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A sequence-aware merger of genomic
structural variations at population scale

Zeyu Zheng 1, Mingjia Zhu1, Jin Zhang1, Xinfeng Liu1, Liqiang Hou1, Wenyu Liu1,
Shuai Yuan1, Changhong Luo1, Xinhao Yao1, Jianquan Liu 1 &
Yongzhi Yang 1

Merging structural variations (SVs) at the population level presents a sig-
nificant challenge, yet it is essential for conducting comprehensive genotypic
analyses, especially in the era of pangenomics. Here, we introduce PanPop, a
tool that utilizes an advanced sequence-aware SV merging algorithm to effi-
ciently merge SVs of various types. We demonstrate that PanPop can merge
and optimize themajority ofmultiallelic SVs into informative biallelic variants.
We show its superior precision and lower rates of missing data compared to
alternative software solutions. Our approach not only enables the filtering of
SVs by leveragingmultiple SV callers for enhanced accuracy but also facilitates
the accurate merging of large-scale population SVs. These capabilities of
PanPop will help to accelerate future SV-related studies.

Structural variations (SVs) are integral to genome evolution and
function1, encompassing a wide size range from 50 base pairs to
megabases2. The emergence of advanced sequencing technologies has
resulted in the generation of vast volumes of data, fueling the growing
interest in SV research, especially within the dynamic landscape of the
pangenomics era3,4. Amidst these research pursuits, a key challenge
lies in the accurate identification of SVs in both individual genomes
and entire populations, enabling the precise interpretation of SV-
related information.

Several tools have been developed to detect structural variations
(SVs), each possessing distinct advantages owing to their diverse
methodologies5–8. While raw sequencing data theoretically hold
information about all SVs, achieving accuracy necessitates a higher
sequencing depth. Conversely, assembly data produce more precise
results, but they may only capture SVs partially due to collapses or
misassembly in heterozygosity region. Consequently, merging the
outcomes of multiple SV callers proves advantageous, as it combines
their strengths and yields a more accurate and comprehensive set of
SVs for each individual. Furthermore, the investigation of SVs at the
population level is gaining momentum, and the amalgamation of
individual SVs into population-scale data is a crucial step9–11. Several
software solutions are available for merging SVs based on position
(Supplementary Table 1), such as SURVIVOR12 and bcftools13. However,

these tools often encounter difficulties when handling different
sequences of insertion/deletion in the same reference position, and
they may mistakenly treat identical SVs in repeat regions as multiple
SVs14,15. Recently, there have been advancements in software that
consider both the sequence similarity and position of SVs, like
Truvari16, Jasmine8, and SVanalyzer13, which have greatly improved the
accuracy of SVs merging. But when faced with SVs that partially
overlap, these tools typicallymerge them into a single SV or treat them
as complex multi-allelic SVs based on sequence similarity, which may
result in the loss of important information or may be unsuitable for
downstream analyses15–17. Furthermore, in this era of cluster comput-
ing, most of these software are designed for single-node and single-
thread execution, which poses a challenge when dealing with a large
number of samples for population SV merging. Therefore, achieving
accuracy and efficient merging of SVs at the individual-scale with
multiple callers or at the population scale remains a challenge15.

To tackle these challenges, we have developed PanPop, a SVs
merging toolkit that effectively handles combined SVs fromdiverse SV
callers or multiple individuals. PanPop takes into account both the
positional and sequence similarities of SVs and introduces an approach
to splitting SVs based on sequence-aware alignment. This enables
PanPop to effectively handle complex SVs, resulting in a greater
number of bi-allelic variants available for further analyses. PanPop
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exhibits high precision and delivers great performance in SV merging
tasks, showcasing its versatility for both individual and population-
scale datasets.

Results
Overview of PanPop pipeline
The central component of PanPop is a crucial process called PART
(PAnpop Realign and Thin), which employs a sequence-aware SV local
realignment method to resolve overlapping SVs, particularly reducing
multi-allelic SVs into biallelic forms. PART consists of five steps: realign
group, rebuild consensus sequences, alignment, SV integration, andSV
thinning (Fig. 1a). During the realign group step, SVs that overlap or are
in close proximity (with a default adjacency threshold of 200 bps) are
grouped based on their positions. Subsequently, the rebuild sequen-
ces step retrieves the sequences of each realign group based on the
mutation information inVariant Call Format (VCF)files and anSVparse
process. During this process, if an individual contains multiple SVs
within a realign group, each SV is treated as unique. The alignment
process employs sequencealigners (MUSCLE18, FAMSA19, or stmsa20) to
generate multiple sequence alignment results. MUSCLE is selected for
short sequences (<1000 bp), while FAMSA or stmsa is used for longer
sequences. The SV integration step involves dividing the alignment
into distinct blocks along the reference sequence, where each block

represents the unaltered status across different samples. Blocks dis-
playing consistent alignment (without SVs) are eliminated, and only
the remaining blocks are classified as new SVs. It is important to note
that despite insertions of varying lengths altering the alignment status
in different samples, they are classified as a single SV since we divide
the alignment based on the reference sequence. Finally, the SV thin-
ning process reduces multi-allelic SVs to biallelic ones based on their
similarity. If two allele sequences share at least 60% of their bases and
have a difference of less than 20bp, they are considered the same
allele. The remaining alleles are clustered intodistinctgroups using the
MCL algorithm21, with each group treated as a unique allele, and the
alleles within each MCL group are merged together.

It is worth noting that PART is a relatively independent module
specifically designed to handle the merging of different SV datasets in
VCF format. All parameters can be easily and flexibly configured
through the config file. In addition to utilizing PART for SV merging,
the PanPop pipeline incorporates SV calling and filtering steps to
integrate the entire process, starting from reads or assemblies and
leading to the final individual or population SVs. For long sequencing
reads, Minimap222 (or alternatively, NGMLR23) is employed to map
them onto a reference genome. This is followed by four commonly
used SV callers (Sniffles23, cuteSV5, svim24, and pbsv) for SV identifica-
tion. If an assembly is present, it is alignedusingMinimap2, and SVs are
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Fig. 1 | Schematic diagram and individual level SV merging performance of
PanPop. a Detailed workflow of PanPop’s key process, PART. Different colors
represent different sequences or SVs (Del for deletion, Rep for repeat, Ins for
insertion). In the upper three partitions of the diagram, thick lines with different
colors indicated different sequences, with Rep, Ins1, and Ins2 initially being colli-
near. The thin gray line indicated a gap after alignment. The last two parts of the
diagram illustrate the allelic state of SVs after SV integration; For example, the SV2
initially has three different alleles. However, during the thin process, it is merged
since the allelic sequence for sample S2 is very similar to that in sample S3.
b Performance evaluation of 12 SV mergers in calling and merging simulated SVs,

assessed by recall (x-axis), precision (y-axis), and F1 score (F1, dashed line). Circles,
squares, and triangles represent SVs supported by at least one (unfiltered), two, and
three (filtered) SV callers for SVmerges, respectively, while SV callers weremarked
as asterisks. SV mergers and callers are represented using different colors, line
types, and shapes. c Distribution of sequence similarity among merged SVs from
two SV callers and four SV mergers with F1-score higher than 0.9. Note that for SV
mergers, only filtered SVs (SVs supported by at least two SV callers) were used and
excluded SVIM-asm, which had an F1-score of 1. Source data are provided as a
Source Data file.
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called using SVIM-asm25 (Fig. 2a). For short sequencing reads com-
monly used in population-level analyses, the VG toolkit26 is employed
for alignment to the graph-genome (pan-genome) reference and SV
calling (Fig. 2b).

The PART method is applied twice to merge SVs from different
callers, either for individual analysis or for multiple individuals within
large populations. In the case of individual SV filtering, only SVs sup-
ported by twoormore SV callers are retainedwhenmultiple callers are
utilized. For the population-level SV filtering, referred as “fill-depth
information”, depth information is extracted from themapping file for
each SV in each sample and combined into themerged VCF file. During
this process, SVswith abnormal depth are soft-masked to ensure result
accuracy15,27. Additionally, although optional, it is recommended to
filter SVs based on the maximum missing rate to obtain a final set of
refined population-scale SVs. We also provide tools for aggressively
thinning SVs by removing low-frequency alleles, resulting in a set of
predominantly bi-allelic SVs.

Evaluation of the accuracy of single individual among multiple
approaches
To assess the performance of the PanPop pipeline, we conducted an
evaluation that involved analyzing its ability to merge individual-level
SVs using both simulated and real long-sequencing data. The software
versions and detailed parameter usedwere available in Supplementary
texts. Initially, we employed five SV callers to identify SVs, and then
compared the results obtained using PanPop with those from nine
other SV mergers. For the simulated Arabidopsis thaliana data, the F1-
scores of the five SV callers ranged from 0.81 to 1.00, with variable
recall and precision rates (Figs. 1b and 3d, Supplementary Data 1). The
SVIM-asm achieved an almost perfect score in this simulation dataset.
However, after merging without any filtering, the 12mergers exhibited
relatively low F1-scores, primarily due to low precision (Fig. 1b, Sup-
plementary Figs. 1a and 2). Consequently, filtering was necessary. We
tested the SVs that were supported by at least one or more callers and
observed that the precision rate increased with the number of sup-
porting callers, while the recall rate decreased significantly (Figs. 1, 3,

4). As a result, the strategy of requiring support from at least two SV
callers yielded the best F1-score and we adopted this as the default
parameter for subsequent analyses.

After applying filtering, both software programs demonstrated a
significant increase in F1-score and precision rate, particularly with
PanPop, Truvari and SVanalyzer achieving the highest F1-score,
exceeding 0.93 (Fig. 1b, Supplementary Fig. 1a, Supplementary Fig. 2).
To further assess accuracy, we calculated the similarity between the
simulated SVs and the SVs identified by the 12 mergers and five SV
callers (Figs. 1c and 3a). We found that PanPop identified a high pro-
portion (83.3%) of high-similarity (≥98%). In comparison, the best two
SV callers and three other mergers only showed proportions ranging
from 25.4% to 79.6% of high-similarity SVs (excluding SVIM-asm, which
had an F1-score of 1) (Fig. 1c). We also assessed the distribution of SV
lengths, and found that PanPop exhibited a high degree of similarity
(Fig. 3b, c). Collectively, these findings demonstrate that merging SVs
can greatly improve accuracy, with PanPop delivering the best per-
formance. Additionally, we evaluated the performance of PanPop
using true data of high-confidence SVs in human HG002, and the
results were mostly consistent with those from the simulated dataset
(Fig. 4, Supplementary Fig. 1b). The F1-score of SVanalyzer was slightly
higher thanPanPop (0.958 vs0.954), whichmaybe attributed to the SV
split strategy of PanPop, making benchmarkingmore challenging. The
recall rate of SVIM-asm also decreased to 70% as the complexity of
genomics increased. Moreover, the genotype accuracy of PanPop was
significantly higher than that of SVanalyzer and Truvari, with values of
0.979, 0.463, and 0.920, respectively (Supplementary Data 2).

Evaluation of the performance in the population-scale SV
merging
We proceeded to assess the merging performance of population-scale
SVs using twodatasets ofA. thaliana: 86 sampleswith long sequencing
read and 1092 samples with short sequencing read. For population
merging, it was necessary for the merger to generate genotype infor-
mation for each individual to facilitate subsequent analyses. Therefore,
out of the 12 mergers evaluated, only PanPop, SURVIVOR, bcftools,
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Truvari, and sv-mergerwere utilized. In the case of the long-sequenced
dataset, SVs were identified by 5 SV callers and filtered by requiring
support from at least 2 callers for each individual before merging all
individual information into the population-scale. We initially evaluated
the results based on the proportion of missing genotypes, as high
missing rates are deemed meaningless in population analyses. The
proportion of mutations with a missing rate exceeding 30% was 8.2%
for PanPop, 62.2% for SURVIVOR, 78.1% for bcftools, and 99.7% for
Truvari (Fig. 5a, Supplementary Fig. 3a) when merging 86 samples
using the dataset filled with information of non-mutation samples by
PanPop. When using the raw dataset generated by SV callers, the
missing rate was exceedingly highly, exceeding 97% for each of these
four SV mergers. The high missing rate of the raw dataset made it
unsuitable for subsequent analyses, especially for bcftools andTruvari,
primarily because their merging strategy involved nearly lossless bulk
combinations of allmutationswithout processing (Figs. 5f and6f). This
distinction became more pronounced when merging 1092 samples
(Fig. 6a). The lower missing rate of PanPop can be attributed to the
PART algorithm and the “fill-depth information” process. However,
when applying a data source after ‘fill-depth information’ process by
PanPop, the missing rate of SURVIVOR and bcftools greatly dropped

but was still considerably higher than that of PanPop (Fig. 5a, Sup-
plementary Fig. 3a). Alongside the missing rate, the proportion of
biallelic SVs is also crucial, since multi-allelic SVs are challenging to
utilize in subsequent population genetics analyses.We discovered that
approximately 400k SVs (89.0%) were biallelic when merged by Pan-
Pop, with only a slight change after filtering out sites with more than
30%missingdata (Fig. 5f). This count andpercentagewere significantly
higher than those of SURVIVOR and bcftools after filtering. This dis-
tinction was also more prominent when merging 1092 sam-
ples (Fig. 6f).

We proceeded to further benchmark SVs by comparing them
before and after populationmerging. Since PanPop splits complex SVs
into several smaller SVs, we reassembled those small SVs before eva-
luation. Regardless of the missing rate, bcftools achieved the highest
F1-score (nearly 1) because it simply combined all SVs. PanPop also
performed well, with an average F1-score of 97.5% and a recall rate of
99.0%. However, SURVIVOR only had a recall rate of 69.4% and an F1-
score of 73.0% (Fig. 5d). After filtering SVs with a maximum missing
rate of 30% (where a maximum of 30% of samples had missing geno-
types for each SV), the performance of bcftools, Truvari and SURVI-
VOR underwent significant changes. The F1-score of bcftools and
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(Upper, filtered SVs). Red, ultramarine, and blue bars represent SV types of inser-
tion, deletion, and other, respectively. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-024-45244-9

Nature Communications |          (2024) 15:960 4



Truvari nearly dropped to zero due to the high missing rate, while
SURVIVOR’s F1-score was greatly reduced to an average of 19.7%.
However, due to its lowmissing rate, PanPop still achieved an F1-score
of 95.4% (Fig. 5c). We also compared PanPop with the other two soft-
ware programs capable of performing population-scale merging,
namely sv-merger (Supplementary Note 1) and Sniffles2 (Supplemen-
tary Note 2), and found that their performance was not as good as
PanPop (Supplementary Figs. 4 and 5). Considering the anticipated
increase in sequencing data volume in the future, a large number of
samples will be analyzed. Therefore, we used 1092 short-sequenced
samples as a replacement to evaluate large-scale population SV mer-
ging. The VG toolkit was selected to align reads and call SVs, using the
graph-genome generated by the 86 long-sequenced samples as the
reference. The benchmark results of the four SV mergers were similar
to those of the 86 samples, with PanPop demonstrating the best per-
formance (Fig. 6, Supplementary Fig. 3b).

Discussion
Despite the advancements made in detecting structural variations
(SVs) using various SV callers and mergers, accurately combining
SVs still poses a challenge15. This results in a fragmented SV analysis
workflow and the possibility of introducing unnecessary errors28. In
this study, we have developed the PanPop pipeline, which incorpo-
rates a sequence-aware merging algorithm named PART. This algo-
rithm allows for the merging of SVs at both the individual and
large population scales, while maintaining high-accuracy genotype
information.

In addition to combining SVs from individual samples, we
observed distinct behaviors among 12 SVmerger tools and 5 SV callers.
SVIM-asm achieved nearly perfect results for the simulated dataset of
A. thaliana but its performance was mediocrity for the real HG002
dataset (Figs. 1b and 4c). This difference can be attributed to the
simplified conditions present in the simulated dataset, which lacked
SNPs and InDels and only contained homologous SVs. When con-
fronted with more complex SV scenarios, assembly-based strategies
like SVIM-asm exhibited a significant decrease in accuracy. Similarly,
Truvari performs well on the simulated dataset but poorly on the real
dataset (Figs. 1b, 4c). Considering its subpar performance in
population-scale SV merging as well, we believe that Truvari is better
suited for merging simple and highly consistent SVs and may struggle
with partly overlapped SVs, similar to the performance of bcftools
(Figs. 5d and 6d). On the other hand, SVanalyser showed excellent
performance for both the simulated and real HG002 datasets (Figs. 1b
and 4c), but it lacked the capability for population-scale merging.

When it comes to population-scale SV merging, the PART algo-
rithm implemented in PanPop demonstrated significant advantages in
terms of format/software compatibility and performance. Since most
SV mergers struggle to merge SVs while preserving genotype infor-
mation, we tested five SV mergers (PanPop, SURVIVOR, bcftools,
Truvari and sv-merger) and along with Sniffles2, which is an SV caller
that can only utilize its own individual results. The presence of
extensive SV differentiation among samples posed a significant chal-
lenge for SVmergers, and both bcftools and Truvari failed to handle it
(Figs. 5d and 6d). Instead of merging a large number of overlapping
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SVs, these programs stacked them, resulting in a high missing rate
(Figs. 5f and 6f). In addition, our tests revealed limitations in the simple
position-only merging algorithm employed by the widely used SUR-
VIVOR, which resulted in the lowest precision rate among five SV
merges (Figs. 5d and 6d). By incorporating a “Pre-clustering” algo-
rithm, sv-merger achieved decent performance, closely resembling
that of PanPop (Supplementary Fig. 4). However, sv-merger is unable
to split large complex SVs into smaller, simpler SVs, and it requires
complex transformations to be used effectively. Some SV callers, like
Sniffles2, also support population-scale multi-sample SV calling.
However, Sniffles2 introduced a specific format to store genotype
information from each sample, making the merging process less uni-
versally applicable. Leveraging this advantage, Sniffles2 is the only SV
merger that fills in the information of non-mutation samples, which is
crucial for subsequent genomic analyses (Supplementary Fig. 5).

We acknowledge that PanPop requires more computational
resources (CPU time andmemoryusage, Supplementary Table 2 and 3,
SupplementaryNote 3) compared to other software. This ismainly due
to the sequence-aware alignment process, which improves accuracy
and the fill-depth-information processwhile reducing themissing rate.
However, PanPop was designed as a multithreading software capable
of handling large volumes of data. With sufficient computational
resources, PanPop can significantly reduce the overall elapsed time
and provide themost accurate and applicable results. In summary, our
developed PART algorithm demonstrates high-performance SVmerge
for any source of SVs, regardless of the number of SV callers used,
whether ina single individualor a populationwith sample sizes ranging

fromhundreds to thousands. The entire PanPoppipeline encompasses
the complete process from reads to SVs, making SV calling and mer-
ging accessible to anyone for SV-related analyses without the need for
specific thresholds.

Methods
Sequencing data
Accurate assessment of SV callers and mergers for individual ana-
lysis requires a high-confidence dataset. For this purpose, the
HG002 cell line has been extensively utilized, and a high-confidence
SV call set has been generated through consensus calling using
multiple sequencing technologies. Additionally, the Genome in a
Bottle (GIAB) project provides a trust set that includes high-
confidence regions of the HG002 dataset (HG002_SVs_Tier1_v0.6.-
bed), encompassing 9641 SVs. In our evaluation, we utilized publicly
available HiFi reads (PacBio CCS 15 kb dataset) with an average
sequencing depth of 28×. Additionally, we employed VISOR29 to
simulate SVs and generate corresponding HiFi reads of A. thaliana
(see Supplementary Note 4).

For population-scale assessment, we selected A. thaliana as a
model plant due to its abundant sequencing data and relatively small
genome size. The most recent T2T genome, Col-PEK, served as the
reference, and we analyzed 86 third-generation sequencing (TGS)
samples (refer to Supplementary Data 3). We excluded Col samples
themselves and samples with SVs fewer than 100, resulting in a total of
81 HiFi and 5 ONT sequenced samples. All the data used in this study
were publicly available from NCBI or CNCB databases. The average
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Fig. 5 | Performance evaluation of the population-scale SVmerging by four SV
mergers using 86 A. thaliana long-sequencing datasets. a shows the missing
proportion of SVs. SV merging using the original results of SV callers or processed
by PanPop’s “fill_depth_information” method, represented by the solid or dashed
lines, respectively. b SV length and allele count statistic for PanPop, with allele
counts distinguished using different colors. c, f show the histogram of evaluation
scores (recall, precision, and F1) and biallelic proportion of the results from four SV
mergers. Bar and error bars of c aremeans ± SE (n = 86 for each bar). The upper and
lower sections of f represent thedatasets after amaximummissing rate filter of 30%
and the raw datasets, respectively. The solid and shadow bars of f represented the

count of biallelic and total SVs, respectively. The black dot of f represented the
proportion of biallelic SV. d the precision and recall rate of four SV mergers. The
bright and darkpoints represented the result of raw SVs and SVswith a filter ofmax
missing of 30%, respectively. e Magnified view of the filtered PanPop results. For
e, the color of each dot represents the genotype concordance (GT concordance),
with the color gradient from red to blue indicating increasing numbers. For
a, c, d, and f, colors of red, green, blue, and gray represented different software of
PanPop, SURVIVOR,bcftools, andTruvari, respectively. Sourcedata are providedas
a Source Data file.
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depth of the 86 samples was 66.0×, with depths ranging from 16.1×
to 140.6×.

To evaluate SV analysis in a large population context, we obtained
Illumina short-read data for 1135 samples from the Arabidopsis 1001
Genomes Project28. After excluding 42 samples due to short read
length and Col-0 sample itself, we retained 1092 samples with an
average sequencing depth of 31.9 (Supplementary Data 4).

PanPop’s PART method
Weused our ‘realign’ algorithm to ensure accuracy during the splitting
or combining ofmutations based on sequences. Firstly, wedivided SVs
into realign groups based on their positions. Each realign group had
specific base pairs (e.g., 200bp) gap between them, and within each
realign group, the gaps were limited to a certain base pair threshold
(also 200bp in this case) (Fig. 1a). Within each realign group, we
reconstructed the consistent sequence of each individual by replacing
REF bases with ALT sequence. To prevent sequence overlapping, we
manually reversed the second phase of the second hetero mutations.
PanPop also tried to resolve SV overlapping by removing the over-
lapping sequences, which ideally should not happen and may be
attributed to incomplete SV callers. Then the alignment was processed
for these haplotypes, and the aligned sequences were anchored to the
reference sequence to determine and split each SVs (Fig. 1a). Because
the range of realign group extends a certain base pair distance (in this

case, 200bp), duplicated SVs or SVs in repeat region can be aligned
and ordered correctly. Given that the realign group could be quite
long, we employedmultiple software options for global alignment.We
used MUSCLE for short realign groups and FAMSA and stmsa for long
realign groups respectively. No significant differences in accuracywere
found between the repeat and non-repeat regions (Supplementary
Table 4 and Supplementary Note 5).

For multi-allelic mutations, we performed a pairwise comparison
of each pair of alleles and merged them if they showed similarity. We
aligned each pair and calculated the differences in bases and gap
lengths. If at least 60%of the bases in two sequenceswere identical and
the count of different bases was below 20, we considered these two
sequences to represent the same allele (Supplementary Note 6, Sup-
plementary Fig. 6). After comparing each pair, we employed the MCL
algorithm to identify groups of alleles that were deemed the same.
Within each MCL group, the alleles were merged.

In many instances, filtering was implemented following the thin-
ning process, which also aimed to streamline SVs. As numerous SVs
occurred at low frequencies, they presenteddifficulties for subsequent
analyses or enrichment. Therefore, we recommended discarding
alleles with a frequency of less than 1% after the thinning process. It is
important to note that the PART method was developed to handle
various sources of SVs, not limited to the PanPop pipeline. Conse-
quently, a standalone version of PART was also made available.
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Fig. 6 | Performance of four SVmerger in large-scale SV merging using 1092 A.
thaliana NGS datasets. a shows missing proportion of SVs. SV merging using the
original results of SV callers. Line of bcftools and Truvari were mostly overlapped.
b SV length and allele count statistic for PanPop, with allele counts distinguished
using different colors. c, f shows the histogram of evaluation scores (recall, preci-
sion, and F1) and biallelic proportion of the results from four SV mergers. Bar and
error bars of c aremeans ± SE (n = 1092 for each bar). The upper and lower sections
of f represent the datasets after a maximum missing rate filter of 30% and the raw
datasets, respectively. The solid and shadow bars of f represented the count of

biallelic and total SVs, respectively. Theblackdot of f represented theproportion of
biallelic SV. d the precision and recall rate of four SV merger. The bright and dark
points represented the result of raw SVs and SVswith a filter ofmaxmissing of 30%,
respectively. eMagnified view of the filtered PanPop results. For e, the color of each
dot represents the genotype concordance (GT concordance), with the color gra-
dient from red to blue indicating increasing numbers. For a, c, d and f, the color of
red, green, blue, and gray represented different software of PanPop, SURVIVOR,
bcftools, and Truvari, respectively. Source data are provided as a Source Data file.
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Variant calling for TGS
To detect genome-wide structural variations in the query de novo
assemblies, we utilized the SVIM-asm tool as the caller for the
assembly-based strategy. Each query genome was aligned to a refer-
ence genome using the minimap2 software with the following para-
meters: “-a -x asm5 --cs -r2k”. Subsequently, SV identification was
carried out by the SVIM-asm software using the ‘haploid’ command
and default parameters.

To ensure accurate SV detection, we made use of raw sequencing
reads, particularly TGS (Third Generation Sequencing) data. ONT
(OxfordNanoporeTechnologies), PacBio, orHiFi readswere aligned to
the referencegenomeusingNGMLR. It is important tomention thatwe
included the parameter “-x ont” for aligning ONT data, as per the
recommended guidelines. Subsequently, we employed four structural
variant callers for the read-based strategy: Sniffles (v2.0.7), SVIM
(v1.4.2), cuteSV (v2.0.2), and pbsv (v2.9.0), all with default parameters
(see Supplementary Table 5 and Supplementary Note 7 for details).

To consolidate the mutations identified by multiple callers, we
utilized the “merge” tool provided by bcftools with the parameters “-m
none”. The merged mutations were then subjected to further refine-
ment and realignment using PanPop, resulting in a raw set of popula-
tion mutations. However, the raw reads still contained several missing
sites. To determine whether these sites were in the reference state or
unknown (due to mis-sequencing or misalignment), we extracted
depth information for each site in each sample from the alignment files
and filled them in the populationmutation set accordingly.We applied
additional filters to softly mask sites with excessively low depth (less
than 1/4 of the individual average depth) or excessively high depth
(more than 4-fold the individual average depth). Lastly, the population
mutations were realigned and pruned to generate the final set of
population mutations in VCF (Variant Call Format) format. A parser
was applied to reconcile output of different SV callers (Supplemen-
tary Note 8).

Structure variant accuracy and recall assessment
The assessment of different SV callers and mergers was conducted
using the ‘bench’ module in Truvari software (v3.0.0)29, with the fol-
lowing parameters: ‘bench -p 50 -P 50 -r 500’. To evaluate the perfor-
mance of SV callers, we compared their results with a dataset of high-
confidence SVs. Regarding the merging process, we compared SVs
before and after population merging for each individual. However,
since PanPop has the capability to split large and complex SVs into
smaller and simpler ones, it is crucial to merge the small SVs for each
individual after extracting them from the population SV sets. To
facilitate this,wegenerated a list of ranges for each realignedSVbefore
population merging. After extracting the SVs for a single individual
from the population SV sets, only the SVs located within that list were
merged. This approach helps to reduce the likelihood of over-merging
or under-merging. To be fair, we also added a benchmark of SVs with
the base SVs not been realigned and available at Figshare [https://doi.
org/10.6084/m9.figshare.25021043], which shows a same trend of the
realigned base SVs. This approach helps minimize the risk of over-
merging or under-merging. It is important to note that for the
assessmentofHG002, only SVs locatedwithin high-confidence regions
(HG002_SVs_Tier1_v0.6.bed) were utilized. During subsequent
population-scale analysis, the presence of missing data can sig-
nificantly impact many results16,17. Therefore, we performed an addi-
tional test for each SV merger, filtering out sites with a missing rate
greater than0.3. This processwas also applied to other competition SV
merging software and version with detailed parameters available in
Supplementary Table 1 and Supplementary Note 7.

Structure variant for NGS data
The PanPop pipeline was employed in ‘NGS-Augment’ mode to
process the graph-genome and raw NGS reads for 1092 A. thaliana

individuals. The process is outlined below. First, a graph-genome
was constructed based on all mutations obtained from 86 long
sequences of A. thaliana using the construct module of the VG
toolkit. Second, for each of the 1092 individuals, the cleaned reads
were mapped to the pangenome using the giraffe function within
the VG toolkit (v1.36.0)26, with default parameter settings. To gen-
erate a new type of structural variations (SVs) similar to those
detected using long-reads, the augment mode in the VG toolkit was
utilized. Third, augmented reads and the graph-genome were then
evaluated for read support using the ‘pack’ function and genotyped
using the ‘call’ function. Finally, the merging of mutations for indi-
viduals to generate population-scale mutations followed a similar
process as in TGS (Third Generation Sequencing) data. However,
since a graph-genome was employed, the depth of each sample was
calculated using the ‘depth’ module of the VG toolkit.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
We used publicly available sequencing data in this study. The HiFi
sequencing data for HG002 are available at GIAB FTP site [https://ftp.
ncbi.nlm.nih.gov/ReferenceSamples/giab/data/AshkenazimTrio/
HG002_NA24385_son/PacBio_SequelII_CCS_11kb]. RawNGS datasets of
Arabidopsis thaliana are available under BioProject accession
PRJNA273563. Raw TGS datasets of A. thaliana are available under
BioProject PRJCA012695, PRJEB55353, PRJNA715329 and PRJNA834751.
Thedataset of single individual SVmerging in theA. thaliana simulated
dataset can be accessed at Figshare. The HG002 dataset is also avail-
able at Figshare. Population-scale SV merging results and raw SV data
for each TGS sample can be found in Figshare. Results of ‘Truvari
bench’ comparison between PanPop and other software can be found
in Figshare. Source data are provided in this paper.

Code availability
PanPop package is available at GitHub [https://github.com/
starskyzheng/panpop] under MIT license. Code for reproducing and
detailed parameters are available in Supplementary Note 7. An exam-
ple of PanPop and PART were available from CodeOcean [https://doi.
org/10.24433/CO.1577027.v1].
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