targets is used.

SQM2.20 SF
The SQM2.20 score is computed as a sum of the terms in Eq. 1 com-
puted at the PM6-D3H4X/COSMO2 level9,10,15,21. COSMO2 is an exten-
sion and reparameterization of the original COSMO implicit solvent
model21. The PM6 calculations were carried out using MOPAC2016
(http://openmopac.net)20 with MOZYME12, and the D3H4X corrections
were added using Cuby4 (http://cuby4.molecular.cz/)29. The latest
parameterizations of the D3H4X corrections were utilized16–18, which is
simplified by interfacing the customizable implementation of the
corrections in Cuby4 to an unmodified version of MOPAC. Similarly,
the Cuby4 interface to MOPAC automates the setup and evaluation of
the COSMO2 solvation free energy. When the default PM6-D3H4X/
COSMO setup of MOPAC was utilized, the average correlation
decreased by 0.13, which was caused mainly by the significant drop of
correlation in halogen-bonded03-CK2 inhibitor series (Supplementary
Table 1). Also, the transition from COSMO to COSMO2 significantly
improves the description of 01-CA2, a zinc metalloprotein, as it
remedies an issue we previously observed in this class of systems21. We
also note that PM7/COSMO30 resulted in a slightly decreased average
correlation (by 0.10) and that it failed to produce reasonable correla-
tion in three targets (03-CK2, 09-CDK2, 10-MMP12; see Supplementary
Table 1). This is not a surprising result, since PM7 tends tooverestimate
interaction energy in large systems in general19,31, which also affects its
ability to describe P–L complexes19. The individual results of the SF
variants based on the default PM6-D3H4X/COSMO and on PM7/
COSMO calculations are also plotted in the SI (see the Supplementary
Note 9 and Supplementary Figs. 30 and 31).

The conformational entropy term −TΔS is computed using the
empirical LM5 model22, which estimates the entropy from several
descriptors characterizing the ligand and has been fitted to a large
database of GFN2-xTB calculations on drug-likemolecules. We use the
model as implemented and parameterized by its authors. In the pre-
sent dataset, omitting the −TΔS term leads to practically the same
overall correlation of the score with the experiment. However, by
applying a simpler model which we used previously8 (a penalty of
1 kcal/mol per rotatable bond), the results deteriorate slightly to an
average R2 of 0.63.

In cases where the protonation state of a ligand differed
between the unbound and bound forms, the variant from the
complex was considered in the calculation of ΔEint, ΔΔGsolv and
ΔGconf(L). ΔGH+ was then evaluated based on differences in PM6-
D3H4X/COSMO2 energies of protonated and deprotonated forms of
the free ligand.Dependingonwhether the ligand (L)wasdeprotonated
(Eqs. 2, 4) or protonated (Eqs. 3, 5) in solution, the following acid-base
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reactions were considered

L+H2O ! LH+ +OH� ð2Þ

LH+H2O ! L� +H3O
+ ð3Þ

and, consequently, the ΔGH+ term is evaluated as

ΔGH + =
10ðpH�pKaÞ

1 + 10ðpH�pKaÞ � ðGðLH
+ Þ � GðLÞ+GðOH�Þ � GðH2OÞÞ ð4Þ

ΔGH + = 1� 10ðpH�pKaÞ

1 + 10ðpH�pKaÞ � ðGðL
�Þ � GðLHÞ+GðH3O

+ Þ � GðH2OÞÞ ð5Þ

G(L), G(LH), G(LH+) and G(L-) are computed at the PM6-D3H4X/
COSMO2 level (here we use the label G for a quantity that is the sumof
the PM6-D3H4X enthalpy of formation in the gas phase and the
COSMO2 free energy of solvation). Since the solvation free energy of
OH- and H3O

+ is difficult to calculate reliably with SQM methods, the
G(H3O

+), G(OH-) and G(H2O) are computed as the sum of the PM6-
D3H4gas phase enthalpy and the experimental solvation free energy32.
The fraction of differently protonated species was estimated from
the pH at which experimental affinities were measured and from
the pKa of the titratable group of the ligand using the rearranged
Henderson–Hasselbalch equation. The pKa was either known from
experiments (08-Trypsin ligands, 10-MMP12 ligand fragments) or
computed using Stardrop v. 7.0 (02-HIV-PR and 03-CK2 ligands). ΔGH+

was not evaluated for the ligands of 01-CA2, where all the ligands
undergo deprotonation of the same functional group, so this term
does not affect their relative binding energies. Further, the effect of
omitting the ΔGH+ term from SQM2.20 was assessed. The correlation
deteriorated moderately in the 08-Trypsin and 10-MMP12 targets (R2

decreased by 0.11 and 0.13, respectively) or negligibly in the 02-HIV-PR
and 03-CK2 targets (R2 decreased by 0.03 and 0.06, respectively). In
cases where several conformations of a single ligand were present in
the crystal structure, all were computed and the most stable one was
selected based on the SQM energy of the complex.

DFT scoring
The DFT score is based on the SQM2.20 SF, in which the ΔEint term is
replaced with DFT calculations. We use ωB97X-D3BJ33,34, a range-
separated dispersion-corrected hybrid DFT functional which provides
state-of-the-art description of non-covalent interactions35. The para-
meters in the D3 correction were reoptimized for use with the DZVP-
DFT basis set (available through the Basis Set Exchange repository,
https://www.basissetexchange.org, as dgauss-DZVP) using the proce-
dure and referencedata described in ref. 36. The resulting values of the
parameters are s8 = 0.9220, a1 = 0.3419 and a2 = 5.2955. It has been
shown that this setup yields interaction energies on par with calcula-
tions with a triple-ζ basis set but at a fraction of the computational
cost36. We used the RI-COSX approximation for acceleration. Despite
several attempts, it was not possible to achieve reliable convergence
with the iodine-containing ligands of 03-CK2 and 04-AR. The calcula-
tions were performed in Orca v. 5.0.337.

AMBER scoring
Amber score refers to the MM analog of SQM2.20 where the ΔEint,
ΔΔGsolv and ΔGconf(L) terms of Eq. 1 were evaluated at the MM level.
We used the AMBER ff19SB force field24 for the protein and GAFF2
force field25 with partial charges extracted from PM6 calculations for
the ligands; the environment was described by the IGB7 implicit
solvent model26. AMBER SF was used for the scoring of P–L complexes

which were partially optimized (ligands and their close surroundings
defined in the same way as in the optimization of the PL-REX
structures) at the MM level (Fig. 2), of PL-REX geometries (Fig. 3 and
Supplementary Table 3A) and of locally optimized ligand poses
(“MM-opt LIG” using AMBER ff19SB/GAFF224,25 with IGB726) in the rigid
protein structure (Supplementary Table 3B).

Standard SFs
Several empirical, regression-based SFs were usedwith different terms
to describe van der Waals contacts, lipophilic surface coverage,
hydrogen bonding, ligand strain, desolvation or metal interaction.
These were GlideScore XP (GlideXP) and GlideScore SP (GlideSP),
optionally with pose refinement (GlideXP-min and GlideSP-min,
respectively), PLANTS PLP (PLP) and ChemPLP (ChemPLP), Auto-
Dock4, Autodock Vina, Chemscore ofGOLD (CHS), Goldscore (GS) and
ChemPLP, HPScore of X-SCORE, HMScore, HSScore and averaged X-
Score, Vinardo, and Smina. Knowledge-based potential was repre-
sented by Astex Statistical Potential of GOLD (ASP). Default as well as
recommended protocols (best practices) were tested for all the
methods and setups, and those giving the best correlations are
reported. Individual active sites of the targets were defined as boxes
centered on the center-of-mass of all overlayed ligands of the parti-
cular P–L series. The scores obtained with thesemethods are available
in the PL-REX repository, and their plots against the experimental
results are provided in the SI as Supplementary Figs. 8–21.

Glide
We used four modes of the internal empirical scoring function of the
Glide module (v. 9.4.141, mmshare v. 5.7.141) in the software Schrö-
dinger (v. 2022-1), namely Standard Precision (SP) and Extra Precision
(XP)38,39, each with and without minimization of the ligand structure
inside the receptor (referred to as GlideSP-min, GlideXP-min, GlideSP
and GlideXP scores, respectively). The dimension of each side of the
inner grid box was set to 20Å. The 2+ charges of Zn and Ca ions were
corrected manually. Halogens and aromatic hydrogens were defined
as potential H-bonddonors. Formultiple P–L complexes of 01-CA2 and
one complex of 10-MMP12, scoring by GlideSP and GlideXP without
minimization resulted in unphysically large positive final binding
scores (with values of 10,000).

PLANTS
Two empirical SFs of the Protein–Ligand ANT System (PLANTS) v. 1.2.
were used: PLP and ChemPLP40. Both these SFs use piecewise linear
potential (PLP) to model the steric complementarity of the ligand and
the protein. The ChemPLP SF is based on Chemscore of GOLD and
introduces angle-dependent terms for H-bonding and metal binding.
The protein and ligand molecules were loaded in Mol2 format and
processed by SPORES, a structure protonation and recognition tool.
The binding site radius was set to 12 Å and the scoring was runwith the
default setup using simplex optimization mode.

X-Score
Weused three individual empirical SFs of the X-Score v1.2 package (i.e.
HPScore, HMScore andHSScore)41, combining terms for van derWaals
interactions, hydrogen bonding as well as hydrophobic and deforma-
tion effects. These three variants only differ in the algorithm for cal-
culating the hydrophobic effect term. All three neglect all water
molecules. X-Score is defined as the average of HPScore, HMScore and
HSScore. The protein molecules were loaded into X-Score software in
PDB formatwhereas the ligandmolecules were loaded inMol2 format.
The input structures were processed with the utilities ‘FixPDB’ and
‘FixMOL2’. All other parameters were set to their default values during
the scoring process. The resulting scores in pKd units were converted
to ΔG and examined for correlation with ΔGbind

0.
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GOLD
In the GOLD Suite (v. 2022.1.0, Cambridge Crystallographic Data
Center)42, we used three empirical scoring functions (ChemPLP, GS
and CHS) and one knowledge-based function (ASP) based on
atom–atom distance potential added to some Chemscore terms. The
protein and ligandmolecules were loaded inMol2 format. The binding
site radius was set to 12 Å. Zinc coordination geometries were set to
tetrahedral for Zn-containing proteins. We used simplex minimization
during scoring in GOLD and kept all the other settings at their default
values. The resulting scores with a negative sign were examined for
correlation with ΔGbind

0. None of GOLD SFs were able to score the
3KXG complex of 03-CK2 series (not included in the final statistics).

AutoDock
We used two engines of the Autodock Suite (v. 4.2.6) with three SFs,
namely Autodock 4 SF, Autodock Vina SF v. 1.2.043–45 and Vina Radii
Optimized SF (Vinardo)46. Protein molecules were loaded in PDB for-
mat and ligandmolecules in PDBQT format; they were then processed
by the Ligand4.py and prepare_receptor.py scripts in AutoDockTools-
1.5.6 with default settings. Affinity grid maps were calculated within a
20Å box. In Autodock 4, tetrahedral zinc pseudo-atoms around zinc
ions were used together with the AutoDock4Zn improved force field in
the case of metalloproteins (01-CA2 and 10-MMP12)47.

Smina
We used the DKoes_scoring built-in SF of the Smina fork of AutoDock
Vina (denoted here as Smina SF)48. Smina SF uses a 4–8 Lennard-Jones
potential with terms combined from Vina and Autodock 4, such as
Vina’s term for H-bond interactions and the Autodock 4 term for sol-
vation effects. Input structures were handled in the same way as for
Autodock Vina and a default setup with a 200-step minimization was
used for scoring.

Machine-learning approaches
In CADD, machine learning methods are used mainly in ligand-based
approaches, and only a few structure-basedMLmethods are available.
These are either standard SFs extended with additional ML correction
(ΔvinaRF20, NNScore2.0) or standalone ML algorithms estimating affi-
nity directly from the structure of the complex (RF-score-VS, Pafnucy).
The obtained absolute dissociation constants (pKd) were converted to
ΔG and correlated to ΔGbind

0.

ΔvinaRF20
This descriptor-based ML model uses the score computed by Auto-
Dock Vina SF and combines it with a random forest-based correction
term49. The proteinmolecules were loaded in PDB format, whereas the
ligand molecules were loaded in Mol2 format.

NNScore2.0
The neural network-based scoring function NNScore 2.0 was trained
on a large number of P–L binding descriptors derived from Vina1.1.2
and BINANA50. The input proteinmolecules as well as ligand structures
were loaded in PDBQT format.

RF-score-VS
The random forest-based scoring function RF-Score-VS was used in
its second version (v2)51–53. The protein molecules were loaded in PDB
format and the ligand molecules were loaded in Mol2 format.
RF-Score-VSwas optimized for virtual screening using a random forest
algorithm trained on 900,000 docked molecules across 102 targets.

Pafnucy
Pafnucy is a deep three-layer convolutional neural network54. The
networkwas trained and tested on protein–ligand complexes from the
PDBbind database version 201655 and the Astex Diverse Set56. We used

the source code and model parameters from http://gitlab.com/
cheminfIBB/pafnucy. Preparatory scripts were used to process the
input protein and ligand structures in MOL2 format.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The prepared and optimized structures of the protein-ligand com-
plexes, the PL-REX dataset, as well as other structures used in the
calculations reported in the paper, and the resulting scores generated
in this study have been deposited in a GitHub repository https://
github.com/Honza-R/PL-REX and are also archived at Zenodo with
https://doi.org/10.5281/zenodo.818292214. The crystal structures used
in this work are available in the RSCB Protein Data Bank (https://www.
rcsb.org/) under the codes listed in the paper. The source data for the
tables and plots presented in the paper and in the Supplementary
Information are also provided along with the paper as the Source Data
file. Source data are provided with this paper.

Code availability
The components of the SQM2.20 scoring function were calculated
using MOPAC (http://openmopac.net), AmberTools (https://
ambermd.org), and Cuby4 (http://cuby4.molecular.cz), all of which
are open source software. The other calculations presented here were
performed using the software packages referenced in the Methods
section above, which are available from their authors under various
licenses.
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