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High-efficiency reinforcement learning with
hybrid architecture photonic integrated
circuit

Xuan-Kun Li 1,2, Jian-Xu Ma3, Xiang-Yu Li3, Jun-Jie Hu1,2, Chuan-Yang Ding1,2,
Feng-Kai Han1,2, Xiao-Min Guo3, Xi Tan 1,2 & Xian-Min Jin 1,2,3,4

Reinforcement learning (RL) stands as one of the three fundamental para-
digms within machine learning and has made a substantial leap to build
general-purpose learning systems. However, using traditional electrical com-
puters to simulate agent-environment interactions in RL models consumes
tremendous computing resources, posing a significant challenge to the effi-
ciency of RL. Here, we propose a universal framework that utilizes a photonic
integrated circuit (PIC) to simulate the interactions in RL for improving the
algorithmefficiency. Highparallelismandprecisionon-chip optical interaction
calculations are implemented with the assistance of link calibration in the
hybrid architecture PIC. By introducing similarity information into the reward
function of the RL model, PIC-RL successfully accomplishes perovskite mate-
rials synthesis taskwithin a 3472-dimensional state space, resulting in a notable
56% improvement in efficiency. Our results validate the effectiveness of
simulating RL algorithm interactions on the PIC platform, highlighting its
potential to boost computing power in large-scale and sophisticated RL tasks.

Machine Learning (ML) within Artificial Intelligence (AI) brings revo-
lutionary transformations acrossnearly all industries1–5. Reinforcement
learning (RL)6, one of the three basic ML paradigms alongside super-
vised and unsupervised learning, is becoming a remarkably attractive
ML approach, spanning applications from strategy games7 to
robotics8,9 and autonomous control10,11. As the first computer program
to defeat a professional human Go player, AlphaGo operates on RL
principles12,13. Additionally, reinforcement learning from human feed-
back (RLHF)14 plays a crucial role in enhancing generative pre-trained
transformer (GPT) by incorporating valuable insights and knowledge
provided by human feedback15. RL focuses on the interaction between
“agent” and “environment”, seeking to derive an optimal policy
through the training process. Off-policy RL can learn from large, pre-
viously collected datasets, which increases the efficiency of resource
utilization and minimizes resource consumption in interactions. One

of the most well-known off-policy RL strategies is Q-learning16, which
aims to determine the optimal policy by maximizing the expected
value of the total reward across all successive steps.

Taking advantage of the intrinsic high parallelism and bandwidth
of photons, combined with highly compact and phase-stable optoe-
lectronic integrated technology, integrated optical computing,
encompassing optical neural network (ONN)17–27, optical quantum
computing28–32 and NP problem solving33, has not only captured sig-
nificant interest within academia but also gained widespread recog-
nition within the industry. In recent years, integrated optical
computing has shown the potential to achieve state-of-the-art com-
puting power and energy efficiency. This novel computing archi-
tecture is anticipated to maintain the pace of Moore’s Law34. Previous
research has predominantly shown the success of combining AI
algorithms with ONN in supervised learning tasks, including
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classification17–21,23 and regression35. However, the infrequent applica-
tion of RL in PIC36 emphasizes the necessity to expand the scope of AI
applications within integrated optical computing. Furthermore, the
progress of integrated optical computing is impeded by inherent
limitations in single architectures, such as Mach-Zehnder inter-
ferometers (MZI) mesh37,38 and coherent linear architectures39, which
include restricted scalability and functionality.

In this work, we experimentally demonstrate the improvements in
RL efficiency by using the PIC platform to implement agent-
environment interactions. We design a hybrid architecture PIC
(HyArch PIC) with remarkable scalability and versatile functionality
compared to single integrated optical computing architectures. Co-
integrating HyArch PIC with high-speed FPGA and electrical drivers on
a single development board results in a highly integrated optoelec-
tronic computing board with a vast optimization space. Through glo-
bal parameter optimization and link calibration, HyArch PIC exhibits
the capability to performoptical dot product operations indimensions
up to 15, ensuring the executionof the subsequent RL algorithmon the
PIC. The introduction of similarity information into the reward func-
tion, termed similarity reward function (SRF) RL, leads to an expo-
nential acceleration over constant reward function (CRF) RL in the cliff
walking benchmark. Additionally, we calculate the similarity of 3472
14-dimensional atom vectors and leverage PIC-RL for the perovskite
materials synthesis task, achieving an impressive 56% efficiency
improvement. Notably, the highly scalable HyArch PIC shows pro-
mising potential in outperforming existing electronic computing
architectures in computing power performance, thereby significantly
advancing the development of next-generation RL.

Results
The schematic of HyArch PIC is shown in Fig. 1a, comprising a uni-
tary MZI mesh module for routing and weight distribution, along
with three OCTOPUS (Optical CompuTing Of dot-Product UnitS)39

modules for dot product and matrix-vector multiplication (MVM)
calculations. All four modules are integrated on a single chip,
ensuring both stability and reconfigurability for advanced photonic
computing. Fundamentally, our HyArch PIC possesses the cap-
ability to execute high-precision arbitrary real number dot-product
operations up to 15 dimensions. The concept of PIC-assisted rein-
forcement learning (PIC-RL) is illustrated in Fig. 1b. Preprocessed
state and action information is encoded, either in amplitude or
phase, into the PIC. Subsequently, the PIC simulates the agent-
environment interaction using the encoded action and state infor-
mation. The resulting output light carries reward information for
the current state-action pair, contributing to the construction of the
reward table (R-table). Through RL training with the PIC R-table, Q
values are derived and organized into a tabular format known as the
Q-table. Since Q-learning is an off-policy value-based RL method,
the well-trained Q-table guides the agent in exploiting the envir-
onment by selecting the optimal action, ultimately establishing the
optimal policy.

Hybrid architecture photonic integrated circuit
The top-level diagram of our optoelectronic computing system is
illustrated in Fig. 2a. TheHyArchPIC (Fig. 2c) and amulti-channel FPGA
are co-integrated on a single development board, enabling commu-
nication with a computer via a LAN port. A standard server rack
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Fig. 1 | HyArch PIC and PIC-RL concepts. a Schematic of the proposed hybrid
architecture PIC (HyArch PIC), comprising a unitary MZI mesh module and three
identical parallel OCTOPUS modules. b PIC-assisted reinforcement learning (PIC-

RL) leverages PIC for efficient simulation of the agent-environment interaction in
the RL algorithm.
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accommodates the control computer, optical signal laser, and pro-
grammable power supply. The photograph of the optoelectronic
computing boardwith the size of 200mm×96mm is shown in Fig. 2b.
Advanced integration in the optoelectronic computing systemenables
Python programming for multi-channel modulation and input wave-
length sweeping, facilitating HyArch PIC optimization and reconfi-
guration. Optimized by the simulated annealing algorithm, the overall
on-chip loss of 6.5 dB highlights the maturity of the PIC design and
manufacturing (see “Methods” and Supplementary Section 1). Fig-
ure 2d displays the calibration curve for a single push-pull MZI unit,
obtained by sweeping the modulation power difference between the
upper and lower arms. This well-fitted curve to the sine-like function
y=a � sinðbx + cÞ+d (R2 = 0.9998, RMSE =0.001295) ensures precise
encoding and system phase stability. Based on the unit calibration, the
U(3) module empowers the flexible configuration of input optical
power for the three OCTOPUSmodules. Sweeping the three switching
units (SW0/SW1/SW2) within the U(3) module maps the normalized
output intensity of U(3) to a spherical surface in three-dimensional

space (Fig. 2e). The data points evenly cover the entire 3D spherical
surface, demonstrating the Umodule’s ability to achieve arbitrary U(3)
transformations. Barplots in Fig. 2g depict thedata near the axis points
(marked by circles on the 3D sphere), revealing a high switch extinc-
tion ratio. The response time of the thermal optical modulator is
measured by an arbitrary waveform generator and oscilloscope, as
shown in Fig. 2f, with rising time tr of 78.1μ s and falling time tf of
68.3μ s, corresponding to a 13.7 kHz systematic modulation
bandwidth.

OCTOPUS modules take on the primary computational tasks in
the HyArch PIC. Figure 3a shows the top-level diagram of the OCTO-
PUS module, capable of performing a 5-dimensional optical dot-
product operation. Within the OCTOPUS module, high-precision
multiplication tasks are executed by five links (L0-L4), with passive
beam splitter trees facilitating splitting and combining operations on
each link. The reference link at the bottom supports coherent detec-
tion, enabling the realization of negative dot product operations and
providing the bias term in the linear neuron. The output of the
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Fig. 2 | Experimental demonstration of HyArch PIC optoelectronic computing
system. a Top-level diagram of the optoelectronic computing system with inte-
grated PIC and FPGA on a development board. The computer, laser, and power
supply are housed in a standard server rack. b Photograph of the optoelectronic
computing board. c Microscope image of the HyArch PIC, featuring a grating
coupler (GC)-based I/O port array. Three input ports connect to the unitary MZI

mesh module, and three output ports export light from the OCTOPUS modules.
d Unit calibration curve of a single push-pull MZI unit with sine-like fitting.
eMeasurement results for arbitrarily configurable U(3) module. f Rising and falling
edge of the thermal optical modulator. g Power distribution at vertices of 3D
spherical coordinate axes, with error bars representing the standard deviations
within each group of vertices.
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OCTOPUS module can be expressed as:

Iout =
XL
i

V ðiÞA V ðiÞB
eEi + eEref

�����
�����
2

= ðWx+ bÞ2 ð1Þ

where V ðiÞA and V ðiÞB are encoded values on the first and second MZI in
the i th row, and L is the number of encoding links. We achieve
coherent detection through intensity-based methods by leveraging
the reference link and inactive encoding links, allowing the OCTOPUS
module to perform a dot product operation over the entire real
number domain. Equation (1) illustrates that the OCTOPUS model is
equal to a general linear neuron with quadratic nonlinear activation
function, and the dot product operation can be extended to general-
purpose matrix-vector multiplication by encoding the matrix W row-
wisely while keeping x unchanged. Figure 3b demonstrates the
schematic diagram of the OCTOPUS link, comprising two push-pull
MZI units and a tail phase shifter. Achieving stable multi-channel
coherent inference necessitates the use of a push-pull structured MZI
due to its inherent phase stability. In addition, the tail phase shifter

compensates for the phase of each link in OCTOPUSmodule, ensuring
the accuracy of the summation operation.

To enhance encoding precision in the optoelectronic computing
system for maximal parallel computation, we propose link calibration
—a technique involving modeling and calibrating of the entire OCTO-
PUS link, inspired by global nonlinear optimization40–42 and local cell
calibration43 (Supplementary Section 2). Through link calibration, we
dynamically and deterministically program theHyArch PIC in real-time
without the need for optimization tailored to specific data. By con-
ducting a two-dimensional scan of the normalized encoding values, VA

and VB, for push-pull MZIs A and B on a single link and measuring the
corresponding normalized output light intensity, we obtain the joint
spectrum I(VA, VB). The A-B joint spectrum allows a comprehensive
evaluation of link calibration effectiveness for each OCTOPUS link,
providing an intuitive representation of the impact of imbalanced
factors in theMZI splitter (labeled as k) and nonlinearmutual coupling
effects. This information, challenging to discern through unit calibra-
tion alone, is quantified by evaluating the zero-point opening
(ZPO= min jIj=ðmax jIj �min jIjÞ) as a performance metric for
each link.
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Fig. 3 | OCTOPUS module calibration and optical dot product test. a Concept
diagram of the OCTOPUSmodule in the HyArch PIC. b Schematic of the OCTOPUS
link with two push-pull MZI units and a tail phase shifter. c Simulated A-B joint
spectra for different imbalance factors (kA, kB) at (0, 0), (0.5, 0.5), and (0.5, −0.5).
dMeasuredA-B joint spectra I(VA, VB, λopt) for all OCTOPUS links under the optimal

wavelength λopt of 1530.7 nm, arranged fromM0.L0 toM2.L4. eDistribution of ZPO
for 15 OCTOPUS links after unit calibration (gray) and link calibration (green).
f Error distribution histogram of the 10000 3-dimensional optical dot product
operations calibrated by unit (gray) and by link (green).
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Figure 3c demonstrates the numerical A-B joint spectra for the
three cases of balance kA = kB = 0, in-phase imbalance kA = kB = 0.5 and
anti-phase imbalance kA = −kB = 0.5. In the balance model, the ZPO
remains at zero. ZPO amplifies with increasing imbalance, indicating
reduced unit calibration accuracy near the link zero point. Following
the simulated annealing algorithm and wavelength optimization, we
conducted measurements of the joint spectra I(VA, VB) for the OCTO-
PUS links based on unit calibration at the optimal wavelength of
1530.07 nm. The obtained spectra, arranged fromM0.L0 toM2.L4, are
depicted in Fig. 3d. Through detailed unit calibration, almost half of
the links adhere closely to the balancemodel. However, some links still
show noticeable imbalance, underscoring the importance of link cali-
bration for accurate high-dimensional optical dot product calcula-
tions. The distribution of ZPO for 15 OCTOPUS links after unit
calibration and link calibration is shown in Fig. 3e. Notably, the ZPO
distribution from link calibration is significantly lower than that
resulting from unit calibration, attaining nearly balance calibration for
all 15 links (see Fig. S4). We implement 10000 random 3-dimensional
dot-product calculations on unit-calibrated and link-calibrated
OCTOPUS modules, comparing their computation errors as illu-
strated in Fig. 3f. The reduction in the standard deviation of normal-
ized error across all 10,000 dot-product operations, from 0.115/
2.114 = 0.0544 to 0.035/2.114 = 0.0166, substantiates the crucial role of
link calibration in enabling high-dimensional and high-precision opti-
cal computation.

Q-learning theory and cliff walking task with PIC-RL
Q-learning, a model-free, off-policy, and temporal-difference learning
approach in RL, is employed to learn optimal policies by estimating the
action-value function (Supplementary Section 3). The symbol “Q” in
Q-learning denotes the action-value function, indicating the expected
cumulative reward for a given state-action pair. This value is computed
through the iterative application of the Bellman optimality operator as
follows:

Qðst ,atÞ  Qðst ,atÞ+α rt + γ �max
a

Qðst + 1,aÞ �Qðst ,atÞ
� �

ð2Þ

where rt is the reward of action-state pair (st, at), α is the learning rate
and γ is the discount factor. In the algorithm’s initialization phase, the
Q-table is set to zero, andduring training, each cellwithin theQ-table is
updated based on Eq. (2). Here, an “episode” refers to a single iteration
of the training process, encompassing a finite number of steps. In Q-
learning, the agent interacts with the environment during an episode,
making decisions and updating the Q-table based on its experiences.
It’s important to note that achieving convergence and an optimal
policy often requiresmultiple episodes as the agent refines its strategy
over time. This iterative process ensures that the Q-table converges to
values accurately representing the optimal action-value function for
the given environment.

As indicated in Eq. (2), optimizing the construction of the reward
function can enhanceQ-learning efficiency. In this study, we introduce
cosine similarity into the reward function, imparting directionality and
enabling agents to perceive the distance between their current state
and the target state. The modified reward function, known as the
similarity reward function (SRF), outperforms the constant reward
function (CRF), particularly in specific scenarios. SRF describes the
reward of an agent transitioning from state s to s0 by taking action a
and can be formalized as follows:

rSRFðs,a,s0Þ=β � simðuðs0Þ,vÞ � 1 =β �
Xn
i= 1

uiðs0Þvi � 1 ð3Þ

where uðs0Þ represents the normalized state vector of s0, v represents
the normalized state vector of the target state, and simðuðs0Þ,vÞ

represents the cosine similarity calculation for n-dimension vectors
uðs0Þ and v. The parameter β serves as the similarity coefficient, con-
strained within the range 0,1½ Þ to ensure effective model training.
When β =0, the SRF degenerates into the CRF, denoted by rCRF = −1 for
each step, penalizing wandering behavior.

The cliff walking task, depicted in Fig. 4a, serves as an illustrative
example and a benchmark to show the process of PIC-RL and the
efficiency enhancement of the SRF. The objective of the cliff walking
task is to reach the goal point with the maximum cumulative reward,
equivalent to searching for the shortest path in the grid world, as
depicted by the green arrowed route. The grid size is configured as
4 × 12, with the agent starting at the lower-left cell (4, 1) and the goal
cell positioned at (4, 12). If the agentmoves into the cliff, the agent will
incur a punishment reward of rP = −10 and sends it back to the start
point instantly. We experimentally calculate the similarity between all
grid points and the target point using two OCTOPUS links, as illu-
strated in the insert of Fig. 4a. The results, shown in Fig. 4b, confirm the
high computational precision of the HyArch PIC, with an error stan-
dard deviation of 0.0057. To visualize the process of Q-learning, we
tabulate the Q-table in Fig. 4c. According to the definition of the Q-
table, each element represents the expected cumulative reward value
of the corresponding action-state pair in the cliff walking task, where
the action set A = {up, down, right, left} and state set S consist of 4 and
48 elements, respectively, resulting in a 4 × 48 matrix for the Q-table.
The computation error of the Q-table is shown in Fig. 4d, with a stan-
dard deviation of 0.0115. Given that the last rowmainly represents the
cliff environment, we illustrate the effective Q values of the first three
rows as a 4 × 36matrix. We use the training curve to visually depict the
evolution of agents’ performance throughout their learning processes.
The training curves for the cliff walking task in Fig. 4e are obtainedwith
the similarity coefficientβ set to 0.9, basedon 2000agents. Because of
the low numerical error in the on-chip optical dot product operation,
the experimental SRF training curve closely aligns with the numerical
counterpart. The light green region highlights the impact of accel-
eration: SRF RL converges 110 steps faster thanCRFRL, demonstrating
a 30.6% relative speedup.

To demonstrate the remarkable adaptability and resilience of the
PIC-RL algorithm in the context of cliff walking, we design a more
complex cliff environment on a 10 × 10 grid world, as depicted in
Fig. 4f. The standard deviation of the similarity calculation error is
0.0045, with its corresponding error map visualized in Fig. 4g (see
Fig. S7 for more details). As the grid world expands and the cliff
environment becomesmore complex, the convergence of the optimal
step count exhibits increased variability. Therefore, we modified the
convergence criterion to the optimal step count plus one (specifically,
19 steps in this environment). The training curves in Fig. 4h underscore
the enhanced solution efficiency achieved by the SRF approach, sur-
passing the CRF approach by 12.2%. This notable performance
advantage emphasizes PIC-RL’s effectiveness in navigating through
complex scenarios. We also study the scalability of the RL algorithm
and find that the training convergence speed versus environment size
n × n is about Oðn2Þ for SRF and Oðn3Þ for CRF, which indicates the
scalability of SRF has an exponential advantage over CRF (Supple-
mentary Section 4).

Perovskite materials synthesis task with PIC-RL
Here, to further validate the efficiency and universality of PIC-RL, we
highlight its application in solving a sophisticated task: the synthesis of
perovskite materials. Specifically, we compare its performance with
that of the original Ruddlesden-Popper (RP) phase transition metal
perovskite chalcogenides Ca3Sn2S7 (CSS)

44–46. By partially substituting
the chalcogen anion S with oxygen elements O, resulting in a general
formula of Ca6Sn4S14−xOx (CSSOx, x from 1 to 5), the synthesized
materials exhibit enhanced performance47. Through theoretical ana-
lysis, we designate CSSO4-0980 as the target structure for its optimal
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performance, while the notably inefficient derivative structure CSSO3-
072 is selected as the starting structure for this RL task (Supplementary
Section 5). Analogous to the high-dimensional space cliff walking task,
the objective of this task is to identify the optimal synthesis route from
the starting structure to the target structure, within the state space
composed of all 3472 CSSOx derivative structures.

The schematic of the CSSOx crystal is shown in Fig. 5a. The left 3D
crystal structure corresponds to CSSO1-00, with replaceable atoms
marked in different colors on the right crystal structure. We represent
crystal structures using their c-axis coordinates as atom vectors for
distinction. When replacing x S atoms with O atoms, the final x bits of
the vector are utilized to denote the position of the O atom, while the
initial 14−x bits indicate the position of the S atom. This encoding
method efficiently utilizes 14 non-negative numbers to differentiate
between distinct structures. (All atom vectors data is provided in
Supplementary Data 1). Figure 5b illustrates the optimal synthesis
route, where the gray spheres represent S atoms, and the blue spheres
represent O atoms. Importantly, two essential constraints govern the
synthesis process: (1) Each step involves the precise replacement of a
single atom, alternating between S and O. (2) Ensure that the external
energy remains positive throughout the synthesis process, with the
initial external energy value set to 6 eV. To compute the similarity for
this task, we encode the current atom vector on the first column of

push-pull MZI modulators and the target atom vector on the second
column, asdepicted in the inset of Fig. 5b.With precise link calibration,
the HyArch PIC enables the computation of the 14-dimensional struc-
tural similarity of perovskite materials through a single optical dot
product operation. The experimental results, including all 3472 cosine
similarities, are presented in Fig. 5c, along with a comparison to the
numerical results. The residual error follows a normal distributionwith
a standard deviation of 0.015, indicating precise optical dot product
calculations in high dimensions by the HyArch PIC.

Benefiting from high-fidelity R-table construction, PIC-RL agents
exhibit excellent learning performance. The training curves in Fig. 5d
depict the mean value (curve) and standard deviation (shaded area)
derived from different reward functions, focusing on cumulative
rewardV and convergence steps in eacheposideduring training. These
results, obtained from 2000 agents under a similarity coefficient
β = 0.5, showcase the precision of similarity calculations by theHyArch
PIC. Both numerical SRF agents (blue curve) and experimental SRF
agents (green curve) closely align, outperforming CRF agents (gray
curve). It is remarkable that SRF RL agents achieve training con-
vergence in 700 episodes, compared to 1600 episodes for CRF RL
agents, representing a 56.25% increase in efficiency. The final
Q-learning result is presented through a two-dimensional t-SNE48

embedding of the representations in Fig. 5e. This visualization
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Fig. 4 | Cliff walking task with PIC-RL. a The 4 × 12 cliff walking grid world task
includes a starting point (S) and goal point (G). The agent seeks the optimal path
marked by the arrowed green line. Insert shows the HyArch PIC configuration for
solving the cliff walk task. b Numerical (up) and experimental (down) similarity
map. The white arrow indicates the guiding direction. White numbers represent
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displaying cumulative rewards for all state-action pairs. d Error map between the

numerical and experimental Q-tables. e Training curves for the 4 × 12 cliff walking
task based on 2000 agents. The SRF RL algorithm improves by 30.6% over the CRF
RL algorithm. f A 10 × 10 grid world with a complex cliff environment and its
optimal path. g Error map between numerical and experimental similarity calcu-
lation in the 10 × 10 grid world. h Training curves for the RL algorithm in the
complex cliff environment, with 2000 agents, indicating a 12.2% improvement for
the SRF RL algorithm over the CRF RL algorithm.
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effectively projects the similarity among all 3472 structures of CSSOx

onto a planar coordinate system, with the red arrowed route con-
sistent with the optimal synthesis route depicted in Fig. 5b. The scatter
dot diagram’s colormap represents the total energy of each structure,
and the optimal synthesis route consists of 11 intermediate states,
requiring 12 structure transformations. Notably, a comparative
experiment using the SRF approach to address the perovskitematerial
synthesis task within both the Q-learning and SARSA frameworks
reveals a significant 46.2% improvement in solution efficiency, con-
firming the superiority of Q-learning over SARSA in this SRF RL task
(Supplementary Section 6).

Discussion
HyArch PIC integrates unitary MZI mesh architecture and coherent
linear neuron architecture into a monolithic PIC framework, thereby
enhancing its capabilities in a noteworthy manner. This hybrid archi-
tecture offers several distinct advantages over single architectures,
including: (1) high scalability and robust fault tolerance, (2) versatile
functionality and (3) high-speed compatibility. We employ cosine
distance D to assess the scalability and fault tolerance of various PIC
architectures. Finite precision analysis reveals that the N-dimensional
HyArch PIC and singular value decomposition (SVD) based mesh
architectures17 exhibit cosine distances DHðNÞ ∼ 2

ffiffiffiffi
N
p

logðNÞσ2
BS and

DSVD ∼4Nσ2
BS, respectively (Supplementary Section 7). This indicates

that HyArch PIC exhibits a sub-exponential advantage over SVD
architecture PIC concerning scalability and fault tolerance. The overall
transmission matrix of the N-dimensional HyArch PIC THyArchPIC

(composed of an M-dimensional U mesh and M OCTOPUS modules,
where N =M2) can be expressed as follows:

THyArch PIC =TUðMÞTOðMÞ =WM ×M

u1 � v1
..
.

uM � vM

2
664

3
775 =WM ×M

PM
i = 1

u1i
v1i

..

.

PM
i= 1

uMi
vMi

2
6666664

3
7777775
ð4Þ

where WM×M represents the weight matrix provided by the front U
module, and the M OCTOPUS modules perform M sets of M-dimen-
sional dot product operations um ⋅ vm, m = 1, 2, …, M. Equation (4)
illustrates that functionally, the HyArch PIC can deploy the weighted
group dot product/MVM, a critical element in advanced AI algorithms,
including weighted multi-core convolution for computer vision49,
multi-head attention in natural language processing3, and others. InN-
dimensional optical dot product tasks, the HyArch PIC demonstrates
superiority, requiring only approximately 1/N of the modulation units
compared to the MZI mesh architecture (Supplementary Section 7).
This substantial reduction simplifies integration with high-speed

RP phase Ca6Sn4S14-xOx
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1-Only one atom 
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e

Fig. 5 | Perovskite materials synthesis task with PIC-RL. a Schematic of the
crystal structure of perovskite with layered RP phase Ca6Sn4S14−xOx (x = 1). The
original crystal structure is on the left, and the positions of the replaceable atoms
(S/O atoms) are indicated by circles of different colors on the right. Atom vectors
are extracted from the c-axis coordinates in the 3D RP phase structure. b Optimal
synthesis route in the perovskite materials synthesis task, with blue circles repre-
senting oxygen atoms and grey circles representing sulfur atoms. All 3472 deriva-
tive structures constitute the state space in this RL task. Insert shows the HyArch

PIC configuration for solving the perovskite materials synthesis task.
c Experimental and numerical results of 3472 cosine similarity calculations. The
histogram of residual errors depicts a standard deviation of 0.015. d Training
curves for the perovskite materials synthesis task with 2000 agents, displaying
cumulative reward (V) and convergence steps. Each curve shows the mean value,
with the shaded area indicating the standard deviation. e t-SNE embedding of the
representations to 3472 derivative structures. The red-coloured route displays the
test result of thewell-trainedmodel, consistentwith the synthesis route shown inb.
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electric drive, bringing optoelectronic computing chips closer to
contemporary commercial GPUs in computing power. Furthermore,
the HyArch PIC provides notable modularity, allowing for a more
flexible layout design compared to one-way expansion MZI mesh and
OCTOPUS architectures.

The optoelectronic computing chip performs MVM and dot pro-
duct operations, aiming for increased computational speed and
reduced energy consumption. The integration of high-speed electro-
optic modulators (EOM)50–52 and micro-electromechanical systems
(MEMS)53 further enhances the computing performance of the HyArch
PIC. Optimizing the thermal optical modulator in the HyArch PIC with
EOM and MEMS modulators, and adopting a configuration with
M = 128 at a system frequency of fs = 10 GHz, the number of operations
per second (OPS), represented as R ~ 2Nfs = 2M2fs, for the HyArch PIC
becomes comparable to that of the state-of-the-art GPU (NVIDIA
A100). Energy consumption analysis of HyArch PIC indicates that a
significant portion of energy is utilized in high-speed digital-to-analog
conversion (DAC). Reducing this energy consumption is crucial for the
development of future optoelectronic hybrid computing architectures
(Supplementary Section 8).

The introduction of cosine similarity into the reward function
highlights its effectiveness in training RL models within finite discrete
environmental spaces. Additionally, the technology of inverse rein-
forcement learning (IRL) offers an opportunity for further optimizing
the reward function to enhance algorithm efficiency, representing a
key research direction in the RL domain. When dealing with RL tasks
featuring continuous state/action spaces, deep Q-Network (DQN)54,55

utilizes a neural network to approximate the Q-function, effectively
replacing the Q-table. Optoelectronic co-integration technologies,
including on-chip digital logic and nonlinear units, are poised to sig-
nificantly enhance the capabilities of photonic computing
architectures20,23,56,57. This advancement is expected to promote the
further development of PIC-RL and enable the feasibility of PIC-based
DQN (Supplementary Section 9). Combining with reservoir computing
provides a promising approach for substantially reducing the model
parameters needed to construct DQN, offering an efficientmethod for
integrating DQN into optoelectronic co-integration systems58.

In conclusion, our study provides a compelling demonstration of
the effectiveness of a high-dimensional PIC-assisted RL algorithm,
showcasing remarkable efficiency in handling complex tasks. Lever-
aging our highly integrated optoelectronic computing system, we
successfully achieve high-dimensional and high-precision optical dot-
product computing through the integration of optimization algo-
rithms and link calibration. The reformulation of the reward function
with the similarity function greatly accelerates the convergence of
Q-learning training. Subsequently, the application of PIC-RL proves
instrumental in efficiently executing tasks involving cliff walking and
perovskite materials synthesis. Our work establishes a generic frame-
work for employing PIC to simulate the pivotal agent-environment
interaction in RL, demonstrating a substantial acceleration effect.
Furthermore, the unique advantages of the HyArch PIC open new
avenues for optical neural networks and optical quantum computing.
This research lays the groundwork for further exploration of RL and
the implementation of more advanced AI algorithms utilizing PIC
technology.

Methods
Fabrication and packaging of the HyArch PIC
The layout of HyArch PIC is developed and verified in LUCEDA IPKISS.
Fabrication is carried out through a standard 180-nm CMOS processes
on the silicon nanophotonics platform. The size of the silicon wave-
guide is 220 nm× 500 nm to ensure a single-mode condition. The
compact footprint of HyArch PIC measures 5mm× 5mm. The propa-
gation loss of HyArch PIC is <2 dB/cm and the grating coupling loss is

3.45 dB/port. To enable efficient light input and output of the HyArch
PIC, we package eight grating couplers with an 8-channel standard
single-mode fiber array (SMF28-FA). 174 electrical pads are wire-
bonded to a printed circuit board (PCB) and linked to a homemade
256-channel electrical driver for controlling the power of 87 on-chip
thermal phase shifters, with amaximum refresh rate of 100 kHz. 33 on-
chip MZIs and 21 on-chip phase modulators are tuned using 200μm
long thermal phase shifters, which change the refractive index of the
waveguide by local heating. Temperature stability is ensured by a
dedicated temperature controller (TEC).

Experimental setup details
The light source is a C-band tunable continuouswave (CW) laser with a
maximum power of 12 dBm (Santec TSL-710C). The laser output is
directed to afibrepolarization controller (FPC) and then splits into two
parts: the signal light and the reference light, facilitated by a beam
splitter (BS). The signal light is coupled into the HyArch PIC through
FA, and the output signals from the HyArch PIC are detected by a
pigtail PIN photodetector (PD) array and collected by a data acquisi-
tion module. The inclusion of reference light serves to mitigate signal
jitter caused by external factors, such as mechanical vibrations and
temperature fluctuations, enhancing the precision of our detection
outcomes. A pigtail InGaAs PIN PD array as the receiver is used to
realize integrated on-board photodetection, but its detection accuracy
is limited, and the multi-channel optical power meter (Santec MPM-
210) is used for high-precision photoelectric detection, such as cali-
bration. The small form-factor pluggable (SFP) port of the develop-
ment board can further integrate the transmitter of the opticalmodule
to realize end-to-end on-board optical multiply-accumulate opera-
tions. All measurements are implemented in standard room ambient
conditions.

The theory of push-pull MZI modulator
The transfer function of a single push-pull MZI modulator can be
expressed as:

Eout = E in cos
π
2
ΔP

Pπ

� �
� jk sin

π
2
ΔP

Pπ

� �� �
ej

π
2
ΣP
Pπ

� �
ð5Þ

where Pπ represents the half-wave power of the MZI, ΣP = (PA + PB)/2
denotes the average modulated power of the upper and lower arms,
whileΔP = (PA − PB)/2 denotes power difference between the two arms.
When k =0, with the average power ΣP held constant, Eq. (5) reduces to
the real number term multiplied by a fixed phase. This implies that an
ideal push-pull MZI modulator, featuring an exact 50:50 splitter ratio,
can achieve pure intensity modulation without altering the phase.
Therefore, in principle, two cascaded push-pull MZIs can be employed
to accomplish arbitrary multiplication of two real numbers. The tail
phase shifter for each link is designed to compensate for the intra-link
phase to achieve the coherent superposition between links.

Training details of reinforcement learning models
The environment of the cliff walking task is a built-in grid world
environment in the Gym framework. The dataset for perovskite
materials synthesis is sourced from ref. 47. Perovskite material struc-
tures adhere to substitution structure design rules, and their energies
are determined through density functional theory (DFT) calculations.
Agent parameters, including the learning rate α and discount factor γ,
are configured as 0.01 and 0.9, respectively. To improve search effi-
ciency, we restrict the maximum number of exploration steps to 300
within each episode. For a better exploration of the environment,
Q-learning uses the ϵ-greedy method for agent training, allowing a
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probability of ϵ to randomly select actions:

πactðsÞ=
arg max

a2A
Qoptðs,aÞ, prob = 1� ϵ

random from AðsÞ, prob = ϵ

(
ð6Þ

where πact(s) is the exploration policy under state s. Equation (6)
represents the ϵ-greedy algorithm, exploring with a probability of ϵ
and exploiting with a probability of 1−ϵ. In the early stage of model
training, increased exploration is necessary to find the target. With the
growing number of training episodes, the exploration rate should be
continuously reduced to achieve rapid convergence of the model.
Therefore, the value of ϵ decreases by Δϵ in each episode. The initial ϵ
value ϵ0 is set to 0.9, with an ϵ decrement of ΔϵCW = 1 × 10−3 in cliff
walking (CW) and ΔϵMS = 5 × 10−6 in material synthesis (MS).

Data availability
The data in the perovskitematerials synthesis task comes from https://
doi.org/10.1063/5.0022007, and the original structural data are avail-
able on https://github.com/j2hu/MATGANICSS. To visualize the three-
dimensional structure, the perovskite materials structure file can be
opened using VESTA software (https://jp-minerals.org/vesta/en/). The
processed structure data for high-dimensional PIC encoding are
available at Supplementary Data 1.

Code availability
We use the Gym library for all reinforcement learning tasks. The cliff
walking task ismodified from the gym library case, and its source code
can be found at https://www.gymlibrary.dev/environments/toy_text/
cliff_walking/. The code required for implementing the perovskite
materials synthesis task is available from the corresponding authors
upon request.

References
1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,

436–444 (2015).
2. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image

recognition. In: Proc. IEEE Conference on Computer Vision and
Pattern Recognition, 770–778 (2016).

3. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process.
5998–6008 (2017).

4. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A.
Machine learning for molecular and materials science. Nature 559,
547–555 (2018).

5. Jumper, J. et al. Highly accurate protein structure prediction with
alphafold. Nature 596, 583–589 (2021).

6. Sutton, R. & Barto, A. Reinforcement learning: an introduction (MIT
press, 2018).

7. Vinyals, O. et al. Grandmaster level in StarCraft II usingmulti-agent
reinforcement learning. Nature 575, 350–354 (2019).

8. Kalashnikov, D.et al. Scalable deep reinforcement learning for
vision-based robotic manipulation. In: Proc. Conf. Robot Learning,
651-673 (PMLR, 2018).

9. Brunke, L. et al. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Ann. Rev. Control Robot.
Autonom. Syst. 5, 411–444 (2022).

10. Lillicrap, T. P.et al. Continuous control with deep reinforcement
learning. Preprint at https://doi.org/10.48550/arXiv.1509.
02971 (2015).

11. Shalev-Shwartz, S., Shammah, S. & Shashua, A. Safe, multi-agent,
reinforcement learning for autonomous driving. Preprint at https://
doi.org/10.48550/arXiv.1610.03295 (2016).

12. Silver, D. et al. Mastering the game of go without human knowl-
edge. Nature 550, 354–359 (2017).

13. Silver, D. et al. A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science 362,
1140–1144 (2018).

14. Christiano, P. F. et al. Deep reinforcement learning from human
preferences. Adv. Neural Inf. Process. Syst. 30, 4299–4307
(2017).

15. Ouyang, L. et al. Training language models to follow instructions
with human feedback. Adv. Neural Inf. Process. Syst. 35,
27730–27744 (2022).

16. Watkins, C. J. & Dayan, P. Q-learning.Mach. Learn. 8,
279–292 (1992).

17. Shen, Y. et al. Deep learning with coherent nanophotonic circuits.
Nat. Photonics 11, 441–446 (2017).

18. Xu, X. et al. 11 tops photonic convolutional accelerator for optical
neural networks. Nature 589, 44–51 (2021).

19. Feldmann, J. et al. Parallel convolutional processing using an inte-
grated photonic tensor core. Nature 589, 52–58 (2021).

20. Ashtiani, F., Geers, A. J. & Aflatouni, F. An on-chip photonic deep
neural network for image classification. Nature 606,
501–506 (2022).

21. Mourgias-Alexandris, G. et al. Noise-resilient and high-speed deep
learning with coherent silicon photonics. Nat. Commun. 13,
5572 (2022).

22. Tait, A. N. et al. Silicon photonicmodulator neuron. Phys. Rev. Appl.
11, 064043 (2019).

23. Bandyopadhyay, S. et al. Single chip photonic deep neural network
with accelerated training. Preprint at https://doi.org/10.48550/
arXiv.2208.01623 (2022).

24. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hard-
ware solvers of combinatorial optimization problems. Nat. Rev.
Phys. 4, 363–379 (2022).

25. Shastri, B. J. et al. Photonics for artificial intelligence and neuro-
morphic computing. Nat. Photonics 15, 102–114 (2021).

26. Huang, C. et al. A silicon photonic–electronic neural network for
fibre nonlinearity compensation. Nat. Electron. 4, 837–844 (2021).

27. Ling, Q. et al. On-chip optical matrix-vector multiplier based on
mode division multiplexing. Chip 2, 100061 (2023).

28. Wang, J. et al. Multidimensional quantum entanglement with large-
scale integrated optics. Science 360, 285–291 (2018).

29. Tang, H. et al. Experimental quantum fast hitting on hexagonal
graphs. Nat. Photonics 12, 754–758 (2018).

30. Arrazola, J. M. et al. Quantum circuits with many photons on a
programmable nanophotonic chip. Nature 591, 54–60 (2021).

31. Gao, J. et al. Quantum advantage withmembosonsampling.Chip 1,
100007 (2022).

32. Xu, X.-B., Wang, W.-T., Sun, L.-Y. & Zou, C.-L. Hybrid super-
conducting photonic-phononic chip for quantum information pro-
cessing. Chip 1, 100016 (2022).

33. Xu, X.-Y. et al. A scalablephotonic computer solving the subset sum
problem. Sci. Adv. 6, eaay5853 (2020).

34. Waldrop, M. M. The chips are down for Moore’s law. Nature 530,
144 (2016).

35. Xu, S. et al. Optical coherent dot-product chip for sophisticated
deep learning regression. Light: Sci. Appl. 10, 1–12 (2021).

36. Saggio, V. et al. Experimental quantum speed-up in reinforcement
learning agents. Nature 591, 229–233 (2021).

37. Reck, M., Zeilinger, A., Bernstein, H. J. & Bertani, P. Experimental
realization of any discrete unitary operator. Phys. Rev. Lett. 73,
58–61 (1994).

38. Clements,W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer,W. S.
& Walmsley, I. A. Optimal design for universal multiport inter-
ferometers. Optica 3, 1460–1465 (2016).

39. Zhang, X.-M. & Yung, M.-H. Low-depth optical neural networks.
Chip 1, 100002 (2022).

Article https://doi.org/10.1038/s41467-024-45305-z

Nature Communications |         (2024) 15:1044 9

https://doi.org/10.1063/5.0022007
https://doi.org/10.1063/5.0022007
https://github.com/j2hu/MATGANICSS
https://jp-minerals.org/vesta/en/
https://www.gymlibrary.dev/environments/toy_text/cliff_walking/
https://www.gymlibrary.dev/environments/toy_text/cliff_walking/
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1610.03295
https://doi.org/10.48550/arXiv.1610.03295
https://doi.org/10.48550/arXiv.2208.01623
https://doi.org/10.48550/arXiv.2208.01623


40. Pai, S., Bartlett, B., Solgaard,O. &Miller, D. A.Matrix optimization on
universal unitary photonic devices. Phys. Rev. Appl. 11,
064044 (2019).

41. López, A., Pérez, D., DasMahapatra, P. & Capmany, J. Auto-routing
algorithm for field-programmable photonic gate arrays. Opt.
Express 28, 737–752 (2020).

42. Zhang, H. et al. Efficient on-chip training of optical neural networks
using genetic algorithm. ACS Photonics 8, 1662–1672 (2021).

43. Bandyopadhyay, S., Hamerly, R. & Englund, D. Hardware error
correction for programmable photonics. Optica 8,
1247–1255 (2021).

44. Tsai, H. et al. High-efficiency two-dimensional ruddlesden–popper
perovskite solar cells. Nature 536, 312–316 (2016).

45. Ricciardulli, A. G., Yang, S., Smet, J. H. & Saliba, M. Emerging per-
ovskite monolayers. Nat. Mater. 20, 1325–1336 (2021).

46. Liang, C. et al. Two-dimensional ruddlesden–popper layered per-
ovskite solar cells based on phase-pure thin films. Nat. Energy 6,
38–45 (2021).

47. Hu, J., Wang, C., Li, Q., Sa, R. & Gao, P. Accelerated design of
photovoltaic ruddlesden–popper perovskite Ca6 Sn4 S14−x Ox using
machine learning. APL Mater. 8, 111109 (2020).

48. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J.
Mach. Learn. Res. 9, 2579–2605 (2008).

49. Cho, W., Son, S. & Kim, D.-S. Weighted multi-kernel prediction
network for burst image super-resolution. In: Proceedings of
Computer Vision and Pattern Recognition, 404–413 (2021).

50. Wang, C. et al. Integrated lithium niobate electro-optic modulators
operating at cmos-compatible voltages. Nature 562,
101–104 (2018).

51. Li,M. et al. Silicon intensityMach-Zehndermodulator for single lane
100 Gb/s applications. Photonics Res. 6, 109–116 (2018).

52. Lu, G.-W. et al. High-temperature-resistant silicon-polymer hybrid
modulator operating at up to 200 Gbit s-1 for energy-efficient
datacentres and harsh-environment applications.Nat. Commun. 11,
1–9 (2020).

53. Gyger, S. et al. Reconfigurable photonics with on-chip single-pho-
ton detectors. Nat. Commun. 12, 1408 (2021).

54. Mnih, V. et al. Human-level control through deep reinforcement
learning. Nature 518, 529–533 (2015).

55. Gu, S., Lillicrap, T., Sutskever, I. & Levine, S. Continuous deep
q-learning with model-based acceleration. In: Proc. 33rd Interna-
tional Conference on Machine Learning. 48, 2829–2838
(PMLR, 2016).

56. Williamson, I. A. et al. Reprogrammable electro-optic nonlinear
activation functions for optical neural networks. IEEE J. Sel. Top.
Quantum Electron. 26, 7700412 (2020).

57. Shi, Y. et al. Nonlinear germanium-silicon photodiode for activation
andmonitoring in photonic neuromorphic networks.Nat. Commun.
13, 1–9 (2022).

58. Kanno, K. & Uchida, A. Photonic reinforcement learning based on
optoelectronic reservoir computing. Sci. Rep. 12, 3720 (2022).

Acknowledgements
This research is supported by the National Key R&D Program of China
(Grants no. 2019YFA0308703, No. 2019YFA0706302, and No.
2017YFA0303700); National Natural Science Foundation of China
(NSFC) (Grants No. 62235012, No. 11904299, No. 61734005, No.

11761141014, and No. 11690033, No. 12104299, and No. 12304342);
Innovation Program for Quantum Science and Technology (Grants No.
2021ZD0301500, and No. 2021ZD0300700); Science and Technology
Commission of Shanghai Municipality (STCSM) (Grants No.
20JC1416300, No. 2019SHZDZX01, No.21ZR1432800, and No.
22QA1404600); Shanghai Municipal Education Commission (SMEC)
(Grants No. 2017-01-07-00-02-E00049); China Postdoctoral Science
Foundation (Grants No. 2020M671091, No. 2021M692094, No.
2022T150415). X.-M.J. acknowledges additional support from a Shang-
hai talent program and support from Zhiyuan Innovative Research
Center of Shanghai Jiao Tong University.

Author contributions
X.-M.J. supervised the project. X.-K.L. and X.-M.J. designed, simulated
and laid out thephotonic chip. X.-K.L., X.-Y.L. and J.-J.H implemented the
algorithm and conducted the numerical experiments. X.-K.L. and J.-X.M.
conducted the measurements and analyzed the data. X.-K.L., C.-Y.D, F.-
K.H. and X.T. conducted the architecture performance analysis. X.-M.G.
illustrated and rendered the 3D conceptual diagram. X.-K.L. and X.-M.J.
wrote the paper with input from all the other authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45305-z.

Correspondence and requests for materials should be addressed to
Xian-Min Jin.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45305-z

Nature Communications |         (2024) 15:1044 10

https://doi.org/10.1038/s41467-024-45305-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	High-efficiency reinforcement learning with hybrid architecture photonic integrated circuit
	Results
	Hybrid architecture photonic integrated circuit
	Q-learning theory and cliff walking task with PIC-RL
	Perovskite materials synthesis task with PIC-RL

	Discussion
	Methods
	Fabrication and packaging of the HyArch�PIC
	Experimental setup details
	The theory of push-pull MZI modulator
	Training details of reinforcement learning�models

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




