
Article https://doi.org/10.1038/s41467-024-45227-w

scDisInFact: disentangled learning for
integration and prediction of multi-batch
multi-condition single-cell RNA-
sequencing data

Ziqi Zhang 1, Xinye Zhao2,5, Mehak Bindra 3,5, Peng Qiu 4 &
Xiuwei Zhang 1

Single-cell RNA-sequencing (scRNA-seq) has been widely used for disease
studies, where sample batches are collected from donors under different
conditions including demographic groups, disease stages, and drug treat-
ments. It is worth noting that the differences among sample batches in such a
study are a mixture of technical confounders caused by batch effect and
biological variations caused by condition effect. However, current batch effect
removal methods often eliminate both technical batch effect and meaningful
condition effect, while perturbation prediction methods solely focus on con-
dition effect, resulting in inaccurate gene expression predictions due to
unaccounted batch effect. Here we introduce scDisInFact, a deep learning
framework that models both batch effect and condition effect in scRNA-seq
data. scDisInFact learns latent factors that disentangle condition effect from
batch effect, enabling it to simultaneously perform three tasks: batch effect
removal, condition-associated key gene detection, and perturbation predic-
tion. We evaluate scDisInFact on both simulated and real datasets, and com-
pare its performance with baseline methods for each task. Our results
demonstrate that scDisInFact outperforms existing methods that focus on
individual tasks, providing a more comprehensive and accurate approach for
integrating and predicting multi-batch multi-condition single-cell RNA-
sequencing data.

Single-cell RNA-sequencing (scRNA-seq) is able to measure the
expression levels of genes in each cell of an experimental batch. This
technology has been widely used in disease studies, where samples are
collected fromdonors at different stages of thediseaseorwith different
drug treatments1–5. As a result, each sample’s scRNA-seq countmatrix is
associated with one or more biological conditions of the donor, which

can be age, gender, drug treatment, disease severity, etc. Meanwhile,
datasets that study the same disease are often obtained in different
batches, which introduce technical variations (also termed batch
effects) across batches6,7. In practice, the available samples in the
datasets of a disease study can originate from different conditions and
batches, as arranged in Fig. 1a (right). We term such datasets as multi-

Received: 30 May 2023

Accepted: 18 January 2024

Check for updates

1School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA. 2School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, USA. 3School of Biological Science, Georgia Institute of Technology, Atlanta, GA, USA. 4Department of
Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA. 5These authors contributed equally: Xinye Zhao, Mehak
Bindra. e-mail: xiuwei.zhang@gatech.edu

Nature Communications | (2024) 15:912 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8198-0260
http://orcid.org/0000-0002-8198-0260
http://orcid.org/0000-0002-8198-0260
http://orcid.org/0000-0002-8198-0260
http://orcid.org/0000-0002-8198-0260
http://orcid.org/0009-0006-1251-0261
http://orcid.org/0009-0006-1251-0261
http://orcid.org/0009-0006-1251-0261
http://orcid.org/0009-0006-1251-0261
http://orcid.org/0009-0006-1251-0261
http://orcid.org/0000-0003-3256-0734
http://orcid.org/0000-0003-3256-0734
http://orcid.org/0000-0003-3256-0734
http://orcid.org/0000-0003-3256-0734
http://orcid.org/0000-0003-3256-0734
http://orcid.org/0000-0002-1713-772X
http://orcid.org/0000-0002-1713-772X
http://orcid.org/0000-0002-1713-772X
http://orcid.org/0000-0002-1713-772X
http://orcid.org/0000-0002-1713-772X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45227-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45227-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45227-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-45227-w&domain=pdf
mailto:xiuwei.zhang@gatech.edu

batch multi-condition datasets. In such datasets, biological variations
caused by condition effects exist between data matrices generated in
the same batch but corresponding to different biological conditions,
while technical variations caused by batch effects exist between data
matrices from the same condition but different batches. Therefore, the
differences among these data matrices are a mixture of batch effects
(technical variation) and condition effects (biological variation), which
complicates the process of fully utilizing the potential of these datasets.

In this paper, we consider a few computational challenges that
need tobe tackledwhenusingmulti-batchmulti-conditiondatasets for
disease study: (1) removing batch effect while preserving biological
condition effect; (2) detecting key genes associated with biological
conditions; (3) predicting unseen data matrices corresponding to
certain conditions (thematrices with dashed borders in Fig. 1a (right)),
also known as the task of perturbation prediction. Methods have been
designed for each problem separately, but no existing method can
solve the three problems jointly. In the following, we discuss existing
methods for each problem and their limitations.

Most existing batch effect removal methods treat the differences
between data from different batches solely as batch effects and
remove themby aligning different batches into a commondistribution
in either the original gene expression space or the latent embedding
space8–12. Applying these methods to data from multiple conditions
can result in over-correction13, where biological differences among
batches are also removed along with batch effects. Recently, methods
have been proposed considering the biological differences among
batches. scINSIGHT14 factorizes the scRNA-seq matrices into common
and condition-specific modules using non-negative matrix factoriza-
tion. However, the factorization framework is limited to one type of
condition, whilemultiple types of conditions, such as age, gender, and
drug treatment, can co-exist in the dataset15,16. In addition, scINSIGHT
corrects the batch effect on the latent space and cannot predict gene
expressionmatrices that are removedof the batcheffect under various
conditions. scMC13 integrates data batches without removing the bio-
logical variations amongbatches, but it doesnotdisentangle biological
variations caused by condition effect from those that are shared

Fig. 1 | Overview of scDisInFact. a scDisInFact is applied on multi-batch multi-
condition datasets where count matrices from disease studies are obtained from
different experimental batches and conditions. Human figure created with BioR-
ender.com. b The neural network structure of scDisInFact. scDisInFact uses an
encoding network (left) to learn the disentangled latent factors, and uses a

decoding network (right) to generate gene expression data from the latent factors.
It is designed for tasks including (1) batch effect removal (latent factors disen-
tanglement), (2) condition-associated key genes detection, and (3) perturbation
prediction. Neural network illustration adapted from LeNail40.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 2

among batches, nor does it output key genes associated with the
biological conditions.

Another problem in the field is predicting the scRNA-seq data
under one condition using data fromanother condition, also known as
the problem of perturbation prediction17. This is particularly useful
when predicting disease progression or drug effects, under conditions
where data are not collected. Existing methods for this task, such as
scGen17 and scPreGAN18, do not account for batch effects between data
matrices and assume differences in cell distribution between data
matrices solely result from biological conditions, an assumption that
does not hold for most real datasets. Furthermore, in practice, there is
often more than one type of condition in the data, but existing
methods are designed for only one type of condition. For example,
conditions such as disease severity and treatment can exist at the same
time in a disease study, but existing methods can not deal with both
types of conditions at the same time.

Here, we propose scDisInFact (single cell disentangled Integration
preserving condition-specific Factors), which is the first method that
can perform all three tasks: batch effect removal, condition-associated
key genes (CKGs) detection, and perturbation prediction on multi-
batch multi-condition scRNA-seq dataset (Fig. 1a). scDisInFact is
designed based on a disentangle variational autoencoder framework.
It disentangles the variation within the multi-batch multi-condition
dataset into latent factors encoding the biological information shared
across all data matrices, condition-specific biological information, and
technical batch effect. The disentangled latent space allows scDi-
sInFact to perform two other tasks, the CKG detection and perturba-
tionprediction, and toovercome the limitationof existingmethods for
each task. In particular, the disentangled factors allow scDisInFact to
remove batch effect while keeping the condition effect in gene
expression data. In addition, scDisInFact expands the versatility of
existing perturbation prediction methods in that (1) it models the
effect of multiple condition types and (2) it enables the prediction of
data across any combination of conditions and batches within the
dataset. We compared scDisInFact with scINSIGHT in terms of batch
effect removal and CKG detection. As scINSIGHT does not perform
perturbation prediction, we compared scDisInFact with scGen and
scPreGAN in terms of perturbation prediction. We tested scDisInFact
on simulated and real datasets1–4, and found that it outperforms
baseline methods across various tasks. Owing to its superior perfor-
mance and multi-task capabilities, scDisInFact can be employed to
comprehensively analyze multi-batch multi-condition scRNA-seq
datasets, facilitating a deeper understanding of disease progression
and patient responses to drug treatments.

Results
Overview of scDisInFact
scDisInFact is designed for a general multi-batch multi-condition
scRNA-seq dataset scenario where samples are obtained from donors
of different conditions and profiled in multiple experimental batches
(Fig. 1a). We termed the category of conditions as the condition type,
and the condition label of each condition type as a condition. For
example, given a dataset that is obtained from donors with varying
disease severity and genders, disease severity and gender are con-
sidered two separate condition types, while specific severity levels
such as healthy control, mild symptoms, and severe symptoms are
conditions. When there is more than one condition types, a condition
can be the combination of labels, each label from a condition type. For
each cell, scDisInFact takes as input not only its gene expression data,
but also its batch ID and identified condition of each condition type.

scDisInFact is designed based on a variational autoencoder (VAE)
framework19,20 (Fig. 1b). In themodel, the encoder networks encode the
high dimensional gene expression data of each cell into a disentangled
set of latent factors, and the decoder network reconstructs gene
expression data from the latent factors (Fig. 1b). scDisInFact has

multiple encoder networks, where each encoder learns independent
latent factors from the data. Using the information of biological con-
dition and batch ID of each cell, scDisInFact effectively disentangles
the gene expression data into the shared biological factors (shared-bio
factors), unshared biological factors (unshared-bio factors), and
technical batch effect.

The shared encoder learns shared-bio factors (green vector in
Fig. 1b), which represent the biological variations within a data matrix
that are irrelevant to condition effect or batch effects. Such variations
usually are reflected as heterogeneous cell types in individual data
matrices. An unshared encoder learns unshared-bio factors, which
represent biological variations that are related to the condition effect.
The number of unshared encoders matches the number of condition
types, with each unshared encoder learning unshared-bio factors
exclusively for its corresponding condition type (yellow vectors in
Fig. 1b). For example, given a dataset of donors with different disease
severities and genders, two unshared encoders are used, where one
learns the disease severity condition and the other learns the gender
condition. The technical batch effect is encoded as pre-defined one-
hot batch factors (blue vector in Fig. 1b) which are transformed from
the batch IDs of each cell. The batch factors are appended to the gene
expression data before being fed into the shared encoder (Fig. 1b left)
in order to differentiate the gene expression data of cells from dif-
ferent batches. The unshared encoders do not take as input the batch
factors since its first layer is used for CKGs detection (“Methods”). The
decoder takes as input the shared-bio factors, unshared-bio factors,
and batch factors, and reconstructs the input gene expression data
(Fig. 1b right). In order to guide the unshared encoders to extract
biological variations that are only relevant to condition effects, a
Gaussianmixtureprior is used for the unshared-bio factors and a linear
classifier network is attached to the output of each unshared encoder
(“Methods”). The classifier is trained together with the unshared
encoder to predict the conditions of the cells (Fig. 1b left).

With the disentangled latent factors, scDisInFact can perform the
three tasks it promises (red text in pink boxes in Fig. 1b): (1) Batch
effect removal. The learned shared-bio factors are removed of the
batch effect and condition effect and can be used as cell embedding
for clustering and cell type identification. Combining the shared-bio
factors and any unshared-bio factors gives cell embeddings including
the corresponding condition effects. (2) Detection of condition-
associated key genes (CKGs) for each condition type. The first layer
of each unshared encoder is designed to be a key feature (gene)
selection layer of the corresponding condition type. The final weights
of that layer can be transformed into the gene scores associated with
the condition type (“Methods”, Supplementary Fig. 1a). (3) Perturba-
tion prediction. After scDisInFact is trained and the shared-bio factors,
unshared-bio factors, and batch factors are learned, the perturbation
prediction task takes the gene expression data of a set of cells under a
certain condition and batch as input, and predicts the gene expression
data of the same cells under a different condition in the same or dif-
ferent batch (Supplementary Fig. 1b). Supplementary Fig. 1b shows
how to predict data in condition 2 and batch 1 given data in condition 1
and batch 6. We first calculate new unshared-bio factors and batch
factors according to the predicted condition. The decoder then gen-
erates the predicted data matrix using the new unshared bio-factors
and batch factors (“Methods”). It is worth noting that scDisInFact can
perform perturbation prediction from any condition and batch to any
other condition and batch in the dataset (“Methods”).

The loss formulation, training procedure, and procedures to
obtain the results for each task from a trained scDisInFact model are
included in Methods.

Testing scDisInFact on simulated datasets
We first validate scDisInFact on simulated datasets where we have
ground truth information. We generated simulated datasets with 2

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 3

batches and 2 condition types including treatment and disease
severity. The first condition type (treatment) includes cells under
control (ctrl) and stimulation (stim) conditions, and the second con-
dition type (severity) includes healthy and severe conditions. The
condition and batch arrangement of count matrices in the dataset
follows Fig. 2a. A total of nine datasets were generated with different
numbers of CKGs and perturbation parameters, which models differ-
ent strengths of condition effect (“Methods”, parameter settings of
each dataset follow Supplementary Table 1). In the following sections,
we first test the generalization ability of scDisInFact, then show the
performance of scDisInFact in terms of the three tasks, batch effect
removal (which is also latent space disentanglement), key gene
detection, and perturbation prediction.

One potential problem with neural network models is overfitting.
If the model overfits, the model cannot be generalized and cannot be
used for prediction tasks. Therefore, generalization ability is the basic
requirement of scDisInFact in order to achieve successful disen-
tanglement and make accurate perturbation predictions. We test the
generalization ability of scDisInFact using the simulated dataset with 2
condition types (Fig. 2a).

We tested the generalization ability of scDisInFact under two
different scenarios, according to the relationshipbetween training and
testing datasets, referred to as in-sample test andout-of-sample test. In
the in-sample test, the training and testing data are evenly sampled
from the same original dataset and they follow the same data dis-
tribution. We randomly held out 10% of cells in each count matrix as
test data, and trained the model on the remaining 90% of cells. In the
out-of-sample test, the training and testing data are not evenly sam-
pled from the original dataset and the test distribution no longer
matches the training distribution. We held out the count matrix cor-
responding to the condition <ctrl, severe> in batch 1, and trained the
model using the remaining count matrices (Fig. 2a, held-out matrix

shownwith a dashed border).We expect that it is harder for themodel
to generalize for the “out-of-sample” test due to the distribution
difference.

After the model is trained on the training data, we tested it on the
held-out data and compared the training and testing losses. The loss
values on the 9 simulated datasets (Fig. 2b) show that in both scenarios
(in-sample test and out-of-sample test), the testing losses are close to
the training losses for various loss terms, confirming the generalization
ability of scDisInFact.

We then tested the latent space disentanglement of scDisInFact
on the simulated datasets, and compared its performance with
scINSIGHT14. In practice, each batch often includes only a subset of the
condition combinations. Therefore, to make the test case more rea-
listic, we removed the count matrices corresponding to the <ctrl,
severe> condition in batch 1 and the <stim, healthy> condition in batch
2 (Fig. 2c, removed matrices shown with dash borders). Since scIN-
SIGHT can only work with one condition type, we created a “combined
condition type” using the Cartesian product of the original condition
types (including 4 combined conditions: “ctrl_healthy”, “stim_healthy”,
“ctrl_severe”, “stim_severe”) and ran scINSIGHT using combined con-
dition type. The calculation of shared-bio and unshared-bio factors for
scINSIGHT is described in Methods.

A successful disentanglement requires that: (1) The shared-bio
factors encode the cell-to-cell biological variations irrelevant to con-
dition and batch effect. With these factors, we expect cells should be
grouped according to cell types and aligned across batches and con-
ditions. (2) The unshared-bio factors encode condition-specific biolo-
gical variation across data matrices irrelevant to batch effect. With
these factors, cells should be grouped according to conditions, and
aligned across batches under each condition.

We evaluated the learned shared-bio factor in terms of batch
effect removal (using ASW-batch score, “Methods”) and separation of

Fig. 2 | Results on simulated datasets. a The batches and conditions arrangement
of countmatrices in the simulated datasets. Totally 8 countmatrices are generated
in each dataset, corresponding to 2 batches and 2 condition types. Thematrix with
dashed borders is held out in the out-of-sample generalization test. b The loss
values of the model in training and testing datasets, including both in-sample test
(left) andout-of-sample test (right).n = 9 independent samples are included in each
bar. The error bar represent 95% confidence interval, and the center of the error bar
shows the mean. c The batches and conditions arrangement of count matrix in
disentanglement test. The matrices with dashed borders are removed in the test.
d The disentanglement scores of scDisInFact and scINSIGHT, including the ARI and

ASW-batch scores for shared-bio factors and ASW-batch scores for unshared-bio
factors. In the boxplots, the center lines show the median data value, and the box
limits show the lower and upper quartiles (25% and 75%, respectively). The length of
the whiskers is within 1.5x interquartile range. Outliers beyond the whiskers are
plotted as points. n = 9 independent samples are included in each box. e AUPRC of
scDisInFact, scINSIGHT, and Wilcoxon rank sum test on CKGs detection. n = 6
independent samples are included in each bar. The error bar represents 95% con-
fidence interval, and the center of the error bar shows the mean. Source data for
(b, d, and e) are provided in the Source Data file.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 4

cell types (using ARI score, “Methods”). The boxplots of these scores
(Fig 2d, left andmiddle) show that scDisInFact has a significantly better
performance in separating cell types while removing the batch effect
compared to scINSIGHT. When evaluating the unshared-bio factors,
we measured the grouping of conditions using ARI score, and the
removal of batch effect using ASW-batch score (“Methods”). Both
methods have perfect ARI scores (equal to 1), which is expected as
both methods enforce the grouping in their objective function. In the
meantime, scDisInFact achieves a higher ASW-batch score, and shows
a better performance in removing the batch effect in the unshared-bio
factors (Fig. 2d, right).

To visually assess the disentanglement results, we visualized the
learned shared-bio factors and unshared-bio factors from one simu-
lated dataset (Simulation 1 in Supplementary Table 1). We visualized
the shared-bio factors usingUMAP and observe that cell types are well-
separated and batches are well-aligned (Supplementary Fig. 2a). We
visualized the unshared-bio factors corresponding to each condition
type using PCA, and notice that the unshared-bio factors for each
condition type effectively separate the conditions within that type,
while the batches are still aligned (Supplementary Fig. 2b, c).

In the tests above, we used the simulated datasets where the cell
type composition is the same across batches and conditions. In reality,
there are challenging scenarios for data integration including: (1) dif-
ferent cell type compositions across batches and conditions, that is,
certain cell types exist only in a subset of the data matrices (each data
matrix corresponds to a batch and a condition combination); (2) cer-
tain cell types have a very small number of cells in some data matrices
and are evenmissing in some other data matrices. These cell types are
also knownas rare cell types.We conducted a range of simulation tests
under the two scenarios above, and confirmed that the shared bio-
factors learned by scDisInFact still correctly separate the cell types
(Supplementary Figs. 3, 4, 5a). In the case of rare cell types, we gen-
erated a simulated dataset of the same structure (Fig. 2c), but with cell
type 4 as the rare cell type (Supplementary Fig. 4). Supplementary
Fig. 4 shows that in the datamatrices before applying scDisInFact, cells
from cell type 4 are mixed with other cell types. However, after
applying scDisInFact, cells from cell type 4 are located together,
making it straightforward to detect this cell type (Supplementary
Fig. 5a). Information on the design of the datasets and further analysis
of the results are in Supplementary Notes 1 and 2. Given the capability
of scDisInFact in integrating datasets with mismatched cell type
compositions and detection of rare cell types, it can potentially be
used to reveal condition-specific rare cell types which appear to be
unaligned cells after integration.

Using the training result from the previous section, we further
compared the CKG detection accuracy of scDisInFact and scINSIGHT.
We also included Wilcoxon rank sum test (two-sided, not adjusted for
multiple comparisons) as an additional baseline method. For each
method, we obtain a CKG score for each gene to indicate how likely
this gene is a CKG. For scINSIGHT, we used the variance of gene
membershipmatrices across conditions as CKG scores (“Methods”). In
Wilcoxon rank sum test, for each gene, we ran the test between the
gene’s expression levels under different conditions, and obtained the
corresponding p values (with false discovery rate multi-tests correc-
tion). We transformed the p values into CKG scores follow-
ing CKGWilcoxon = 1� p val

maxðp valÞ.
AUPRC scores were calculated for each method between the

inferred CKG scores and ground truth CKGs (“Methods”). We aggre-
gate themean AUPRC score of eachmethod on the simulated datasets
with different perturbation parameters ϵ in a barplot (Fig. 2e). scDi-
sInFact consistently performs better than the two baseline methods
under all values of the perturbation parameter ϵ, which shows that the
successful disentanglement of biological variations and technical
batch effect could help to better uncover the CKGs. The AUPRC score
increases with the increase of the perturbation parameter. This is

because a higher perturbation parameter corresponds to a larger dif-
ference in the expression of the CKGs across conditions, which makes
it easier for the CKGs to be detected.

We further investigated scDisInFact’s performance in CKG
detection using two additional metrics: the Early Precision score
(Eprec) and Pearson correlation coefficient between the predicted and
ground truth gene scores (“Methods”). The results consistently show
the superior performance of scDisInFact against baseline methods
(Supplementary Fig. 5b).

Wefinally test the perturbationprediction accuracy of scDisInFact
on the same set of simulated datasets (Fig. 2a). Similar to the gen-
eralization test, we conducted perturbation prediction under two
different scenarios: (1) In-sample prediction, where the condition to
predict is seen in the training dataset, and (2) Out-of-sample predic-
tion, where the condition to predict is not seen in the training dataset.

In the in-sample test, we train scDisInFact using all countmatrices
in Fig. 2a, and take one count matrix as input to predict the mRNA
counts of the same cells under different conditions. For example, in
Supplementary Fig. 6a, arrow #2 means that from the data matrix X11,
predict the cells’ expression levels under batch 1, condition <control,
severe>, denoted by X 0

21. We use the notation X 0
21 to distinguish the

predictedmatrix from X21 which is part of the training data. X 0
21 and X21

are matrices under the same batch and conditions but on different
cells. Therefore, when evaluating the accuracy of X 0

21, it can not be
compared with X21 at the single cell level, but at the cell type level
instead (“Methods”).

In the out-of-sample test, we held out all count matrices under
condition <ctrl, severe> (X21, X22 in Supplementary Fig. 6b), and trained
the model on the remaining count matrices. Then we took one count
matrix as input and predicted the corresponding counts under the
held-out condition. In the out-of-sample test, <ctrl, severe> is the
unseen condition because the combination of ctrl and severe is not
seen in the training dataset, although the ctrl or severe condition can
appear in the training data in other condition combinations.

For both the in-sample and out-of-sample predictions, we predict
data under condition <ctrl, severe> using different matrices as input
(Supplementary Fig. 6a, b). Depending on which effects exist between
the input and predicted matrices, we categorized the prediction test
into 6 scenarios. When the input and predicted matrices are from the
same batch, we test the prediction of condition effect of (1) condition
Type 1 (treatment, arrow #1 in Supplementary Fig. 6a, b), (2) condition
Type 2 (severity, arrow #2 in Supplementary Fig. 6a, b) and (3) con-
dition Types 1 and 2 (arrow #3 in Supplementary Fig. 6a, b). Similarly,
when the input and predicted matrices are from different batches, we
also test the prediction of condition effect of (4) condition type 1
(arrow#4 inSupplementaryFig. 6a,b), (5) condition type2 (arrow#5 in
Supplementary Fig. 6a, b) and (6) condition type 1 and 2 (arrow #6 in
Supplementary Fig. 6a, b). scDisInFact can predict data across any
condition and batch combinations, allowing for the prediction of gene
expression data for all the cells of all given data matrices under any
condition and batch combination.

We compare the performance of scDisInFact with scGen and
scPreGAN.As scGen and scPreGANareonly designed forone condition
type, we train the methods using the count matrices with fixed con-
dition values for the condition types that we are not predicting
(“Methods”). The detailed settings of the training, input, and predicted
data matrices for all methods are in Supplementary Tables 2 and 3. We
take the knowncountmatrix under the predicted condition and batch,
and use this matrix or its denoised matrix as the gold-standard counts
(“Methods”).We compare the predicted countswith the gold-standard
counts using cell-type-specificMSE, R2, and Pearson correlation scores
(“Methods”). The results are summarized in Fig. 3a (in-sample tests)
and Fig. 3b (out-of-sample tests). scDisInFact has the smallestMSE and
highest Pearson correlation and R2 out of all three methods in all test
scenarios. The baselinemethods showmuchhigherMSE (note that the

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 5

y-axis uses log scale in the MSE plots) than scDisInFact while their
Pearson correlation can be close to that of scDisInFact. The high MSE
of baseline methods is caused by the difference in the distribution
between predicted values and ground truth values, although normal-
ization has been performed (“Methods”).

Since scDisInFact learns the condition and batch effects from the
training dataset, the training dataset with smaller coverage of possible
conditions and batches should affect the performance of scDisInFact.
We further conducted experiments to analyze how the number of
held-out matrices affects the prediction power of scDisInFact. We
created 4 scenarios by holding out 1 to 4 count matrices from the
training set. The detailed settings of the test scenarios are summarized
in Supplementary Table 4. After training the model, we take as input
the count matrix corresponding to condition <stim, severe> in batch 2
(matrix X42 in Supplementary Fig. 6c), and predict the counts under
condition <ctrl, severe> of batch 1 (matrix X 0

21 in Supplementary
Fig. 6c). We measure the cell-type-specific MSE, R2, and Pearson cor-
relation scores (Methods) between the predicted and gold-standard
counts (matricesX21 andX 0

21) and aggregate the scores into theboxplot
in Supplementary Fig. 6d. FromSupplementary Fig. 6d, we observe the
overall performance of scDisInFact drops when fewer matrices are
included in the training data. However, even when holding out 3
matrices, the performance of scDisInFact is comparable or better than
the bettermethodout of scGen and scPreGAN for eachmetric in Fig. 3.
With 4 matrices held out (Supplementary Fig. 6c), the performance of
scDisInFact deteriorates, as in this case, the difference between any
two matrices is a mixture of condition effect and batch effect, which
poses a challenging case for disentanglement. In Supplementary
Note 3, we discuss the minimum requirements on the input data
matrices for perturbation prediction.

Testing scDisInFact on glioblastoma data
Weapplied scDisInFact to real datasets.We first applied scDisInFact on
a glioblastoma (GBM) dataset1. The dataset has 21 countmatrices from
6 patient batches with 1 condition type (drug treatment) that includes
conditions: no-drug control (vehicle DMSO), and panobinostat drug
treatment (0.2 uM panobinostat). The metadata of the count matrices
follows Supplementary Table 5 and the data matrices can be arranged
in a “condition by batch” grid as shown in Supplementary Fig. 8a.
Before applying scDisInFact, we filtered the lowly-expressed genes
(“Methods”) and visualized the dataset using UMAP. Strong technical
batch effect and condition effect can be observed among batches and
conditions (Supplementary Fig. 8b).

After applying scDisInFact to pre-processed data, we obtained the
shared-bio factors and unshared-bio factors that are specific to the two
conditions (Fig. 4a and Supplementary Fig. 7c). The shared-bio factors
separate cells of major cell types (Fig. 4a left) and are removed of the
batch and condition effect (Fig. 4amiddle and right). The unshared-bio
factors separate cells into different conditions (Supplementary Fig. 7c
left), and are removed of the batch effect (Supplementary Fig. 7c
right). The latent space visualization shows that scDisInFact is able to
disentangle latent factors and remove the strong batch effects in the
dataset. We compared the disentanglement results of scDisInFact and
scINSIGHT both visually and quantitatively. The calculation of shared-
bio and unshared-bio factors of scINSIGHT is described in Methods.
We visualized the shared-bio and unshared-bio factors of scINSIGHT
using UMAP (Supplementary Fig. 8a). From Supplementary Fig. 8a, the
cell types are notwell separated in the shared-bio factors (top-left plot)
and the batches are not well aligned in unshared-bio factors (bottom-
right plot). To quantitatively verify this, we evaluate the shared-bio
factor using ASW-batch score and ARI score, where ASW-batch mea-
sures the removal of batch effect and ARI measures the separation of
cell types (“Methods”, Supplementary Fig. 8b). We evaluate the
removal of batch effect in unshared-bio factor using ASW-batch scores
(Supplementary Fig. 8b). scDisInFact largely outperforms scINSIGHT

in terms of both ARI score for shared-bio factors and ASW-batch score
for unshared-bio factors, which is consistent with the visualizations.

We then analyzed theCKGsdetectedby scDisInFact. After training
themodel, we obtained the CKG score of each gene from the unshared
encoder, and sorted the genes by their scores (“Methods”, Fig. 4b). We
expect that the top-scoring genes are related to the biological pro-
cesses associatedwith panobinostat drug treatment.Weobtainedhigh
CKG scores for metallothioneins and neuronal marker genes (red dots
in Fig. 4b), andmacrophagemarker genes (blue dots in Fig. 4b)1. These
top-scoring marker genes are closely related to panobinostat treat-
ment because panobinostat was reported to up-regulate the metal-
lothionein family genes and mature neuronal genes, and down-
regulate macrophage marker genes which were immunosuppressive
in GBM1. We further conducted gene ontology (GO) analysis on the
top-300 scoring genes using TopGO21, and the result shows multiple
biological processes relevant to the panobinostat treatment in cancer
(Fig. 4c). Panobinostatwas shown to activateMHC II pathways22 andwe
do observe term that are related to MHC class II pathway proteins.
There are also terms related to p53 transcription factor and regulation
of growth. P53 is a tumor suppressor involved in the regulation of DNA
damage response, which is affected by the use of panobinostat23.
Panobinostat also was shown to have a growth suppressive effect on
cancer24 (Fig. 4c).

We also tested the perturbation prediction accuracy of scDi-
sInFact on the GBM dataset. We held out the count matrix corre-
sponding to sample “PW034-705” (Supplementary Table 5 and
Supplementary Fig. 7a), and trained scDisInFact on the remaining
count matrices in the dataset. After training the model, we take one
countmatrix in the training dataset as input, and predict the counts for
the same cells under the condition and batch of the held-out matrix.
We choose different count matrices as input to create different sce-
narios for the prediction task: (1) the input and held-out matrices are
from the samebatchbut under different conditions, where scDisInFact
predicts only the condition effect; (2) the input and held-out matrices
are from different batches and different conditions, where scDisInFact
predicts both the condition effect and batch effect. The configurations
of input and output data matrices are in Supplementary Table 6.

We compared the performance of scDisInFact with scGen and
scPreGAN for these prediction tasks using cell-type-specific MSE,
Pearson correlation, and R2 scores between the predicted and held-out
(gold-standard) counts (“Methods”). We calculate the scores for cell
types including “Myeloid”, “Oligodendrocytes”, and “tumor”, and
aggregate the scores in Fig. 4d. From the comparison result, we
observe that scDisInFact has a better prediction accuracy, and the
prediction improvement is more pronounced when the batch effect
exists between the input and held-out count. This is because scDi-
sInFact specifically models batch effect in the perturbation prediction
while the other two methods do not. In both prediction tasks, we
further jointly visualize the predicted and the held-out counts using
UMAP (Supplementary Fig. 9a for within-batch prediction, Supple-
mentary Fig. 9b for cross-batch prediction). The visualization (Sup-
plementary Fig. 9a, b) shows that the predicted counts of scDisInFact
match the held-out counts in both tasks while both baseline methods
fail especially in the second task. The visualization result matches the
quantitative measurement in Fig. 4d.

scDisInFact performs disentanglement and predicts data under
unseen conditions on COVID-19 dataset
We tested scDisInFact on a COVID-19 dataset with multiple condition
types. We built a COVID-19 dataset by collecting data from three dif-
ferent studies2–4. Since no significant batch effect is reported within
each study2–4, we treated the data obtained from each study as one
batch. The resulting dataset has 3 batches of cells with 2 condition
types: age and disease severity. The three batches are termed “Aru-
nachalam_2020”, “Lee_2020”, and “Wilk_2020” according to the source

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 6

of the study. The age condition includes young (40−), middle-aged
(40–65), and senior (65+) groups, and the disease severity condition
includes healthy control, moderate symptom, and severe symptom
(“Methods”, the arrangement of count matrices follows Fig. 5a).

We first visualize the gene expression data using UMAP before
applying scDisInFact. From the visualization, we observed a strong
batch effect among different studies (Supplementary Fig. 10a, b). In
addition, the distributions of cells under different conditions also

Fig. 3 | Perturbation prediction results on simulated datasets. a Perturbation
prediction accuracy of scDisInFact and baseline methods in the in-sample test. The
accuracy is measured by cell-type-specific MSE (left), Pearson correlation (middle),
andR2 scores (right). Theupper row shows the resultwhere the input andpredicted
count matrices are from the same batch, and the lower row shows the result where
the input and predicted count matrices are from different batches. Barplots are
shown separately for the prediction of “Treatment'', “Severity”, and “Treatment &

Severity” effects. b Prediction accuracy of scDisInFact and baseline methods in the
out-of-sample test. Barplots are shown separately for the prediction of condition
effect (“Treatment”, “Severity”, “Treatment & Severity”) within batch (upper) and
across batches (lower). In (a) and (b), n = 144 independent samples are included in
each bar. The error bar represents 95% confidence interval, and the center of the
error bar shows the mean. Source data for (a) and (b) are provided in the Source
Data file.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 7

show variation due to the condition effect (Supplementary Fig. 10c, d).
We then trained scDisInFact on the dataset, and visualized the shared
and unshared biological factors using UMAP (Fig. 5b, c). The visuali-
zation shows that the shared-bio factors are aligned across batches and
conditions while maintaining the same level of cell type separation as
in individual batches (Fig. 5c and Supplementary Fig. 10a), and the
unshared-bio factors are also grouped according to their corre-
sponding condition types (Fig. 5b).

We then tested the perturbation prediction of scDisInFact.
Similar to the test on simulated datasets, we design tests separately
for the prediction of condition combinations that are seen (in-sample
test) and unseen (out-of-sample test) in the training set. In in-sample

test, we trained scDisInFact on all available count matrices (Supple-
mentary Fig. 11a), whereas in out-of-sample test, we held out all
count matrices under condition <moderate, 40–65> (X51 and X52 in
Supplementary Fig. 11b) and train scDisInFact on the remaining
count matrices. In both tests, given an input count matrix, we predict
the gene expression data of the same cells under the condition
<moderate, 40–65> and batch “Lee_2020” (X 0

52 in Supplementary
Fig. 8a, b). Depending on whether condition effect and batch effec-
t exist between input and predicted count matrices, we again cate-
gorize the prediction tests into 6 scenarios, similar to the test on
simulated datasets. When the predicted and input count matrices
are from the same batch, we test the prediction of condition effect

Fig. 4 | Results onGBMdataset. aUMAP visualization of shared-bio factors, where
the cells are colored by (left) original cell type, (middle) batches, and (right) con-
ditions.bViolin plot of theCKG scores learnedby scDisInFact. Reddots correspond
to metallothioneins and neuronal marker genes, and blue dots correspond to
macrophage marker genes. In the violin plot, independent scores of n = 19,949
genes are included. c Top Gene ontology terms inferred from top-scoring genes. p
values are calculated from TopGO, which is based on one-sided Fisher’s exact test
and not adjusted for multiple comparisons. Multiple terms are relevant to Pano-
binostat treatment, including terms related to MHC class II pathways and p53

regulation. d Perturbation prediction accuracy of scDisInFact and baseline meth-
ods, which include the cell-type-specific MSE, Pearson correlation, and R2 scores.
Barplots are shown separately for the prediction of (1) condition effectwithin batch
(“treatment (w/obatch effect)”) and (2) condition effect across batches (“treatment
(w/ batch effect)”). In the barplot, n = 3 independent samples are included in each
bar. The error bar represents 95% confidence interval, and the center of the error
bar shows the mean. Source data for (a, b, and d) are provided in the Source
Data file.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 8

of disease severity (arrows 1 in Supplementary Fig. 8a, b), age (arrows 2
in Supplementary Fig. 8a, b), and disease severity and age (arrows 3 in
Supplementary Fig. 11a, b). Similarly, when the predicted and input
count matrices are from different batches, we also test the prediction
of these three combinations of condition effects (arrows 4, 5, 6 in
Supplementary Fig. 11a, b).

Once again, we compared scDisInFact’s perturbation prediction
performance with scGen and scPreGAN. The detailed settings of the
training, input, and predicted conditions for all methods are sum-
marized in Supplementary Table 7. We use the held-out count matrix
corresponding to condition <moderate, 40–65> and batch “Lee_2020”
(X52 in Supplementary Fig. 8a, b) as the gold-standard counts for scGen
and scPreGAN and its denoised version for scDisInFact, and calculate
cell-type-specific MSE, R2, and Pearson correlation scores between
predicted and gold-standard counts (“Methods”, Fig. 6). In both in-
sample test and out-of-sample test, scDisInFact outperforms scGen
and scPreGAN across all 6 prediction scenarios, where the improve-
ment scDisInFact brings is more pronounced for the tasks that involve
prediction of batch effects, compared to the tasks of predicting only
condition effects. This can be attributed to scDisInFact’s ability to

model both condition effects and batch effects, whereas scGen and
scPreGAN model the condition effect without considering the batch
effect.

Ablation study on the loss terms of scDisInFact
scDisInFact has several loss terms in its objective function, including
the ELBO loss, MMD loss, classification loss, and group-lasso
loss (Methods). We validated the effect of each loss term (except for
the ELBO loss which is required for the VAE model) through
ablation tests, using the same simulated datasets (details in
Supplementary Note 4).

We first conducted the ablation test on MMD loss. In scDisInFact,
MMD loss is used to ensure the disentanglement of latent factors
(“Methods”), which is further expanded into the objectives of (1)
removing the batch effect from the shared-bio and unshared-bio fac-
tors, (2) removing the condition effect from the shared-bio factors, and
(3) disentangling unshared-bio factors of different condition types.We
evaluated the effectiveness of MMD loss from these three objectives
separately, bymeasuring the alignmentof different latent factors using
ASW-batch scores (details in Supplementary Note 4). The results

Fig. 5 | Results on COVID-19 dataset. a The arrangement of count matrices in the
datasets, wherematrices are grouped by conditions (columns) and batches (rows).
The rectangle with dashed borders means that the count matrix is missing for the
corresponding condition and batch. b The UMAP visualization of unshared-bio
factors in scDisInFact. The upper plot shows the factor that encodes disease

severity condition, and the lower plot shows the factor that encodes age condition.
Cells are colored according to their ground truth conditions. c The UMAP visuali-
zation of shared-bio factors in scDisInFact, where cells are colored by ground truth
cell types (left) and batches (right). Source data for (b) and (c) are provided in the
Source Data file.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 9

Fig. 6 | Perturbation prediction result on COVID-19 dataset. a Perturbation
prediction accuracy of scDisInFact and baseline methods in the in-sample test. The
accuracy is measured by cell-type-specific MSE (left), Pearson correlation (middle),
andR2 scores (right). Theupper row shows the resultwhere the input andpredicted
count matrices are from the same batch, and the lower row shows the result where
the input and predicted count matrices are from different batches. Barplots are
shown separately for the prediction of “Age”, “Severity”, and “Age & Severity”

effects. b Perturbation prediction accuracy of scDisInFact and baseline methods in
the out-of-sample test. Barplots are shown separately for the prediction of condi-
tion effect (“Age”, “Severity”, “Age & Severity”) within batch (upper) and across
batches (lower). In (a) and (b), n = 8 independent samples are included in each bar.
The error bar represents 95% confidence interval, and the center of the error bar
shows the mean. Source data for (a) and (b) are provided in the Source Data file.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 10

(Supplementary Fig. 12a–c) confirm the advantage of using MMD loss.
MMD loss also affects the task of perturbation prediction. We then
compared the perturbation prediction accuracy of the models with
and without the MMD loss. We measured the perturbation prediction
accuracy using MSE (“Methods”), and the result shows that the use of
MMD loss reduces the perturbation prediction errors (Supplementary
Fig. 12d).

We then conducted the ablation test on the classification loss. The
classification loss separates unshared-bio factors of different condi-
tions, which is essential for the perturbation prediction task. We
compared the perturbation prediction accuracy of the models with
and without the classification loss. The results (Supplementary Fig. 13)
show that the model with classification loss (reg: 1) shows significantly
lowerMSEcompared to themodelwithout classification loss (details in
Supplementary Note 4).

We finally conducted the ablation test on group-lasso loss. The
group-lasso loss helps themodel extract themost important CKGs.We
compared theCKGs detection accuracyof themodels trainedwith and
without group-lasso loss (measured by AUPRC scores). As expected,
the use of group-lasso loss (reg: 1) significantly improves the CKGs
detection accuracy of the model (Supplementary Fig. 13, details in
Supplementary Note 4).

Hyper-parameter test of scDisInFact
We evaluated the model performance under different hyper-
parameter settings. The main hyper-parameters of the model include
the regularization weights (λ1kl, λ

2
kl, λgl, λmmd, λce) and the number of

latent dimensions (notations introduced in “Methods”). scDisInFact
performs multiple tasks, thus there is no unified way to evaluate the
overall performance of the model. Here we narrow down the perfor-
mance evaluation into perturbation prediction on held-out condition
(measured byMSE), andCKGs detection (measured by AUPRC scores).
Perturbation prediction on held-out condition measures the overall
generalization ability of scDisInFact, which relies on the quality of the
learned latent factors. CKGs detection is a standalone task that needs
to be measured independently. We use the simulated datasets for the
hyper-parameter test (design of the test in SupplementaryNote 5), and
the test result is shown in Supplementary Fig. 14.

The test result shows that the perturbation prediction accuracy
increases with the increase of MMD weight λmmd, whereas the CKGs
detection accuracy decreases with the increase of MMDweight. MMD
weight that is too large makes it hard to deal with cell type mismatch
across batches and conditions. λmmd = 10−4 shows a more balanced
result. The CKGs detection accuracy of scDisInFact increases with the
increase of group-lasso weight λgl, and the perturbation prediction
achieves the highest accuracy when λgl = 1. Classification weight λce
around 0.1 ~ 1 shows the best performance in both perturbation pre-
diction and CKGs detection. We fix the KL divergence weight of the
shared-bio factors to be a small value (10−5) to encourage the separa-
tion of cell types in the latent space, and test the KL divergenceweight
of the unshared-bio factors. λ2kl = 10

�4 ∼ 10�2 shows the best perfor-
mance. The overall performance of the model is not affected sig-
nificantly by the latent dimensions (the number of shared dimensions
between 4 and 16, unshared dimensions between 2 and 4). The hyper-
parameter tests show that scDisInFact has the best performance near
the recommended hyper-parameter settings (λ1kl = 10

�5, λ2kl = 10
�2,

λmmd = 10−4, λce = 1, λgl = 1, “Methods”).

Running time comparison of scDisInFact and baseline methods
Wemeasured the running time of scDisInFact on simulated datasets of
different sizes along with baseline methods, including scGEN, scPre-
GAN, and scINSIGHT. Supplementary Fig. 15 shows that scDisInFact
scales well to large datasets, similar to scGEN and scPreGAN. These
methods are faster than scINSIGHT thanks to their usage of GPU to
accelerate the training.

Discussion
We presented scDisInFact, a deep learning framework that models
multi-batch multi-condition scRNA-seq datasets. scDisInFact is a uni-
fied framework for three prominent tasks in disease studies: (1) the
disentanglement of biological factors and removal of batch effect, (2)
detection of condition-associated key genes, and (3) prediction of
gene expressiondata under conditionswhere nodata ismeasured. The
last two tasks are enabled by achieving the goal of the first task, the
disentanglement of variations in a multi-batch multi-condition scRNA-
seq dataset. While these tasks have been studied separately in existing
literature, it is important to recognize that they are related to each
other and can be addressed under a unified framework. scDisInFact
performs a comprehensive disentanglement of various types of
information in the dataset, which enables its multi-task ability.

The extensive tests conducted on simulated and real datasets
support that scDisInFact has superior performance than the baseline
methods that can only conduct one task. Not only scDisInFact gains
better performance on these tasks, but it is also more versatile than
existing methods in each task which can lead to broader applications
under realistic scenarios. For batch effect removal, scDisInFact
removes only batch effects and preserves biological differences across
data matrices. For condition-associated key gene detection, not only
scDisInFact can output CKGs at a high level, but the perturbation
prediction results can also be used to find genes that are differentially
expressed in specific cells or cell types from one condition combina-
tion to any other condition combination. For perturbation prediction,
scDisInFact models multiple condition types associated with the
donors and can predict data from a condition combination to any
other combination under study. This enables applications in complex
scenarios like predicting the effect of combinations of multiple drugs.

While scDisInFact performs well in the reported scenarios which
are applicable to a wide range of real datasets, there are certain sce-
narios that can pose challenges to disentanglement methods. As
shown in our results, when each batch of cells is measured under only
one condition, there is not enough information to fully disentangle the
batch and condition effect. Measuring data from multiple conditions
in the same batch can largely ameliorate this problem, which echoes
recommendations onwet-lab experimental design that batches should
be distributed across biological conditions25,26.

In order to be equipped with new features that were not provided
in existing related work (e.g. disentangling unshared bio-factors for
multiple condition types), scDisInFact made a few assumptions about
the multi-batch multi-condition datasets. First, scDisInFact assumes
that the condition types are mutually independent. Such indepen-
dence assumptions are often used in disentanglement learning
methods27,28, and are needed for perturbation prediction under mul-
tiple condition types. However, we acknowledge that such indepen-
dence does not always hold for real-world datasets. In our tests, we
selected condition types that showed little correlation. For the con-
dition types that show a strong correlation, we suggest users combine
them into a joint condition type instead of treating them separately.
For example, given a dataset with condition type 1 (stim1, ctrl1) and
condition type 2 (stim2, ctrl2) that are highly correlated, the users can
create a combined condition type (stim1_stim2, ctrl1_stim2, stim1_ctrl2,
ctrl1_ctrl2) and train scDisInFact on the combined condition type
instead. scDisInFact also assumes that the condition effect is inde-
pendent of the batch effect, and batch effects are consistent across
conditions. Such an assumption is made because the source of the
batch effect is technical confounders in the experiment whereas the
source of the condition effect is purely biological. In perturbation
prediction, following previous work17,29, scDisInFact assumes the con-
dition and batch effects are additive to the cells’ original biological
identity (shared-bio factors) in the latent space. Convenient as it is in
constructing models, this assumption also has its limitations in mod-
eling higher-order productive conditions or batch effects. Future

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 11

works should focus on better accommodating the correlation between
condition effects and batch effects, and further improve the modeling
capacity of the perturbation effect.

Methods
Loss function of scDisInFact
scDisInFact uses a combination of loss terms to accomplish the given
tasks. Firstly, scDisInFact reconstructs the input gene expression data
from the decoder by minimizing the evidence lower bound (ELBO)
loss, following the design of variational autoencoder. We denote the
input gene expression data, shared-bio factors, unshared-bio factors,
and batch factors of each cell as x, zs, zu, and b, respectively. There can
be multiple unshared-bio factors zus, each corresponding to one
condition type (Fig. 1b). For clarity of explanation,wedescribe the case
where only one condition type exists in the Method section, and the
multiple-condition-type case can be easily generalized from one con-
dition type. The ELBO loss for datasetswith one condition type follows:

LelboðΘ,ΦÞ= �Ezs ,zu ,b
½logPΦðxjzs,zu,bÞ�+KLðQΘðzs,zujb,xÞ k Pðzs,zujbÞÞ

ð1Þ

QΘ(⋅) is the encoder network with parameters Θ that model the pos-
terior distribution of zs and zu given x and b. PΦ(⋅) is the decoder
network with parameter Φ that models the likelihood function of x.
P(zs, zu∣b) is the prior distribution of zs and zu. Since zs, zu, and bmodel
factors that correspond to independent sources of variation, we can
factorize QΘ(zs, zu∣b, x) into QΘ(zs∣x, b)QΘ(zu∣x, b), and P(zs, zu∣b) into
P(zs∣b)P(zu∣b) according to mean-field approximation30. We use a
shared encoder tomodelQΘ(zs∣x, b), and unshared encoders tomodel
QΘ(zu∣x) (b is not used in the input of the unshared encoder). Then the
ELBO loss can be simplified as:

LelboðΘ,ΦÞ= �Ezs ,zu ,b
½logPΦðxjzs,zu,bÞ�+KLðQΘðzsjx,bÞ k PðzsjbÞÞ

+KLðQΘðzujxÞ k PðzujbÞÞ
ð2Þ

We model the likelihood function PΦ(x∣zs, zu, b) using a negative
binomial distribution:

NBðx;μ,θÞ= Γðx+ θÞ
ΓðθÞ

θ

θ+μ

� �θ μ

θ+μ

� �x

ð3Þ

where μ and θ are the mean and dispersion parameters of the
distribution31,32. The decoder learns the gene-specific μ and θ for each
cell. Byminimizing ELBO loss, scDisInFact is trained to extract themain
biological variation in the dataset into latent factors and generate
correct gene expression data from latent factors.

In Eq. (2), the prior distributions P(zu∣b) and P(zs∣b) remains to be
decided. For the shared-bio factors, we use a standard normal dis-
tribution as the prior following the classical VAEmodel19, whichmeans
P(zs∣b) = P(zs) =N(0, I). For the unshared-bio factors, we use a mixture
of Gaussian prior since we already know their condition labels as the
prior information. In the Gaussian mixture prior, we have cells of each
condition label following one Gaussian distribution with learnable
mean and variance. The total number of Gaussian distributions within
the mixture prior is decided by the number of unique condition labels
within the data. Given unshared-bio factors zs from condition c and
batch b, the prior distribution is written as P(zu∣b) = P(zu∣c) =N(μc, σcI),
where μc and σc are learned using stochastic gradient descent along
with the other model parameters.

When the condition effect is not strong enough, the prior para-
meters μc and σc of different condition label cs tend to “collapse” into
the same value. To better separate the unshared-bio factors of differ-
ent condition types, we apply a linear classifier on the unshared-bio
factors and use it to predict the condition label of each cell. The

unshared encoder is trained jointly with the attached classifier for
condition label prediction. This is tohelp theunshared encoder extract
the biological information that is important to the condition effect.We
measure the prediction accuracy using cross-entropy loss
Lceðycond,ŷcondÞ, where ŷcond is the classifier output and ycond is the
condition label.

scDisInFact further applies maximum mean discrepancy (MMD)
loss on zs and zu to ensure the disentanglement of these factors. The
MMD loss calculates the degree of mismatch between two distribu-
tions, and was used to align the latent embedding of cells across
batches11,33 (Supplementary Note 6). In scDisInFact, MMD loss is
applied on zs to ensure that zs is independent of condition (including
all condition types) and batch, whichmeans zs should follow the same
distribution regardless of the condition label c and batch b it belongs
to. Then MMD loss is applied on zs across batches and conditions. We
denote the set of batches under condition label c as Bc, and the total
number of condition labels as C (including all condition types). The
MMD loss on zs is the sum of MMD losses between zs from a reference
batch and condition (zrefs) and zs from each of the remaining batches
and conditions (zis):

LmmdðzsÞ=
XC
c= 1

X
i2Bc

Lmmdðzrefs ,zisÞ ð4Þ

Weused the zsof the batchand condition labelwith the largest cell
population as zrefs in all our tests.

We then consider the MMD loss that is applied on zu. The defini-
tion ofMMD loss on zu is slightly different between the cases when the
dataset has one condition type and multiple condition types. We first
consider the casewhere there is only one condition type in the dataset.
In this case, MMD loss is used to ensure that zu is independent of batch
b. For the cells of each condition label c, their correspondingunshared-
bio factors zu should be independent of batch b, whichmeans the zu of
different batches b should follow the same distribution. On the con-
trary, the zu of different condition labels are no longer required to
follow the same distribution. As a result, the MMD loss should be
applied separately on zu of each condition labels. The final MMD loss
follows:

LmmdðzuÞ=
XC
c= 1

X
i2Bc

LmmdðzrefðcÞu ,ziuÞ ð5Þ

ref(c) is the reference batch under condition label c, and it is selected
to be the largest batch of the data corresponding to condition label c.
When there is more than one condition type, MMD loss is used to
ensure that zu of each condition type is independent of both the batch
and the other irrelevant condition types. In this case, different condi-
tion labels of the irrelevant condition types should also be considered
as different “batches”when formulatingMMD loss of zu. TheMMD loss
still follows Eq. (5), but the definition of batch set in Bc should be
expanded to all unique combinations of batches and condition labels
in irrelevant condition types.

We transform the first layer of each unshared encoder into a
feature (gene) selection layer through group lasso loss34,35. We repre-
sent theweightmatrix of the first layer byW = [w1,w2,⋯ ,wd], where d
is the number of input dimensions (genes), and wi is the ith column
vector of W connecting to the ith gene. The group lasso loss
LglðWÞ= Pd

i = 1 k wik2 penalizes the number of non-zero wis, thus the
first layer of each unshared encoder is forced to select the most dis-
criminative genes as the condition-associated key genes (CKGs) of the
corresponding condition type.

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 12

The objective function of scDisInFact consists of a weighted
combination of losses above, which follows:

min
Θ,Φ

�Ezs ,zu ,b
½logPΦðxjzs,zu,bÞ�+ λ1klKLðQΘðzsjx,bÞ k PðzsÞÞ

+ λ2klKLðQΘðzujx,bÞ k PðzujcÞÞ+ λglLglðWÞ
+ λmmdðLmmdðzsÞ+ LmmdðzuÞÞ+ λceLceðycond,ŷcondÞ

ð6Þ

where λ1kl, λ
2
kl, λce, λmmd, and λgl are the weights of the losses.

Training algorithm of scDisInFact
We update the model parameter in an alternating manner using sto-
chastic gradient descent. For each iteration, the parameter update of
scDisInFact is separated into two steps. We first fix the parameters of
the unshared encoder and classifier and update the parameters of the
shared encoder and decoder through stochastic gradient descent. The
loss function (Eq. (6)) is then simplified into:

Ls1 = �Ezs ,zu ,b
½logPΦðxjzs,zu,bÞ�+ λ1klKLðQΘðzsjx,bÞ k PðzsÞÞ+ λmmdLmmdðzsÞ

ð7Þ

Then we fix the parameters of the shared encoder, and update the
parameters of the unshared encoder, classifier, and decoder through
stochastic gradient descent. The loss function (Eq. (6)) is then simpli-
fied into:

Ls2 = �Ezs ,zu ,b
½logPΦðxjzs,zu,bÞ�+ λ2klKLðQΘðzujx,bÞ k PðzuÞÞ+ λmmdLmmdðzuÞ

+ λceLceðycond,ŷcondÞ+ λglLglðWÞ
ð8Þ

The algorithm iterates until the objective function (Eq. (6)) con-
verges. We trained scDisInFact using Adam optimizer36, and set the
learning rate to be 5 × 10−4 and the batch size to be 64. Supplementary
Fig. 16 shows the training loss curves of scDisInFact on all testing
datasets in the manuscript.

Condition-associated key gene (CKG) detection
TheweightmatrixW in the first layer of each unshared encoder is used
to extract the CKGs of its corresponding condition type (Supplemen-
tary Fig. 1a). Each column vector ofW is connected to one input gene,
and we used the ℓ2-norm of each column vector as the score of the
corresponding gene. For gene i, the corresponding score si is calcu-
lated as si = ∥wi∥2, where wi is the ith column vector of W. A higher si
score means that gene i is more likely to be a CKG.

Prediction of condition effect on gene expression data
Given input gene expression data under one condition, scDisInFact is
able to predict the corresponding data under other conditions. We
illustrate the prediction procedure of scDisInFact using the example in
Supplementary Fig. 1b. Supplementary Fig. 1b describes a case where
the dataset has 3 condition labels (condition 1, 2, and 3 in unshared-bio
factors) and 6 batches (6 dimensions in batch factors). In the example,
scDisInFact takes as input a count matrix under condition 1 and batch
6, and predicts the count under condition 2 and batch 1 (Supplemen-
tary Fig. 1b). To do the prediction, we need to calculate new unshared-
bio factors through latent space arithmetics17 (Supplementary Fig. 1b
(left)). The latent space arithmetics includes two steps: (1) we calculate
the shifting vector δ that measures the difference between the mean
unshared-bio factors under condition 1 (�z1u) and condition 2 (�z2u), fol-
lowing δ = �z2u � �z1u; (2) For the input cells (under condition 1), we shift
their unshared-bio factors z1u by δ, following z1

0
u = z1u +δ. Then we need

to update the batch factor to match the predicted batch. In Supple-
mentary Fig. 1b, since the predicted count belongs to batch 1, we
assign 1 to the 1st dimension of the batch factor and 0s to
the remaining dimensions. We keep the shared-bio factors the same

since the shared-bio factors do not encode any condition or batch
effect. Finally, we feed the original shared-bio factors, the updated
unshared-bio factors, and the updated batch factors into the decoder,
and use the decoder output μ as the predicted counts. Decoder
models the gene expression data using a negative binomial distribu-
tion, and the output μ is interpreted as the denoised gene
expression data.

Hyper-parameter selection
The main hyper-parameters of scDisInFact include the latent dimen-
sions of shared-bio and unshared-bio factors, and the weight para-
meters in the loss function. Themost commonwayof hyper-parameter
selection on such a model is conducting a grid search of the hyper-
parameter on the held-out dataset. Given a dataset, one can separate
10%of cells fromeach batch to create a testing dataset, train themodel
on the remaining dataset, and check the losses on the testing dataset
(e.g., log-likelihood loss, classification loss, etc.). However, the grid
search is extremely time-consuming given a large set of hyper-
parameters or a large input dataset. Here we also provide a recom-
mended hyper-parameter setting, which was obtained from extensive
tests on both real and simulated datasets. We recommend the latent
dimensions of the shared encoder to be 8 and of unshared encoders to
be 2. The recommended weights are λ1kl = 10

�5, λ2kl = 10
�2, λmmd = 10−4,

λce = 1, and λgl = 1. We used the recommended hyper-parameters for all
our test results in the manuscript. Users can manually tune the hyper-
parameters around the recommended setting, and it should provide a
reasonable result on most of the dataset. The latent dimension should
be set according to the complexity of the data (cell types, trajectories,
condition labels, etc.), where datasets with more complex structures
should in general have higher latent dimensions. The regularization
weights control the effect of loss terms in contributing to the final
results. λ1kl and λ2kl controls how close the shared-bio factors and the
unshared-bio factors are to the prior. A higher λ1kl makes the shared-bio
factors to be more close to the Gaussian prior. A higher λ2kl makes the
unshared-bio factors to be more close to the Gaussian mixture prior.
λmmd controls the independence of different factors and conditions/
batches. A higher λmmd better disentangle different latent factors and
batch effect, but a value that is too high will cause overcorrection of
batch and condition effect of the shared-bio factors. λce controls the
classification accuracy, and a higher λce makes the unshared-bio fac-
tors of different condition labelsmore separated in the latent space. λgl
controls the effectiveness of CKGs detection in the model, a higher λgl
makes the model weight more on CKGs detection. The final result is a
joint contribution of all terms, and any term with too high a regular-
izationweightwill reduce the effectiveness of the remaining terms. It is
important to keep all the regularization weights within a reasonable
range. The users should alsomake sure that the visualization of shared-
bio and unshared-bio factors always show reasonable results during
the tunning: the visualization of the shared-bio factors should have
clear cell type separation patterns and be removed of both batch and
condition effects; the visualization of the unshared-bio factors should
separate the conditions of different condition labels and be removed
of batch effect.

We also provide the detailed parameter of neural networks in
scDisInFact (network diagram in Supplementary Table 9). The shared
encoder is a 3-layer fully connected neural network. The first 2 layers
have the same structure, where each layer consists of a linear layer
followed by a ReLu activation function and a dropout layer (“linear”-
“ReLu”-“dropout”, 128 output neurons for each layer). The last layer
has two linear networks that produce the mean and variance of the
shared-bio factors separately. The unshared encoder has 2 layers. The
first layer also follows the “linear”-“ReLu”-“dropout” structure (128
output neurons), and the last layer has two separate linear networks
for themeanandvariance of the unshared-bio factors. The decoder is a
3-layer fully connected neural network. Thefirst 2 layers also follow the

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 13

“linear”-“ReLu”-“Dropout” structure (128 output neurons for each
layer). The last layer includes two linear networks that separately
produce the mean and dispersion parameters of the data distribution.
The dropout rate of all dropout layers in scDisInFact is 0.2.

Simulation procedure
We simulated multi-batch scRNA-seq datasets using SymSim37, and
then added condition effect on the simulated dataset. We selected
mc

diff genes as the CKGs for each condition type c (CKGs of different
condition types have no overlap), and added the condition effect of
condition type c on the corresponding CKGs in the Symsim-generated
data. We denote the Symsim-generated count matrix as Xobs, where
Xobs[i, g] corresponds to the expression level of a CKG g in cell i. Then
the condition effect was added as a uniform distribution on Xobs[i, g]
with lower bound ϵ − 1 and upper bound ϵ: X0

obs½i,g�=Xobs

½i,g�+unifðϵ� 1,ϵÞ. ϵ is the perturbation parameter that controls the
strength of the condition effect. For each condition type, multiple
conditions can be generated with different condition labels. For
example, one can generate count matrices under the control and sti-
mulated conditions, where no condition effect is added on the control
condition, and the condition effect on the count matrices in the sti-
mulated condition is added following X0

obs½i,g�=Xobs½i,g�+
unifðϵ� 1,ϵÞ. The modeling of batch effect is already included in
Symsim simulator37.

We generated 9 simulated datasets with 2 condition types and 2
data batches (8 count matrices for each dataset, Fig. 2a). The 2 con-
dition types respectively have condition labels (1) control and stimu-
lation, (2) healthy and severe. We set the first mc

diff genes to be the
CKGs of conditions control and stimulation. We set the ðmc

diff + 1Þth to
2mc

diff th genes to be CKGs of conditions healthy and severe. We first
generate 2 batches of count matrices using Symsim. Then we evenly
separate cells of each batch and the corresponding gene expression
data into 4 conditions: (control, healthy), (control, severe), (stimula-
tion, healthy), and (stimulation, severe). For each chunk of the gene
expression data, we add condition effect according to its condition
group. We do not add condition effect for the gene expression data
under (control, healthy), whereas we add condition effect to the cor-
responding CKGs for gene expression data under either stimulated or
severe conditions. The 9 datasets are generated with different simu-
lation parameters to model different strengths of condition effect. We
used 3 CKG numbers (mc

diff = 20, 50, and 100), and generated 3 data-
sets under each CKG number with 3 perturbation parameters (ϵ = 2, 4
and 8). The detailed simulation parameter settings of 9 datasets are
included in Supplementary Table 1.

Pre-processing steps of real datasets
scDisInFact can be trained directly on the raw scRNA-seq dataset, no
pre-processing step is required before running scDisInFact. However,
directly training on raw scRNA-seq data can be time-consuming as the
feature dimension (number of genes) in the raw data can be extremely
high (20,000 ~ 30,000). Some additional gene filtering steps that
remove genes with low expression levels are also recommended, as
they can greatly improve the running speed of the model.

Pre-processing steps of GBM dataset. In the GBM dataset, the
authors obtainedmulti-batch scRNA-seqdata from theGBMresections
of patients with different drug treatments. We selected 21 count
matrices from 6 GBM patient batches with and without panobinostat
drug treatment (respectively named 0.2 uM panobinostat and vehicle
(DMSO)), where 16matrices were under vehicle (DMSO) condition and
5 matrices were under 0.2 uM panobinostat condition (see Supple-
mentary Table 5 for detailed information on the selected batches). We
remove the genes that have counts in less than 100 cells across all
batches, and obtained count matrices with 74,777 cells and 19,949
genes. The original paper annotated the cells into tumor and

non-tumor cells, which is a very high-level annotation. We further
annotated the non-tumor cells into Myeloid, Oligodendrocytes, and
Other cells using their marker genes1 for each batch separately.

Pre-processing steps of COVID-19 dataset. We selected COVID-19
scRNA-seq studies from the recent summarypaper16 (data downloaded
from https://atlas.fredhutch.org/fredhutch/covid/), and used the
count matrices stored in “arunachalam_2020_processed.HDF5”,
“wilk_2020_processed.HDF5”, and “lee_2020_processed.HDF5”. We
followed its standard of disease severity classification, and select
the data under the condition “healthy”, “moderate”, and “severe”.
We categorized the ages of patients in the studies into groups of
“40−” (below 40), “40–65” (between 40 and 45), and “65+” (above 65).
Then, we selected the genes that are shared among all three studies.
We did not conduct further filtering steps of genes and cells in these
studies.

Details on running baseline methods
Running scINSIGHT. When running scINSIGHT on simulated datasets,
we preprocessed the dataset following the Seurat normalization steps
(as was recommended in scINSIGHT online tutorial: https://github.
com/Vivianstats/scINSIGHT/wiki/scINSIGHT-vignette) and did not
conduct gene filtering steps on the datasets. The main hyper-
parameters of scINSIGHT include the number of common gene mod-
ules (K) and the number of condition-specific gene modules (Kj). We
used the default setting of K, where scINSIGHT searched through
K = 5, 7, 9, 11, 13, 15 and selected the best performing K.

When using scINSIGHT to learn shared-bio and unshared-bio
factors, we used the default setting of Kj (Kj = 2) and remaining hyper-
parameters. scINSIGHT learns a factorized common module and a
factorized condition-specificmodule. The commonmodule includes a
membership matrix V and expression levels matrices Wb2

(b = 1, 2,⋯ , B for B batches). Wb2 is equivalent to the shared-bio fac-
tors of cells under batch b. The condition-specific module includes
membership matrices Hc (c = 1, 2,⋯ ,C for C conditions) and expres-
sion levelsmatricesWb1 (b = 1, 2,⋯ , B forBbatches). Theunshared-bio
factors are encoded in bothWb1 andHc. We calculated the dot product
of Wb1 and Hc, and obtained cell-by-gene matrices Xcond

b that only
encoded the condition-related information. We treated Xcond

b as the
unshared-bio factors of scINSIGHT.

When using scINSIGHT to detect CKGs, we set Kj = 1 such that the
membership matrices Hc shrink into 1D vectors with length equal to
the number of genes. We then treated Hcs as the importance score of
genes under condition c. The genes that have important scores varying
the most across conditions should be the CKGs. We calculate the
variance of gene i under different conditions following:

VarðiÞ= 1
C

XC
c= 1

Hc½i� �
1
C

XC
c= 1

Hc½i�
 !2

ð9Þ

We then normalize the variances of genes to the range of 0 and 1,
which are used as the scoring of CKGs from scINSIGHT.

Running scGen and scPreGEN. We ran scGen following the steps and
parameter setting in its online tutorial (https://scgen.readthedocs.io/
en/stable/tutorials/scgen_perturbation_prediction.html). We ran
scPreGAN following the parameter setting in its online repository
(https://github.com/XiajieWei/scPreGAN-reproducibility).

In perturbation prediction tests, we trained scGen and scPreGAN
on the datasets that are only normalized with library size. As the test
requires the model to generate the count matrix as close as the gold-
standard count matrix, and additional preprocessing steps introduce
unnecessary bias. Both scGen and scPreGAN are designed for the
perturbation prediction task where only one condition type is

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 14

https://atlas.fredhutch.org/fredhutch/covid/
https://github.com/Vivianstats/scINSIGHT/wiki/scINSIGHT-vignette
https://github.com/Vivianstats/scINSIGHT/wiki/scINSIGHT-vignette
https://scgen.readthedocs.io/en/stable/tutorials/scgen_perturbation_prediction.html
https://scgen.readthedocs.io/en/stable/tutorials/scgen_perturbation_prediction.html
https://github.com/XiajieWei/scPreGAN-reproducibility

involved. To predict the condition effect on datasets where two con-
dition types are involved (simulated and COVID-19 datasets), we ran
bothmethods on a subset of countmatrices where one condition type
is fixed and another condition varies, and the methods are trained to
predict the condition effect of the changed condition. To further
predict the joint effect of two condition types (e.g., disease severity
and age in COVID-19 dataset), two cascademodels are needed for both
methods, where the first model learns one condition effect and the
second model learns the other condition effect. For the test datasets,
the detailed settings of training data used in both methods are
described in Supplementary Tables 2, 3, 6–8.

Evaluation metrics and gold-standard data
We evaluate the disentanglement of biological factors and technical
batch effect using the ARI (adjusted rand index) and ASW-batch
(batch-mixing average silhouette width) scores38. The ARI score mea-
sures the matching of latent space cluster result and ground truth cell
type label. An ARI score ranges from 0 to 1, and a higher score means
better separation of cell types in the latent space. The ASW-batch
scores measure how well the cells of the same cell type are aligned
amongbatches in the latent space38. The scores range between0 and 1,
and a higher scoremeans a better alignment of batches and removal of
batch effect.

To evaluate the CKGs detection accuracy, we use AUPRC (area
under the precision-recall curve) score, Early Precision score (Eprec)39

and Pearson correlation score. The scores are calculated using the
ground truthCKGsand inferredCKGs, and ahigher scoremeans better
detection accuracy.

When evaluating perturbation prediction, we use the denoised
count matrix as gold-standard for scDisInFact. This is because the raw
count matrix has technical noise, while the scDisInFact prediction is
already denoised thanks to the use of the negative binomial distribu-
tion in the likelihood function. Directly comparing scDisInFact pre-
diction with the raw counts would also induce the error caused by
technical noise. We instead pass the counts through the scDisInFact
model without updating any latent factors to generate the denoised
output, and compare the predicted counts with the denoised counts
instead. We still compare the prediction result of scGen and scPreGAN
with the raw count directly, since these methods did not model the
technical noise in their prediction.

We evaluate the prediction accuracy of gene expression data
usingMSE (mean square error), Pearson correlation, and R2 scores.We
calculate the scores on count matrices that are normalized against
library size. MSE measures the difference between true and predicted
count matrices on all input genes, where smaller values are better.
Pearson correlation alsomeasures the alignment of true and predicted
count matrices. It ranges between −1 and 1, and a higher Pearson
correlation means a better prediction result. R2 measures the coeffi-
cient of determination. A higher R2 score means a better matching
between the predicted and true counts, and themaximum R2 score is 1.
In the cases where there is a one-to-one correspondence between the
gold-standard counts and the predicted counts, MSE, Pearson corre-
lation, and R2 scores can be directly measured between cells. In the
caseswhere the gold-standardcounts and thepredicted counts arenot
from the same cell, there is no direct way to calculate MSE, Pearson
correlation, andR2 for each cell.We instead calculate the score in a cell-
type-specificmanner. We calculate the centroid of each cell type using
the mean gene expression data, and then measure the MSE, Pearson
correlation, and R2 between the centroid gene expression value of
predicted and gold-standard counts for each cell type. In our simula-
tion test and tests on GBM and COVID-19 datasets, we used cell-type-
level scores as there is no one-one-correspondence between the gold-
standard and predicted counts. In our ablation and hyper-parameter
tests, we used cell-level scores since we have the cell-level
ground truth.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this paper are previously published and freely
available. The glioblastoma (GBM) dataset is available at Gene
Expression Omnibus under accession number GSE148842. The COVID-
19 dataset is downloaded from the website with the link: https://atlas.
fredhutch.org/fredhutch/covid/. The original data are also available at
Gene Expression Omnibus under accession numbers GSE155673,
GSE149689, and GSE150728. All testing datasets and source data are
available through Zenodo41. Source data are provided with this paper.

Code availability
The code of scDisInFact is available on GitHub with the link: https://
github.com/ZhangLabGT/scDisInFact. The package version used for
the analyses in the paper has been assigned a citable DOI through
Zenodo42.

References
1. Zhao,W. et al. Deconvolutionof cell type-specificdrug responses in

human tumor tissue with single-cell RNA-seq. Genome Med. 13,
1–15 (2021).

2. Arunachalam, P. S. et al. Systems biological assessment of immu-
nity to mild versus severe COVID-19 infection in humans. Science
369, 1210–1220 (2020).

3. Lee, J. S. et al. Immunophenotyping of COVID-19 and influenza
highlights the role of type I interferons in development of severe
COVID-19. Sci. Immunol. 5, eabd1554 (2020).

4. Wilk, A. J. et al. A single-cell atlas of the peripheral immune
response in patients with severe COVID-19. Nat. Med. 26,
1070–1076 (2020).

5. Reyes, M. et al. An immune-cell signature of bacterial sepsis. Nat.
Med. 26, 333–340 (2020).

6. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch
effects in single-cell RNA-sequencing data are corrected by
matching mutual nearest neighbors. Nat. Biotechnol. 36,
421–427 (2018).

7. Tran, H. T. N. et al. A benchmark of batch-effect correctionmethods
for single-cell RNA sequencing data. Genome Biol. 21, 1–32 (2020).

8. Cao, K., Bai, X., Hong, Y. & Wan, L. Unsupervised topological
alignment for single-cellmulti-omics integration.Bioinformatics36,
i48–i56 (2020).

9. Stuart, T. et al. Comprehensive integration of single-cell data. Cell
177, 1888–1902.e21 (2019).

10. Welch, J. D. et al. Single-cell multi-omic integration compares and
contrasts features of brain cell identity. Cell 177,
1873–1887.e17 (2019).

11. Zhang, Z., Yang, C. & Zhang, X. scDART: integrating unmatched
scRNA-seq and scATAC-seq data and learning cross-modality
relationship simultaneously. Genome Biol. 23, 139 (2022).

12. Han, W. et al. Self-supervised contrastive learning for integrative
single cell RNA-seq data analysis. Brief. Bioinform. 23,
bbac377 (2022).

13. Zhang, L. & Nie, Q. scMC learns biological variation through the
alignment of multiple single-cell genomics datasets. Genome Biol.
22, 1–28 (2021).

14. Qian, K., Fu, S., Li, H. & Li, W. V. scINSIGHT for interpreting single-
cell gene expression from biologically heterogeneous data. Gen-
ome Biol. 23, 1–23 (2022).

15. Ren, X. et al. COVID-19 immune features revealed by a large-scale
single-cell transcriptome atlas. Cell 184, 1895–1913.e19 (2021).

16. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dys-
regulated myeloid cell compartment. Cell 182, 1419–1440 (2020).

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 15

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE148842
https://atlas.fredhutch.org/fredhutch/covid/
https://atlas.fredhutch.org/fredhutch/covid/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155673
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149689
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150728
https://github.com/ZhangLabGT/scDisInFact
https://github.com/ZhangLabGT/scDisInFact

17. Lotfollahi, M., Wolf, F. A. & Theis, F. J. scGen predicts single-cell
perturbation responses. Nature Methods 16, 715–721 (2019).

18. Wei, X., Dong, J. &Wang, F. scPreGAN, a deep generativemodel for
predicting the response of single cell expression to perturbation.
Bioinformatics 38, 3377–3384 (2022).

19. Sohn, K., Lee, H. & Yan, X. Learning structured output representa-
tion using deep conditional generative models. In Advances in
Neural Information Processing Systems 28 (2015).

20. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep
generative modeling for single-cell transcriptomics. Nat. Methods
15, 1053–1058 (2018).

21. Alexa, A. & Rahnenführer, J. TopGO: Enrichment Analysis for Gene
Ontology. R package version 2.44.0. https://doi.org/10.18129/B9.
bioc.topGO (2021).

22. Turner, T. B. et al. Epigenetic modifiers upregulate MHC II and
impede ovarian cancer tumor growth. Oncotarget 8, 44159 (2017).

23. Atadja, P. Development of the pan-DAC inhibitor panobinostat
(LBH589): successes and challenges. Cancer Lett. 280,
233–241 (2009).

24. Singh, A., Patel, V. K., Jain, D. K., Patel, P. & Rajak, H. Panobinostat as
pan-deacetylase inhibitor for the treatment of pancreatic cancer:
recent progress and future prospects.Oncol. Ther. 4, 73–89 (2016).

25. Leek, J. T. et al. Tackling thewidespread andcritical impact of batch
effects in high-throughput data.Nat. Rev. Genet. 11, 733–739 (2010).

26. Hicks, S. C., Townes, F.W., Teng,M. & Irizarry, R. A.Missing data and
technical variability in single-cell RNA-sequencing experiments.
Biostatistics 19, 562–578 (2018).

27. Chen, R. T., Li, X., Grosse, R. B. & Duvenaud, D. K. Isolating sources
of disentanglement in variational autoencoders. In Advances in
Neural Information Processing Systems 31 (2018).

28. Kim, H. & Mnih, A. Disentangling by factorising. In International
Conference on Machine Learning, 2649–2658 (PMLR, 2018).

29. Lotfollahi, M. et al. Predicting cellular responses to complex per-
turbations in high-throughput screens. Mol. Syst. Biol. 19,
e11517 (2023).

30. Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a
review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

31. Eraslan, G., Simon, L. M., Mircea, M., Mueller, N. S. & Theis, F. J.
Single-cell RNA-seq denoising using a deep count autoencoder.
Nat. Commun. 10, 1–14 (2019).

32. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nat. Bio-
technol. 38, 147–150 (2020).

33. Amodio, M. et al. Exploring single-cell data with deep multitasking
neural networks. Nat. Methods 16, 1139–1145 (2019).

34. Han, K., Wang, Y., Zhang, C., Li, C. & Xu, C. Autoencoder inspired
unsupervised feature selection. In 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
2941–2945 (IEEE, 2018).

35. Zhang, H., Wang, J., Sun, Z., Zurada, J. M. & Pal, N. R. Feature
selection for neural networks using group lasso regularization. IEEE
Trans. Knowl. Data Eng. 32, 659–673 (2019).

36. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization.
arXiv https://doi.org/10.48550/arXiv.1412.6980 (2014).

37. Zhang, X., Xu, C. & Yosef, N. Simulating multiple faceted variability
in single cell RNA sequencing. Nat. Commun. 10, 2611 (2019).

38. Luecken, M. D. et al. Benchmarking atlas-level data integration in
single-cell genomics. Nat. Methods 19, 41–50 (2022).

39. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T.
Benchmarking algorithms for gene regulatory network inference
from single-cell transcriptomic data. Nat. Methods 17,
147–154 (2020).

40. LeNail, A. NN-SVG: publication-ready neural network architecture
schematics. J. Open Source Softw. 4, 747 (2019).

41. Zhang, Z., Zhao, X., Bindra, M., Qiu, P. & Zhang, X. Testing and
source data of scDisInFact: disentangled learning for integration
and prediction of multi-batch multi-condition single-cell RNA-
sequencing data. Zenodo https://doi.org/10.5281/zenodo.
10472715 (2023).

42. Zhang, Z., Zhao, X., Bindra, M., Qiu, P. & Zhang, X. Source code
of scDisInFact: disentangled learning for integration and pre-
diction of multi-batch multi-condition single-cell RNA-
sequencing data. Zenodo https://doi.org/10.5281/zenodo.
10408518 (2023).

Acknowledgements
This work was supported in part by the US National Science Foundation
DBI-2019771, DBI-2145736 and National Institutes of Health grant
R35GM143070 (Z.Z., X.Zhang). The authors would like to thank Dr. Yu Li
for helpful discussions on this project. The human icons in Fig. 1 were
created with BioRender.com and the neural networks in Figs. 1 and S1
were created with NN-SVG40.

Author contributions
Z.Z. and X.Zhang conceived the idea of scMoMaT. Z.Z. and X.Zhao
implemented the scMoMaT algorithm. Z.Z. and M.B. carried out the
evaluation and data analysis. P.Q. helped with the evaluation and data
analysis. Z.Z. and X.Zhang wrote the paper. X.Zhang supervised
the work.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-45227-w.

Correspondence and requests for materials should be addressed to
Xiuwei Zhang.

Peer review informationNature Communications thanks DaifengWang,
Chi Zhang and the other, anonymous, reviewer(s) for their contribution
to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-45227-w

Nature Communications | (2024) 15:912 16

https://doi.org/10.18129/B9.bioc.topGO
https://doi.org/10.18129/B9.bioc.topGO
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.5281/zenodo.10472715
https://doi.org/10.5281/zenodo.10472715
https://doi.org/10.5281/zenodo.10408518
https://doi.org/10.5281/zenodo.10408518
http://BioRender.com
https://doi.org/10.1038/s41467-024-45227-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing�data
	Results
	Overview of scDisInFact
	Testing scDisInFact on simulated datasets
	Testing scDisInFact on glioblastoma�data
	scDisInFact performs disentanglement and predicts data under unseen conditions on COVID-19 dataset
	Ablation study on the loss terms of scDisInFact
	Hyper-parameter test of scDisInFact
	Running time comparison of scDisInFact and baseline methods

	Discussion
	Methods
	Loss function of scDisInFact
	Training algorithm of scDisInFact
	Condition-associated key gene (CKG) detection
	Prediction of condition effect on gene expression�data
	Hyper-parameter selection
	Simulation procedure
	Pre-processing steps of real datasets
	Pre-processing steps of GBM dataset
	Pre-processing steps of COVID-19 dataset
	Details on running baseline methods
	Running scINSIGHT
	Running scGen and scPreGEN
	Evaluation metrics and gold-standard�data
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

