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The interactions between tumor and immune cells along the course of breast
cancer progression remain largely unknown. Here, we extensively characterize
multiple sequential and parallel multiregion tumor and blood specimens of an
index patient and a cohort of metastatic triple-negative breast cancers. We
demonstrate that a continuous increase in tumor genomic heterogeneity and
distinct molecular clocks correlated with resistance to treatment, eventually
allowing tumors to escape from immune control. TCR repertoire loses diver-
sity over time, leading to convergent evolution as breast cancer progresses.
Although mixed populations of effector memory and cytotoxic single T cells
coexist in the peripheral blood, defects in the antigen presentationmachinery
coupled with subdued T cell recruitment into metastases are observed, indi-
cating a potent immune avoidance microenvironment not compatible with an
effective antitumor response in lethal metastatic disease. Our results demon-
strate that the immune responses against cancer are not static, but rather
follow dynamic processes thatmatch cancer genomic progression, illustrating
the complex nature of tumor and immune cell interactions.

Breast cancers are complex dynamic systems that arise in the context
of spatially structured genomic and immunemicroenvironments1. The
relative abundance of somatic mutations suggesting the presence of
neoantigens capable of activating specific T cells is one of the key
characteristics that make triple-negative breast cancer (TNBC) more
likely to respond to immunotherapy than other breast cancer
subtypes2.

Previous studies have demonstrated that immunosuppressive
interactions between tumor cells, surrounding stromal, and immune
cells might support metastatic progression and escape from immune
control, challenging the efficacy of cancer immunotherapy3–5. Some of

the major immune escape mechanisms that maximize the probability
of a tumor to progress include loss of neoantigen presentation,
immune cell exhaustion, and the presence of an immunosuppressive
microenvironment6. At the genomic level, mutation rate, genomic
instability, and pool size are the drivers of diversity, which may con-
stitute driving forces imposed by immune pressures and consequently
may lead to differential responses to therapies7–9. However, whether
TNBC cancers diversify over time and across spatially distinct syn-
chronous metastatic areas, evolving along a molecular clock into
genomically diverse landscapes with distinct immune environments
has yet to be understood.
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To explore the sequential and parallel interplay between anti-
tumor immunity and TNBCmetastases, leading to immune escape, we
extensively characterize a TNBC index patient leveraging single-cell
peripheral blood T cell RNA and T cell receptor (TCR) sequencing,
tumor bulk DNA, RNA and TCR sequencing, neoantigen T cell reac-
tivity, clinical and immunohistologicdata.We then extend the analyses
to a series of eleven primary TNBCs and postmortem metastases
previously published by our group and others10,11. Here, we identify the
routes by which immune escape is driving lethal disease and show that
the interplay between TNBC metastasic cells and host antitumor
immunity determines co-existing mechanisms of immune escape
within the same patient, with potential implications for combinatory
immunotherapies and biomarker development.

Results
Clinical and sample characteristics of TNBC patients
Overall, 112 specimens from 12metastatic TNBC breast cancer patients
were available, consisting of 11 primary tumors, 15 sequential on-
treatmentmetastasis (over time), 18 serial blood samples, 2 body fluids
(ascitic and pleural), as well as 66 parallel multiregion metastases
(either synchronous, affecting the same metastatic site or metastases
in different anatomical sites within the same patient) from warm
autopsies (Fig. 1, Supplementary Fig. 1). An index patient with TNBC
was closely monitored from diagnosis throughmetastatic progression
for 2033 days until she expired. Data included samples from various
stages of the disease, such as a primary tumor specimen, 15 sequential
chest wall skin biopsies during treatment, 18 blood samples, 2 body

Fig. 1 | Study schematics. a Schematics of the study and anatomical map of
biospecimen collection for sequential and parallel multiregion analyses of the
index TNBC patient. Timeline is provided in days from the diagnosis. The index
patient presented here was a 49-year-old woman diagnosed with a stage III TNBC
(T2N3, estrogen receptor (ER), progesterone receptor (PR) and HER2 0+ negative,
Ki67 60%, grade 3) with a 3.5 cm right breast cancer mass and lymph node invol-
vement, who underwent multiple systemic therapies due to recurrences and
metastatic progression over 2033 days of clinical follow-up. She underwent
neoadjuvant chemotherapywith anthracycline and taxane achieving a pathological
complete response after mastectomy. The patient presented multiple clinical
recurrences at the chest wall from day 373, and achieved complete response with
cisplatin-based therapy, surgery, and local radiotherapy. A second chest wall
recurrence occurred around day 666 with partial response to bevacizumab-based
therapy. Immunotherapy employing anti-PD-L1monoclonal antibody atezolizumab
was administered on day 799 after diagnosis, followed by in a rapid disease pro-
gression. However, a long-lasting complete response of 22 months was evidenced
after a re-challenge of cisplatin and gemcitabine (day-854 to day 1519), after a
previous response to the same drug had been 2.2 fold shorter (day 373 to day 666).
The anti-PD-L1 administration before the re-challenge with cisplatin, although
culminating in a rapid disease progression, could have contributed to the sub-
sequent long-lasting antitumor response to cisplatin, motivating our investigation
of immune escape. Subsequently, the patient presented a progression at the chest

wall, and received anti-PD-1 (pembrolizumab) and chemotherapy, with stable dis-
ease for 4months. Then, upon chestwall progression, pembrolizumabplus toll-like
receptor (TLR) 7 agonist (topical) was administered in the chest wall metastases
with a transient local complete response that lasted around 50 days. The patient
received other lines of systemic therapy (i.e. palbociclib followed by cyclopho-
sphamide, pegylated liposomal doxorubicin, cisplatin plus gemcitabine, paclitaxel
plus bevacizumab, eribulin) (Supplementary Table 1) and expired on day 2033.
Sequential chest wall images illustrate the clinical evolution of a TNBC patient over
time. Postmortem parallel multiregionmetastases were synchronous, affecting the
samemetastasis ormetastases affecting different anatomical sites (separated into2
or 3 sites when indicated) within the index patient as indicated. aPD-L1 anti-pro-
grammed death-ligand 1 monoclonal antibody, aPD-1 anti-programmed cell death
protein 1 monoclonal antibody, TNBC triple-negative breast cancer, CR complete
response, cf circulating free (DNA), M metastasis, P primary tumor, PR partial
response, PD progressive disease, Rec recurrence, SD stable disease, TLR7 Toll-like
receptor 7. b Schematics of 11 TNBC patients cohort included in the study as vali-
dation cohort and subjected to re-analysis of their WES and bulk RNA-seq data for
primary tumors (n = 10) and parallel multiregion metastases (n = 46). AD adrenal,
BO bone, BR brain, BT breast [metastasis], CH chest, KI kidney, LN lymph node, LU
lung, LI liver, ME meninges, PB primary breast, PE pleura, SP Spine, ST soft tissue,
SK skin.
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fluids (ascitic and pleural), and 20 parallel metastases from multiple
regions at autopsy.

The patient, a 49-year-oldwoman, initially had stage III TNBCwith
a 3.5 cm breast mass and lymph node involvement. She underwent
various treatments, achieving a complete response after neoadjuvant
chemotherapy. Recurrences occurred over time, and immunotherapy
with atezolizumab showed a fast disease progression but later con-
tributed to a prolonged response to cisplatin and gemcitabine. The
patient underwent several treatment regimens for metastatic disease,
including cytotoxic and immunotherapies, and ultimately passed away
after 2033 days of clinical follow-up (Fig. 1, Supplementary Table 1 and
Supplementary Data 1).

As an expansion cohort, a series of 11 TNBC patients with bulk
DNA-seq and RNA-seq from 10 primary breast cancers and 46 parallel
multiregion metastases (e.g., lymph nodes, breast, CNS, adrenal, liver,
lung-pleural, bone, kidney, soft tissue, skin) sampled with warm
autopsy procedures were included from data previously published by
our group and others10,11 (Supplementary Data 1).

TCR repertoires lose diversity over time leading to convergent
evolution as breast cancer progresses
T cells are key mediators of adaptive antitumor immunity, but how
T cells function and the TCR repertoire is shaped over time during
cancer progression remains poorly understood12. To interrogate the
evolution of the T cell repertoire from the TNBC index patient and to
identify patterns of immune evasion, we performed two com-
plementary approaches. Firstly, we profiled the TCR beta chain (TCRβ)
of genomic DNA from bulk tumor tissue of the TNBC index patient at
different time points: 4 on-treatment sequential chest wall (M0-M3)
and 5 parallel multiregion metastases sampled at autopsy (Fig. 2a).
Secondly, we carried out single-cell RNA-sequencing (scRNA-seq) and
T cell receptor sequencing (scTCR-seq) of peripheral blood T cells
collected 48 h before the TNBC index patient’s death and character-
ized their immunophenotypes of different T cell populations and
clonotypes (expandedT cells). Finally, we integrated theTCR identities
to link immunophenotype, tissue, and clonotypes information to track
TCR repertoire evolution (Fig. 2a).

Our TCRβ deep sequencing generated 72,831 templates for all our
samples (3713 SD) and a range of 1455–5091 (1147 SD) unique, pro-
ductive TCRβs per sample. A total of 21,164 unique amino acid
sequences from all nine samples were used to calculate (i) the pro-
portionofprivateTCR sequences inon-treatment sequential chestwall
metastases (N = 11,876), (ii) private TCR sequences in parallel multi-
region metastases (N = 7715), or (iii) shared TCR sequences (N = 1573)
(Supplementary Fig. 2a).

Next, we performed a TCR network analysis using Levenshtein
distance, andused thedistanceof 1 amino acid change as the threshold
of similarity to establish edges or connections in the network (see
Methods). About 4185 TCR sequences were connected, and of these,
2167 and 1642 were present privately in the sequential and parallel
multiregion metastases of the TNBC index patient, respectively.

We observed that the TCR repertoire partially overlapped
between the sequential chest wall metastases and parallel multiregion
metastases of the TNBC index patient, with the later time point
metastases presenting more shared TCR sequences (Fig. 2b). This
indicates that the TCR repertoire is highly dynamic, changing and
evolving along the clinical courseof thedisease,withmetastases closer
in time, sharing more TCR sequences than metastases collected more
apart in time. The M3-day 1687 time point (tumor locally treated with
TLR7 agonist) showed convolution of T cell repertoires with a greater
TCR network connectivity than the previous time points, based on
metrics such as density, average clustering coefficient and S-metric
(Supplementary Fig. 2b). Average clustering coefficient and S-metric’s
values increased in later time points in longitudinal metastases and
when integrated with postmortem parallel multiregion metastases.

TheM15 chestwall sample at autopsy resembled the longitudinal chest
wall metastases, while M18 (spatially different area of the chest wall
also sampled at autopsy) showed a distinct TCR repertoire compared
to the other synchronous metastases. This may suggest that the
immunogenic neoantigens eliciting an adaptive T cell responsemaybe
different between M15 and M18, which may have evolved along sepa-
rate genomic evolution paths. To validate these findings, we per-
formed bootstrap analysis, confirming the metrics to be stable and
robust (Supplementary Fig. 2b).

Single-cell immunophenotyping of 5024 peripheral blood T cells
of the TNBC index patient revealed 11 unique T cell subsets clustered
into different activation states (Fig. 2b, c). Each cluster was annotated
by determining differentially expressed genes (DEG) based on Wil-
coxon rank-sum test (See “Methods” section). Using signatures from a
scRNA-seq pan-cancer atlas of T cells13, we detected T cells in different
stages of differentiation, ranging from recently activated effector
memory cells (cluster 6), expressing high levels of the early activation
molecule CD27, to terminally differentiated effector memory cells
(cluster 5; Supplementary Fig. 2c). The largest cluster on our data
(cluster 1, 26.92% of total T cells) was composed of effector memory
cells expressing IL7R memory marker and AP-1 transcription factors
JUN and FOS (Supplementary Fig. 2d). Cluster 2 was found to harbor
high levels of γδ and lowαβ chain recoveryexpression (Supplementary
Fig. 2e), evidencing the presence of γδ T cells in our dataset (26.13%). A
separate cluster (cluster 8), similar to clusters 1 and 2, was character-
ized by an intermediate gene expression profile between theαβ and γδ
clusters (Fig. 2c). Naïve T cells expressing the differentiation markers
SELL and CCR7 comprised two clusters of CD4+ and CD8+ T cells
(cluster 3, 14.39%; cluster 4, 9.92%, respectively), which clustered close
to early activated cluster 6 cells. In depth analysis of this cluster 6
allowed us to unveil four additional clusters: CD4+ T cells in an inter-
mediate state between naïve and effector (cluster 6.0), CD4+ Treg
(cluster 6.1), CD8+ cytotoxic (cluster 6.2) and CD8+ proliferating
T cells (cluster 6.3; Fig. 2c). Cluster 6.3 showed great transcriptional
and clonal resemblance to cluster 6.2 (Fig. 2c), suggesting a common
origin. A CD4+ T cell population with a cytotoxic phenotype, char-
acterizedbyhigh expressionof IL7R,KLRB1, granzymes, andTNF alpha
and low expression of CCR7 and SELL was also detected (cluster 7,
4.69%; Fig. 2c, d). These results show that the patient was mounting
immune responses detectable in the periphery, even though meta-
static disease had fully progressed.

Next, we performed a TCRβ CDR3 repertoire overlap analysis
between pairwise samples (here using all the above-mentioned
sequential and parallel metastases of the TNBC index patient with
the peripheral blood single T cells sampled at day 2031). The analysis
was based on the Morisita index13, which estimates the similarities
using the number of shared clonotypes and their abundances. We
observed that postmortem samples and peripheral blood single-cell
samples harbored a more similar repertoire than those derived from
sequential tumors, as expected, given that these samples are chron-
ologically close (48 h apart; Supplementary Fig. 2f–h). The majority of
expanded clonotypes at all time points (Fig. 2e) were mapped to the
CD8 TEM (cluster 1, 1401 cells, 1079 TCR sequences, 27% of the total)
and CD4 CTL T cells (cluster 7, 4.69%; Fig. 2f). We observed that clo-
notypes present early on in the sequential on-treatment samples were
still present in peripheral blood (close to the time of death) and were
also found in postmortem metastases samples. By contrast, clones
private to parallel multiregionmetastases at day 2033 were circulating
in blood at day 2031 as recently activated or proliferating CD8+ T cells
(i.e. clusters 6.2: CD8 early TEM, cluster 6.3: CD8 Prolif, cluster 5:
TEMRA CD8 T cells, in red). Analyses of CD4 and CD8 T cells in tissue
show their presence across the disease course but enrichment of
T cells in the early sequential metastases and a decline in late metas-
tases of the index patient, according to CD8 (p-value = 0.042) and CD4
(p-value = 0.059) immunohistochemistry (IHC) analyses. To
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corroborate the IHC analyses from the TCRβ sequencing data, we
inferred the fraction of T cells within the total nucleated cell count
(range 0.007–0.225; n = 9 tumors, average =0.071) as a surrogate
measure of T cell infiltration. This analysis revealed that T cell fraction
in tumor tissue gradually decreased over time (Mann-Kendall test, p-
value = 0.0261) as metastatic disease evolved, suggesting that early
metastases weremore infiltrated by T cells thanmetastases at autopsy

(Supplementary Fig. 2i). In parallel, clinicalperipheral blood samplesof
the TNBC index patient taken from day ~850–2033 showed leukocyte
counts within normal rage, but progressive lymphopenia over time
and high neutrophils-to-lymphocytes ratio just before death (day
2033) (Supplementary Table 2). These results suggest that a tumor-
specific response was being mounted at the periphery during the
entire course of the disease with some traffic of T cells from blood to
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tumor tissues, although the percentage of infiltrating T cells declined
steadily as the patient progressed.

Taken together, our results document the phenotypic diversity of
peripheral blood T cells close to death, including CD4/CD8 T cell
phenotypes still with some cytotoxic potential and enrichment for γδ.
Even close to death, the immune system appears to be still mounting
an adaptive immune response against parallel multiregion metastases
while keeping T cell memory clonotypes against early responding
metastases at the periphery. The TCR repertoire, however, was evol-
ving and losing complexity over time, with convergent evolution into
similar immune receptor clonotypes. This could be due to a reduced
neoantigen exposure over time due to different immune evasion
mechanisms, resulting in a less diverse, more focused response at the
end of the TNBCpatient’s life. Theseprompted us to explore the status
of the immune microenvironment and the genomic-based neoantigen
heterogeneity in tumor tissue to understand the likely mechanisms of
immune evasion.

Changes in IFNy signaling, antigen processing machinery sig-
natures, and allelic-specific HLA imbalance parallel metastatic
tumor progression
To determine whether there are differences in the tumor micro-
environment (TME) along the disease course and within parallel
metastases,weapplied a 770 immuno-oncology andproliferationgene
panel14,15 to all tumor specimens of the TNBC index patient (n = 32).
Two main clusters were revealed, one defined by upregulation of
immune signatures (hot or inflamed cluster), which included most of
the on-therapy early metastases (from day 373 to day 1687), and
another one defined by the enrichment of proliferation and hypoxic
signatures (cold cluster), including all the metastases at autopsy (day
2033; Fig. 3a). RNA-seq based CIBERSORT, which deconvolves 22
immune cells, further highlighted the degree of immune cell hetero-
geneity within metastases and primary tumors of the index case and
the TNBC cohort (Fig. 3b).

A comparison of the gene expression signatures of temporally
earlier chest wall tumors (N = 3, day 373) to late chest wall metastases
(N = 4, day 2033) of the TNBC index patient revealed downregulation
of immune signaling pathways, in the late chest wall tumor samples,
including IFNy signaling, members of the MHC/HLA class I and II loci,
immune checkpoints (CTLA4, false discovery rate) (FDR <0.02), TIGIT
(FDR <0.003) and inflammatory chemokines (CXCL9, FDR <0.0013;
CXCL13, FDR <0.0052) (Supplementary Fig. 3a). Downregulation of
these inflammatory pathways in late metastases might account for the
reduced presence of infiltrating T cells in these tumors, which was
confirmed by an enrichment of cytotoxic T cells in the sequential early

samples and a decline in late metastases, according to pathology CD8
T cells (p-value = 0.042) and CD4 T cells (p-value = 0.059) analyses
(Supplementary Fig. 3b).

Next, we explored the temporal evolution of IFNy signaling, HLA
class I-related APM, and cytotoxic T lymphocyte (CTL) abundance
along with tumor proliferation over clinical responses of the TNBC
index patient. IFNy signaling and APM signatures displayed dynamic
changes over time, with their sharp upregulation correlating with
clinical responses and a substantial reduction throughout later sys-
temic treatments (non-responsive metastases) and postmortem par-
allel multiregion chest wall metastases (Fig. 3c). Conversely, the tumor
proliferation signature, whichmay be considered a surrogate measure
of tumor growth, displayed the opposite dynamics (Fig. 3c, Supple-
mentary Fig. 3c). CTL abundance followed a similar trend to IFNy, with
increasing rates up to day 799, before showing a consistent decrease
toward later time points (Fig. 3c). These results are consistent with the
histological data, showing elevated CD8 and CD4 T cell markers
staining in early metastases and the declining T cell fraction estimates
retrieved from the TCRβ sequencing data (Supplementary Figs. 2i and
3b). We observed a positive correlation between pathology tumor-
infiltrating lymphocytes (TILs) estimates and mRNA-based T cell esti-
mates, validating the accuracy of the gene expression-based inference
of T cell abundance (Supplementary Fig. 3d).

To understand the gradual temporal decline in anticancer
immunity, we defined the immunophenotype status that is, inflamed
(IFNy high, APMhigh), desert (IFNylow, APMhigh/low), excluded (IFNyhigh,
APMlow) of sequential tumor biopsies and 20 parallel multiregion
metastases of the TNBC index patient employing the IFNy signaling
and APM signatures. The immunophenotype score allowed us to
assign an inflamed immunophenotype to the sequential on-treatment
tumors, and a desert immunophenotype to the majority of parallel
metastases (Fig. 3d). Interestingly, two chest wall metastases (M17 and
M18) displayed higher APM signature scores and were mapped as
inflamed, unlike the rest of parallel metastases. Conversely, a tumor
biopsy taken on-treatment (M3.1) and considered refractory to ther-
apy, was mapped as excluded. We then validated the immunopheno-
type status with aMultiplexed ProteomicAssay (IFNy andMICA/B (aka
HLA-A and B)) across 35 samples in which 19 were parallel multi-
regional metastases that mapped mostly to the desert phenotype
(IFNylow, MIC A/Bhigh/low) (Supplementary Fig. 3e). The 14 on-treatment
sequential samples from peripheral blood and cell-free DNA from
pleural and ascitic fluids were tested for soluble IFNy andMICA/B, and
were mapped into either inflamed (IFNyhigh, APMhigh) or excluded
(IFNyhigh, APMlow) phenotypes. Histological data validated the enrich-
ment of IFNy in earlier metastases as compared to late parallel

Fig. 2 | Sequential TCR repertoires evolve over time leading to mixed dys-
functional single T cell states. aWorkflow of sequential TCRβ detected from nine
metastases: 4 on-treatment (M0-day 373,M1-day 799,M2-day 1687,M3-day 1687) at
distinct time points and 5 parallel multiregion postmortemmetastases. scRNA-seq
and scTCR-seq analyzed in isolated T cells from peripheral blood (day 2031). aPD-
L1, anti-programmed death-ligand 1 monoclonal antibody; aPD-1 anti-programmed
cell death protein 1monoclonal antibody, CR complete response, Mmetastasis, PR
partial response, PD progressive disease, Rec recurrence, SD stable disease, SC
single-cell, TCRα T cell receptor alpha chain, TCRβ T cell receptor beta chain, TLR7
Toll-like receptor 7. b TCRβ CDR3 repertoire joined network to elucidate subnet-
works private to on-treatment sequential chest wall metastases (yellow) or to
parallel multiregionmetastases (red) or shared to both sets of metastases (purple).
Insert on the bottom shows amino acid sequences from a parallel multiregion
metastases-specific subnetwork. Each node’s size corresponds to the number of
sampleswhere the sequencehasbeendetected. Edgeswere formedbetweennodes
only when the edit distance between the two CDR3 sequences equaled 1. Source
data are provided as a Source Data file. c Uniform manifold approximation and
projection (UMAP) analysis that displays single-cell transcriptomic landscape of
sorted CD3+CD19- single T cells. Single T cells are colored by expression cluster,

based on gene expression difference, of 11 T cell subsets and functional states.
Mean unique molecular identifier (UMI) counts per cell were 3726 with a median
number of genes detected per cell of 1254 (98.92% CD3+ cells of all cells, 97.17%
expressingCD3ε, 89.83%expressingCD3δ).Clusterswith percentages above2%are
depicted. Source data are provided as a Source Data file. d Heatmap from the
scRNA-seq showing 9 clusters of T cell subpopulations resolved by z-scored dif-
ferential expression of curatedT cell marker genes. Caption shows four subclusters
integrated within cluster 6. The top markers that define each one of those clusters
are highlighted in red. Cluster 9 was characterized by cells with few detected genes
and a high fraction of mitochondrial counts indicative of damaged cells. Source
data are provided as a Source Data file. e UMAP embedding single cells from per-
ipheral blood showing TCR clonotypes classified as singletons or expanded
(N = 5204cellswith TCR)wereprojected onto theUMAPof peripheral bloodTcells.
Source data are provided as a Source Data file. f UMAP embedding single T cells
from peripheral blood (N = 1284) and barplot colored by TCR clonotypes found in
on-treatment sequential metastases (yellow), parallel multiregion metastases (red)
or present in both tumor sources (purple). Source data are provided as a Source
Data file.
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multiregion metastases (p-value: 9.971e-08, Wilcoxon rank-sum exact
test) (Supplementary Fig. 3f).

Another possible mechanism of immune escape affecting the
antigen presentation machinery might be mediated by an allelic
imbalance at HLA loci, which has indeed been shown to reduce the
capacity of neoantigen presentation, thereby aiding immune escape of
tumors16.Weemployed anaccurateHLA typingmethod for class I17 and
investigated the allele-specific HLA loss (HLALOH) and allelic

imbalance in sequential and parallel late metastases for HLA class I
(Supplementary Fig. 3g). Of the TNBC index patient, four metastases
had intact HLA haplotypes,M1 (day 799), a lesion that appeared earlier
during the course of clinical follow-up, and M16, M17, M18, chest wall
tumors that were sampled at autopsy, but categorized as inflamed
using our immunophenotype score (Fig. 3d). Statistically significant
haplotype loss (that is, HLA-A*11:01, HLA-B*27:05, HLA-C*02:02) was
observed in non-responsive metastases categorized by desert
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immunophenotypes, whereas metastases with intact HLA or with a
single allele imbalance displayed inflamed phenotypes. In the exten-
ded cohort of 8metastatic TNBCpatients, we determined the status of
HLA class I in primary tumors and multiregion metastases (Supple-
mentary Fig. 3g). Here, the primary sample of patients A7 and A20 had
intact HLA haplotypes; by contrast, primary tumors A1, A5, A11, A15,
A17 had imbalance and A11 presented HLALOH. Metastases were het-
erogeneously affected by imbalance, HLALOH, or HLA integrity.

We next correlated the HLA-related gene expression profiles and
HLA allele-specific imbalance among the 20 parallel multiregion
metastases of the TNBC index patient. We observed that the greater
the HLA allelic imbalance, the lower the gene expression of HLA class
I-related genes (HLA-A, HLA-E, B2M, TAP1), IFNy pathway genes
(STAT218, signal transducer and activator of transcription), a major
component of the immunoproteasome19(PSMB9), and the APM sig-
nature (Fig. 3e).

Taken together, our results show that metastatic tumor progres-
sion is paralleled by a decrease in IFNy signaling, APM, and inflam-
matory chemokines, a reduction in T cell infiltration along with an
impairment of specific allelic HLA integrity.

T cell exhaustion score and soluble PD-L1/IFNy define the
immune evolution during metastatic progression
T cells are exposed to persistent antigen and/or inflammatory signals
posing a scenario that is often associated with the deterioration of T
cell function leading to T cell exhaustion. We developed a T cell
exhaustion metagene score comprising the most common immune
checkpoint inhibitory molecules (PDCD1 (PD-1), LAG3, TIM3
(HAVCR2), KLRG1, TIGIT, CD244, CD160, BTLA, CTLA4, ENTPD1,
CD160, ID2). The T cell exhaustion metagene score was based on the
weighted arithmetic mean using the log fold-change of differentially
expressed genes and was set up between multiregion metastases and
primary TNBC breast tumors of the Siegel dataset10 as coefficient. The
T cell exhaustion metagene score was applied to the specimens of the
TNBC indexpatient (M1-day 799 chestwallmetastasis, obtainedbefore
treatment with the immune checkpoint inhibitor atezolizumab, and 17
parallel multiregion metastases) and the extended cohort of 10 TNBC
patients10 (10 primary tumors and 42 multiregion metastases) using
RNA-seq based gene expression levels.

We quantified the T cell exhaustion metagene score for each
sample individually (Fig. 4a, Supplementary Fig. 4) and observed a
positive correlation between the T cell exhaustion score and the
cytolytic score, defined as the geometric mean of the GZMA and PRF1
expression levels (rho =0.52; p <0.002), with the presence of cyto-
toxic T cells immune gene expression signature (rho = 0.35; p =0.002,
(Fig. 4a, Supplementary Fig. 4)).

Taken together, the TNBC index patient and the extended cohort
of TNBC patients, most of metastatic lesions (79.4%) showed a nega-
tive score and 80%of primary tumors hadpositive scores (p = 0.0005),
denoting an inflamed to desert immune evolution during metastatic
progression (Fig. 4a, Supplementary Fig. 4). We observed that the
majority of parallel multiregion metastases were assigned as “desert
tumors” (T cell exhaustion metagene scoreLow/ cytolytic scoreLow /
CD8+Low) further validating the gene expression-based immunophe-
notype (IFNlow, APMhigh) (Fig. 3d) and the Multiplexed Proteomic Assay
(IFNlow, MIC A/Bhigh/low)(Supplementary Fig. 3e) “desert”
immunophenotype.

Of clinical interest, we profiled soluble PD-L1 and IFNy in 14
sequential liquid biopsies in plasma or serum of the TNBC index
patient and integrated results with the gene expression-based PD-L1
levels of the on-treatment sequential metastases (Fig. 4b). Of note
while following the dynamics of soluble and tissue-based PD-L1 and
IFNy at the time of major clinical responses, we observed that a sharp
increase in soluble PD-L1 in plasma provided a better proxy at tumor
progression to atezolizumab, indicating a mechanism of immune
evasion that was only captured as biomarker in the liquid biopsy.
Following clinical complete response, the levels of soluble PD-L1
declined, while IFNy levels increased, in line with a complete clinical
response to the administration of cisplatin plus gemcitabine.

Therefore, the quantification of T cell exhaustion status of each
metastasis based on immune checkpoint inhibitorymolecules and the
use of non-invasive soluble PD-L1 and IFNy levels guided the antitumor
immune evolution of the TNBC index patient during metastatic
progression.

Increased genomic complexity inmutation and neoantigenmay
trigger immune escape
To explore if an increase in the genomic complexity of metastases
contributes to a decline in antitumor immunity, we decomposed the
mutational repertoire and copy number alterations of the primary
breast cancer (P0-day 0), chest wall lesions (M0-day 373, M1-day 799,
M3-day 1687) and 20 parallel multiregion metastases affecting differ-
ent anatomical sites (day 2033) of the index TNBC patient. We inferred
the clonal structure and genomic subclonal heterogeneity of each
specimen with targeted sequencing and/or whole-exome sequencing
(WES) and observed inter-lesion heterogeneity within and between
primary breast cancer, early sequential chest wall metastases and
parallel multiregion metastases (Fig. 5a, Supplementary Fig. 5a).

We quantified the tumormutation burden (TMB) ofmetastases of
the TNBC index patient, defined as the number of non-synonymous
somatic mutations per megabase of interrogated genomic sequence,
and predicted putative neoantigens corresponding to expressed

Fig. 3 | Antigen-presentingmachinery and immune signaturesmapmetastases
revealing immune escape. a Unsupervised hierarchical clustering on gene sig-
natures across sequential and parallel multiregionmetastases. Gene expression for
immune cell markers is represented by normalized log2 counts. b RNA-seq based
CIBERSORT, which deconvolves 22 immune cells, was applied to both the index
case (M1-day 799 chest wall metastases and 17multiregion parallel metastases) and
the TNBC cohort (10 primary tumors, 42 multiregion metastases). Source data are
provided as a Source Data file. c Longitudinal monitoring of APM, IFNy signaling
and tumor proliferation signature scores, cytotoxic T cell (CTLs) abundance,
represented asper CD8T cells, Th1 cells, andNKcells gene expression scores. Gene
expression levels are represented by normalized log2 counts. An interferon-based
tumor inflammation signature (TIS)15 which integrates the IFNy signaling and APM
signatures, was contextualized across 113 primary TNBCs of the TCGA dataset73

(mean score 6.48). Gray dotted lines represent the median TIS score derived from
these primary TNBCs of the TCGA. Source data are provided as a Source Data file.
aPD-L1 anti-programmed death-ligand 1 monoclonal antibody, aPD-1 anti-pro-
grammed cell death protein 1 monoclonal antibody, CR complete response, d day,
M metastasis, PR partial response, PD progressive disease, Rec recurrence, SD

stable disease, TLR7 Toll-like receptor 7. d Immunophenotype status, defined by
IFNy signaling and APM signatures, mapped as inflamed (IFNy high, APMhigh), desert
(IFNylow, APMhigh/low), excluded (IFNyhigh, APMlow). The median value of APM and IFN
signatures relative to the immunophenotype distribution is defined as the cutoff
for the stratification. The blue line represents the linear regression and its 95%
confidence interval for the APM signature in function of the INFy signaling
expression. Source data are provided as a Source Data file. Representative micro-
graphs of inflamed, desert, and excluded tumors are shown below the immuno-
phenotype map to display a metastasis with a high level of immune infiltration
(inflamed), immune cell accumulation but not efficiently infiltrated (excluded),
low/absent level of immune infiltration (desert). Scans in 40× objective, scale bar
0.2mm in each IHC panel. e Spearman correlation matrix of HLA-related gene
expression profiles and number of imbalanced HLA class I alleles (0, 1, 2, and 3)
among 20 parallel multiregion metastases of the index case. Red color represents
positive correlation whereas blue represents negative correlations. Color intensity
and size of the circle are proportional to the correlation coefficients, which are
depicted in the legend to the right. Blank squares correspond to non-significant (p-
values > 0.05) correlations. Source data are provided as a Source Data file.
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mutations derived from cancer cells that may stimulate T cell immune
responses. Parallel multiregion metastases showed increased TMB
(median, 3.76 mutations/Mb) and neoantigen burden (NB, median, 69
neoantigens) as compared to earlier specimens (TMB: 2.52 and 3.51
mutations/Mb in M1-day 799 and M3-day 1687 chest wall metastases;
NB: 3 in P0, 1 in M0, 3 in M1, and 23 in M3 (range in all samples 1–151))
and relative to the TCGA TNBC8,20 primary cancers (1.7 mutations/Mb,
105 samples, p-value = 8.8e-8) suggesting acquisition of mutations and
neoantigens during metastatic TNBC evolution (Fig. 5a, Supplemen-
tary Fig. 5b).

Phylogenetic trees depicted the sequential and spatial clonal
evolution of the index TNBC patient and identified the driver muta-
tions in each branch (Fig. 5b). A frameshift mutation in TP53 (T256fs)
was found to be a truncal drivermutation present in allmetastases and
plasma cell-free tumor DNA samples. This mutation was validated
using deep targeted sequencing and digital PCR in selected tumors as
well as in plasma cell-free tumor DNA at different time points, from

diagnosis until death (Supplementary Fig. 5c). Two neoepitopes gen-
erated from TP53 T256fs mutation were computationally predicted
(RRPILTIINT for HLA-B*27:05, IINTGRLQW for HLA-C*02:02) and tes-
ted for their ability to give rise to functional T cell-mediated immune
responses in the tumor host.Wedesigned a set of 21 peptides based on
these two neoepitopes. Ex-vivo IFNy ELISpot assay using autologous
peripheral blood mononuclear cells (PBMCs) from day 2031 (48 h
before death) revealed this clonal driver mutation to generate bona
fide immunogenic neoantigen epitopes, with a specific 11mer (RRPIL-
TIINTG) being most immunogenic peptide (Fig. 5b). Notably, our
results demonstrate that the TP53 T256fs-specific T cell response in
peripheral blood was still present at the end of life of the patient when
the breast cancer was highly proliferative.

To define how increased heterogeneity can trigger immune
escape, we interrogated the time course ofmutations (Mutation Time)
relative to copy number gains using WES data and a molecular clock
analysis21 across the primary breast cancer (P0), the sequential (M0,
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Fig. 4 | T cell exhaustion score and soluble PD-L1 and IFNy follow the immune
evolution during metastatic progression. a Barplot showing quantification of T
cell exhaustionmetagene. The T cell exhaustionmetagene scorewas applied to the
specimens of the TNBC index patient (M1-day 799 chest wall metastasis, obtained
before treatment with an immune checkpoint inhibitor atezolizumab, and 17 par-
allel multiregion metastases) and the cohort of 10 TNBC patients (10 primary
tumors and 42 multiregion metastases) that have RNA-seq gene expression

available. Source data are provided as a SourceData file. b Longitudinalmonitoring
of soluble PD-L1 and IFNy as liquid biopsies (proteomic level) and in tissue (gene
expression scores). Clinical responses are depicted. Source data are provided as a
Source Data file. aPD-L1 anti-programmed death-ligand 1 monoclonal antibody,
aPD-1 anti-programmed cell death protein 1 monoclonal antibody, CR complete
response, d day, PR partial response, PD progressive disease, Rec recurrence, SD
stable disease, TLR7 Toll-like receptor 7.
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M1, andM3) and 20 parallel multiregionmetastases of the TNBC index
patient (Fig. 5c, “Methods” section).We considered somaticmutations
relative to clonal and subclonal copy number states to classify muta-
tions into 3 different time transitions: early, intermediate, and late (see
Methods).

The Mutation Time (T1.hisBeta) defined each sample’s molecular
time and was used to molecularly order sequential and parallel mul-
tiregion metastases. As expected, the primary breast cancer-P0, and
temporally earlier chest wall metastases (M0-day 373, M1-day 799, and
M3-day 1687) had an early Mutation Time, reinforcing the robustness
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of our analyses (Fig. 5c). A Molecular Time hierarchical clustering
analysis revealed two main branches (Fig. 5c). The first branch was
defined by samples with early Mutation and Chronological Time (i.e.
P0, M0-1). In contrast, the second branch represented a later origin,
including metastases classified as late with high Mutation Time. The
Mutation Time did not follow a linear, contiguous order per organ or
multi-tissue site, potentially skipping contiguous areas of the lung,
diaphragm, pericardium, mediastinal lymph nodes, or chest wall.
There was an enrichment of subclonal mutations in metastases clas-
sified as “late” as compared to “early” (p-value = 0.02; Fig. 5d). These
observations underscore the complexity of the evolutionary timeline
and the genomic diversity inherent in this TNBC index patient. Similar
chronological or molecular time origins exhibited varying genomic
landscapes, resulting in increased heterogeneity across tumors and
metastases.

We next explored the relationship of early and late neoantigens,
present clonally or subclonally, with immune surveillance and immune
escape. Therefore, we estimated the Neoantigen Time (T1.histBeta)
and stratified samples of the TNBC index patient into three time-scale
subgroups, referred to as neo-early, neo-inter, and neo-late (Fig. 5c, pie
charts). Among postmortem parallel multiregion metastases, neoan-
tigen heterogeneity varied, but showed a significant enrichment of
subclonal neoantigens in metastatic lesions classified as neo-late (p-
value = 0.0159; Fig. 5d). By contrast, early metastases in the chest wall
(P0, M0, M1, M3), inflamed postmortem (M17 and M18, Fig. 3d) and
specific lung cancermetastases (M6A,M6B,M8B, right lung;M10C, left
lung) had the fewest subclonal neoantigens and, hence, were classified
as neo-early (Fig. 5c).

Next, we integrated the three time-scale subgroups of Neoantigen
Time with key immune-related factors. Firstly, we observed a strong
negative correlation of T cell/TCR (Inverse Simpson diversity index)
with neo-late (r = −0.92, p-value = 0.0011, Fig. 5e), indicating the
adaptive T cell response,mounted to neoantigens exposure over time,
not to be sufficient to counteract subclonal neoantigens. At the
immune microenvironment, the immune exhaustion score negatively
(r = −0.60; p-value = 0.006, Fig. 5f) and positively (r = 0.67; p-value =
0.002) (Supplementary Fig. 5d) correlated with neo-early and neo-
late, respectively, suggesting late subclonal neoantigens to be present
in the context of a less immune-proficient microenvironment.

Secondly, we analyzed the antigen-presenting machinery and
observed a disrupted APM function, here represented by HLA imbal-
ance, to be negatively correlated with neo-early, indicating that
metastases with less capacity to present neoantigens appear later to
further drive immune evasion. Of note, neo-late negatively correlated
with APM (r = −0.48; p-value = 0.022) and IFNy (r = −0.58; p-value =
0.0044) from our immunophenotype (IFNy/APM) score, pointing to
metastases with subclonal neoantigens to be less proficient in pro-
voking an immune response (Supplementary Fig. 5e).

Thirdly, at the genomic level, we observed an increase in the
proportion of subclonal neoantigens among metastatic lesions classi-
fied as of neo-late metastases. The Shannon subclonal diversity index
negatively correlated with neo-early (r = −0.46, p-value = 0.034) and
with CD8 T cells inferred from the Cibersort gene expression analyses
(r = −0.44, p-value: 0.045). That indicates that a higher subclonal
diversity later on could be associated with a less effective cytotoxic
CD8 T cell responses.

Our analyses indicate that the dissemination of sequential to
parallel metastases posed more genomic complexity via increased
TMB and neoantigen subclonality. Specially, subclonal neoantigens
that appear later during the evolution of the disease showed immune
escape related to a less functional HLA machinery and an exhausted,
immune-excluded microenvironment. Metastases with similar mole-
cular time origins exhibited varying genomic and immune micro-
environment landscapes. This intricate relationship underscores the
need for precise molecular profiling and tailored treatments to
address the diverse aspects of cancer evolution.

Discussion
The major strength of our study lies in the continuous, deep mon-
itoring of the antitumor immune responses to breast cancer metas-
tases, highlighting the value of sequential andmultiregion sampling to
unravel the molecular timing and modes of immune escape.

We identified multiple immune escape processes, through the
integration of genomic, transcriptomic, proteomic, molecular clock,
and neoantigen analyses, complemented with immuno-histology and
single-cell and bulk TCR repertoires. Distinct from previous studies
showing independent mechanisms of immune escape at the genetic,
epigenetic, or gene expression levels across patients in single

Fig. 5 | Clonal architecture and Neoantigen timing of sequential and parallel
metastases of the index patient. a Clonal architecture and timing of sequential
and parallel metastases of the index patient. Bell plots showing the clonal com-
position and evolution ofmetastases in time and space. Clustering of mutations by
cancer cell fraction (CCF) among metastases was performed by PyClone-vi,
resulting in 9 clusters, where mutations in cluster 1 were inferred as clonal. The
clonal admixture inferred from each metastasis is represented. Source data are
provided as a Source Data file. Tumor mutation burden (TMB) (mutations per
megabase, M/Mb), the number of neoantigens and the Shannon subclonality index
are shown for chest wall tumors and parallel multiregion metastases. b TNBC
patient clonal history is shown by sequential (temporal) and spatial phylogenetic
trees, where the nodes represent the clones; branches represent evolution paths
(length scaled by the square root of number of clonalmarkermutations). Branches
are labeled with potential driver mutations, and clone nodes are labeled with
cluster identification. Source data are provided as a Source Data file. A frameshift
mutation in TP53 (T256fs) was characterized as a truncal drivermutation present in
all metastases. T cell reactivity against TP53 T256fs by IFNy ELISpot of PBMCs (day
2031) is shown. Thresholds for positive responses were determined as at least five
spots (50 SFC/106 PBMCs) after background subtraction. c Molecular clock hier-
archical clustering analysis depictingMutation Time (y-axis, defined by T1.histBeta)
for sequential P0 (primary), M0-day 373, M1-day 799, M3-day 1687 chest wall
tumors, and 20 parallel multiregion metastases. Histograms illustrate the dis-
tribution of event timing within these samples, categorized as early (lowest quar-
tile, Q25), intermediate (inter, Q25–75), or late (highest quartile, Q75) based on the
criteria detailed in themethods section. Source data are provided as a Source Data
file. Pie charts depict the distribution of the inferred Neoantigen Time: neo-early (%

neoantigens that appear early on), neo-inter, and neo-late (% neoantigens that
appear late on). d Violin plots of subclonal mutations among early, inter, and late
metastases, depicting the proportion of subclonal mutations (top) and subclonal
neoantigens (bottom), respectively. N = 24 biologically independent samples in
both the upper and lower panels, representing primary tumor, sequential, and
parallel multiregion metastases. Statistical analysis among groups made by one-
way ANOVA with Tukey’s test for multiple comparisons is shown. Boxplot limits
indicate the interquartile range (IQR; 25th–75th percentile), with a center line
indicating the median. Whiskers show the value ranges up to 1.5 × IQR above the
75th or below the 25th percentile with outliers beyond those ranges shown as
individual points. The color ofmetastases refers to the organ of origin. Source data
are provided as a Source Data file. e T1.hisBeta, used to define each sample’s
molecular time (i.e. Mutation and Neoantigen Time) and to order sequential and
parallel multiregion metastases, was negatively correlated to TCR Inverse Simpson
Diversity (Log 10) (p-value =0.0011). Pearson correlation test, two-sided, no
adjustments were made for multiple comparisons. P-value < 0.05 is considered
statistically significant. Source data are provided as a Source Data file. f Integration
of key immune and genomic parameters with Neoantigen Time. Spearman corre-
lation test, two-sided, matrix of key immune (exhaustion score, gene expression
immunophenotype, CD8 T cells, and cytotoxic cells) and tumor-related (HLA
imbalance, Shannon subclonality) parameters and Neoantigen Time among
sequential andparallelmultiregionmetastasesof the index case (N = 24biologically
independent samples). Red color represents positive correlation whereas blue
represents negative correlations. Color intensity and size of the circle are propor-
tional to the correlation coefficients, which are depicted in the legend to the right.
Blank squares correspond to non-significant (p-values > 0.05) correlations.

Article https://doi.org/10.1038/s41467-024-45292-1

Nature Communications |         (2024) 15:1302 10



specimens or spatial-temporal analyses8,22, our results demonstrate the
importance of sequential multiregion samples to unravel that the
immune responses against breast cancer are dynamic processes and
reveal multiple evolving and convergent genomic and immune
escaping mechanisms, even within a single individual.

Our results identify endpoint-reactive peripheral T cells with
shared TCR repertoire of earlier and, in a larger scale, late multiregion
tissue samples. The TCR repertoire, however, was evolving, showing
loss of diversity and convergent evolution as breast cancer progresses.
In this context, although T cells are expected to reach a dysfunctional
or exhausted state in tumor tissues23, we observed phenotypic diver-
sity of also cytotoxic states, inferred from single-cell analyses of per-
ipheral blood T cells sampled close to death. IHC analyses
corroborated the presence of CD8 and CD4 cytotoxic T cells through
the disease course but showed a steady decline over time until the
patient expired. Even close to death, the immune system appears to be
still mounting an adaptive immune response against synchronous
metastases while keeping T cell memory clonotypes against early
responding metastases at the periphery.

In line, a functional T cell response against the founder TP53
T256fs-derived neoantigen was confirmed, although the patient
evolved to a lethal phase, suggesting the specific response tobe unable
to halt tumor growth and progression. Because the presence of the
HLA-B*27:05 allele is required for presentation of the TP53 T256fs
neoantigen, its allele-specific imbalance across selected parallel
metastasesmight have enabled heterogeneous immune escape. Clonal
neoantigens represent key targets for neoantigen-based vaccines and
adoptive T cell therapies24,25. However, our findings suggest that the
efficacy of targeting clonal neoantigens for universal clinical responses
will depend on the degree of alternative immune escape mechanisms
in a given patient.

We also demonstrated that the gene expression signatures in the
IFNy signaling pathway and the APM mark progressing metastases
over time into inflamed, desert, and excluded phenotypes. Our mul-
tiassay orthogonal analysis at the bulk and single-cell gene expression,
genomic, and proteomic levels assisted in identifying the progression
of on-treatment sequential to parallel multiregion metastases with
exhausted/desert immunophenotypes and inefficient infiltration of
productive T cells. We demonstrated that co-occurrence of allele-
specific HLA class I imbalance, which was subjected to the selective
pressures of the immune microenvironment, along with down-
regulation of HLA processing machinery-related genes may have fur-
ther contributed to a heterogeneous immune escape in sequential and
parallel metastases.

Building on these observations, we developed a T cell exhaustion
metagene score composed of the most common immune checkpoint
inhibitory molecules. We then assigned primary, sequential, and mul-
tiregion metastases of the index patient and the extended TNBC
cohort to inflamed or excluded immune status during metastatic
progression. Furthermore, our multiplexed proteomic analyses tar-
geting PD-L1 and IFNy as key soluble immune proteins in plasma, as
compared to PD-L1 and IFNy gene expression signatures in tumor tis-
sue, contributed to the longitudinal monitoring in the index patient
and to better identify a potential pseudo progression to the immune
checkpoint inhibitor atezolizumab, before complete clinical response
to cisplatin-based chemotherapy was observed.

The dissemination of sequential to parallel metastases posed
more genomic complexity via increased tumormutational burden and
enriched subclonal neoantigens in late metastasis. We developed
Neoantigen Time to define the time course of neoantigens from the
diagnosis to the end of life, to understand their contribution to het-
erogeneity and immune escape. In our study, the evolution and
enrichment of subclonal neoantigen architectures revealed distinct
routes, molecular timings, and molecular signatures of multiregion
metastatic seeding, suggesting that progressive intra- and inter-

metastasis heterogeneity to be a driving force behind an attenuated
antitumor immune responses. Specifically, neoantigens that appear
later in the course of the disease correlated with a less functional HLA
machinery and deficient T cell activity and colder/exhausted immune
tumor microenvironments.

Our work has limitations, which mostly stem from the small
sample size and therefore lack of power to vertically detect associa-
tions acrosspatients. Nonetheless, analyzing a considerable number of
sequential and parallel multiregion specimens, allowed horizontal
integration to pinpoint simultaneous immune escapemechanisms in a
single-index patient with well-documented clinical responses to sys-
temic therapy. To address sample size limitations, we used an exten-
ded validation cohort of 11 TNBC patients with primary and
multiregion metastases, to confirm finding of the data-driven dis-
covery phase. Another limitation consists in the fact we have not used
integrated epigenomicdata ormicroenvironment analyses beyond the
immune TME to define alternative routes toward immune evasion, as
previously reported22.

Despite these limitations, we demonstrate that the interplay
between breast cancer metastases and host antitumor immunity are
concerted by distinct mechanisms of immune escape, even within the
same patient. Using spatio-temporal multiomics analysis, we report
that the tumor immune microenvironment shapes the evolution of
TNBC under selective pressures and dictates clinical responses by
promoting distinct and mechanistically convergent immune escape
processes. Strategies to enhance the efficacy of immunotherapy will
need to consider all the mechanisms of immune evasion in a single
patient.

Methods
Sample collection and processing
Written informed consent to publish clinical informationwas obtained
from the index patient and family under the research ethics committee
of the Dexeus Institute of Oncology, Quironsalud Group, Barcelona.
Research autopsywas performed under VHIOWarmAutopsy Program
protocols approved by the institutional review board (IRB) of Vall
d’Hebron University Hospital (Barcelona, Spain). All tissues, blood
samples, and images in this study were obtained with the approval of
institutional review board and patient´s and/or family´s consents.

A total of 112 specimens for the 12 patients were analyzed: 11
primary tumors, 15 on-treatment metastases, 18 serial blood samples,
and 66 postmortem metastases. We evaluated the matched normal,
primary tumor, sequential (longitudinal) archival, and frozen biopsies
and blood samples during 2033-day follow-up of the index TNBC
patient.

A rapid research autopsy was performed within 6 h of death by
F.T. and allowed the sampling of twenty synchronous parallel metas-
tases across five organs (lung, mediastinal lymph nodes, diaphragm,
pericardium, and chest wall skin). This dataset included a total of
56 specimens, including a primary tumor specimen from diagnosis, 15
on-treatment sequential chest wall skin biopsies, 18 serial blood sam-
ples (plasma, serum, or whole blood samples (germline DNA and
PBMCs)), 2 body fluids (ascitic and pleural) and 20 parallel multiregion
metastases.

Specimens, including tumor tissue, were stored immediately in
cryotubes in the autopsy room and then cryopreserved at −80 Celsius
degrees for further experiments. Hematoxylin and eosin-stained
tumor sections with cellularity percentage equal or higher than 10%
were used in downstream experiments.

RNA extraction for nCounter gene expression code set andRNA-
sequencing (RNA-seq) of the index patient
Total RNA was isolated from 10-μm-thick formalin-fixed paraffin-
embedded (FFPE) sections of 34 tumor samples with High Pure FFPE
RNA Isolation Kit (Roche), according to the recommendations of the
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manufacturer and quantified using fluorimeter with Qubit™ RNA XR
Assay Kit (Invitrogen). RNA of the primary tumor was extracted
directly from the archived slide-mounted FFPE tissue; this sample,
however, did not pass the quality control step after nCounter gene
expression analysis. RNA was extracted from 21 fresh-frozen tumors
using RNeasy Tissue & Blood kits (Qiagen) for RNA-seq.

DNA extraction of the index patient
DNA was isolated from 21 tumor and blood (germline) using DNeasy
Tissue & Blood kits (Qiagen). Circulating cell-free DNA was obtained
from 16 plasma samples using QIAamp ccfDNA/RNA Kit (Qiagen),
according to manufacturer’s specifications, and of these 9 passed
quality control, with minimum 10mg of DNA.

Peripheral Blood Mononuclear Cell (PBMCs) isolation of the
index patient
PBMCs were isolated from peripheral blood obtained 48 h before the
autopsy procedure using Ficoll-Paque density gradient (GE Healthcare
Bio) protocol prior to cryopreservation.

Fluorescence-activated cell sorting (FACS) of the index patient
PBMCs were stained using CD3-APC-Cy7 (Biolegend), CD19- BV421
(Biolegend) antibodies and Live/Dead fixable violet dead cell stain kit
(Thermofisher). CD3+ T cells were sorted using a BD FACSAria II (BD
Biosciences) (Supplementary Fig. 5g). 10,000 live CD19- CD3+ T cells
were used for Single T cell RNA and TCR Sequencing.

TCR variable beta chain sequencing
Sequencingof theCDR3 regions of humanTCRβ chainswasperformed
using the immunoSEQ® Assay (Adaptive Biotechnologies, Seattle, WA)
in 4 sequential on-treatment metastases and 5 parallel metastases of
the index patient.

Repertoire analysis and diversity estimations were performed
using immunArchwith the provided by immunoSEQ ANALYZER (v2)26.
To do a fair comparison and not biased the results by the varying
number of clonotypes on each sample, these analyses were done after
downsampling the number of clonotypes of all samples to 1000.
Repertoire sharing strongly depends on the size of the repertoire.
Downsampling has the goal to make data samples comparable and
avoid size effects26,27.

SingleT cell RNA-seq andT cell receptor (TCR) sequencingof the
index patient
Cell concentration and viability of the single-cell suspension were
verifiedusing a TC20™AutomatedCell Counter. Cells were partitioned
into Gel Bead-In-Emulsions (GEMs) by using the Chromium Controller
system (10X Genomics) aiming at a Target Cell Recovery of 10,000
cells. Single-cell Gene Expression (GEX) and T cell receptor (TCR)-
enriched libraries were prepared using the Chromium Single-Cell 5′ v1
Library and Gel Bead Kit (10X Genomics, Cat. N. 1000006) following
the manufacturer’s instructions. Briefly after GEM-RT clean up, cDNA
was amplified using 14 cycles.

cDNA quality control and quantification were performed on an
Agilent Bioanalyzer High Sensitivity chip (Agilent Technologies). Part
of the quantified cDNA was used for the Human T Cell enrichment
PCRs using the Chromium Single-Cell 5′ v1 Library Construction Kit
(10X Genomics, Cat. N. 1000020) and Chromium Single-Cell V(D)J
Enrichment Kit, Human T Cell (10X Genomics, Cat. N. 1000005) while
the other part was used in the GEX library preparation. Both libraries
were indexed by PCR using the PN-220103 Chromiumi7 Sample Index
Plate. Size distribution and concentration of 5’ GEX libraries and TCR-
enriched libraries, were verified on an Agilent Bioanalyzer High Sen-
sitivity chip (Agilent Technologies). Finally, sequencingwas carried out
on an Illumina NovaSeq 6000 sequencer to obtain approximately

40,000 reads/cell, in the case of GEX libraries, and 2000 reads/cell for
the TCR-enriched libraries.

Single T cell RNA-seq and TCR data analysis of the index patient
The transcriptomic profiles and TCR genotypes were analyzed from
each cell, in order to identify clonal immune cell populations within
complex cell mixtures. Sequencing reads were mapped to hg38
reference genome and quantified through CellRanger (v.3.1.0). All
downstream analyses were performed through Seurat suite (v.3.2.1)28

for R v4.0.0. A quality control on the cells was applied prior to
downstream analysis. Cells with <200 expressed genes, <1000 unique
molecular identifier (UMI) counts, or >10% of expressedmitochondrial
genes were excluded (likely degraded or broken cells). In addition,
cells with >5000 expressed genes or >40,000 UMI counts were
removed from the analysis to exclude potential doublets. Gene
expression counts were log-normalized and scaled by regressing out
gene counts and mitochondrial content. Degraded cells, which clus-
tered separately, were filtered out by analyzing mitochondrial gene
content (Supplementary Fig. 2a).

Cell clusters were identified in an unsupervised way using a
community identification algorithm implemented in the “FindClus-
ters” function (Seurat). Based on clustree optimization approaches29

and using signatures from literature, we identified 11 clusters. Default
setting was used with a resolution of 0.5. Cluster was annotated by
determining differentially expressed genes (DEG) based on Wilcoxon
rank-sum test. Cluster 6 displayed amixture of markers from different
cellular phenotypes. Therefore, we repeated the normalization, clus-
tering, and DEG process specifically for this cluster. With this
approach, we identified four subclusters that could be readily anno-
tated with previous described markers and that were integrated with
the initial clustering. TCR libraries weremapped to an enriched human
TCR reference with CellRanger (v.3.1.0). TCR clonotypes were
obtained from high-quality cells identified by CellRanger, containing
full‐length recombinant sequences and productive CDR3 chains.

Degree of expansion
The Inverse Simpson Index was used to compare the degree of
expansion across the samples. This value has been shown to be less
sensitive to differences in sample size than other measures.

Repertoire overlap
To compare thewhole set of TCR regions,wemeasure the overlapping
of public clonotypes by Morisita Index13. This index also takes into
account the information about the abundances in the number of
clones, giving amore realistic overlap thanothermeasures like Jaccard
Index30.

TCR Networks
To understand the evolution of T cell dynamics over time and between
parallel multiregion metastases, we performed a network analysis
using the TCRβ profiling of 4 on-treatment sequential chest wall
metastases (M0-day 373,M1-day 799,M2-day 1687,M3-day 1687) and 5
multiregion metastases sampled at autopsy.

The networks were generated using the Levenshtein distance, a
string metric for measuring the difference between two sequences.
The distance of 1 amino acid change was set up as the threshold of
similarity used to establish edges or connections in the network. Each
node of the network is a unique TCR sequence. An edge between two
nodes was created if the Levenshtein distance between the two
sequences is 1.

To quantify the overlap between the on-treatment sequential
chest wallmetastases and the parallelmultiregionmetastases, we used
three different metrics: network density, average clustering coeffi-
cient, and S metric. Network density describes the fraction of the
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potential connections in a network that are actual connections
between two nodes and shows how diverse a metastasis is (fewer
connections implies fewer similar sequences in a given sample). The
clustering coefficient, when applied to a single node, is a measure of
how complete the neighborhood of a node is. We applied these ana-
lyses to the entire network and calculated the average of the coeffi-
cients of all nodes. This metric quantifies how connected the clusters
or subnetworks are. Lastly, the S metric is defined as the sum of the
products of degree(u) * degree(v) for every edge (u,v) in the network.
The S metric measures the similarity of the network across each edge
and connectivity of the nodes.

Next, we performed a joined network analysis, including on-
treatment sequential chest wall metastases and parallel multiregion
metastases, to detect subnetworks unique/private to either on-
treatment metastases (yellow) or parallel multiregion metastases
(red), or shared subnetworks (purple).

Lastly, to validate the robustness and stability of the metrics, we
bootstrapped the samples by downsampling them to the number of
cells of the smallest time points (M1-2915 cells) and reproducing the
same analysis. This was done to reassure that the metrics do not
depend on sample size since the variance in the number of cells
between the samples is relatively big. The bootstrap was performed 10
times and showed that the metrics do not change significantly and do
not depend on sample size.

Immune cell type deconvolution
quanTIseq was used to quantify, via deconvolution of bulk RNA-seq
data, the proportions of ten different immune cell types and the
fraction of other uncharacterized cells present in the heterogeneous
sample31.

PAM50 inference
The 50-gene subtype predictor PAM50 was applied to 11 primary
TNBCs, 4 on-treatmentmetastases, and66postmortemmetastases10,11.

Cytolytic activity score
Cytolytic activity score was calculated as the geometric mean of the
GZMA and PRF1 expression levels from RNA gene expression data32.

Exhaustion score
A T cell exhaustion metagene score was developed based on a T cell
exhaustion molecular signature comprising the most common
checkpoint inhibitory molecules (PDCD1, LAG3, TIM3 (HAVCR2),
KLRG1, TIGIT, CD244, CD160, BTLA CTLA4, ENTPD1, CD160, ID2). The
T cell exhaustion metagene score is based on the weighted arithmetic
mean using the log fold-change of differentially expressed genes
between multiregion metastases versus primary tumors of Siegel
dataset10 as coefficient.

Whole-exome and RNA-sequencing
DNA whole-exome libraries from 23 tumors and one germline sample
were prepared with Agilent Human All Exon V6+COSMIC kit (Agilent)
following manufacturer’s instructions. RNA library preparation was
performed with TruSeq Stranded Total RNA Library Prep Gold kit
(Illumina) following the manufacturer’s instructions. DNA and RNA
libraries quality control were assessed with Bioanalyzer2100 (Agilent)
and further quantified by qPCR, normalized, and multiplexed into a
balanced pool. DNA-derived libraries were sequenced on an Illumina
HiSeqX platform (2 × 150 paired-end chemistry) and RNA-derived
libraries were sequenced on an IlluminaNovaSeq600platform (2 × 150
paired-end chemistry). Sequencing output of whole-exome sequen-
cing (WES) and RNA-seq per library yielded 15Gb (300×) and 200M
reads, respectively. Further, 3 sequential on-treatment tumor samples
were subjected toWES atMSK’s Integrated Genomics Operation33, and

analysis were also conducted using our validated bioinformatics
pipeline with the same parameters.

Data preprocessing, alignment, and mutation calling
For the samples sequenced and processed in IrsiCaixa-Spain: Burrow-
Wheeler Aligner (BWA) (v0.7.7-r441)34 was used to align sequences
with the latest genome assembly (GRCh38.p13)34. We called single
nucleotide variant (SNVs) and INDELs using the Best Practices Work-
flows of GATK (v4.1.2.0)35 using MuTect2 (v4.1.0.0)36 and added two
extra filters in the function FilterMutectCalls (a) min-allele-fraction
settled to 0.05 and (b) unique-alt-read-count to keep mutations sup-
ported by 10 or more reads. Somatic mutations were annotated using
Variant Effect Predictor (v96.3)37 and visualized using the Integrative
Genomics Viewer (IGV) (v2.3.52)38.

For the samples sequenced and processed in MSKCC-US: Reads
were aligned to the reference human genome GRCh37 using the
BWA (v0.7.15)34. The Genome Analysis Toolkit (GATK. V3.1.1)39 was
employed for local realignment, duplicate removal, and base qual-
ity recalibration. Somatic single nucleotide variants (SNVs) were
detected with MuTect (v1.0)36, indels with Strelka (v2.0.15)40, Vars-
can2 (v2.3.7)41, Scalpel (v0.5.3)42, and Lancet (v1.0.0)43. SNVs and
indels outside of the target regions were filtered out, as were SNVs
and indels for which the variant allele fraction (VAF) in the tumor
sample was <5 times that of the paired normal VAF, and SNVs and
indels found at >5% global minor allele frequency of dbSNP (build
137)44. Only somatic mutations with a depth ≥20 reads in the
respective normal samples were considered44. All mutations were
manually inspected using the IGV38. The cancer cell fraction (CCF) of
each mutation was inferred using ABSOLUTE (v1.0.6)45, as pre-
viously reported46,47. Mutations were cataloged as clonal if their
probability of being clonal was >50%48, or if the lower bound of the
95% CI of its CCF was >90%49. Copy number alterations and loss of
heterozygosity were determined using FACETS50. LiftOverVCF from
GATK39 [Q] was then applied to anneal all variants in the same
reference (GRCh38.p13).

Targeted massively parallel sequencing analysis
7 out of 16 plasma DNA samples included in this study that passed
quality control or had enoughDNA for sequencing and 2 tumor tissues
(Primary tissue andM0.1, sampled at D373) were subjected to targeted
sequencing using the FDA-authorized Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT) assay51, which comprises all coding regions and selected
intronic and regulatory regions of 505 key cancer genes. Non-
synonymous somatic mutations, amplifications, and homozygous
deletionswere retrieved from theoriginal study. The rawMSK-IMPACT
sequencing data (i.e. FASTQ files) were reprocessed using our vali-
dated bioinformatics pipeline47,52, for the inference of copy number
gains and losses, loss of heterozygosity of genes targeted by somatic
mutations, and mutational signatures. Mutations affecting hotspot
codons were annotated. Non-synonymous TMB was calculated as the
number of non-synonymous mutations divided by the total genomic
region assessed by MSK-IMPACT, per megabase.

Tumor mutation burden
TMB was defined as the number of non-synonymous somatic somatic
per megabase of interrogated genomic sequence (for Agilent 65Mb
and for Nextera, 37Mb). We analyzed the TMB estimations of TCGA
cohorts using the same approach as reported in previous papers53.

TMB and gene expression purity-adjusted
To analyze the impact of tumor purity obtained from Sequenza, the
TMB, gene expression profiles, and tumorpurities were assessed using
linear regression.
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RNA-sequencing data processing
FASTQ files of RNA-seq reads (paired-end) from tumor samples were
pre-processed with Trimmomatic (v0.27)54 to remove Illumina adapter
sequences, trim low-quality read ends, crop long-reads to a maximum
length, and discard short reads. Quantification of gene expression was
performed with Kallisto (v0.46.0)55 as transcripts per millions (TPM)56

and raw counts.

HLA typing
The 4-digit HLA class I and class II was called with the HLA-HD (v1.3.0)17

tools using the WES-sequencing reads from the normal sample. To
certify concordance, we compared HLA-HD calls of the normal sample
versus all tumor samples of the TNBC case and determined that there
was at least no two-digit HLA typing discrepancy between any normal-
tumor pair for the index case.

Neoantigen prediction
Whole-exome sequencing mutation calling, RNA-seq gene expression,
and HLA typing were integrated as part of the neoantigen prediction
pipeline. Tumormutations were used to generate a comprehensive list
of peptides (9–11 amino acids in length) with the mutated amino acid
represented at each peptide position and used as input for machine-
learning-based MHC-peptide binding predictors. For each non-
synonymous coding mutation from a tumor, we predicted its impact
specifically on the patient’s HLA class I binding using the standalone
version of the programs NetMHCpan-4.057 and NeoPredPipe(v.1.1)58.
All 9–11-mer peptides containing themutated amino acids were tested
for binding to the patient’s HLA-A, HLA-B, and HLA-C. A peptide was
defined as a neoepitope based on two criteria, namely predicted
binding affinity ≤500 nM and rank percentage ≤2% (default cutoff).
Expressed non-synonymous mutations and neoepitopes were defined
based on corresponding genes with normalized expression
levels ≥5 TPM.

IFNy ELISpot assay using ex-vivo PBMCs of the index patient
IFNy ELISpot assay (8.5 × 104 PBMC/well) was performed to assess T
cell antitumor immunity to neoantigens, using T cells expanded with
IL-2 supplementation (50 IU/mL) for 15 days from cryopreserved iso-
lated PBMC59. The stimuli was a set of 21 peptides (9, 10, and 11 mers)
covering all positions of the TP53 T256fs mutation60,61. The magnitude
of the response (spot forming cells (SFC) per 106 PBMC) was recorded.

Shannon–Wiener diversity index
We defined Shannon–Wiener diversity index to characterize the sub-
clonal diversity of metastases as

H= �
Xs

i= 1

ðpilog2piÞ ð1Þ

where s is the number of clonal clusters and pi is the proportion of the
community represented by that cluster.

Analysis of Mutation and Neoantigen Time
For the Mutation and Neoantigen Time analyses, and for each
tumor sample, somatic events can be timed relative to one another
with different certainty. Subclonal events occur in a subpopulation
of cells, and thus occur at a later point in tumor development than
clonal events, which occur in all cancer cells in the sample popula-
tion. The likelihood that an event is clonal or subclonal was con-
sidered. We timed somatic mutations relative to clonal and
subclonal copy number states and calculated the relative timing of
copy number gains using the R package MutationTimeR (v1.00.2)21,
ran with default parameters.

This method calculates the Mutation Time for each somatic
mutation based on the relative copy number state for the location of

the variant. Time is measured as a fraction of point mutations; this is
termed Mutation Time. Mutation Time is proportional to real-time if
the number of mutations acquired per bp and per year is constant21.

We adapted the MutationTimeR algorithm, used in WES data,
performing timing of mutations relative to gains to classify mutations
in 4 different timing stages as clonal early, clonal not specified, clonal
late, and subclonal.

These4 states produce 3different time transitionswe analyzed: (i)
early (ie., clonal early, lowest quartile of the time-scale) referred if the
mutation occurred preceding or after the copy number gains, (ii)
intermediate (ie. clonal late, clonal not specified, intermediate quar-
tiles) referred if themutation occurred after the copy number gains or
if the mutations are present in all tumor cells, and (iii) late (ie., sub-
clonal, top quartile) referred if the mutations are present only in a
fraction of the tumor cells.

Therefore, we calculated Neoantigen Time akin to Mutation Time
and fitted each metastasis into one of three categories, defined based
onwhether they represent early asdefinedby the lowest quartile of the
time-scale, inter (intermediate quartiles), late (top quartile) events in
breast cancer evolution.

The value of T1.hisBeta was calculated from the mode of the first
copy number gains time and defined each sample’s molecular time
(aka Mutation and Neoantigen Time) and ordered parallel multiregion
metastases. The dendrogram was constructed using the ‘clustermap’
function from the Seaborn62 library in Python, which executes hier-
archical clustering. In this analysis, timed copy number variants
derived from MutationTimeR served as the input dataset and default
function parameters.

Analysis of clonality and reconstruction of clonal evolution
We used Sequenza(v3.0.0)63, PyClone-VI(v0.1.0)64, and ClonEvol
bioinformatic65 tools to determine the clonal ordering and clonal
evolution models for the synchronous metastases. For each case,
variant calls were integrated with local allele-specific copy number
(obtained from Sequenza), tumor purity (also obtained from
Sequenza), and variant allele frequency. All mutations were then
clustered using the PyClone-VI allowing for up to 10 clusters (clones)
out of 15 tested to best fit the evolutionary model of ClonEvol, using a
binomial distribution, performing 1000 random restarts and 100,000
iterations and remaining parameters set as default. Clusters were
inferred based on their mutation variant allelic fraction in order to
identify founding clones and subclones across all metastases. Subse-
quently, we applied ClonEvol65 to infer clonal evolution models,
ignoring one cluster with no variability across samples, and set to
default parameters.

Droplet digital PCR (ddPCR)
The QX200 Droplet Digital PCR (ddPCR™) System (Bio-Rad Labora-
tories, Hercules, CA) was applied to chest wall biopsies and liquid
biopsies of the index case to detect the clonal TP53 T256* frameshift
variant and corresponding wild-type alleles. Two nanograms of DNA
per sample were used for digital PCR analysis. The 20μL final volume
of TaqMan PCR reaction mixture was assembled with 1× ddPCR
Supermix for Probes (no dUTP), custom primers/probes assay for
target (FAM) and wild-type (HEX) (900 nM of each primer, 250nM of
each probe) and 2 ng of genomic DNA templates (8μL). Each assay
(TP53 T256* frameshift) was performed in separate mixes and loaded
96 well plate. The generated droplets were thermal cycled with the
following conditions: 5min at 95 °C, 40 cycles of 94 °C for 30 s, 52 °C
for 1min followed by 98 °C for 10min (Ramp Rate 2 °C/s). After PCR,
droplets were read in the Droplet Reader for fluorescentmeasurement
of FAM and HEX probes and analyzed with QuantaSoft version 1.7.4.
Mutation Allele Frequency was calculated as follows: MAF = (Nmut/
(Nmut +Nwt)), whereNmut is the number ofmutant events andNwt is
the number of WT events per reaction. The ddPCR analysis of solid
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tumor DNA template and no DNA template were included as positive
and negative controls, respectively. Only samples with >10,000 dro-
plets were accepted as valid. Samples in clinical time points of low
tumor burden were done in duplicate.

Sequential-parallel tumor gene expression profiling of the index
patient
50 ng of total RNA isolated from sequential biopsies (n = 13) (12 FFPE
sections and 1 fresh-frozen) andmetastases (n = 19) taken at autopsy
were successfully hybridized to the code sets of NanoS-
tring®PanCancer Immuno-Oncology IO 360 Panel (770 genes),
according to the recommendations of the manufacturer. The
hybridized samples were run on the NanoString nCounter Pre-
paration Station and scanned on the NanoString nCounter Digital
Analyzer. The nSolver analysis package was used for quality control
measures, log2-transformed data normalization, and gene expres-
sion profiling (GEP) analysis. Immune-oncology signature scores
were obtained with nCounter using algorithms that summarizes a
combination of expressed genes, which were computed after nor-
malization to 10 housekeeping genes. The NanoString® PanCancer
BC v2 360 Panel (776 genes) was applied and used to infer TNBC
subtypes.

HLA class I LOH
To determine whether maintenance or loss of HLA were present in
multiregion metastases, we used LOHHLA11,16 applying default settings
to determine allele-specific copy number of HLA locus. At each het-
erozygousHLA locus in germline, LOHwas inferred if the copy number
for one of the two alleles was below 0.5 and log copy ratio difference
between the two alleles was statistically significant (PVal_unique
<0.05). Allelic imbalance is determined if p < 0.01 using the paired
Student’s t-test between the pairwise difference in logR values at
mismatch sites between the two HLA homologs, adjusted to ensure
each sequencing read is only counted once.

Histopathological and immunohistochemistry assessment
Tumor cellularity, extent of TILs, CD3, CD4, CD8 in TILs, and Ki67 in
tumor cells were assessed by pathologists (FT, TV, and FP). Tumor
cellularity was assessed by histologic examination of hematoxylin and
eosin (H&E) stained slides based on the percentage of the tumor area.
Extent of TIL infiltration was evaluated following the guidelines put
forward by the TILWorking group66. In brief, TILs were reported for the
stromal compartment (=% stromal TILs; i.e. area occupied by mono-
nuclear inflammatory cells over total intratumoral stromal area). IHC
staining forCD3using thecloneLN10wasperformedon theLeicaBond-
3 auto staining system (Leica, Deerfield, IL, ready-to-use [1 ug/mL]),
using heat-based antigen retrieval, a high pH buffer solution (AR9640;
Leica, Bond Epitope Retrieval Solution 2), and a polymer detection
system (DS9800; Leica, Bond Polymer Refine Detection). CD3 was
reported as the area occupied by CD3+ cells over the total intratumoral
stromal area67. IHC for CD4 and CD8 was performed using the clones
SP35 and SP57, respectively, both manufactured by Ventana (Tucson,
AZ, ready-to-use). The evaluation was carried out according to the
percentage of cytoplasmic positivity expression. Absolute counting of
positively stained cells was performed as evaluation criteria to assess
IHC for CD4 and CD8 markers68. Staining was blinded assessed by an
experienced breast cancer pathologist (FT). PD-L1 expression was
assessed by IHC using Ventana SP142 assay (dilution 1:50; Spring
Bioscience,USA). Immune cells infiltrating tumorswithpositive staining
rate ≥1% were classified as PD-L1-positive. IHC for Ki67 (ready-to-use,
Ventana, anti-Ki-67 (30-9)) was performed automatically using an IHC
autostainer (BenchMark® XT, Ventana Medical Systems, Inc.). The
Ki67 score was calculated obtaining the percentage of positive tumor
cells among the total number of tumor cells in each tissue section69.

Multiplexed proteomics assessment
For the index case, 35 specimens were subject to multiplex
Proximity Extension Assay (PEA) using an immuno-oncology tar-
geted protein panel (Olink Proteomics, Uppsala, Sweden)70,71. This
comprised 16 body fluids: 14 on-treatment samples (n = 11 serum,
n = 3 plasma); 2 postmortem samples (n = 1 ascitic fluid, n = 1
pleural fluid), and 19 protein lysates derived from multiregion
metastases taken at the research autopsy procedure. Briefly, 92
oligonucleotide-labeled antibodies bind to the targeted protein
and if the two oligonucleotides are in close proximity, a PCR
target sequence is formed by a proximity-dependent DNA poly-
merization event and the resulting sequence is subsequently
detected and quantified using real-time PCR. The immunoassay
was performed using 1 μL of each sample, which were randomized
to avoid batch effects. Detection and quantification were per-
formed by real-time PCR. Each PEA measurement has a specified
lower detection limit (LOD) calculated based on negative controls
that are included in each run and measurements below this limit
were removed from further analysis. Multiplex data were repor-
ted in NPX (Normalized Protein Expression) levels, which are Ct
values normalized by the subtraction of values for extension
control, as well as an interplate control. The scale is then shifted
using a run-time specific correction factor (normal background
level). The relative quantification of proteins was expressed as
NPX (Normalized Protein Expression), an arbitrary unit on
log2 scale.

Statistics
Statistical analyses were performed using R v.3.2 and higher. Before
applying the correlation test, we analyzed whether the samples
exhibited a normal or quasi-normal distribution based on a
quantile-quantile plot and supported by the Shapiro–Wilk test, the
absence of outliers, and the presence of a linear relationship
between them. If all three assumptions were met, we applied the
Pearson correlation test; otherwise, we applied the Spearman cor-
relation test. This approach was consistent for all correlation ana-
lyses we conducted.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study (whole-exome sequencing and RNA-
seq of tumor specimens, plus single-cell RNA-seq and single-cell
TCRseq of peripheral blood T cells) have been deposited in the Eur-
opean Genome-Phenome Archive (EGA), under restricted access to
protect patient information, under the accession code
EGAS00001004956. Access will be granted by application to the Data
Access Committee (DAC, EGAC50000000074) with responses
addressed within 14 working days. Access will be granted for appro-
priate use for researchers and will be governed by the provisions laid
out in the associated informed consent for each cohort or collection,
and the terms contained in the Data Access Agreement. Further DNA
and RNA-seq data used in this study are publicly available in the NCBI’s
genotypes andphenotypes database (dbGaP) under accession number
phs000676.v1.p110 and the EGA database under accession code
EGAS0000100270311. The remaining data are available within the
Article, Supplementary Information or Source Data file. Source data
are provided with this paper.

Code availability
The computational scripts to process the data and plot figures are
available here https://doi.org/10.5281/zenodo.1035974072.
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