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A multicenter clinical AI system study for
detection and diagnosis of focal liver lesions
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Yiyu Shen16, Jinlin Du17, Mingliang Ying17, Qiang Hong18, Jingang Mo19,
Jianfeng Li20, Guanxiong Ye21, Shizheng Zhang5, Hongjie Hu5, Jihong Sun5,
Hui Liu22, Yiming Li2, Xingxin Xu2, Huiping Bai 2, Shuxin Wang2, Xin Cheng23,
Xiaoyin Xu24 , Long Jiao25 , Risheng Yu26 , Wan Yee Lau27 ,
Yizhou Yu 28 & Xiujun Cai 1

Early and accurate diagnosis of focal liver lesions is crucial for effective
treatment and prognosis. We developed and validated a fully automated
diagnostic system named Liver Artificial Intelligence Diagnosis System
(LiAIDS) based on a diverse sample of 12,610 patients from 18 hospitals, both
retrospectively and prospectively. In this study, LiAIDS achieved an F1-score of
0.940 for benign and 0.692 for malignant lesions, outperforming junior
radiologists (benign: 0.830-0.890, malignant: 0.230-0.360) and being on par
with senior radiologists (benign: 0.920-0.950, malignant: 0.550-0.650). Fur-
thermore, with the assistance of LiAIDS, the diagnostic accuracy of all radi-
ologists improved. For benign and malignant lesions, junior radiologists’ F1-
scores improved to 0.936-0.946 and 0.667-0.680 respectively, while seniors
improved to 0.950-0.961 and 0.679-0.753. Additionally, in a triage study of
13,192 consecutive patients, LiAIDS automatically classified 76.46% of patients
as low risk with a high NPV of 99.0%. The evidence suggests that LiAIDS can
serve as a routine diagnostic tool and enhance the diagnostic capabilities of
radiologists for liver lesions.

Liver cancer is one of the most important liver diseases and the
second leading cause of cancer-related deaths worldwide1. Hepato-
cellular carcinoma (HCC) is a dominant liver cancer accounting for
90% of primary liver cancers, and its global incidence continues to
rise in comparison to most other cancers2. In addition to HCC,
common focal liver lesions (FLLs) also includemalignant lesions such
as intrahepatic cholangiocarcinoma (ICC) and hepatic metastasis
(HM), as well as benign lesions such as hepatic cyst (HC), hepatic
haemangioma (HH), focal nodular hyperplasia (FNH), and hepatic
abscess (HA). Early detection and accurate diagnosis of FLLs are of

great significance for providing appropriate treatment options and
predicting prognosis.

Contrast-enhanced computed tomography (CECT) imaging is
recommended by the international and national societies of hepa-
tology as a first-line diagnostic tool for FLLs, because the vascularity
and contrast-enhancing patterns of lesions provide useful informa-
tion for diagnostic evaluation3–5. However, image-based diagnosis
remains challenging due to the diversity of liver masses and complex
imaging characteristics of liver lesions. Furthermore, interpretation
of medical images is often subjective and influenced by the
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experience and personal biases of radiologists. It has been reported
that radiologists need to interpret each image in an average of 3-
4 seconds in an 8-hour workday. With such a heavy workload, mis-
takes are inevitable due to fatigue. What’s more, medical imaging
data has been growing disproportionately compared to the number
of well-trained radiologists. Therefore, an automated liver CT diag-
nosis system is urgently needed to improve the diagnostic accuracy
and clinical efficiency.

With the recent progress of artificial intelligence (AI), especially
the great successes of convolutional neural networks (CNNs) based
deep learning6,7, AI has been applied to various medical image analysis
tasks with performance comparable to clinical experts, such as pul-
monary disease identification8, diabetic retinopathy identification and
grading9, skin lesion classification10, distinguishing benign lesions from
malignant ones, including breast cancer11, lung cancer12,13, and renal
cancers14, and so on.

Research on the diagnosis of liver cancers based onCT images has
also made great progress. Yasaka et al. reported that in a study invol-
ving 580 patients, the area under the receiver operating characteristic
curve (AUC) was 0.92 for the diagnosis of malignancy and the average
accuracy of 0.84 for five-category classification15. Liang et al. achieved
an average accuracy of 0.909 for four-category classification over 480
CT scans16. Shi et al. reported anAUCof 0.925 and an accuracyof 0.833
for HCC diagnosis in a study of 449 patients17. Cao et al. showed an
average accuracy of 0.813 for four-category classification with 517
lesions18. Recent work by Zhou et al. reported that their method
achieved an average accuracy of 0.734 for six-category classification
and 0.825 for binary classification in 435 patients with 616 liver
lesions19.

However, even with such encouraging results, existing work still
cannot be integrated into diagnostic workflows in clinical practice.
First, most of the existing methods15–18 still require radiologists to
perform manual lesion extraction prior to lesion classification, thus,
failing to achieve an end-to-end fully automated diagnostic solution.
Second, diagnostic analysis in existing work15–19 only relies on image
information, which does not conform to the actual clinical diagnostic
workflow. Clinicians often combine clinical information with medical
images to make accurate and comprehensive diagnoses. Most impor-
tantly, all existing studies involved very small sample sizes and few
lesion types, and data sources were too limited to cover a variety of CT
imaging devices from different manufacturers and data distributions.
In other words, existing work has not been vigorously validated,

therefore, its robustness, reproducibility, and generalization ability are
questionable for actual clinical practice.

To address the shortcomings of existing work, we retrospectively
and prospectively collected large-scale data from 12,610 patients in 18
hospitals to train and validate a fully automated diagnostic system
named Liver Artificial Intelligence Diagnosis System (LiAIDS). To our
knowledge, this is the largest study ever undertaken, covering CT
imaging devices from all mainstreammanufacturers worldwide. More
importantly, the proposed LiAIDS can robustly and accurately detect
and differentiate lesions in a fully automated manner on the basis of
contrast-enhanced CT scans and clinical information.

The architecture of the proposed LiAIDS consists of three main
modules, namely lesion detection, liver segmentation, and lesion
classificationmodules (as shown inFig. 1). The lesiondetectionmodule
was designed to automatically identify and localize all potential FLL
candidates. The liver segmentation module serves as a false positive
detector, filtering out lesions detected outside the liver region. Finally,
the lesion classification module aims to differentiate the detected
lesions into one of the seven most common disease types (i.e., HCC,
ICC, HM, FNH, HH, HC, and HA) and further classify them asmalignant
or benign.

Results
LiAIDS development and primary validation
There were 12,610 patients collected. 11,385 participants from 18 hos-
pitals in China between January 1st 2010 and June 30th, 2020 formed
the retrospective cohort, and 1225 participants admitted to Sir Run
Run Shaw Hospital (SRRSH) between July 1st 2020 and June 30th 2021
formed the prospective validation cohort. After conducting data
quality control, 654 participants were excluded from the retrospective
dataset. This resulted in 10,731 remaining participants, which were
then divided into an internal cohort comprising data from 15 hospitals
and three independent external cohorts, consisting of data from the
remaining 3 hospitals, respectively. For the purpose of external vali-
dation, we specifically selected the three largest sites, excluding the
largest SRRSH, to form our external validation cohorts. This approach
guarantees a comprehensive performance assessment over a wide
range of data, thereby capturing a greater diversity of patient scenar-
ios. To be more specific, the first independent external validation
cohort included 844 participants with 1623 FLLs from Zhangzhou
Hospital, including 159 patients with malignant FLLs, 457 patients with
benign FLLs, and 228 patients without FLLs. The second external

Cholangiolithiasis

Male/ Female

Yes/

Etra- hepatic
tumorsCirrhosis

A/ B/ C

/ No/ No

In years

HCC: Hepatocellular Carcinoma; ICC: Intrahepatic Cholangiocarcinoma; HM: Hepatic Metastasis; FNH: Focal Nodular Hyperplasia; HH: Hepat ic
Haemangioma; HC: Hepatic Cyst; HA: Hepatic Abscess.

Fig. 1 | Overview of the Liver Artificial Intelligence Diagnosis System (LiAIDS)
proposed in this study. a Lesion detectionmodule, a faster-RCNN frameworkwith
newly extended 3D CSwin Transformer as feature extraction backbone; b Liver

segmentation module, a hybrid convolutional network structure dominated by 2D
convolution and supplemented by 3D convolution; c Lesion classification module
utilizing features extracted from multi-phase images and clinical information.
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validation cohort contained 529 participants with 1521 FLLs from
Quzhou Hospital, including 141 patients with malignant FLLs, 188
patients with benign FLLs, and 200 patients without FLLs. The third
external validation cohort had 656 participants with 1678 FLLs from
Hwa Mei Ningbo No.2 Hospital, including 187 patients with malignant
FLLs, 269 patients with benign FLLs, and 200 patients without FLLs.
The prospective validation cohort consisted of 1,225 participants with
1804 FLLs, including 146 patients with malignant FLLs, 420 patients
with benign FLLs, and 659 patients without FLLs. (Refer to Fig. 2 for
more details).

Participants in the internal cohort were further randomly divided
into internal training and validation cohorts at a 4:1 ratio. More spe-
cifically, the internal training cohort consisted of 6,901 participants
with 12,564 FLLs, including 1760 patients with malignant FLLs, 2346
patients with benign FLLs, and 2795 patients without FLLs, while the
internal validation cohort was composed of 1801 participants with
2855 FLLs, including 387 patients with malignant FLLs, 763 patients
with benign FLLs, and 651 patients without FLLs. (Refer to Table 1 for
comprehensive patient characteristics, the distribution of different
lesion types and lesion sizes across all data cohorts).

Fig. 2 | The Flowchart of the Cohort Setup. aDescriptionof the training, internal, external, and prospective validation cohorts;bCohort description of patient triage and
non-inferiority trial.
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In this study, all modules of LiAIDS, including lesion detection,
liver segmentation, and lesion classification, were independently
trained using the internal training cohort. The model performance of
LiAIDS was retrospectively validated by the internal and three inde-
pendent external validation cohorts, and further prospectively vali-
dated by the prospective validation cohort.

In the retrospective study, LiAIDS consistently achieved high AUC
performance for the seven-category classification with a macro-
average AUC of 0.982 (95% CI: 0.974–0.989) on the internal valida-
tion cohort, and amacro-average AUC of 0.973 (95%CI: 0.960–0.985),
0.970 (95% CI: 0.958–0.981), and 0.958 (95% CI: 0.929–0.980), on the
three independent external validation cohorts, respectively. The AUC
for the binary classification was also consistently high with 0.980 (95%
CI: 0.967–0.990) on the internal validation cohort, and 0.989 (95% CI:
0.983–0.994), 0.977 (95% CI: 0.963–0.988), and 0.981 (95% CI:
0.972–0.989) on the three independent external validation cohorts,
respectively. (More details can be found in Fig. 3a–d).

In the prospective study, LiAIDS achieved amacro-averageAUCof
0.967 (95% CI: 0.956-0.977) for the seven-category classification and
an AUC of 0.971 (95% CI: 0.957–0.981) for the binary classification,
respectively (Fig. 3e).

The image feature representations learned by LiAIDS were also
visualized using t-SNE, with individual points representing sample
lesions from the prospective validation cohort. Each point is a two-
dimensional projection of 588-dimensional feature vector generated
by the LiAIDS lesion classification module. As shown in Fig. 3f, we
observed distinct clustering of points representing the four types of
benign lesions, which were clearly separated from malignant FLLs,
particularly HCC and HM clusters. Within malignant FLLs, points
representing HCC lesions were easily discernible from those repre-
senting HM lesions. However, there was a tendency for points repre-
senting ICC lesions to be confused with the other two types of
malignant lesions. It is also noteworthy that there was some degree of
overlap between the benign clusters of FNH and HH, as consistently
reflected in the confusion matrices (Fig. 3h–l), where FNH and HH
exhibited a higher probability of being misclassified as each other. We

undertook an in-depth analysis of those FNH and HH samples that
exhibited intertwined characteristics. Remarkably, both categories
demonstrated significantly smaller mean volumes (cm3) compared to
the overall volume distribution within their respective data cohort
(FNH: 6.309 ± 5.72 vs 34.8 ± 139.5 and HH: 2.457 ± 2.36 vs 19.8 ± 46.8).
In a clinical setting, diagnosing of FNH and/or HH can be challenging,
particularly in the case of smaller lesions. The usual procedure for
managing such cases typically involves additional imaging studies,
predominantly MRI, or ongoing clinical assessments. Given the benign
nature of these conditions, immediate differentiation is not vital.
However, diligent and continued monitoring of these conditions is
essential due to potential alterations and progression over time.
LiAIDS also demonstrated high diagnostic performance in terms of
accuracy, sensitivity, specificity, and precision both retrospectively
and prospectively on all five validation cohorts. For example, on the
internal validation cohort, LiAIDS achieved an accuracy of 0.934 (95%
CI: 0.911-0.955), a sensitivity of 0.922 (95% CI: 0.879–0.958), a speci-
ficity of 0.943 (95% CI: 0.912–0.969), and a precision of 0.922 (95% CI:
0.881–0.961) for the binary classification. The binary classification
performance of LiAIDS across all validation cohorts can be found in
Fig. 3g, where the distribution of probability scores among different
cohorts provides additional insights into the model’s performance
about its generalizability. A consistent distribution observed across
cohorts indicates a high level of performance consistency, demon-
strating robust generalizability. The confusion matrices in Fig. 3h–l
also provide a comprehensive understanding of the model’s perfor-
mance across different lesion types. It is noteworthy that there were
only 2 HA lesions in QZH and neither of themwere correctly identified
as shown in Fig. 3 j, resulting in a lower confidence interval for HA in
Fig. 3c and Table S1. (For more detailed diagnostic performance of
LiAIDS, please refer to Table 2).

Performance comparison with radiologists
To clearly understand the performance of LiAIDS against radiologists
in a clinical setting, we compared the performance of LiAIDS and six
general radiologists with different levels of expertise. The six general

Table 1 | Baseline characteristics

Internal cohort from 15 hospi-
tals (8702)

External test cohorts (2029) Prospective
cohort(1225)

Training (6901) Internal (1801) ZZH (844) QZH (529) NBH (656) SRRSH (1225)

Age, Years (Mean ± Std) 52.68 ± 14.64 52.66 ± 14.69 54.14 ± 13.85 56.09 ± 13.04 56.11 ± 12.74 50.6 ± 15.46

Sex (Male / Female) 3807/3,094 1132/669 525/319 293/236 384/272 692/533

History of hepatitis (No/Yes) 5650/1,251 1210/591 729/115 424/105 536/120 1145/80

History of extra-hepatic tumors (No/Yes) 6069/832 1679/122 558/286 516/13 567/89 1088/137

History of liver cirrhosis (No/Yes) 6329/572 1581/220 805/39 473/56 603/53 1185/40

Number of patients Malignant 1760 387 159 141 187 146

Benign 2346 763 457 188 269 420

No lesion 2795 651 228 200 200 659

Lesion numbers /size
(Mean ± Std) (cm3)

Malignant 3914/117.1 ± 254.6 1155/80.8 ± 195.2 298/117.9 ± 303.4 171/105.7 ± 202.6 577/62.1 ± 172.5 437/43.8 ± 157.0

HCC 1155/190.8 ± 375.6 752/157.7 ± 289.6 106/213.9 ± 288.3 106/129.9 ± 241.2 117/95.7 ± 168.0 64/129.3 ± 317.6

ICC 613/118.7 ± 170.8 78/124.8 ± 168.6 13/268.2 ± 225.3 44/72.5 ± 87.3 28/122.4 ± 148.2 57/111.7 ± 167.5

HM 2146/44.3 ± 127.6 325/18.7 ± 59.9 179/50.6 ± 297.4 21/25.5 ± 23.6 432/33.1 ± 171.9 316/14.4 ± 83.5

Benign 8650/101.0 ± 319.5 1700/53.8 ± 118.9 1325/97.4 ± 279.4 1350/34.4 ± 116.6 1101/26.3 ± 83.5 1367/23.6 ± 72.5

HH 2652/166.4 ± 566.1 304/61.1 ± 100.5 213/31.3 ± 92.3 211/76.7 ± 106.2 441/31.3 ± 95.5 473/19.8 ± 46.8

FNH 453/31.9 ± 56.3 183/46.1 ± 66.4 42/9.9 ± 11.4 19/42.4 ± 34.0 18/37.8 ± 37.2 102/34.8 ± 139.5

HC 5035/44.8 ± 142.2 1153/12.8 ± 109.2 801/70.2 ± 325.2 1118/25.4 ± 117.1 597/2.3 ± 6.7 721/12.7 ± 38.6

HA 510/161.8 ± 198.6 60/176.5 ± 189.7 269/235.8 ± 235.1 2/295.6 ± 3.4 45/109.9 ± 139.3 71/108.6 ± 151.0

Size (cm3) (Mean ± Std) 108.0 ± 293.1 64.9 ± 155.5 101.8 ± 284.9 42.9 ± 131.9 40.0 ± 126.7 28.8 ± 101.3

Lesions/patient (Mean ± Std) 1.82 ± 3.51 1.59 ± 2.94 1.92 ± 3.75 2.88 ± 5.45 2.56 ± 5.15 1.47 ± 3.47

Std Standard Deviation, ZZH Zhangzhou Hospital, QZH Quzhou People’s Hospital, NBH Ningbo No.2 Hospital.

Article https://doi.org/10.1038/s41467-024-45325-9

Nature Communications |         (2024) 15:1131 4



Fig. 3 | Diagnostic Performance of the proposed Liver Artificial Intelligence
Diagnosis System (LiAIDS) in All Cohorts. a ROC curve of the internal validation
cohort; b ROC curve of the external validation cohort of ZZH; c ROC curve of the
external validation cohort of QZH; d ROC curve of the external validation cohort of
NBH; eROCcurve of the prospective validation cohort of SRRSH; f t-SNE plot of the
prospective validation cohort. Scatter plot illustrating the clustering of lesion
images in the prospective cohort. Each point represents an image of a lesion, and

the color indicates its true class;g Performanceof thebinary classification across all
validation cohorts, evaluated using all five metrics; h Confusion matrix of the
internal validation cohort; i Confusion matrix of the external validation cohort of
ZZH; j Confusion matrix of the external validation cohort of QZH; k confusion
matrix of the external validation cohort of NBH; l Confusion matrix of the pro-
spective validation cohort of SRRSH’s. Source data are provided as a Source Data
file (Source_data_Figure_3.xlsx).
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radiologists were divided into two groups, a junior group consisted of
3 radiologists with 5–10 years of experience in abdominal imaging
diagnosis, and a senior group consisted of 3 radiologists with 10–20
years of experience in abdominal imaging diagnosis. In this study, 557
patients were randomly selected from the prospective validation
cohort for performance comparison, including 99 patients with
malignant lesions, 367 patients with benign lesions, and 91 patients
without lesions.

To comprehensively evaluate the clinical value of LiAIDS, this
study conducted performance comparisons between radiologists and
AI, as well as collaborations between radiologists and AI. Specifically,
LiAIDS was compared with the diagnoses made by radiologists both
with andwithout the assistanceof LiAIDS. To ensure a fair comparison,
the radiologists were blinded to the histopathological and radiological
reports contained in the electronic health records of the patients
under study. They only relied on the CT scans and clinical information
of the patients to make independent diagnoses, either with or without
the guidance of LiAIDS. Importantly, it is worth noting that there was a
minimum one-month interval between the radiologists’ diagnostic
sessions with and without the utilization of LiAIDS.

The comparison results presented in Fig. 4a and b revealed that
LiAIDS performed better than the group of junior radiologists and
demonstrated a performance on par with the group of senior radi-
ologists. In particular, LiAIDS achieved F1-scores of 0.940 for benign
lesions and 0.692 formalignant ones, while the F1-scores for the junior
group were 0.830, 0.890, and 0.860 for benign lesions, and 0.230,
0.360, and 0.330 formalignant cases. In comparison, the senior group
recorded F1-scores of 0.950, 0.920, and 0.950 for benign lesions, and
0.620, 0.550, and 0.650 for malignant cases. As expected, the per-
formance of all radiologists improved with the assistance of LiAIDS.
Consequently, the three junior radiologists reached performance
comparable to those achieved solely by LiAIDS, while the three senior
radiologists attained performance that was either superior to or on par
with LiAIDS when aided by it. For instance, the F1-scores of the three
junior radiologists for benign lesions rose from 0.830, 0.890, and
0.860 to 0.936, 0.946, and 0.944, respectively. Likewise, formalignant
cases, the F1-scores improved from 0.230, 0.360, and 0.330 to 0.680,

0.671, and 0.667 respectively. The performance of the senior radi-
ologists also exhibited improvements, with F1-scores for benign
lesions rising from 0.950, 0.920, and 0.950 to 0.961, 0.950, and 0.958
respectively, and for malignant cases, from 0.620, 0.550, and 0.650 to
0.753, 0.679, and 0.727 respectively. Notably, junior radiologist 1, who
had the lowest performance, saw the most substantial improvement.
The sensitivity, specificity, and F1-score for benign lesions improved
from 0.767, 0.361, and 0.830 to 0.899, 0.854, and 0.936 respectively.
For malignant cases, these metrics increased from 0.361, 0.767, and
0.230 to 0.854, 0.899, and 0.680 respectively. The rationale behind
this could be attributed to the heavy reliance on LiAIDS. Additionally,
the ROC curve depicted in Fig. 4c highlighted that LiAIDS surpassed all
radiologists in binary classification, achieving anAUC of 0.968 (95%CI:
0.944-0.986). Importantly, junior radiologists saw a performance
boost when assisted by LiAIDS. In Fig. 4d, we compared lesion detec-
tion performance between LiAIDS and the six radiologists. LiAIDS
achieved a recall rate of 0.965 (95% CI: 0.960-0.970), higher than both
the junior group (recall rates: 0.766, 0.883, 0.796) and the senior
group (recall rates: 0.911, 0.911, 0.962) (all p < 0.001). With LiAIDS
support, the junior radiologists’ recall rates increased (from 0.766,
0.883, 0.796 to 0.970, 0.954, 0.965), achieving levels comparable to
LiAIDS’s recall rate of 0.965. Meanwhile, the senior group’s detection
performance also improved (from 0.911, 0.911, 0.962 to 0.975, 0.969,
0.972), surpassing the performance of LiAIDS. (Please refer to Table 3
and Table S2 for more detailed information).

Comprehensive performance analysis on multi-modal vs
single-modal
As previously mentioned, the integration of clinical information
alongside image characteristics is crucial for accurate diagnosis. In this
study, clinical information included both essential patient information
(age and gender) and pertinent medical history, including hepatitis,
cirrhosis, cholangiolithiasis, and extra-hepatic tumors. The perfor-
mance of LiAIDS was then compared with models trained solely on
clinical information or image data. The comparison results demon-
strated that LiAIDS outperformedmodels thatwere trained exclusively
on either clinical information or image data in all five validation

Table 2 | Diagnostic performance of LiAIDS on different cohorts

Internal validation
cohort

External test cohorts Prospective cohort

ZZH QZH NBH

Binary

AUC (95%CI) 0.980 (0.967–0.990) 0.989 (0.983–0.994) 0.977 (0.963–0.988) 0.981 (0.972–0.989) 0.971 (0.957–0.981)

Accuracy (95%CI) 0.934 (0.911–0.955) 0.946 (0.930–0.961) 0.922 (0.901–0.943) 0.917 (0.894–0.937) 0.898 (0.878–0.919)

Precision (95%CI) 0.922 (0.881–0.961) 0.902 (0.861–0.941) 0.761 (0.699–0.824) 0.868 (0.828–0.905) 0.749 (0.695–0.802)

Sensitivity (95%CI) 0.922 (0.879–0.958) 0.906 (0.867–0.943) 0.932 (0.887–0.968) 0.959 (0.932–0.981) 0.912 (0.873–0.949)

Specificity (95%CI) 0.943 (0.912–0.969) 0.962 (0.945–0.976) 0.919 (0.894–0.941) 0.884 (0.848–0.918) 0.893 (0.869–0.919)

Seven-category

AUC (95%CI) 0.982 (0.974–0.989) 0.973 (0.960–0.985) 0.970 (0.958–0.981) 0.958 (0.929–0.980) 0.967 (0.956–0.977)

Accuracy (95%CI) 0.880 (0.847–0.911) 0.872 (0.848–0.895) 0.856 (0.831–0.881) 0.828 (0.798–0.859) 0.805 (0.777–0.833)

Patient-wise Accuracy (95%CI)

Binary 0.951 (0.925, 0.974) 0.943 (0.923, 0.961) 0.889 (0.855, 0.923) 0.909 (0.878, 0.937) 0.873 (0.842–0.903)

Seven-category 0.912 (0.879, 0.941) 0.904 (0.878, 0.928) 0.886 (0.848, 0.919) 0.884 (0.850, 0.915) 0.833 (0.799–0.864)

CT acquisition parameters Seven-category Accuracy (95%CI)

Slice
thickness

[2.5–5mm) 0.729 (0.665, 0.792) – – – –

[5.0–7mm) 0.892 (0.859, 0.925) 0.872 (0.848–0.895) 0.856 (0.831–0.881) 0.828 (0.798–0.859) 0.789 (0.760, 0.818)

[7.0–10mm) 0.835 (0.758, 0.912) – – – 0.949 (0.899, 0.987)

mAs [0–100) 0.859 (0.809, 0.905) 0.740 (0.630, 0.836) 0.849 (0.813, 0.881) 0.837 (0.800, 0.872) 0.813 (0.776, 0.853)

[100,200] 0.891 (0.842, 0.939) 0.870 (0.832, 0.905) 0.861 (0.799, 0.917) 0.800 (0.746, 0.859) 0.825 (0.780, 0.867)

[200,500) 0.918 (0.852, 0.984) 0.897 (0.868, 0.927) 0.878 (0.800, 0.944) 0.917 (0.750, 1.000) 0.722 (0.639, 0.796)

LiAIDSLiverArtificial IntelligenceDiagnosisSystem,AUCarea under the receiveroperatingcharacteristic curve,ZZHZhangzhouHospital,QZHQuzhouPeople’sHospital,NBHNingboNo. 2Hospital.
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cohorts across themetrics of AUC, accuracy, sensitivity, and precision,
as shown in Fig. 5a–e. For instance, in the seven-category classification,
LiAIDS achieved accuracy scores of 0.880 (95% CI: 0.847-0.911), 0.872
(95% CI: 0.848-0.895), 0.856 (95% CI: 0.831-0.881), 0.828 (95% CI:
0.798-0.859), and 0.805 (95% CI: 0.777-0.833) in the internal, three
external, and prospective cohorts, respectively. In contrast, the model
trained solely with clinical data yielded accuracy scores of 0.649 (95%
CI: 0.605-0.694), 0.484 (95% CI: 0.450-0.519), 0.167 (95% CI: 0.140-
0.194), 0.489 (95% CI: 0.449-0.529), and 0.318 (95% CI: 0.287-0.351).
The model trained solely on image data produced accuracy scores of
0.786 (95% CI: 0.748-0.824), 0.794 (95% CI: 0.766-0.822), 0.809 (95%
CI: 0.778-0.839), 0.701 (95%CI: 0.665-0.736), and0.768 (95%CI: 0.740-
0.797). Regarding specificity, we noted that the model utilizing only
clinical data achieved the highest score of 0.980 (95% CI: 0.976-0.985)
in the NBH cohort, while LiAIDS and the image data-based model

exhibited scores of 0.969 (95% CI: 0.964-0.975) and 0.949 (95% CI:
0.942-0.955) respectively. Nonetheless, in the remaining four cohorts,
LiAIDS surpassedmodels reliant solely on either clinical informationor
image data. In general, LiAIDS exhibited amacro-average AUCof 0.982
(95%CI: 0.974-0.989) for the seven-category classification and an AUC
of 0.980 (95%CI: 0.967-0.990) for the binary classification. In contrast,
the model utilizing only image data achieved a lower macro-average
AUC of 0.949 (95% CI: 0.938-0.960) for the seven-category classifica-
tion and an AUC of 0.956 (95% CI: 0.935-0.974) for the binary classi-
fication. The model using solely clinical data yielded an even lower
macro-average AUC of 0.801 (95% CI: 0.776-0.827) for the seven-
category classification and an AUC of 0.927 (95% CI: 0.899-0.952) for
the binary classification as depicted in Fig. 5f in the internal validation
cohort. These results highlight the improvement in FLL classification
achieved by incorporating both CECT images and clinical information

Fig. 4 | Performance Comparison of LiAIDS, Practicing Radiologists with and
without the assistance of LiAIDS. a Comparison of sensitivity, specificity and F1-
score for benign lesions; b Comparison of sensitivity, specificity and F1-score for

malignant lesions; cROCcurve for binary classification;d Performance comparison
of FLL detection. Source data are provided as a Source Data file
(Source_data_Figure_4.xlsx).
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in LiAIDS. (For more detailed information, please refer to Fig. 5 and
Table S3).

Comprehensive performance analysis on multicenter vs single-
center
To effectively demonstrate the efficacy of our large-scale multicenter
study, we conducted additional experimental comparisons between
multicenter and single-center training data. To ensure fairness, the
sample sizes of the multicenter and single-center training datasets
used in this comparison remained the same. The single-center training
data consisted of 3,167 randomly sampled cases from the training set
of SRRSH, while the multicenter training data comprised 3,167 cases
randomly sampled from the original training dataset collected from 15
hospitals. As expected, the comparison results on the three inde-
pendent external validation cohorts revealed that the model trained
on multicenter data statistically outperformed or performed on par
with the model trained on the single-center data across all metrics
including AUC, accuracy, sensitivity, specificity, and precision. For
instance, in the seven-category classification, the accuracy scores of
the model trained on multicenter data were 0.891 (95% CI: 0.870-
0.912), 0.826 (95% CI: 0.797-0.854), and 0.813 (95% CI: 0.779-0.844)
on the external cohorts of ZZH, QZH, and NBH, respectively. In
comparison, the accuracy scores of the model trained on single-
center data were 0.846 (95% CI: 0.821-0.871), 0.810 (95% CI: 0.782-
0.838), and 0.801(95% CI: 0.769-0.833) on the external cohorts of
ZZH, QZH, and NBH, respectively. Importantly, there were statisti-
cally significant improvements in both sensitivity and specificity
between models trained on multicenter and single-center data
(p < 0.001). This finding highlights the robustness and generalization
ability of LiAIDS across different medical centers, indicating its
suitability for application in actual clinical practice. (Detailed infor-
mation can be found in Fig. S1 and Table S4).

Comprehensive performance analysis on lesion classification
with vs without phase interaction module
For lesion classification using multi-phase CT images, existing
methods15–19 often performed multi-phase feature fusion by simply
concatenating multi-phase features, ignoring the intrinsic correlation
between different image phases. In this study, a phase interaction
module was investigated and integrated into the lesion classification
module of LiAIDS. The phase interaction module explicitly exploited
the intrinsic correlation between different image phases. Ablation
experiments performed on models with and without the phase

interaction module showed that the model with the phase interaction
module outperformed the model without this module on all metrics,
including AUC, accuracy, sensitivity, specificity, and precision. More
specifically, for the seven-category classification, the accuracy of the
model with the phase interaction module was 0.872(95% CI: 0.848-
0.895), 0.856(95% CI: 0.831-0.881), 0.828(95% CI: 0.798-0.859) on the
external cohorts of ZZH,QZH, andNBH, respectively, and the accuracy
of the model without the phase interaction module was 0.868(95% CI:
0.845-0.891), 0.826(95% CI: 0.798-0.854), 0.801(95% CI: 0.769-0.834)
on the external cohorts of ZZH, QZH, and NBH, respectively. (More
details on the performance comparison can be found in Figure S2 and
Table S5;moredetails on thephase interactionmodule canbe found in
Fig. 1 and Methods).

Comprehensive performance analysis on lesion detection with
3D CSwin Transformer
To fully leverage the 3Dcontextual information embedded inCT slices,
we made modifications to the state-of-the-art CSwin Transformer20 in
this study. Themodified 3DCSwinTransformerwasused as the feature
extraction backbone within the faster-RCNN21 framework for lesion
detection. The original parameters of the faster-RCNNwere retained in
our approach. In our study, the correct detection of lesions was
determined based on the overlap of bounding boxes between the
detected lesions and the ground-truth bounding boxes. Specifically,
we considered a detection to be correct if the Intersection over Union
(IOU) valuewas greater than0.3 and/or the IntersectionoverMinimum
(IOM) valuewas greater than0.5. These thresholds were used to assess
the degree of overlap and ensure accurate detection. Ablation
experiments on models with and without the modified 3D CSwin
Transformer backbone showed that the model with the modified 3D
backbone outperformed the model without it on all 5 validation
datasets on all lesions (p <0.001 on all cohorts). More specifically, the
overall recall rate for all lesions was improved from 0.919 (95% CI:
0.905-0.933) to 0.930 (95% CI: 0.918-0.942) on the internal validation
cohort, and from 0.957 (95% CI:0.952-0.962) to 0.963 (95% CI: 0.958-
0.968) on the external ZZH cohort, and from 0.971 (95% CI: 0.966-
0.977) to 0.973 (95% CI: 0.967-0.978) on the external QZH cohort, and
from0.924 (95%CI: 0.916-0.932) to 0.928 (95%CI: 0.920-0.936) on the
external NBH cohort, and from 0.945 (95% CI: 0.937-0.953) to 0.951
(95% CI: 0.944-0.957) in the prospective cohort. Notably, for lesions
smaller than 1 cm, the recall rate was improved from 0.862 (95% CI:
0.829-0.895) to 0.893 (95% CI: 0.861-0.925) in the internal validation
cohort, from0.907 (95%CI: 0.891-0.924) to0.937 (95%CI: 0.923-0.951)

Table 3 | Performance comparison between LiAIDS and radiologists on detection and diagnosis of FLLs

Approach Recall of detection Accuracy Benign lesions Malignant lesions

Sen Spe F1-score Sen Spe F1-score

Junior1 0.766 0.727 0.767 0.361 0.830 0.361 0.767 0.230

Junior2 0.883 0.810 0.857 0.452 0.890 0.452 0.857 0.360

Junior3 0.796 0.767 0.804 0.494 0.860 0.494 0.804 0.330

Senior1 0.911 0.905 0.937 0.663 0.950 0.663 0.937 0.620

Senior2 0.911 0.870 0.894 0.688 0.920 0.688 0.894 0.550

Senior3 0.962 0.907 0.931 0.729 0.950 0.729 0.931 0.650

Junior1+LiAIDS 0.97 0.893 0.899 0.854 0.936 0.854 0.899 0.680

Junior2+LiAIDS 0.954 0.907 0.933 0.734 0.946 0.734 0.933 0.671

Junior3+LiAIDS 0.965 0.904 0.931 0.728 0.944 0.728 0.931 0.667

Senior1+LiAIDS 0.975 0.932 0.957 0.771 0.961 0.771 0.957 0.753

Senior2+LiAIDS 0.969 0.913 0.946 0.695 0.950 0.695 0.946 0.679

Senior3+LiAIDS 0.972 0.927 0.953 0.750 0.958 0.750 0.953 0.727

LiAIDS 0.965 0.900 0.900 0.900 0.940 0.900 0.900 0.692

LiAIDS Liver Artificial Intelligence Diagnosis System, Spe Specificity, Sen Sensitivity.
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in the external ZZH cohort, from 0.942 (95% CI: 0.927-0.958) to 0.952
(95%CI: 0.937-0.966) on the external QZH cohort, from0.878 (95%CI:
0.851-0.905) to 0.898(95% CI:0.874-0.921) in the external NBH cohort,
and from 0.922 (95%CI:0.901-0.943) to 0.948 (95%CI:0.931-0.964) in
the prospective cohort. That is, for lesions smaller than 1 cm, the
improvement in detection performance was greater. This feature has
important clinical value because small lesions are easily missed in
clinical practice and the detection of small lesions is challenging. Upon
further examination of the missed lesions, it was discovered that all of
them were benign. The concurrence between LiAIDS and the assess-
ments made by junior and senior radiologists demonstrated high
agreement, with measures of 0.9487 and 0.923, respectively. (More
details on the performance comparison can be found in Fig. 6 and
Table S6).

Clinical application in patient triage
LiAIDShas showcaseddiagnostic capabilities in both retrospective and
prospective settings.Moreover, during the inference phase, LiAIDS, on
average, took 128 seconds to deliver a diagnosis upon receiving the CT
images. This incorporated lesion detection, segmentation, and classi-
fication, all performed on a single workstation. This promising out-
come inspired us to carry out a further study to investigate the

potential utility of LiAIDS in patient triage. As demonstrated in Fig. 7a,
we collected data from 13,192 consecutive patients enrolled between
May 1st, 2022 and August 31th, 2022 at SRRSH. In this investigation,
LiAIDS automatically categorized 76.46% of the total patients as low
risk (those with no lesions or definitive benign lesions), with the
remaining 23.54% classified as high risk (those with definitive malig-
nant lesions or indeterminate lesions). Upon a retrospective analysis of
all cases by medical physicians, LiAIDS achieved a Negative Predictive
Value (NPV) of 99.0% and a Positive Predictive Value (PPV) of 28.67%.
Essentially, LiAIDS identified 76.46% of the patients as negative, with
99% of those predicted negative cases confirmed as true negatives.
While there is no specific report on the current standard of care, a
recent study on 214 patients22 that concentrated on identifying
malignancy in FLLs found that standard ultrasound had an NPV of 78%
and a PPV of 60%. In contrast, CT scans yielded an NPV of 86% and a
PPVof 81%, andMRI provided anNPVof 91% and aPPVof68%.Wemust
underscore that our goal is to reduce radiologists’ workload by mini-
mizing the number of cases they need to review, not to replace them
with LiAIDS fordiagnosticpurposes. As such, a lower PPV is not amajor
concern in this context. The triage process using LiAIDS can decrease
radiologists’ workload by 76.46%, while resulting in less than 1% false
negative cases.

Fig. 5 | Comparison of Diagnostic Performance of Models Trained with Differ-
ent Data Modalities (Single-modal vs Multi-modal) across All Cohorts.
a Comparison of the seven-category classification in the internal validation cohort;
b Comparison of the seven-category classification in the external validation cohort
of ZZH; cComparison of the seven-category classification in the external validation

cohort of QZH; d Comparison of the seven-category classification in the external
validation cohort of NBH; e Comparison of the seven-category classification in the
prospective validation cohort of SRRSH; f ROC curves for models using different
data modalities in the internal validation cohort. Source data are provided as a
Source Data file (Source_data_Figure_5.xlsx).
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Furthermore, a non-inferiority trial of 183 pathologically con-
firmed patients showed no significant difference between LiAIDS and
radiologists in the binary classification (Accuracy: LiAIDS 0.962, radi-
ologists 0.973, p = 1.52).For the seven-category classification, there
were no significant differences between LiAIDS and radiologists for all
types (p >0.5) except ICC. For ICC, LiAIDS performed statistically
better than radiologists (Accuracy: LiAIDS 0.879, radiologists 0.758,
p < 0.05). These results demonstrated that LiAIDS has comparable or
even better diagnostic performance than radiologists and can reduce
the time and manual effort incurred by traditional diagnostic work-
flows. Figure 7b further depicted the distribution of lesion sizes and
the distribution of lesion numbers for each type across all patients. In
the non-inferiority study, the average lesion volume for patients with
only benign lesions was 104.13 ± 177.73 cm3, with the majority of
lesions beingHC (46.68 ± 234.69 cm3) and/orHH (126.78 ± 432.25 cm3).
On the other hand, themean lesion volume for patients withmalignant
lesions was 67.34 ± 160.48cm3, with most lesions being HM
(15.38 ± 77.70 cm3) or HCC (112.23 ± 226.68 cm3). The average number
of lesions for patients with only benign lesions was 7.25 ± 8.26, while
for patients with malignant lesions, it was 5.98 ± 7.9. The p-values for

both lesion size and number were less than 0.001 between these two
groups, indicating statistically significant differences. It is noteworthy
that the 183 pathologically confirmed patients who took part in our
non-inferiority study exceeded our initial sample size calculation for
the trial. This estimation, based on a non-inferioritymargin (delta, δ) of
0.1, a significance level (alpha, α) of 0.05, a power (1-beta, 1-β) of 0.8,
and an expected efficacy accuracy of 0.92, had anticipated a need for
173 participants. Therefore, our study was adequately powered as the
actual number of recruited participants surpassed the calculated
necessity.

Discussion
In this study, a fully automated liver lesion detection and diagnosis
systemknownas LiAIDSwas developed, which consisted of three deep
learning models for lesion detection, liver segmentation, and lesion
classification, respectively. The systemwas trained and validated using
contrast-enhanced CT scans and clinical information from 12,610
patients enrolled in 18 hospitals. LiAIDS has demonstrated strong
robustness and generalization ability both retrospectively and
prospectively.

Fig. 6 | Comparison of Lesion Detection Performance of Different Models
(Trained with and without 3D CSwin-transformer) and Sample Liver Segmen-
tation Results. a Comparison of lesion detection for all lesions; b Comparison of
lesion detection for lesions smaller than 1 cm; c Comparison of lesion detection for
lesions larger than or equal to 1 cm; d Examples of liver segmentation results in

different image phases with various lesion types (green Line: contours of liver
predicted by the AI system; red Line: contours of liver lesions predicted by the AI
system; blue Line: contours of liver lesions labeled by doctors).‘Source data are
provided as a Source Data file (Source_data_Figure_6.xlsx).
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Since the dataset used in this study was large enough and came
from a relatively large number of hospitals, covering CT scanning
devices from all major manufacturers worldwide (see Figure S3 and
Table S7), LiAIDS is applicable to medical centers outside this study.
Further experimental comparisons using single-center and

multicenter training cohorts also demonstrated the superior perfor-
mance of our large-scale multicenter study.

Compared with practicing radiologists, LiAIDS was superior to
junior radiologists and comparable to senior radiologists. It is impor-
tant to note that the medical hierarchy in China is structured into four

Fig. 7 | ClinicalApplications. a Exampleof patient triageperformed in Sir Run Run ShawHospital (SRRSH);bDistributions of lesion size and lesionnumbers in each lesion
type across all patients in patient triage. Source data are provided as a Source Data file (Source_data_Figure_7.xlsx).
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distinct levels: physician (equivalent to resident), attending physician,
associate chief physician, and chief physician. In this study, we adop-
ted the duration of practice in abdominal imaging diagnosis as our
primary classification criterion. Specifically, junior radiologists are
general radiologists with 5-10 years of experience in abdominal ima-
ging diagnosis, which includes physicians and attending physicians.
Conversely, senior radiologists are general radiologists with 10-20
years of experience, and this group comprises associate chief physi-
cians and chief physicians.

To rigorously assess the performance of LiAIDS, we carried out an
analysis at the patient level, recognizing that in clinical practice, the
diagnosis of multiple FLLs in a single patient often depends on the
most severe or clinically important lesion. As shown in Table 2, LiAIDS
has demonstrated enhanced accuracy across all validation cohorts
under the seven-category classification. Notably, accuracy improved
from 0.880 (95% CI: 0.847-0.911) to 0.912 (95% CI: 0.879-0.941) in the
internal cohort, from 0.872 (95% CI: 0.848-0.895) to 0.904 (95% CI:
0.878-0.928), 0.856 (95% CI: 0.831-0.881) to 0.886 (95% CI: 0.848-
0.919), and 0.828 (95% CI: 0.798-0.859) to 0.884 (95% CI: 0.850-0.915)
in the three external cohorts, and increased from0.805 (95%CI: 0.777-
0.833) to 0.833 (95% CI: 0.799-0.864) in the prospective cohort.

We further carried out a more thorough analysis on the distribu-
tions of CT acquisition parameters, particularly slice thickness and
exposure mAs. Our findings indicated variations in accuracy rates
across different ranges of slice thickness and exposure mAs. For
instance, the accuracy rates of the seven-category classification in the
internal validation cohort for different slice thicknesses were 0.729
(95% CI: 0.665-0.792), 0.892 (95% CI: 0.859-0.925), 0.835 (95% CI:
0.758-0.912) for ranges [2.5-5.0mm), [5.0-7.0mm), and [7.0-10.0mm),
respectively, all demonstrating significant differences (all p < 0.001). A
similar trendwasobserved for exposuremAs,where the accuracy rates
of the seven-category classification were 0.859 (95% CI: 0.809-0.905),
0.891 (95% CI: 0.842-0.939), 0.918 (95% CI: 0.852-0.984) for ranges [0-
100), [100-200), and [200-500), respectively, in the internal validation
cohort. We also investigated the effects of CT imaging parameters on
the detection of lesions. The results, as shown in Table 6S, indicated
less variations in recall rates across different slice thickness and
exposure mAs ranges. For example, the recall rates for slice thickness
ranges of [2.5-5.0mm), [5.0-7.0mm), and [7.0-10.0mm) were 0.932,
0.940, and0.907 respectively, with corresponding p-values of > 0.001,
= 0.023, and <0.001 in the internal validation cohort. Similar trends
were observed with regards to exposure mAs. More detailed findings
and specific results can be found in Table 2 and Table S6.

Nevertheless, this study has several limitations. First, the sensi-
tivity of ICC diagnosis remained low. To date, one previous article has
reported the use of machine learning on CT images to diagnose ICC,
with a reported sensitivity of 0.46417. In contrast, the sensitivity of
LiAIDS for ICC diagnosis was 0.618 in the internal validation cohort,
showing an improvement. Second, the training and external validation
cohorts were retrospectively annotated, which may lead to some
degree of bias. However, our prospective study suggested that this
limitation may not be prominent. A third limitation is that this study
was conducted at various centers in China only. Finally, the smooth
integration of HIS (Hospital Information System), LIS (Laboratory
Information System) and PACS (Picture Archiving andCommunication
System) systems in clinical workflows remain challenging in many
medical centers.

In conclusion, a deep learning based AI system, LiAIDS, has been
developed and validated both retrospectively and prospectively. This
system can automated detect and differentiate FLLs using CECT scans
and clinical information. We anticipate that LiAIDS will emerge as a
valuable diagnostic aid, enhancing the efficiency and accuracy of
radiologists via streamlining the diagnostic workflow, reducing patient
waiting times, and augmenting the precision of diagnoses. Addition-
ally, LiAIDS can also serve as an educational resource, offering real-

time feedback and instructional support to radiology trainees. More-
over, in regions experiencing a scarcity of radiologists, LiAIDS can
support the diagnostic process, promoting amore strategic allocation
and effective use of medical human resources.

Methods
Ethical approval
This study has received approval from the Institutional Review Board
(IRB) of Sir Run Run Shaw Hospital (SRRSH) and was carried out in
adherence to the Declaration of Helsinki. Additionally, the prospective
component of this study is officially registered with the Chinese Clin-
ical Trial Registry, under the identifier ChiCTR2100045278 (accessible
at [https://www.chictr.org.cn/showproj.html?proj=124700], registra-
tion date: April 10, 2021), and informed consent has been duly
acquired. In parallel, all 17 collaborating institutions obtained requisite
IRB approvals for their participation in the retrospective aspects of the
study. Recognizing the non-invasive nature of the methodology and
the anonymization of data, the IRB granted a waiver for the informed
consent requirement.

Data
This study included retrospective data from 11,385 patients managed
in 18 hospitals in China between January 1st, 2010 and June 30th 2020,
to develop and validate the proposed LiAIDS. In addition, a pro-
spective study further included 1225 patients treated at SRRSH
between July 1st, 2020 and June 30th, 2021. Furthermore, 13,192 con-
secutivepatients admitted toSRRSHbetweenMay 1st 2022andAugust
31th 2022 were collected for a study of patient triage. In this study, we
laid out the following inclusion and exclusion criteria for data: Inclu-
sion criteria were: (1) patients who underwent enhanced CT scans for
FLLs and (2) patients aged 14 years and above. Exclusion criteria were:
(1) patients who received any form of treatment for FLLs prior to the
contrast-enhanced CT scan, including surgery, transcatheter arterial
chemoembolization (TACE), radiofrequency ablation, chemotherapy,
radiotherapy, targeted drug therapy, and immunotherapy; (2) patients
who had a clinical diagnosis of malignant lesions but lacked patholo-
gical confirmation; (3) benign cases that lacked both a histopatholo-
gical report and a consensus agreement; (4) cases with compromised
CT image quality due to reasons including patient movement, incor-
rect positioning, presence of metallic objects, or equipment mal-
functions; and (5) cases that lacked essential clinical information,
including basic patient data (for example age and gender) and relevant
medical history (such as hepatitis, cirrhosis, cholangiolithiasis, and
extra-hepatic tumors). It needs to be noted that this study did not take
into account chief complaints or lab findings. The design of this study
took into account both sex and/or gender, with these attributes
determined based on self-reporting at the time of patient enrollment.
(See Fig. 2 for more details on data distribution and statistics). There
were no adverse events in this study.

In this study, triple-phase CT scans were performed on all parti-
cipants, including non-contrast phase, arterial phase, andportal venous
phase. A non-contrast scan was performed before contrast injection,
while the post-injection phases included the arterial phase (25-40 sec-
onds after injection) and the portal venous phase (60-80 seconds after
injection). CT scanswere acquired using a slice collimation of 5/7mm, a
matrix of 512 ×512 pixels, and an in-plane resolution of 0.516-0.975mm.
The 18 hospitals in this study covered CT scanning equipment from all
major global manufacturers, including Siemens, General Electric (GE),
Philips, Toshiba, and United Imaging Healthcare (UIH). In our retro-
spective and prospective studies, each CT scan sequence was accom-
panied by a radiological report, which was initially generated by a
radiologist after reading the scan and confirmedby a senior radiologist.
In case of any disagreement, a final diagnostic decision was made at a
departmental conference. (See Figure S3 and Table S7 for more details
on data distribution and statistics).
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Radiologist annotation
Ten general radiologists with more than 5 years of experience in
abdominal imaging diagnosis were divided into 5 groups of 2 to par-
ticipate in data quality control and data annotation. Each FLL was
manually annotated by a group of 2 general radiologists, with one
radiologist delineating the boundaries of the lesion and/or liver under
the supervision of another radiologist. The contours of the lesion and/
or liver canbefinalizedwhen the two radiologists reached a consensus.
The resulting lesion and liver delineation data were used as ground
truth to train and validate LiAIDS lesion detection and liver segmen-
tation models, respectively. The gold standard for lesion classification
wasestablishedeither fromavailable histopathological reports or from
the consensus of two senior general radiologists, each with over 20
years of experience in abdominal imaging diagnosis. Specifically,
malignancies were validated via histopathology, while benign lesions
were confirmed either through appropriate histopathology or by the
joint agreement of the senior radiologists mentioned earlier. This
agreement was achieved after an independent review of all pertinent
information, which includes clinical data, CT scans, and associated
radiological reports, collected over a follow-up period of at least six
months. Cases that have neither a histopathological report nor a
consensus agreement were all excluded from the study.

LiAIDS algorithm development
The architecture of the proposed LiAIDS consisted of three main
modules, namely lesion detection, liver segmentation, and lesion
classification modules (Fig. 1). The lesion detection module aimed to
identify and localize all potential FLL candidates onCT images. The use
of liver segmentation was twofold. First, the segmented liver can serve
as a false-positive identifier, filtering out lesions detected outside the
liver region. Second, it can also be utilized as an atlas to correlate
lesions independently detected in different CT phases. The lesion
classification module was designed to use image features and clinical
information to differentiate detected lesions into one of the seven
most common types, and further classify themasmalignant (HCC, ICC,
HM) or benign (FNH, HH, HC, and HA). In this study, clinical informa-
tion includes age, gender, medical history of hepatitis, history of liver
cirrhosis, cholangiolithiasis, and extra-hepatic tumor and three dif-
ferent CT phases shared the same detection, segmentation, and fea-
ture extraction backbone models.

Lesion Detection. The network architecture of the lesion detection
module was based on a two-stage detection algorithm called Faster
R-CNN21. The first stage generated FLL candidates called proposals
through a Region Proposal Network (RPN), while the second stage
further classified FLL candidates and regressed their locations through
a R-CNN network. CT is known to contain rich 3D contextual infor-
mation and it is difficult to accurately detect lesions using features
extracted from a single axial slice. As shown in Fig. 1a, we extended the
state-of-the-art CSwin Transformer20 from 2D to 3D, and applied the
new 3D CSwin Transformer as the feature extraction backbone of the
faster-RCNN framework. In this study, the input to our newly extended
3D CSwin Transformer backbone was composed of 2n + 1 adjacent
slices (i.e., the target slice and n adjacent slices directly above and
below the target slice, in our case n = 5). To be able to detect lesions of
various sizes, Feature Pyramid Network (FPN)23 was also integrated
into the RPN module. The p2 ~ p6 layers in the feature pyramid were
used to generate lesion candidates through the parameter shared RPN
network head.

Liver Segmentation. In this study, we specifically designed a hybrid
convolutional network structure with 2D convolution as the main and
3D convolution as the auxiliary for liver segmentation. Such a design
enabled the network to capture the 3D spatial information of the data
while reducing memory usage. Furthermore, multiple attention

mechanisms including Non-Local attention24 and scSE attention25 were
used to improve segmentation accuracy. As shown in Fig. 1b, our
network adopted the encoder-decoder U-Net architecture26, whichwas
dominated by 2D convolutional blocks with 3D convolutional blocks
located at the input, output and bottom layer of the network. Each 2D
convolutional block consisted of two Conv2d units and an Efficient 2d
Non-Local block24. The Conv2d unit splitted the unit’s input into two
even-numbered chunks channel-wisely and applied group convolu-
tions with kernel size 5×5 and 7×7 to these two chunks, respectively.
The output of the group convolution and the input of the unit were
concatenated and fed to a scSE attention unit25, followed by a sub-unit
consisting of 1×1 Conv2d, BatchNorm (BN)27, and GELU. Non-Local
block25 can help the network learn global features, thereby improving
segmentation accuracy. Each 3D convolutional block consisted of
3x3x3 convolution, InstanceNorm28, and Gaussian Error Linear Unit
(GELU)29. 3D Non-Local blocks were added to the bottom layer of the
network. Skip-connections between encoder and decoder were
achievedby 1×1 convolutions and threedeep supervision blocks30were
applied to further improve segmentation performance. In our study,
the loss function was cross entropy with Dice loss coefficient31. In our
study, the average Dice coefficient (DICE) for 100 randomly selected
cases from the external cohorts was 0.968, while for 100 randomly
selected cases from the prospective cohort, it was 0.972. Examples of
liver segmentation results were shown in Fig. 6b.

Lesion Classification. The lesion classification module included two
parts: feature extraction based on image data and feature extraction
based on clinical data. As shown in Fig. 1c, the image-based feature
extraction network consisted of two sub-modules, the feature extrac-
tion backbone and the multi-phase feature-interaction. In this study,
the feature extraction backbone was composed of three identical but
independent networks for extracting image features of the arterial,
venous, and non-contrast phases, respectively, where the multi-
phase feature-interaction sub-module integrated fine-grained multi-
phase features by capturing the subtle differences of lesion across
different phases in a mutually reinforcing manner. More specifically,
first, 3D CT image patches were extracted from the bounding box of
each detected lesion and fed into the feature extraction backbone to
obtain feature maps for all three CT phases independently, where
DenseNet32 combined with scSE attention unit25 were used as the
feature extraction backbone. Then, the feature maps extracted from
three different CT phases were fed into the multi-phase feature-
interaction sub-module via element-wise multiplication between
feature map pairs. The newly generated feature maps were sequen-
tially processed through adaptive pooling, concatenation, and two
fully connected layers to obtain the final image features. Finally, the
final image features and clinical features were concatenated and fed
into two fully connected layers to output class probabilities. For each
detected lesion, the output was a seven-dimensional vector repre-
senting the predicted probabilities for the seven disease categories.
The category with the largest value in the seven-dimensional vector
was taken as the final diagnosis of the lesion. In this study, the clinical
information incorporated both numerical variables (such as age) and
categorical variables (for example, gender and history of hepatitis).
More detailed information can be found in the data inclusion and
exclusion criteria in the Method section.

Implementation details. Lesion detection, liver segmentation and
lesion classification models were independently trained. During the
training of the lesion detection model, we applied transfer learning to
pre-train the backbone network of the lesion detection module using
the large-scale natural image dataset ImageNet33.The RGB channels of
a natural image were treated as three consecutive slices. The model
was trained using multi-scale input images of dimensions 384×384,
448×448, 512×512, 576×576, and 640×640. Online data augmentation
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strategies were implemented, including horizontal and/or vertical
flipping with a randomprobability (p = 0.5) and random rotations with
a random probability (p =0.5). Stochastic gradient descent was used
with an initial learning rate of 0.01, a decay factor of 0.1 after the 8-th
and 11-th epochs (12 epochs in total), and a weight decay of 0.0001.
The batch size was set to 6. During the training of the liver segmen-
tation model, online data augmentation strategies such as affine
transformation, random cropping, and salt-and-pepper noise were
also randomly applied. The adam optimizer34 with an initial learning
rate of 0.0005 decayed linearly with the number of iterations and a
weight decay of 0.05, and a batch size of 4 were used. For training of
the lesion classification model, the adam optimizer with an initial
learning rate of 0.001, a decay factor of 0.1 for every 60 epochs, and a
weight decay of 0.01 was used. The number of training epochs was set
to 200, and the batch size was 16.

All codes were implemented in Python and Pytorch. Two work-
stations were used for individual model training and validation. More
specifically, the lesion detection experiments were performed on a
workstation platform with 4 NVIDIA RTX 2080 Ti GPUs with 11GB GPU
memory, 256G RAM, and Intel(R) Xeon(R) Gold6248 CPU@2.50GHz,
using Ubuntu 16.04. The liver segmentation and lesion classification
experiments were performed on a workstation platformwith 1 NVIDIA
TITAN RTXGPU, 24GBGPUmemory, 256G RAM, and Intel(R) Xeon(R)
Gold6248 CPU @ 2.50GHz, using Ubuntu 16.04.

Statistical analysis. We employed Receiver Operating Characteristic
(ROC) curves to evaluate our model’s diagnostic performance. These
curves were generated by varying the threshold for predicted prob-
ability and plotting the True Positive Rate (TPR, or sensitivity) against
the False Positive Rate (FPR, 1-specificity). A high Area Under the Curve
(AUC) indicates superior diagnostic capability. In our analysis, the AUC
and confusion matrix were the primary metrics, providing compre-
hensive insights into model efficacy across different lesion types and
addressing class imbalance. Additionally, we considered the following
secondarymetrics for performance evaluation: Accuracy, calculated as
(TP + TN)/(TP + TN + FP + FN), Sensitivity, defined as (TP)/(TP + FN),
Specificity, determined as (TN)/(TN + FP), and Precision, computed as
(TP)/(TP + FP). Here, TP denotes True Positives, TN denotes True
Negatives, FP denotes False Positives, and FN denotes False Negatives.
For the comparison between AI and radiologists, the F1-score, the
harmonic mean of sensitivity and precision was used as this metric
offers a balanced view of both sensitivity and precision in a single
measure. The F1-score is calculated as 2 * (sensitivity * precision) /
(sensitivity + precision). All statistical analyses employed two-tailed
tests, with p-values of0.05 or lower deemed significant. These analyses
were conducted using Python, version 3.7.6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All analytical data underpinning the findings of this study are incorpo-
rated within this paper in the designated Source Data files (Source_da-
ta_Figure_3.xlsx to Source_data_Figure_7.xlsx, Source_data_Figure_S1.xlsx
to Source_data_Figure_S3.xlsx, Source_data_Table_1.xlsx to Source_da-
ta_Table_3.xlsx, and Source_data_Table_S1.xlsx to Source_data_Ta-
ble_S7.xlsx).The original imaging and clinical datasets are subject to
controlled access to prevent potential misuse, even though they have
been anonymized. Access to the data is limited, as they were utilized
under institutional permission, sanctioned by the institutional review
board specifically for this study, and hence are not publicly accessible.
For academic inquiries regarding the use of raw and processed data,
please direct your requests via email to the corresponding author at
henry_yinghn@zju.edu.cn. Each request will undergo an evaluation in

accordancewith institutional anddepartmental guidelines to ascertain if
the requested data are bound by intellectual property rights or patient
confidentiality commitments. The review process is expected to be
completed within one month. Data sharing is exclusively for non-
commercial academic purposes and will necessitate a formal material
sharing agreement. Source data are provided with this paper.

Code availability
The architecture of our system is an integration of innovative tech-
nologies, including an enhanced Faster R-CNN with the CSwin Trans-
former for feature extraction, a U-Net augmented with the scSE
attention mechanism, and DenseNet. For transparency and reprodu-
cibility, the source code andmodels for each component are available
through open-source platforms. The respective repositories are as
follows: Faster R-CNN is hosted at https://github.com/open-mmlab/
mmdetection; CSwin Transformer can be found at https://github.com/
microsoft/CSWin-Transformer; U-Net is available at https://github.
com/milesial/Pytorch-UNet; the scSE Attention Unit is located at
https://gitcode.net/mirrors/shanglianlm0525/pytorch-networks/-/
blob/master/Attention/SEvariants.py; and DenseNet can be accessed
at https://github.com/xmuyzz/3D-CNN-PyTorch/blob/master/models/
DenseNet.py. In addition, the full custom code is available in an open-
source repository at https://github.com/DeepWiseAI/LiAIDS with
detailed descriptions of the core functions in the formof pseudocode.

References
1. European Association For The Study Of The Liver. EASL Clinical

Practice Guidelines: Management of hepatocellular carcinoma. J.
Hepatol. 69, 182–236 (2018).

2. Forner, A. et al. Diagnosis of hepatic nodules 20 mm or smaller in
cirrhosis: Prospective validation of the noninvasive diagnostic cri-
teria for hepatocellular carcinoma. Hepatology. 47, 97–104 (2008).

3. Omata, M. et al. Asia-Pacific clinical practice guidelines on the
management of hepatocellular carcinoma: a 2017 update. Hepatol.
Int. 11, 317–370 (2017).

4. Nino-Murcia, M. et al. Focal liver lesions: pattern-based classifica-
tion scheme for enhancement at arterial phase CT. Radiology 215,
746–751 (2000).

5. van Leeuwen, M., Noordzij, J., Feldberg, M., Hennipman, A. &
Doornewaard, H. Focal liver lesions: characterization with triphasic
spiral CT. Radiology 201, 327–336 (1996).

6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

7. Bi, W. L. et al. Artificial intelligence in cancer imaging: Clinical
challenges and applications.Ca-aCancer J. Clin.69, 127–157 (2019).

8. Zhou, H. Y. et al. A transformer-based representation-learning
model with unified processing of multimodal input for clinical
diagnostics. Nat. Biomed. Eng. 7, 743–755 (2023).

9. Gulshan, V. et al. Development and validation of a deep learning
algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA 316, 2402–2410 (2016).

10. Esteva, A. et al. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 542, 115–118 (2017).

11. Aboutalib, S. et al. Deep learning to distinguish recalled but benign
mammography images in breast cancer screening. Clin. Cancer
Res. 24, 5902–5909 (2018).

12. Ozdemir, O., Russell, R. & Berlin, A. A 3Dprobabilistic deep learning
system for detection and diagnosis of lung cancer using low-dose
CT Scans. IEEE Trans. Med. Imag. 39, 1419–1429 (2020).

13. Zhao, G. et al. Diagnose like a radiologist: hybrid neuro-probabilistic
reasoning for attribute-based medical image diagnosis. IEEE Trans.
Pattern Anal. Mach. Intell. 44, 7400–7416 (2022).

14. Xi, I. et al. Deep learning to distinguish benign frommalignant renal
lesions based on routine MR imaging. Clin. Cancer Res. 26,
1944–1952 (2020).

Article https://doi.org/10.1038/s41467-024-45325-9

Nature Communications |         (2024) 15:1131 14

https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/microsoft/CSWin-Transformer
https://github.com/microsoft/CSWin-Transformer
https://github.com/milesial/Pytorch-UNet
https://github.com/milesial/Pytorch-UNet
https://gitcode.net/mirrors/shanglianlm0525/pytorch-networks/-/blob/master/Attention/SEvariants.py
https://gitcode.net/mirrors/shanglianlm0525/pytorch-networks/-/blob/master/Attention/SEvariants.py
https://github.com/xmuyzz/3D-CNN-PyTorch/blob/master/models/DenseNet.py
https://github.com/xmuyzz/3D-CNN-PyTorch/blob/master/models/DenseNet.py
https://github.com/DeepWiseAI/LiAIDS


15. Yasaka, K., Akai, H., Abe, O. & Kiryu, S. Deep learning with con-
volutional neural network for differentiation of liver masses at
dynamic contrast-enhanced CT: a preliminary study. Radiology
286, 887–896 (2018).

16. Liang, D. et al. Combining convolutional and recurrent neural net-
works for classification of focal liver lesions in multi-phase CT
images. In: FrangiA. F., Schnabel J. A., DavatzikosC., AlberolaLopez
C., Fichtinger G., eds. Medical Image Computing and Computer
Assisted Intervention - Miccai 2018, Pt Ii; 2018: 666-675.

17. Shi,W. et al. Deep learning assisteddifferentiation of hepatocellular
carcinoma from focal liver lesions: choice of four-phase and three-
phase CT imaging protocol. Abdominal Radiol. 45, 2688–2697
(2020).

18. Cao, S. et al. Multiphase convolutional dense network for the
classification of focal liver lesions on dynamic contrast-enhanced
computed tomography. World J. Gastroenterol. 26, 3660–3672
(2020).

19. Zhou, J. et al. Automatic detection and classification of focal liver
lesions based on deep convolutional neural networks: a preliminary
study. Front. Oncol. 10, 581210 (2020).

20. Dong X. et al. CSWin Transformer: A General Vision Transformer
Backbone with Cross-Shaped Windows. In IEEE International Con-
ference on Computer Vision and Pattern Recognition. 2022; pp.
12124–12134.

21. Ren, S., He, K., Girshick, R. & Sun, J. Faster R-CNN towards real-time
object detection with region proposal networks. IEEE Trans. Pattern
Anal. Mach. Intell. (TPAMI) 39, 1137–1149 (2017).

22. Burrowes D. P., Medellin A., Harris A. C. Characterization of focal
liver masses: a multicenter comparison of contrast-enhanced
ultrasound, computed tomography, and magnetic resonance ima-
ging. J. Ultrasound Med. 40. (2021).

23. Lin, T.-Y. et al. Feature pyramid networks for object detection. IEEE
Int. Conf. Comput. Vision Pattern Recognit. 2017, 2117–2125 (2017).

24. Zhou, Z., Xu, M., Bai, S., Huang, T. & Bai, X. Asymmetric non-local
neural networks for semantic segmentation. IEEE Int. Conf.Comput.
Vision 2019, 593–602 (2019).

25. Roy, A., Navab, N. & Wachinger, C. Concurrent spatial and channel
‘squeeze & excitation’ in fully convolutional networks. Int. Conf.
Med. Image Comput. Comput.-Assisted Intervent. 2018,
421–429 (2018).

26. Ronneberger O., Fischer P., Brox T., U-Net: Convolutional Networks
for Biomedical Image Segmentation. 2015, arXiv:1505.04597 [cs.CV].

27. Loffe, S. & Batch, C. Szegedy Normalization: accelerating deep
network training by reducing internal covariate shift. Int. Conf.
Mach. Learn. 2015, 448–456 (2015).

28. D. Ulyanov, A. Vedaldi, V. Lempitsky. Instance Normalization: The
Missing Ingredient for Fast Stylization. arXiv:1607.08022. https://
doi.org/10.48550/arXiv.1607.08022.

29. D. Hendrycks, K. Gimpel. Gaussian Error Linear Unit. https://arxiv.
org/abs/1606.08415.

30. Zeng, G. et al. 3D U-net with Multi-level Deep Supervision: Fully
Automatic Segmentation of Proximal Femur in 3D MR Images. In:
Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in
Computer Science, (edsWang, Q., Shi, Y., Suk, H. I. & Suzuki, K.) vol
10541, 274–282. (Springer, Cham, 2017). https://doi.org/10.1007/
978-3-319-67389-9_32.

31. Milletari, F., Navab, N. & Ahmadi, S.-A. V-Net fully convolutional
neural networks for volumetric medical image segmentation.
Fourth Int. Conf. 3D vision 2016, 565–571 (2016).

32. Huang, G., Liu, Z., Maaten, L. V. D. & Weinberger, K. Q. Densely
connected convolutional networks. IEEE Int. Conf. Comput. Vision
Pattern Recognit. 2017, 2261–2269 (2017).

33. Russakovsky, O. et al. ImageNet large scale visual recognition
challenge. Int. J. Comput. Vision 115, 211–252 (2015).

34. Kingma D. P., Ba J. L. Adam: A Method for Stochastic Optimization.
2014. arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980.

Acknowledgements
This research was supported in part by National Key Research and
Development Program of China (No.2021ZD0113302) [XQL, YML], the
Natural Science Foundation of Zhejiang province, China
(LQ20H160033) [HNY], the Fundamental Research Funds for theCentral
Universities (226-2022-00184) [HNY], and Hong Kong Research Grants
Council under Collaborative Research Fund (Project No. HKU C7004-
22G) [YZY].

Author contributions
Xiujun Cai, Yizhou Yu, Wan Yee Lau, Xiaoqing Liu, Min Zhang, Shizheng
Zhang,Hongjie Hu andRishengYu contributed to the study concept and
design. Hanning Ying, Yiyue Ren, Shihui Zhen, Xiaojie Wang, Lian Duan
Xiangdong Cheng, Xiangyang Gong, Haitao Jiang, Jianshuai Jiang,
Jianjun Zheng, Kelei Zhu, Wei Zhou, Baochun Lu, Hongkun Zhou, Yiyu
Shen, Jinlin Du, Mingliang Ying, Qiang Hong, Renya Jiang, Jingang Mo,
Jianfeng Li, Guanxiong Ye and Mingzhi Cai contributed to acquisition of
data. Bo Liu, Shizheng Zhang, Peng Hu, Hui Liu, Yiming Li, Xin Cheng,
Xingxin Xu, Shuxin Wang and Huiping Bai contributed to analysis and
interpretation of data. Hanning Ying, Xiaoqing Liu, Yizhou Yu,Min Zhang,
Xiaoyin Xu, Long Jiao, Risheng Yu, Wan Yee Lau and Xiujun Cai con-
tributed to writing, reviewing, and approval of the final version of
this work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45325-9.

Correspondence and requests for materials should be addressed to
Xiaoyin Xu, Long Jiao, Risheng Yu,Wan Yee Lau, Yizhou Yu or Xiujun Cai.

Peer review information Nature Communications thanks Kenny Cha,
Ruijiang Li and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45325-9

Nature Communications |         (2024) 15:1131 15

https://doi.org/10.48550/arXiv.1607.08022
https://doi.org/10.48550/arXiv.1607.08022
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://doi.org/10.1007/978-3-319-67389-9_32
https://doi.org/10.1007/978-3-319-67389-9_32
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1038/s41467-024-45325-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. 2Deepwise Artificial Intelligence
Laboratory, Beijing, China. 3College of Computer Science and Technology, Zhejiang University, Hangzhou, China. 4School of Medicine, Zhejiang University,
Hangzhou, China. 5Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. 6Zhangzhou Municipal
Hospital of Fujian Province, Zhangzhou,China. 7QuzhouPeople’sHospital,Quzhou,China. 8CancerHospital of theUniversity ofChineseAcademyof Sciences
(ZheJiang Cancer Hospital), Hangzhou, China. 9Zhejiang Provincial People’s Hospital, Hangzhou, China. 10Department of Hepatopancreatobiliary Surgery,
Ningbo First Hospital, Ningbo, China. 11HwaMei Hospital, University of Chinese Academyof Sciences (NingboNo.2 Hospital), Ningbo, China. 12Department of
Hepatopancreatobiliary Surgery, Yinzhou People’s Hospital, Ningbo, China. 13Department of Radiology, Huzhou Central Hospital, Affiliated Central Hospital
of Huzhou University, Huzhou, China. 14Shaoxing People’s Hospital, Shaoxing, China. 15The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University,
Jiaxing, China. 16The Second Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China. 17Jinhua Municipal Central Hospital, Jinhua, China.
18Jinhua GuangFU Hospital, Jinhua, China. 19Taizhou Municipal Central Hospital, Taizhou, China. 20The First People’s Hospital of Wenling, Taizhou, China.
21Lishui People’s Hospital, Lishui, China. 22Central Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
23Xiamen University, Xiamen, China. 24Brigham and Women’ Hospital, Harvard Medical School, Boston, MA, USA. 25Faculty of Medicine, Imperial College
London, London, UK. 26Department of Radiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China. 27Faculty of
Medicine, the Chinese University of Hong Kong, Hong Kong, China. 28Department of Computer Science, The University of Hong Kong, Hong Kong, China.
29These authors contributed equally: Hanning Ying, Xiaoqing Liu, Min Zhang, Yiyue Ren, Shihui Zhen, Xiaojie Wang, Bo Liu.

e-mail: xxu@bwh.harvard.edu; l.jiao@imperial.ac.uk; risheng-yu@zju.edu.cn; josephlau@cuhk.edu.hk; yizhouy@acm.org; srrsh_cxj@zju.edu.cn

Article https://doi.org/10.1038/s41467-024-45325-9

Nature Communications |         (2024) 15:1131 16

mailto:xxu@bwh.harvard.edu
mailto:l.jiao@imperial.ac.uk
mailto:risheng-yu@zju.edu.cn
mailto:josephlau@cuhk.edu.hk
mailto:yizhouy@acm.org
mailto:srrsh_cxj@zju.edu.cn

	A multicenter clinical AI system study for detection and diagnosis of focal liver lesions
	Results
	LiAIDS development and primary validation
	Performance comparison with radiologists
	Comprehensive performance analysis on multi-modal vs single-modal
	Comprehensive performance analysis on multicenter vs single-center
	Comprehensive performance analysis on lesion classification with vs without phase interaction�module
	Comprehensive performance analysis on lesion detection with 3D CSwin Transformer
	Clinical application in patient�triage

	Discussion
	Methods
	Ethical approval
	Data
	Radiologist annotation
	LiAIDS algorithm development
	Lesion Detection
	Liver Segmentation
	Lesion Classification
	Implementation details
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




