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Data-centric artificial olfactory system based
on the eigengraph

Seung-HyunSung 1,2,8, JunMinSuh 3,4,8, Yun JiHwang1,HoWonJang 3,5,9 ,
Jeon Gue Park6,7,9 & Seong Chan Jun 1,9

Recent studies of electronic nose system tend to waste significant amount of
important data in odor identification. Until now, the sensitivity-oriented data
composition hasmade it difficult to discovermeaningful data to apply artificial
intelligence in terms of in-depth analysis for odor attributes specifying the
identities of gas molecules, ultimately resulting in hindering the advancement
of the artificial olfactory technology. Here, we realize a data-centric approach
to implement standardized artificial olfactory systems inspired by human
olfactory mechanisms by formally defining and utilizing the concept of
Eigengraph in electrochemisty. The implicit odor attributes of the eigengraphs
were mathematically substantialized as the Fourier transform-based Mel-Fre-
quency Cepstral Coefficient feature vectors. Their effectiveness and applic-
ability in deep learning processes for gas classification have been clearly
demonstrated through experiments on complex mixed gases and automobile
exhaust gases. We suggest that our findings can be widely applied as source
technologies to develop standardized artificial olfactory systems.

Electronicization of human senses such as artificial visual, auditory,
olfactory, gustatory and tactile sensing systems has long been widely
studied to replace human sensory systems1. In the case of artificial
olfactory technology, Seiyamaet al. developed thefirstmetal oxide gas
sensor using a ZnO thin film based on the redox reactions in 19622. And
the concept of an electronic nosemimicking themammalian olfactory
system was first proposed by Persaud et al. in 19823. Since then, many
researchers have developed electronic nose systems using chemir-
esistive gas sensors and computational analysis methods4–7. Recently,
advanced nanotechnology (NT) and artificial intelligence (AI) are
accelerating the development of bioinspired artificial olfactory sys-
tems that mimic the olfactory organs and nervous system8,9.

However, judging from the recent research trends on artificial
senses, the sense of smell has shown the slowest technological

advancement among them.We point out that the reason why artificial
olfactory technology has stagnated is due to the fundamental limita-
tions on goal setting and orientation of existing researches. The main
flow of discussion on gas sensors which are the basis of artificial
olfactory technology has been going onwith the goal for realizing high
sensitivity to specific gases at low concentrations by modifying the
physical and chemical properties of the nanomaterials10–13. The
sensitivity-oriented research flows have influenced data analysis
methods to demonstrate gas selectivity. In previous researches on the
identification of target gas species, high sensitivity for specific gas
differentiated from other gases has been regarded as high selectivity
to that gas14. This selectivity has been verified by pattern recognition
techniques such as radial fingerprint charts, contour maps, principal
component analysis (PCA) or linear discriminant analysis (LDA), which
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primarily rely on the sensitivity values of sensor array7,15–19. High sen-
sitivity for specific gas is obviously an important factor in the devel-
opment of artificial olfactory technology to overcome the low
detection threshold of human olfaction. However, because there are
various disturbing factors that affect the degree of the sensitivity, it is
impossible to reproducibly identify the gas species using the existing
methods. Even though a particular sensingmaterial has high reactivity
to a specific gas molecule, the sensitivity can vary depending on the
degree of diffusion of the gas molecule reaching the gas sensor. In
addition, gaseous analytes often exist as complex mixtures of indivi-
dual gas molecules with varying concentrations and chemical for-
mulas. In this case, since the overall sensitivity can be distorted due to
the amplification or attenuation of the reactivity by the competition
between individual gas molecules in the mixed gas, it is difficult to
expect accurate gas identification results with the sensitivity-oriented
data analysis methods5,20,21.

On the other hand, there is high probability that the wasted data
except for sensitivity contains significant amounts of important
information for specifying the gas identities. Therefore, in order to
overcome the conventional issues derived from sensitivity-driven data
composition which is vulnerable to the environment changes, it is
necessary to newly define themeaningful data characteristics required
for gas identification and develop an appropriate signal processing
and interpretation technique to effectively characterize them. To
realize this, the uniqueness, veracity, stability and reproducibility of
time series data waveforms according to the types of reactive gases
and sensing materials should be preferentially considered in sensor
development. In other words, it is necessary to develop standardized
gas sensors which generate eigengraphs which have highly refined
response waveforms by optimizing the redox reactions of sensing
materials to target gases, just as humans perceive a specific gas
molecule as a somewhat common smell regardless of racial, cultural
and national background. Then, discriminative and robust feature
vectors that effectively reflects the hidden attributes of odors should
be extracted from the eigengraphs for universal and reproducible
identification.

However, until now, there has been little interest in the above data-
centric approach in the entire process from sensor development to data
analysis. In this study, we proposed a sophisticated artificial olfactory
system inspired by human olfactorymechanism. This system consists of
a sensor array that mimics the physiological functions of human olfac-
tory receptors and an AI analysis process that reflects the olfactory
perception properties of the cerebral limbic system. These processes
include optimization and standardization of nanomaterials, dedicated
measurement equipment for sensor arrays, mathematical feature engi-
neering and deep learning analysis. We suggest that the data-centric
approach can be a promising solution to develop standardized artificial
olfactory system that can perfectly identify delicate differences in var-
ious odors composed of complex mixture gas molecules.

Results
Artificial olfactory system inspired by the human olfactory
mechanism
In 1991, a breakthrough research onmammalianolfactory receptors by
Richard Axel and Linda Buck contributed to the establishment of a
physiological and medical basis for the olfactory mechanism22,23. Spe-
cifically, it was discovered that humans have about 350 types of
olfactory receptors, and each olfactory receptor is activated by che-
mically reacting with the specific volatile gas molecules entering the
nose24. The encoded family of the activated olfactory receptors gen-
erates and transmits unique electrical signals, which are transmitted
through the olfactory tract and synthesized in the olfactory region of
the cerebrum and recognized as a certain smell. Our artificial olfactory
system has various functional similarities because it was developed
with inspiration of the olfactory mechanism of the human body. The

components of this system corresponding to each olfactory organ of
the human body are summarized as follows (Fig. 1).

First, an olfactory receptor-like sensor array (ORSA) which gen-
erates various eigengraphs depending on the type of redox reactions
between gas molecules and sensing materials was invented to mimic
the physiological function of olfactory receptors. In this process, a top-
down deposition technique using the electron beam evaporator with
glancing angle deposition (GLAD) function was utilized25–27. Two dif-
ferent types of surface functionalization engineering including noble
metal nanocatalyst decoration and metal oxide nano-heterojunction
were simultaneously applied to impart different gas sensing char-
acteristics to each channel of the ORSA28–30. In addition, chemical
deterioration and changes in physical properties due to repeated
measurement over a long period of time have been minimized by
optimizing the manufacturing conditions of the sensing materials.

Second, the measurement andmonitoring system inspired by the
role of the olfactory bulb and olfactory tract serve as a pathway for
relaying and transmitting the generated signals. In order to maximally
extract the intrinsic characteristics of the redox reactions, weutilized a
dedicated measuring instrument that can assist the gas reactions in
occurring under stable conditions by minimizing external environ-
mental factors such as humidity, temperature and vibration.

Third, we designed an AI analysis process to identify odors by
mimicking the olfactory perception properties of the limbic system
including the piriform cortex, amygdala and hippocampus. The piri-
form cortex and amygdala primarily receive odor information con-
verged from the glomeruli of the olfactory bulb and encode them into
unique odor representations along with associated episodicmemories
to specify individual odor identities31,32. The hippocampus can learn
odor representations and store them in the form of long-term mem-
ories, so that when a randomodor is input, the associatedmemory can
be immediately recalled to recognize the identity of odor33,34. These
process were respectively imitated by feature engineering and deep
learning analysis. In the feature engineering stage, the odor attributes
contained in the eigengraphs were extracted and mathematically
represented as theMel-FrequencyCepstral Coefficient (MFCC) feature
vectors based on the fast Fourier transform (FFT). The Fourier trans-
formation ismathematically expressed as an infinite series of products
of the complex exponential functions and their weights (magnitudes
of periodic function), which can be decomposed into the complex
number of the sinusoidal periodic by Euler’s formula35. That is, the key
value of utilizing the Fourier transform is that any time-domain signal
can be transformed into the frequency-domain components which
represent as a unique linear combination of frequency components
consisting of sine and cosine functions with various magnitude and
phase. Accordingly, Fourier transform has been widely applied in
various fields requiring signal processing such as communication
engineering, vibration analysis, and speech recognition36,37. Therefore,
the Fourier transform can be an attractive method to explore the
potential intrinsic attributes of gas sensing properties from eigen-
graphs with various waveforms generated by the unique redox reac-
tions between sensing materials and gas molecules. MFCC are feature
vectors developed by imitating the human audible frequency band
caused by the nonlinear structure of the cochlea to characterize the
speech signal, which can be used as a dimensionality reduction
method that selects only core features representing eigengraphs from
Fourier transformed frequency components. Finally, in the deep
learning stage, the MFCC feature vectors were input into the deep
neural network model which learned them to classify the identities of
mixed gas molecules.

Design strategy and fabrication of olfactory receptor like
sensor array
Just as the human body’s olfactory receptors generate unique elec-
trical signals, our research begins with the hypothesis that different

Article https://doi.org/10.1038/s41467-024-45430-9

Nature Communications |         (2024) 15:1211 2



types of sensing materials will have unique reaction properties for
specific gas molecules. It is reasonable to assume that there are dif-
ferences in the degree of redox reactions because the physical and
chemical properties of each gas molecule are different due to differ-
ences in component elements, bonding methods and bonding struc-
tures. We devised a systematic and efficient fabrication strategy to
impart different gas sensing characteristics to each channel of the
sensor array through a sequential top-down deposition process. Since
the top-down deposition technique provides thin films with uniform
quality over a large area, it is advantageous for securing the normality,
reproducibility and stability of the sensor signal and potentially
designing a stable international standard detector such as human
olfactory receptors27. Here, we introduce a human-inspired design
strategy to fabricate the ORSA combinatorially appling noble metal
nanocatalyst decoration and metal oxide nano-heterojunction
techniques38,39, which are known as representative methods for the
development of high-performance gas sensor through physical vapor
deposition28–30.

The vertically aligned SnO2 nanorods selected as the main reac-
tion source to gasmolecules are one of the nanostructures that can be
easily fabricated through the GLAD without a complicated synthesis
process. The porous film with nanorods exhibits superior gas sensing
properties because it provides a larger adsorption area for gas mole-
cules compared to the thin film structure. The process is summarized
as follows (Fig. 2a). At the beginning of deposition, the vapor flux
evaporated by the electron beam reaches the substrate and forms a
number of randomly dispersed nuclei. As the nuclei gradually grow,
self-shadow regions are formed in the blocked area where additional
vapor flux cannot reach due to the height of the nuclei, and nanorods
grow in an inclined direction. Additionally, when rotation is applied in
a tilted state, the nanorods are aligned in a perpendicular direction to
the substrate. During subsequent heat treatment, the deposited
bimetallic nanolayers of transitionmetals (Co, Ni,Cu) andnoblemetals

(Pt, Pd, Au) agglomerate together and are decorated in the form of
nanoparticles on the SnO2 nanorods. At the same time, the transition
metals were oxidized to p-type transition metal oxides (Co3O4, NiO,
CuO). In addition, based on the above design strategy, we have
developed a wafer-scale manufacturing process compatible with the
semiconductor process for fabricating highly integrated sensor array
chips (Fig. 2b). The deposition process of each material was sequen-
tially performed with the assist of spatially addressable shadowmasks
that accurately expose only the target area in a specific column and
row direction. Finally, the fabrication was completed by cutting the
wafer substrate into single chips.

We confirmed that all sensing channels of the ORSA were suc-
cessfully deposited. Cross-sectional and top-view scanning electron
microscopy images of nanostructures deposited on the nine sensing
channels of the 3 × 3 ORSAwere shown in the Supplementary Fig. 1. As
shown in Supplementary Fig. 1a–c, the aggregation phenomenon of
the bimetallic nanolayers in the formof nanospheres on the upper part
of the nanorods significantly occurredwhenAuwas included. Actually,
The X-ray diffraction peaks of Au component were noticeably
observed due to the agglomeration of Au. It was demonstrated that Au
nanoparticle was polycrystalline with the (200) and (311) preferred
orientations by indexing the JCPDS# 04-0784 (Supplementary Fig. 2).
Exceptionally, despite the small degree of agglomeration of Pt (Sup-
plementary Fig. 3b, c), the XRD peak (111) of a single crystal Pt nano-
particle was weakly observed by indexing the JCPDS# 04-0802. On the
other hands, it was presumed that the XRD peaks of Pd were over-
lapped with the SnO2 peaks due to small crystallization and not
observed. TheCuO,NiOandCo3O4oxidized from the transitionmetals
(Co, Ni, Cu) deposited under the noble metals (Pt, Pd, Au) were not
observed on the surface through XRD. As an applicable future per-
spective inspired by this study in terms of single gas sensor research,
our design and manufacturing strategy will contribute to overcoming
material wastage and time-consuming trial and error in the process of

Fig. 1 | Conceptual schematic of the artificial olfactory system inspired by the
human olfactory mechanism. The chemiresistive sensor array mimicking the
olfactory receptors chemically reacts with gas molecules to generate different
electrical signalswithuniquewaveforms. Themeasurement andmonitoring system

serve as the function of olfactorybulb and tractwhich separately relay and transmit
the signals to the limbic system. The mathematical feature engineering and deep
learning analysis mimic the human olfactory perception properties of limbic sys-
tem in the cerebrum such as piriform cortex, amygdala and hippocampus.
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discovering and optimizing the optimal combination of sensing
materials, which will be expected to be advantageous for commer-
cialization through mass production.

Optimization of the deposition thickness of bimetallic
nanolayers
In order to generate optimal reaction waveforms that satisfy the above
mentioned four conditions, it was necessary to optimize the deposi-
tion conditions of the bimetallic nanolayers. In this process, we
focused on elucidating the role of the composite nanocatalyst

composed of noble metal and transition metal oxide. Basically, it is
assumed that the gas sensing signal is affected by the electronic
properties modified by the catalytic nanojunctions. The p-n hetero-
junction between the p-type transition metal oxide nanoparticles and
the n-type SnO2 nanorods transforms the electrical signal by inducing
interfacial electron transfer due to the band gap difference. Noble
metal nanoparticles act as electronic sensitizers to improve gas sen-
sing performance due to the spillover effect40. Additionally, the mag-
nitude of the initial baseline resistance and sensitivity are changed
depending on the type and amount of the nanocatalyst29. Accordingly,
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the reactivity to 10ppm acetone was evaluated conditions by changing
the deposition thickness of each metallic nanolayer to 0.5 nm, 1 nm,
and 2 nm, respectively (Fig. 3a–c).

First, it can be seen that each channel generates unique reaction
waveforms according to the combination of the catalytic materials.
Also, each signal generally showed a reduction reaction behavior of
n-type metal oxide. Exceptionally, the 2 nm-deposited Co3O4/Au

channel exhibited an opposite reaction pathway such as the p-type
metal oxide behavior to the reducing gas. As the thickness of the
transition metal deposited on the SnO2 nanorods gradually increases,
the active surface area of SnO2 for gas reaction decreases and may
eventually be blocked41. As a result, the p-type transition metal oxide
can act as a main sensing source. In this process, the electrical stability
and sensitivity of the sensor may be deteriorated due to the
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continuous reaction competition between the p-type metal oxide and
the n-type SnO2. Moreover, the p-n heterojunction causes the recom-
bination of electrons and holes pair, which decreases the domain
carrier density on the SnO2 surface. This can lead to an increase in the
baseline resistance, which can be further promoted as the amount of
the p-type transition metal oxide increases41,42. Actually, it was con-
firmed that the initial baseline resistance tended to increase as the total
deposition thickness of the bimetallic nanolayers increased. The 2 nm-
deposited samples formed high resistance signals that were difficult to
measure through general electrical measuring equipment. In parti-
cular, it was confirmed that unstable signals with noises were gener-
ated from the 2 nm-deposited CuO-based samples. On the other hand,
the 0.5 nm-deposited samples were electrically stable due to a rela-
tively small deposition amount. However, since the basic resistance
was low, it was difficult to expect visible changes in electrical proper-
ties by the catalytic nanojunctions. Compared with the 1nm-deposited
sample, the diversification of the reaction waveforms according to the
type of the composite nanocatalyst was not significant, and the gas
sensing performance was not relatively improved. As a result, we
optimized our fabrication specifications by setting the thickness of
each metallic nanolayer to 1 nm.

Meanwhile, the magnitude of baseline resistance in all channels
was confirmed in the order of Pt > Pd > Au according to the type of
noble metal, regardless of the deposition thickness. The degree of
change in the electronic properties by the catalytic nanojunctions can
depend on the surface contact area and interface length between the
nanocatalyst and the support29. So, we noted the morphological
changes of the bimetallic nanolayers during the annealing process. As
shown in Supplementary Fig. 1a-c and 3f, g, it was observed that the
agglomeration phenomenon of the bimetallic nanolayers in the form
of nanospheres on the upper of the nanorods occurred significantly
when Au component was included. However, in the absence of Au
component, no noticeable morphological changes such as agglom-
eration were observed after heat treatment as shown in Supplemen-
tary Fig. 1d–i and 3b–e. The channels containing Pd andPt components
with the small degree of agglomeration had the large surface contact
area and long interface length of nanocatalyts, so the degree of change
in resistance and sensitivity by the catalytic nanojunctions was rela-
tively large (Fig. 3). Actually, the electron transfer between the nano-
catalysts and SnO2 nanorods was confirmed by XPS analysis. The Sn
3d5/2 peaks of the NiO-based channels were calibrated based on the C
1 s peak (284.8 eV) and compared to the bare SnO2 (486.6 eV). In the Pt
and Pd cases, the binding energies of the Sn 3d5/2 peak was shifted
higher values (486.9 eV), which means that the electron transferred
from the SnO2 to the nanocatalysts to increase the baseline resistance.
On the other hands, the Sn 3d5/2 peak of the Au was shifted lower
values (486.5 eV), which means that the electron transferred from the
nanocatalysts to the SnO2 to decrease the baseline resistance (Sup-
plementary Fig. 3a). That is, it was found that the difference in the
degree of agglomeration according to the amount and type of noble
metal affected the gas sensing performance. Eventually, we confirmed
that the reaction pathway andwaveform of gas sensing signal could be
modified by precisely controlling the amount, type, morphology and
distribution of the catalytic nanojunctions to satisfy the four major
conditions of eigengraph.

Investigation of the preliminary gas selectivity using principal
component analysis
To confirm the sensitivity-based preliminary selectivity of the opti-
mized 1nm-deposited ORSA, we investigated the gas sensing perfor-
mance for various volatile organic compounds (VOCs). We also
compared the gas sensing performance of the ORSA with a bare SnO2

nanorods gas sensor to confirm the effect of composite nanocatalyst
functionalization. The sensitivity was calculated as S = [(Rair − Rgas) /
Rgas] × 100% from the reaction graph for 10 ppm of acetone

(CH3COCH3), xylene (C6H4(CH3)2), toluene (C6H5CH3), ethanol
(C2H6O), hydrogen sulfide (H2S) and ammonia (NH3) gases. Rair is the
basic resistance to fully saturated dry air and Rgas is the gas resistance
at the end of the gas reaction. The bare SnO2 nanorods sensor mostly
exhibited similar sensitivities in the 70–80% range for each gas mole-
cule. On the other hand, each sensor of the ORSA significantly
improved the sensitivity compared with the bare SnO2 nanorods sen-
sor (Fig. 3d). In particular, the sensitivity of the SnO2-CuO/Au sensor to
10ppmethanol andNH3was increased by 27.3 and 37.15 times than the
bare SnO2 nanorods sensor, respectively. In addition, the selectivity of
each channel for a specific gas was improved according to the com-
bination of catalytic materials, which contributed to the identification
of gas molecular species by generating various response patterns of
theORSA. The PCA result basedon the sensitivity values of all channels
of the sensor array showed that plots representing ethanol, ammonia
and hydrogen sulfide were well distinguished from each other.
Nevertheless, the response patterns to acetone, toluene, and xylene
gases, which are known to have low reactivity due to strong carbon-
hydrogen bonds and stable benzene ring structures, were similar each
other43,44. Therefore, the plots of acetone, toluene and xylene over-
lapped each other, making it difficult to distinguish them (Fig. 3e). To
solve this problem, deep learning analysis was performed on the three
indistinguishable VOC gases through PCA. The preparation of a data-
base for the followeddeep learning analysis wasdescribed inMethods.

The law of existence of Eigengraph in electrochemistry and its
implementation conditions
In this section, formal definition of the eigengraph and the conditions
for generating eigengraphs are described based on the phenomen-
ological observation of our experimental result of gas reaction using
metal oxide-based gas sensors. Since the gas response signal of gas
sensor is the result of the interaction between the sensingmaterial and
the gasmolecules, the justification for the existence of the eigengraph
is explained by considering all the theoretical factors for each.

First, in terms of gas sensors, the receptor function and the
transducer function are the key factors explaining the principle of the
gas detection mechanism and the generation of the detection signal
(as a result of the reaction)45–47. Receptor function is related to the
chemisorption, desorption and redox reaction of gasmolecules on the
surface of the sensing material. The transducer function converts the
results of chemical interaction with gas molecules into electrical sig-
nals which flow through the conduction channels with the Schottky-
barriers formedby interconnectionof the grain boundaries of adjacent
nanoparticles. The surface charge density of sensing materials is
changed by the redox reaction that occurs during the chemisorption
of gas molecules, resulting in the formation of a charge depletion
region. This leads to the change of the height of the Schottky barrier,
which changes the resistance of the conduction channel47,48. In other
words, the receptor function and the transducer function are closely
related to each other, and these surface reaction properties basically
depend on the intrinsic physical and chemical properties of the ele-
ments constituting the sensing material, and can also be influenced by
manufacturing and synthesis methods. For example, electrical prop-
erties of semiconductor materials, such as density of states, energy
band structure, and carrier concentration, are unique depending on
the type of constituent elements. In particular, when metal or metal
oxide nanocatalysts having different Fermi levels are added, electrical
properties of the sensing material are modified by carrier diffusion in
the junction region49,50. In addition, the specific surface area for che-
misorption of gas molecules can be improved through the geometric/
morphological modification of the nanostructure according to the
manufacturing method, and the electronic conduction can be
improvedby controlling the crystallinity to induce grain size effect50–52.

Second, in terms of gas molecules, the theoretically established
power law for the response of metal oxide semiconductor-based gas
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sensors can be summarized as a function of gas partial pressure and
sensor resistance, by combining the acceptor function and the trans-
ducer function53,54. It means that the power law can be influenced not
only by the type of gas molecules but also by the above-mentioned
material factors affecting the surface reactionproperties. Judging from
this, it can be reasonably inferred that the electronegativity according
to the type of element constituting the gas molecule, the type of
chemical bonding such as covalent bond and hydrogen bond, and the
bonding energy according to the molecular structure can also affect
the interaction with the sensing material. Consequently, it is obvious
that the eigengraph is generated as a result of interaction between a
specific sensing material and gas molecules.

However, since the existing theories do not consider the concept
of time change, so there is a limit to predicting the actual change in
sensor resistance over time. Until now, there have been few reports of
systematic experimental results on signal formation for long-time
reactions that support widely established theoretical explanation. As a
result, waveforms in the generatedgraphshavenot been considered as
important factors. Therefore, based on the major four conditions for
time series gas response waveforms described in the introduction
section, we focused on finding optimized signals with refined wave-
forms by controlling our advanced nanotechnology andmeasurement
environments. Eventually, we experimentally found that different
intrinsic signals can be created by the redox reactions between specific
sensing materials and gas molecule using an optimized sensor array
whichhave 9 independent and stable gas sensing characteristics. Thus,
we formalize the findings as the law of existence of Eigengraph in
electrochemistry, which is intended to represent the existence of
natural intrinsic electrochemical reactions among the nanomaterials.
In order for the eigengraphs to be commonly used with engineering
credibility, researchers must create an internationally standardized
and optimized gas sensors and appropriate peripheral hardware that
ensures reliability in various measurement environments. Based on
this, it is necessary to find and collect the eigengraphs that satisfy the
major four conditions of time series gas response data for various gas
molecules under various environmental conditions to identify
unknown odors. The law of existence of Eigengraph in electro-
chemistry can be applicable to all fields dealing with various electro-
chemical reactions and provide potential opportunities to inherently
understand their unique characteristics by extracting significant
attributes from eigengraphs. Consequently, it will ultimately be pos-
sible to predict unknown target molecules through the eigengraphs
for well-established reactions based on advanced nanotechnology.

Deep learning based on the eigengraph analysis for identifica-
tion of gas types
Existing analysis methods for gas selectivity, which did not consider
the gas sensing signal waveform, have limitations in distinguishing gas
types using similarmagnitude-based input variables such as sensitivity,
response and recovery times18,21. Apart from the conventional well-
known gas sensing characteristics, it is necessary to develop a dedi-
cated signal processing system to extract the hidden intrinsic attri-
butes from the eigengraph and characterize them as decisive features.
In this study, theMFCC feature vectors based on the Fourier transform
were introduced as input data for deep learning model to effectively
express the reaction waveform between gas molecules and nanoma-
terials. According to the Fourier transform theory, even any signals
with similar amplitudes can be decomposed by combining different
fundamental and harmonic frequencies at a unique ratio, so it can be
expected to overcome the selectivity confusion caused by the cross-
sensitivity of the sensor array35. The FFT algorithm was utilized to
rapidly perform Discrete Fourier Transform (DFT) for the generation
of spectrum, and it has been applied to discrete points constituting the
raw signal in the time domain55,56. The unknown eigencomponents
constituting the time series raw signal were converted into frequency

components with various amplitudes and phases, and their band-
specific intensity corresponding to each frequency bin was shown in
the FFT spectrum57. Supplementary Fig. 5 shows the estimation of
normalized power spectral density of squared FFT results assigned to
the linear frequency bins56. Although the FFT spectrum itself reflects
the strong uniqueness of the raw signal, it is necessary to further
reduce the dimensionality of the input space to implement efficient
data processing flows in deep learning networks by minimizing com-
putational load such as data processing and training times58. There-
fore, it is necessary to select and intensively investigate the most
prominent features among numerous variables.

MFCC is the result of imitating human audible frequency resolu-
tion by converting linear frequencies to logarithmic low frequencies,
which can prevent training overfitting of deep learning networks and
improve recognition accuracy by densely analyzing only key attributes
of the eigengraph59,60. The MFCC feature vectors were obtained by
using librosa package of the Python developed for acoustic and audio
signal processing61. Figure 4a shows the summary of MFCC feature
vectors extraction flow consisting of three steps: (i) preprocessing of
time series raw signals (ii) generation of frequency domain power
spectrum (iii) extraction of 20-dimensionalMFCC feature vectors. The
first order MFCC components which was negative number and has
large deviation was excluded from the final diagram of the Fig. 4a. The
linear frequency power spectrum with the mean squared magnitudes
of the FFT results was converted to the Mel-spectrogram with non-
linear Mel-scale bins by passing through the Mel-filter banks62. There-
after, the log Mel-spectrogram reflecting the human hearing
characteristics was generated by logarithmic compression57, and the
20-dimensional MFCC feature vectors were finally obtained through
inverse discrete Fourier transform (IDFT).

As shown in the Fig. 4b, the deep neural network consisting of
three hidden layers between the input and output layers was devised
to recognize the gas reaction eigengraphs. The output goal of the deep
learning architecture using the 20-dimensional MFCC feature vectors
as input data was classification of all 117 classes labeled depending on
the gas species andmixing ratio. An initial training of the deep learning
model was performed by using full signals of 342 points. Additionally,
in order to improve the computational efficiency required for training
the deep learning model by reducing training sample size, we pro-
gressively investigated the classification performance using top 171
and 50 points samples as training sample and compared themwith the
result using the full signals. Since the 50 points section is an important
part where the target gas molecules and the sensing materials che-
miresistively react each other, so it is considered as the minimum
signal unit containing only pure eigencomponents. In other words, by
using the pure gas response as input data, we can verify howefficiently
the MFCC feature vectors represent the intrinsic attributes of the
eigengraphs and contribute to the classification of gas species.

At the same time, in order to verify the learning efficiency of the
devised deep neural network for MFCC feature vectors, the learning
rate was adjusted to investigate the effect of the learning rate on the
model performance. The learning rate is a parameter that controls the
degree to which weights between nodes of a neural network are
updated through iterative learning on input data63. In other words, it is
possible to find out how quickly the deep learning model can dis-
criminately learn and adapt to input variables. When using a small
learning rate, it can usually take a long time to converge to the target
valuedue to the slow learning process. On theother hand,when a large
learning rate is used, the optimal value required for weight update can
be overlooked due to the large step size of the optimization algorithm
which derives the minimum of the loss function, resulting in an
unstable learning process63. Considering the effect of the learning rate
on the model performance, we investigated the training accuracy and
loss for the three training sample sizes using learning rates of 0.00001
and 0.0001 and presented them in Fig. 4d, e. The training accuracy for
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eachwas set at 99.9% and 99.5% and training loss was both set to zero.
Interestingly, it was confirmed that the training accuracy and loss
completely and monotonously converged to the target value in all
three cases regardless of the learning rate. Thus, the findings were
derived that MFCC is a promising feature vector that makes dis-
crimination between the 117 labeled classes very effective. Since the
training accuracy fully saturated to the target values for all cases,
subsequent discriminative training was not required. Alternatively, in
order to identify the confusable sets during the model training using

the 50 points samples and 0.00001 learning rate, the 3D confusion
matrix comparing predicted labels with true labels when the training
accuracy reaches 90% was represented in Fig. 4c.

But therewas a difference in the time to reach the target value. For
the three cases in Fig.4d, the number of iterations required for 99.9%
saturation of training accuracy was 12,635, 19,485 and 35,947 epochs
for the 50, 171 and 342 points. In proportion to this, the training time
gradually decreased to 31, 16, and 11min as the training sample size
decreased. For the three cases in Fig. 4e, the number of iterations
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required for99.5% saturationof training accuracywas 129,274, 266,754
and 499,029 epochs for the 50, 171 and 342 points. Similarly, the
training time gradually decreased to 290, 186, and 74min as the
training sample size decreased (Supplementary Table 5.). This sug-
gests that the signals enlarged by unnecessary information of the
recovery stage made it difficult and complicated to determine the
hyper-plane dividing the feature pattern space, resulting in increasing
the computational complexity and learning time. On the other hand, it
can be seen that the 50 points sample was enough to train model, and
contained only determinant attributes for the gas reaction, so it can be
orthogonally separated by simple learning. As a result, although the
training sample size was reduced by about 85.4% of full signal, the
computation time was highly saved up to 3–4 times as well as main-
taining 99.9% accuracy. This is contrary to the general tendency that
the deep learning accuracy decreases as the training sample size is
reduced58. This could be reasonably expected because the input space
was kept invariability due to the optimized unique waveforms gener-
ated from the optimized sensing materials.

Additionally, Euclidean distance was calculated to analyze the
uniformity and reproducibility between the eigengraph waveforms of
eachchannel of theORSA for the target gas (SupplementaryTable6). It
can be seen that the Euclidean distance value of the main diagonal
component is much smaller compared to the values calculated
between different channels, which indicates that the optimized reac-
tion characteristics between the same sensing material and gas mole-
culeswere stablymaintained, thereby generating reproducible sensing
signals. On the other hand, since the eigengraphs between different
channels are unrelated, the Euclidean distance values became larger.

Consequently, the functional effectiveness of the dimensionally
reducedMFCC feature vectors for thepuregas responsewasobviously
demonstrated through downsizing the training sample size and con-
trolling the learning rates. This suggests that the strategy for designing
data-centric AI system by an optimized high quality data generation
process for extraction of MFCC feature vectors can be a promising
approach for the realization of generalized artificial olfactory
technology.

Empirical experiments on automobile exhaust gases
Through the previous sections, we have sufficiently demonstrated the
utility and suitability of MFCC feature vectors for characterizing the
intrinsic attributes of the eigengraphs waveforms. In this section, we
confirm the potential of our artificial olfactory system for a real-life
engineering application models through empirical experiments on
exhaust gases and their individual components depending on the type
of automobile engines. Recently, as the negative effects of automobile
exhaust gases on air pollution and human health have been revealed,
many policy-level and engineering efforts such as establishment of
related laws and development of various emission-reducing technol-
ogies are continuing to reduce exhaust gas emissions around the
world. In particular, the diesel exhaust gas contains lots of nitrogen
oxides and particulate matters known as class 1 carcinogen, which can
cause very harmful cancers and respiratory diseases in the human
body and photochemical smog and acid rain in the atmosphere64.
Therefore, it is important to establish enhanced standards and impose
regulations for vehicles equipped with specific engines to reduce air
pollution, which can be achieved by accurately identifying the critical
factors according to the engine types adversely affectinghumanhealth
and air pollution in urban areas caused by the exhaust gases. However,
automobile exhaust gases typically contain a mixture of various types
of oxidizing and reducing gas species such as hydrocarbons, nitrogen
oxides (NOx), and carbonoxides, both reactions canoccur, it is difficult
to predict the gas reaction characteristics of suchmixed gases through
existing theories that primarily concern the reaction between a single
type of gas and a reactant. To the best of our knowledge, any study has
not yet been reportedon elucidating the gas reaction characteristicsof

complex unknown mixture gases containing both oxidizing and
reducing gases by considering their eigengraph waveforms. Besides,
analyzing individual components of exhaust gas emitted in trace
amounts requires applying an appropriate analysis method to each
gas, which makes comprehensive analysis difficult and takes a lot of
timeandmoney. For example,Orsat gas analysis, gas chromatography,
infrared spectroscopy and non-dispersive infrared analysis are
required for analysis of carbon monoxide65. In addition, colorimetric
analysis is used for nitrogen oxides66. Mass spectrometry, gas chro-
matography, infrared spectroscopy, and non-dispersive infrared ana-
lysis are used for hydrocarbons65,67. Regarding these types of problem,
we demonstrate that our artificial olfactory system based on the
eigengraph waveform analysis method can be a promising alternative
that can simultaneously and efficiently analyze the complex exhaust
gases according to the automobile engine types and their individual
gas components with similar chemical structures68.

The target gases of the empirical experiment consist of two
exhaust gases from gasoline and diesel engines, two carbon oxides
(CO, CO2) and two nitrogen oxides (NO, NO2). The two exhaust gases
depending on engine type are classified depending on the presence or
absence of NO and O2 components. In detail, the gasoline exhausts
contain CO, CO2 and C3H8 and diesel exhausts contain an additional
NO and O2. The information of their detailed content was shown in
Supplementary Fig. 9. As we mentioned, the NO, NO2 and CO2, are
known as oxidizing gases and the CO, C3H8 are known as reducing
gases. We measured the target gases using four ORSAs and plotted
their eigengraphs in Fig. 5 and Supplementary Fig. 10. A detailed
description of the measurements of the exhaust gas is covered in the
Methods section. The data from the 9-channel sensor array measured
for each target gas was assigned to one class, forming a total of 6
classes equal to the number of target gases. As a result of the mea-
surement, the differences in the eigengraph waveforms for each gas
type were clear enough to be distinguished through the characteristic
points of each waveform with the naked eye (Fig. 5, Supplementary
Fig. 10). In particular, in the case of gasoline and diesel engine
exhausts, very unpredictable and unique waveforms were observed
due to the mixture of various reactions from individual components.
This result support with our argument about the existence of
eigengraph.

For a more exhaustive analysis, Euclidean similarity analysis was
performed between all measurement data within the intra-class to
verify the reliability and reproducibility of signal generated by differ-
ent sensors (Supplementary Table 7). Euclidean distance can be cal-
culated simply by subtracting data plots between the comparing
channels. In the case of comparison between the same channels, each
channel consists of 16 signal data, so the average value calculated by
mutually comparing all data plots of 16 signals was used as the Eucli-
dean distance. In the case of comparison between the different chan-
nels, the data plots of all signals between the two channels are fully
compared to eachother. From the Euclideanmatrix, it can be seen that
the main diagonal components usually have the minimum values
compared to other channel values. In other words, similar reaction
characteristics between gasmolecules and sensingmaterials are stably
maintained for the same channel data, so uniform signals were gen-
erated reproducibly and the Euclidean distance values were small
(Supplementary Fig. 10). On the other hands, the values for different
channel data were large due to their different waveforms.

In addition, to deeply classify the inter-class data and resolve
concerns about overfitting in various deep learning model, fourfold
cross-validation was performed on 4 sets of 4-cycle signals generated
simultaneously from each of the four chips. Before the main analysis,
the eigengraphs for the exhaust gases were converted into MFCC
feature vectors and used as input data for deep learning networks.
Basically, we performed deep learning analysis using the DNN archi-
tecture. In addition, we further verified the versatility and
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Fig. 5 | Representative eigengraphwaveforms generated through the empirical
experiments on the automobile exhaust gases. a CO. b CO2. c NO. d NO2.
e Gasoline exhaust gas (including CO(5.01%), CO2(14.0%), C3CH8(0.20%)). f Diesel

exhaust gas (including NO(0.18%), CO(4.98%), CO2(14.0%), C3CH8(0.20%) and
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expandability of the MFCC feature vector through experiments using
primitive deep learning networks such as convolution neural network
(CNN) and long-short-term memory combined with convolution
neural network (CNN-LSTM) (Fig. 6). The CNN is an architecture that
extracts and learns key features for classification by preserving the
spatial characteristics of input data such as time series data and image
data69. When applied to our system based on waveform analysis, the
classification performance can be improved more effectively by uti-
lizing the characteristics of the MFCC feature vectors containing the
intrinsic attributes of the eigengraph waveform. In CNN-LSTM, the
CNNacts as another feature processing layers thatperforms additional
domain transformation based on the MFCC feature vectors, and the
LSTMperforms training and classificationon the transformed features.
LSTM is an architecture that solve the vanishing gradient problem
caused by long-term dependencies which was a problem when pro-
cessing long sequences of time series data in recurrent neural network
(RNN)70. As a result, the CNN feature framework with compressed
sequence can be extracted whilemaintaining the intrinsic attributes of
the MFCC feature vectors, and the converted data can be effectively
classified through LSTM. The results of the fourfold cross validation
using the three deep learning architectures are summarized in the

Table 1. The DNN, CNN, and CNN-LSTM showed high classification
accuracy of 96.1%, 99.8%, and 100%, respectively. The CNN and CNN-
LSTM architectures offer significant improvements in training time
and testing accuracy compared toDNNarchitectures. As a result, it can
be seen that the overfitting did not occur for the eigengraph deep
learning models using MFCC feature vectors by achieving high test
accuracies up to 99.9%, as well as training accuracies up to 100%
(Supplementary Fig. 11). Additionally, we confirmed the classification
performance of our system for changes in the response waveform of
complex gas mixtures according to differences in components using
CO(5ppm)+CO2(14ppm), CO(5ppm)+CO2(14ppm)+NO(2ppm), gaso-
line and diesel exhaust gases. The additional eigengraph waveforms
for CO+CO2 and CO+CO2 +NO have been added to Fig. 5 and Sup-
plementary Fig. 10. The fourfold cross-validation results for the four
mixed gases was shown in the Table 2. The DNN, CNN, and CNN-LSTM
showed high classification accuracy of 99.3%, 99.7%, and 99.9%,
respectively. The ORSAs sensitively responded to various mixed gases
with different components to generate eigengraphs with various
waveforms, and based on this, the deep learning software could per-
fectly identified the mixed gases. Consequently, we confirmed the
practical applicability of our data-centric artificial olfactory system to
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real-life engineering models by achieving high classification perfor-
mance of various deep learning analysis for the automobile
exhaust gases.

Most importantly, we emphasize that international discussions
and continuous efforts for the development of adequate devices and
instruments are needed to explore and secure standard eigengraphs
for various odors. With a long-term vision to realize the final goal of
commercialization and standardization of our artificial olfactory sys-
tem, (i) various types of ORSA chips that can generate diverse eigen-
graphs must be developed and produced by further expanding and
discovering the rangeof sensormaterials andmanufacturingmethods;
(ii) It is also necessary to build a gas data center that can record
eigengraphs for various gases under various conditions. Based on this,
(iii) commercial devices equipped with our artificial olfactory system
can be developed and manufactured in connection with the data
center, and real-timedatameasured in various unknownenvironments
can be verified.

On the software side, subsequent work to further develop pre-
trained models which automatically extract bottleneck features is
recommended for actualization of standardized artificial olfactory
system capable of autonomously learning and evaluating the unknown
data based on sufficiently accumulated optimized datasets58,62. In
addition, our system has versatility applicable to various artificial
neural network software (Tables 1, 2) and can be advanced in forms of
the system-on-chip (SoC) by integrating with the various AI accel-
erators such as graphics processing units (GPU) capable of high-
performance computation through parallel processing or neural pro-
cessing units (NPU) optimized for AI algorithm. This can enhance the
computational efficiency andperformance of deep learningmodel and
contribute to saving energy costs, thereby leading to the development
of real-time and low-power gas detection and various application
systems based on rapid signal processing.

Discussion
We have reported artificial olfactory system inspired by human olfac-
tory mechanisms. The olfactory receptor-like sensor array (ORSA) was
designed to make each channel have independent gas sensing char-
acteristics to generate eigengraphs by functionalizing SnO2 nanorods
with combinatorial bimetallic catalysts using optimized deposition
process of electron beam evaporation assisted by the spatially
addressable physical shadow masks. Our manufacturing method
contributed to reducing material wastage and development time,
which can ultimately realize the commercialization of the highly inte-
grated standardized ORSA chips through wafer-scale semiconductor
processes. MFCC was introduced to discriminately express the intrin-
sic attributes of the eigengraphs reflecting the unique redox reaction
characteristics between gas molecules and sensing materials. And its
effectiveness was clearly demonstrated by achieving over 99.5% clas-
sification accuracy and reducing training time up to 3–4 times in deep
learning analysis for the 117 labeled classes despite reducing the input
size of MFCC feature vectors by up to 85.4%. In empirical experiments
on automobile exhaust gases, the versatility and scalability of MFCC
feature vectors were verified by achieving high test accuracy in the
range of 96.1–100% in fourfold cross-validation through various deep
learning architectures using DNN, CNN, and CNN-LSTM. Conse-
quently, inspiration of the human olfactory mechanisms and device
optimization through advanced nanotechnology contributed to the
generation of high quality data that maximizes deep learning perfor-
mance. Therefore, our data-centric approach will be expected to help
to elucidate the in-depth knowledge of unique electrochemical inter-
actions between reactive molecules or compounds and eventually be
utilized not only as a promising guideline for future research of arti-
ficial olfactory technology, but also in various fields such as home
appliance, humanoid robots, space exploration, defense industry and
forensic investigations.

Methods
Fabrication of sensor array
The 3 × 3 interdigitated electrodes (IDEs) pattern of the sensor array
wasdeposited to a thickness of Au 180 nm/Ti 20 nmon the4-inchSiO2/
Si wafer by using electron beam evaporation (Supplementary Fig. 6).
The number of the IDEs per each channel was 24 and the distance
between each electrode was 5μm. The vertically-ordered SnO2

nanorods were deposited by using glancing angle deposition techni-
que of electron beam evaporator. After the SnO2 nanorods were
deposited, the glancing angle was restored to 0 ° and the substrate
rotation was stopped. Then, the transition metals (Co, Ni, Cu) and the
noble metals (Pt, Pd, Au) were sequentially deposited on each row and
column of the 3 × 3 IDEs pattern. The deposition specifications for the
SnO2 nanorods and bimetallic nanolayers were shown in the Supple-
mentary Table 1. To crystallize the SnO2 nanorods and functionalize
the bimetallic nanolayers, the fabricated sensor array was annealed at

Table 1 | Results of the 4-fold cross validation using the DNN, CNN and CNN-LSTM architectures for 2 exhaust gases and 4
individual components

Fourfold cross validation for 6 gases Set 1 Set 2 Set 3 Set 4 Average

DNN Accuracy 96.3% 95.8% 95.8% 96.3% 96.1%

Loss 0.11 0.16 0.10 0.11 0.12

Training Time 5min 3 s 2min 46 s 5min 12 s 6min 7 s 4min 47 s

CNN Accuracy 100% 99.5% 99.5% 100% 99.8%

Loss 0.019 0.035 0.061 0.032 0.037

Training Time 1.1 s 1.1 s 0.8 s 1.2 s 1.0 s

CNN-LSTM Accuracy 100% 100% 100% 100% 100%

Loss 0.0074 0.0085 0.0081 0.0087 0.0082

Training Time 1.8 s 3.1 s 1.9 s 2.0 s 2.2 s

Table 2 | Results of the fourfold cross validation using the
DNN, CNN and CNN-LSTM architectures for 4 mixture gases

4-fold cross validation for
4 mixture gases

Set 1 Set 2 Set 3 Set 4 Average

DNN Accuracy 99.3% 99.3% 99.3% 99.3% 99.3%

Loss 0.023 0.023 0.094 0.022 0.041

Training Time 25.5 s 25.8 s 1min 7 s 22.8 s 35.3 s

CNN Accuracy 99.3% 100% 99.3% 100% 99.7%

Loss 0.041 0.064 0.054 0.028 0.047

Training Time 0.9 s 0.8 s 1.3 s 0.9 s 1.0 s

CNN-LSTM Accuracy 99.3% 100% 100% 100% 99.9%

Loss 0.016 0.0016 0.0016 0.0026 0.013

Training Time 1.6 s 1.6 s 1.6 s 1.6 s 1.6 s
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target temperature of 550 °C for 2 h while increasing temperature at
5 °C/min. Then, the 4-inch wafer was diced to obtain a total of 32
olfactory receptor-like sensor array chips.

Characterization
The cross-sectional and plane morphology of 1D-ordered SnO2

nanorods decorated with transition metal oxide and noble metal
nanoparticles were characterized by scanning electron microscopy
(FE-SEM, TESCAN MIRA3) at an accelerating voltage of 25 kV with a
10mm working distance. The existence of each multi-component
coated on the SnO2 nanorods surface was determined by X-ray dif-
fraction (HR-XRD, SmartLab) patterns. Electron transfer according to
the type of NiO-based nanocatalysts was investigated by X-ray pho-
toelectron spectroscopy (XPS, K-alpha). The detailed morphology of
the composite nanocatalysts was inspected by transmission electron
microscopy (TEM, JEOL JEM-F200) at an accelerating voltage
of 200 kV.

Gas sensing measurement for 6 VOCs
The gas sensing characteristics of the ORSA were investigated using
the dedicated measurement and monitoring system that can simulta-
neously test up to four sensor array chips (Supplementary Fig. 7). A DC
bias voltage of 1 V was applied to all sensing channels through internal
probe tip arrays arranged corresponding to the IDEs pattern.Massflow
controllers controlled the concentration of the target gas by mixing
dry air within a total gas flow rate of 1000 sccm. Each sensor array was
loaded into a test chamber with a built-in heating plate and aged for
24 h in a dry air atmosphere at 300 °C. The target gaswas injected after
the dry air reaction was fully saturated and the initial baseline resis-
tance stabilized. The resistance value of each sensing channel was
simultaneously measured by switch system (Keithley 7001) which
sequentially opened each channel of interface circuit in the interval of
1 s. Then, sourcemeter (Keithley 2612 A) measured the transmitted
electrical response of the sensor array. Resistance values as sensing
signals were recorded on a computer through the connected IEEE-488
GPIB (Supplementary Fig. 8). To build a database for deep learning
analysis, the long-term sensing characteristics of the indistinguishable
three gasmolecules (Acetone, Toluene and Xylene) through PCA were
investigated under the successive concentration changes of 2, 4, 6, 8
and 10 ppm. Furthermore, in order to verify the performance of the
deep learning model for the identification of subtle differences in gas
mixtures according to the mixing ratio, the three gas molecules were
mixed with each other at ratios of 1:1, 1:3, 3:1 and 1:1:1. The sum of
concentrations of each gasmolecule constituting themixed gases was
successively set to 2, 4, 6, 8, and 10 ppm for each measurement in 1
cycle (Supplementary Fig. 4). The theoretical detection limit of each
channel was calculated and shown in the Supplementary Table 218.

Data preparation and feature extraction
It has been confirmed that the optimized sensor array generated a
variety of eigengraphs with different range of initial resistance and
fluctuation depending on the combination of its sensingmaterials and
target gases. To compare the datasets on the same basis, resistance-
based data were normalized to sensitivity values expressed in ((Rair /
Rgas − 1) × 100%). As the input of the deep learning network, 117 data-
sets for all channels of the sensor array were labeled with binary
numbers according to the gas species and mixing ratio as shown in
Supplementary Table 3. Each original signal consisting of a total length
of 6840 points was decomposed into 20 separate responsewaveforms
with a length of 342 points. As a result, a total of 2370
(9 × 13 × 20 = 2370) training datasets were obtained from the respon-
ses of the 9-channel sensor array to 13 gas types.

In order to avoid distortion and loss of high-quality original sig-
nals during the reconstruction of time series signals into frequency-
domain spectrum and preserve the eigencomponents, we established

a correlation between highest frequency and sampling rate for fast
Fourier Transform by referring to the Nyquist-Shannon sampling the-
orem. This theorem suggests that the sampling rate should be at least
twice the highest frequency to accurately represent the original
signal71. Thus, the sampling rate according to the training sample
length was set to 100, 400 and 800 for 50, 171 and 342 points samples,
respectively. The FFT spectrum was uniformly mapped based on the
frequency resolution determined by the sampling rate/FFT size. The
FFT size should be usually greater than the number of input data
points, and determined as the nearest multiple of 272,73. The FFT size
was set to 64, 256 and 512 for 50, 171 and 342 input data points,
respectively (Supplementary Table 5). Inorder to secure thenumber of
sampling points that satisfy the FFT size, the sectionwithout input data
values was zero-padded to improve the frequency resolution of the
FFT spectrum. The FFT spectrum represents frequency bins divided
into uniform bandwidth based on the frequency resolution to linearly
estimate the spectral density of the transformed frequency compo-
nents such as amplitudes and phases for each frequency band61. And
the power spectrumwas generated by squaring the magnitudes of the
FFT results of each frequency bin56.

The algorithm to extract the final MFCC feature vectors from the
original signals was performed automatically using the librosa
package61 and summarized as calculation of Mel-spectrogram by
matrix multiplication of power spectrum and Mel-filter banks [libro-
sa.feature.melspectrogram()], logarithmic conversion of Mel-
spectrogram to generate log Mel-spectrogram [librosa.po-
wer_to_db()] and acquisition ofMFCC through inverse discrete Fourier
transform [librosa.feature.mfcc()]. The number ofMel filters for the 50
points sample was considered within the range of 20–40 mainly used
in the speech recognition field and determined to be 32 which is a
multiple of 274. Based on this, the number of Mel filters for the 171 and
342 points samples was sequentially increased by two times72 and set
to 64, 128, respectively (Supplementary Table 5). TheMel-spectrogram
was generated by the inner product of Mel-filter bank and power
spectrum and the log Mel-spectrogram was obtained by taking a
logarithm on Mel-spectrogram to reflect the human hearing
characteristics57. Finally, the inverse discrete Fourier transform (IDFT)
was performed to extract the MFCC feature vectors. Among the
coefficients generated as many as the number of Mel filters, top
20 selected from the lowest order were used as 20-dimensional MFCC
feature vectors. In thewhole process, the time required for fast Fourier
transform and MFCC extraction of the raw signal according to the
training sample size was negligibly small.

Deep learning model
A fully connected deep neural network (DNN) model based on a mul-
tilayer perceptron architecture with three hidden layers was designed
for the classification ofmulticlass labeled according to gas species and
mixing ratios (Supplementary Table 4). The DNN model was imple-
mented using Keras and Tensorflow packages [tf.keras.Sequential()].
The 20-dimensional MFCC input vector was flattened into a one-
dimensional array in the input layer. To prevent the vanishing gradient
problem in which the intrinsic attributes of the MFCC feature vectors
disappear as the training was progressed, the hidden layers were
activated by the ReLU function75. In the output layer, the Softmax
function for multiclass classification was used to estimate the predic-
tion probability about all input classes as probability values between 0
and 163. Referring to the heuristic function (r = (#input / #ouput)1/4)
established by previous researchers, the node value of the three hid-
den layers was set to 32, 50, and 80, respectively (Supplementary
Table 4.). To build a system network for training themodel, optimizer,
loss function, and metrics factors were determined by setting the
learning environment. The Adam optimization algorithm based on the
stochastic gradient descent was used to optimize the deep learning
model76. It could update the network weights to implement a
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computationally efficient model by minimizing the loss function
according to the training result [keras.optimizers.Adam()]. The learn-
ing rate was set to 0.0001 and 0.00001 for each analysis case com-
paring the three training sample sizes. The loss andmetrics were set as
‘sparse_categorical_crossentropy’ and ‘accuracy’ to perform training
[model.compile()]. At the same time, the model was trained according
to the three training sample size, and the classification performance of
themodel was evaluated by calculating each training accuracy and loss
[model.evaluate()] (Supplementary Table 5).

Experiments of the exhaust gases
The two exhaust gases depending on engine type (gasoline, diesel) and
their four individual components (NO, NO2, CO, CO2) were measured
using four ORSA chips simultaneously fabricated in same manu-
facturing process (Fig. 2 and Supplementary Fig. 7). The exhaust gases
were standard gases that have been strictly evaluated and certified by
theKorean LaboratoryAccreditation Scheme (KOLAS) operatedby the
National Institute of Technology and Standards under the Ministry of
Trade under Industry and Energy of the Republic of Korea. Their
specific information is provided in Supplementary Fig. 9. The KOLAS
which was established in accordance with basic act on national stan-
dards is an internationally recognized organization for the reliability of
accredited testing and calibration institutions, which operates various
standard systems across the country and industry such as production
of standard material, product certification, proficiency test operation,
verification and accreditation systems. The concentrations of the two
exhaust gases was diluted as 1/20 by mixing dry air within a total gas
flow rate of 1,000 sccm throughmass flow controllers. Four individual
gases weremeasured at 10 ppm in a dry air atmosphere at 300 °C. The
target gaswas injected after the dry air reactionwas fully saturated and
the initial baseline resistance stabilized. The resistance value of each
sensing channel was simultaneously measured by switch system
(Keithley 3706) which sequentially opened each channel of interface
circuit in the interval of 250ms. Keithley 3706 can provide improved
resolution through faster switching performance than the existing
Keithley 7001. Keithley 3706 provides improved resolution through
faster switching performance than the existing Keithley 7001, allowing
us to more closely capture instantaneous changes in eigengraph
waveforms. FourORSA chipswere used simultaneously tomeasure the
target gas four times in successionat the sameconcentration, resulting
in a total of 16-cycle gas sensing signals (Supplementary Fig. 10).

One cycle of the signal consists of a total of 1410 discrete data
points. In general, the time series characteristics of gas reaction data
can be divided into (i) the section where the reaction begins and
converges to the peak (gas reaction section), (ii) the section where air
is injected as recovery gas, the gas molecules bound to the sensing
material are removed, and the sensor begins to recover to its original
state from the peak (recovery section), (iii) the section where the
downward trend is stable due to long-term recovery (complete
recovery section). Therefore, considering the time series character-
istics of the gas detection signal, the signal of all 1410 points is divided
into 3 sections at intervals of 470 points and feature processing is
performed for each section. The sampling rate was set to 2820, which
is twice the total data points. The FFT size was set to 2048, which is a
multiple of 2 greater than 1410. The number of Mel filters was set to
256. The size of theMFCC feature vectorwas set differently depending
on the type of deep learning architecture. It was set to 20, 3072, and
3072 for DNN, CNN, and CNN-LSTM, respectively. The parameters
required for feature engineering to determine the input size for deep
learning are summarized in the Fig. 6.

Below, we describe the application of DNN, CNN, and CNN-LSTM
deep learning architectures using the preprocessed data. First, Total
60-dimensional MFCC feature vectors were used as input data for the
DNN architecture by combining the 20-dimensional MFCC extracted
from three sections of each signal. TheDNNarchitecture consists of an

input layer, an output layer, and three hidden layers. The number of
nodes for the three hidden layers was set to 36, 22 and 13 respectively,
which were activated by the ReLU function. The final output layer
activated by Softmax functiondistinguishes the six classes for each gas
species. Second, the preprocessed 3072-dimensional MFCC feature
vectors were converted into structured data with a size of 16 × 16 × 3
that can be input into the CNN architecture. To extract new features
specialized for CNN based onMFCC, two convolutional layers and two
pooling layers were used alternately. In the convolution layer, weight
calculation is performed through 3 × 3 filter projection and activated
through the ReLU function. Thepooling layer compresses the data size
of previous layer by extracting key features throughmaxpoolingwhile
maintaining the spatial characteristics of the input data. The extracted
features were flattened into a one-dimensional array with a length of
64 in the flattening layer and fully connected with the output layer for
classification. In the case of CNN-LSTM, features extracted from CNN
are flattened and input to the LSTM layer for learning and classifica-
tion. Detailed information of the architectures are shown in Fig. 6a–c.

Data availability
The main data generated in this study have been deposited in the
Figshare database [https://doi.org/10.6084/m9.figshare.24312670].

Code availability
The code for eigengraph deep learning analysis generated in this study
have been deposited in the Figshare database [https://doi.org/10.
6084/m9.figshare.24312670].
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