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The impacts of active and self-supervised
learning on efficient annotation of single-cell
expression data

Michael J. Geuenich 1,2 , Dae-won Gong1 & Kieran R. Campbell 1,2,3,4,5,6

A crucial step in the analysis of single-cell data is annotating cells to cell types
and states. While a myriad of approaches has been proposed, manual labeling
of cells to create training datasets remains tedious and time-consuming. In the
field of machine learning, active and self-supervised learning methods have
been proposed to improve the performance of a classifier while reducing both
annotation time and label budget. However, the benefits of such strategies for
single-cell annotation have yet to be evaluated in realistic settings. Here, we
perform a comprehensive benchmarking of active and self-supervised labeling
strategies across a range of single-cell technologies and cell type annotation
algorithms. We quantify the benefits of active learning and self-supervised
strategies in the presence of cell type imbalance and variable similarity. We
introduce adaptive reweighting, a heuristic procedure tailored to single-cell
data—including a marker-aware version—that shows competitive performance
with existing approaches. In addition, we demonstrate that having prior
knowledge of cell type markers improves annotation accuracy. Finally, we
summarize our findings into a set of recommendations for those implement-
ing cell type annotation procedures or platforms. An R package implementing
the heuristic approaches introduced in this work may be found at https://
github.com/camlab-bioml/leader.

Single-cell expression profiling technologies have revolutionized
our understanding of healthy and diseased tissue. For example,
methods that quantify gene expression such as single-cell RNA-
sequencing (scRNASeq)1 provide unprecedented insights into
cellular hierarchies1–4, differentiation5, and rare cell types5,6.
Similarly, technologies that measure single-cell protein expres-
sion—both in suspension such as single-cell cytometry by time of
flight (CyTOF7) and in situ spatially such as imaging mass
cytometry8—have uncovered cellular states and spatial archi-
tectures associated with disease progression and patient
subtypes9.

Central to understanding the high-dimensional single-cell
expression profiles is the ability to categorize them into cell types and
states, thus aligning them with well-grounded prior molecular biology
knowledge. For example, cells may be understood by functional roles
resulting in cell types such as epithelial or T-cells. Consequently, a
common step in the analysis of single-cell data is to assign cells to such
cell types10. At a more granular level, identifying certain cell states
associated with diseasemay be of interest, such as highly proliferative
Ki-67+ malignant epithelial cells across a range of cancer types11.

Given the centrality of assigning cells to a priori specified cell
types, a myriad of computational solutions have been proposed,
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totaling >160 for scRNASeq alone as of mid 202312. Suchmethods and
workflows may be approximately described by 3 categories. Firstly,
cluster-and-interpret workflows, whereby cells are clustered via unsu-
pervised algorithms13,14, and clusters are interpreted as cellular types or
states via eithermanual inspection of knownmarkers or via automated
methods15,16. However, these methods have been shown to underper-
form relative to cell-level annotation approaches17,18. Secondly,marker-
based or “semi-supervised”19 methods that invoke statistical models to
automatically assign cells to a priori known cell types based on the
over-expression of known markers18,20,21. Finally, there are supervised
approaches that rely on previously labeled cells as training data and
then treat annotation as a prediction problem22–24. Such approaches
typically perform the bestwhen labeleddata is available andwhendata
is labeled at the cellular level rather than cluster level17,18.

While such supervised approachesmay often leverage labels from
existing atlases using transfer learning25, such atlases are not always
available or may be insufficient for a task at hand. An alternative
approach to obtain a ground truth training dataset is to label a subset
of the dataset manually, but this is a time-consuming process. In
addition, given a large dataset comprising thousands to millions of
cells, selecting a set of cells to annotate is non-trivial, as random
selection would oversample abundant cell type and undersample rare
cell types. A popularmachine learning solution to select data points in
the presence of expensive-to-obtain labels is active learning26, where a
model is used to suggest the next sample (cell) to label. Typically,
samples with the highest predictive uncertainty are likely tomaximally
improve classification performance if a label is acquired. Active
learning begins with an initial set of labeled data points. A classifier is
trained, the predictive uncertainty in the remaining unlabeled cells is
calculated, and the cells with the highest uncertainty are chosen for
expert annotation. Once labeled, the classifier is retrained, and this
loop continues until the desired number of cells have been annotated.

Despite the potential for active and self-supervised learning to
improve single cell annotation efficiency, few studies have quantified
the improvements possible through incorporating these approaches.
One study compared active learning to random selection on scRNASeq
datasets, finding small improvements17. However, the findings may not
translate into real-world use cases of active learning for several reasons.
For example, in this analysis a cell from every cell type was required to
be in the initial annotated set, which is virtually never the case on real
data since the cell types are not known in advance and it is unlikely to
occur by chance due to cell type class imbalance, which is frequently
high due to the presence of rare treatment resistant clones27, immune
cell subtypes28 or progenitor cell types present low numbers29. In
addition, no popular single-cell annotation methods specifically
designed for this taskwere compared and the effects of various realistic
single-cell scenarios like dataset imbalance were not investigated. To
our knowledge, no other works exist that have examined these ques-
tions. Finally, self-supervised approaches such as pseudo-labelling have
previously been used to boost the performance of classifiers in low-
label environments30–33 including models such as AlphaFold234. How-
ever, the utility of simple self-training procedures that may improve
classification efficiency has not been fully investigated.

Therefore, there are multiple outstanding questions in the utility
of active and self-supervised learning approaches for cell type anno-
tation, including (i) what performance boost do active learning
approaches deliver when combined with a range of popular single-cell
annotation algorithms such as SingleR23 and scmap22? (ii) what (if any)
active learning search strategy such as maximum entropy search per-
forms best? (iii) what are the effects of cell type imbalance and simi-
larity on active learning performance? (iv) can prior knowledge of cell
type marker genes be used to improve the initial training set? (v) can
sampling cells proportionate to their cluster identities be used as a
viable alternative to active learning? and (vi) do self-training approa-
ches like pseudo-labelling improve model performance?

Here we address these questions by performing a comprehensive
benchmarking of active learning across 6 datasets, 3 technologies, 6
cell annotation methods, 24 active learning approaches and trained
over 1600 active learning models. We show that active learning and
adaptive reweighting—a cell selection method introduced in this work
—both outperform random cell selection. In addition, we show that
strategies that exploit prior knowledge of cell type markers can
improve performance, and that self-supervised learning can improve
annotations in various scenarios. Finally, we summarize our work with
a set of recommendations for users.

Results
Random forest models and prior marker knowledge are best
suited for active learning
We first sought to replicate existing active learning findings17 under
real world conditions. To accomplish this, we collated six single cell
datasets comprising different modalities and existing ground truth
labels: two scRNASeqdatasets frombreast35 and lung36 cancer cell lines
where each cell line forms a “cell type” to predict, a pancreatic cancer
single nucleus RNA Sequencing (snRNASeq) dataset inwhich cell types
were assigned using a combination of clustering and copy number
profiles37, a CyTOF dataset comprised of mouse bone marrow cells38

that was assigned using a gating strategy, a scRNASeq dataset from
healthy donors of the liver atlas dataset39 and the vasculature tabula
sapiens scRNASeq dataset40. This covers cell type labels previously
designated as gold (cell lines) and silver (gating) standards as ground
truth41. Each dataset was subsampled to several thousand cells (see
methods) for computational efficiency given that over 200,000
unique experimentswere run for this analysis (S. Table 1). The resulting
datasets were composed of cell types with varying similarity (Supple-
mentary Fig. 1) and cell type imbalance (Fig. 1A). To benchmark the
active learning approach,we split eachdataset into ten train/test splits.
Tomimic the number of cells an enduserwouldmanually annotate, we
selected a total of 100, 250 and 500 cells from the training set. These
subsets were then used to train six cell type assignmentmethods using
ground truth cell type labels. We then evaluated the trained classifiers
using the held out test set using five different accuracy metrics
(methods) (Fig. 1B). Note however, that the main goal of this work is
not to evaluate the accuracies of the classifiers, but rather to bench-
mark the improvement in classification performance gained by creat-
ing an informative training dataset.

We first set out to replicate existing findings that random forest
models outperform logistic regression active learningmodels17. Rather
than ensuring one cell of each type was present in the training dataset,
we randomly selected 20 cells as the initial training set for the active
learning model without regard for cell type composition. Using these
probabilities we selected the next set of 10 cells with maximum
uncertainty at each iteration, labeled them and added them to the
training set. We quantified uncertainty using two metrics: (i) the
highest entropy based on the predicted cell type probabilities and (ii)
the lowest maximum probability predicted for a cell over cell types.
Both are well established as active learning techniques to quantify
which samples (cells) a classifier is least certain about42, and would
therefore benefit most from receiving a label. While doublets were
removed by the dataset authors, the approaches used for this task are
generally imperfect and doublets or mislabeled cells may still exist in
the ground truth dataset43. These would likely have the highest
entropy and lowestmaximumprobability thus possibly corrupting the
efficacy of our active learning approach. To protect against these cells
being preferentially selected, we selected cells at three different cer-
tainty thresholds for each metric: cells with the highest entropy and
cells that lie at the 95th and the 75th percentile of the entropy dis-
tribution and cells with the lowest maximum probability, 5th and 25th
percentile of the probability distribution. This should be an effective
way to ensure singlets are selected as the multiplet rate is generally
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Fig. 1 | Benchmarking overview. A TSNE embedding of datasets used in this
benchmarking colored by cell type (top) along with bar charts of cell type com-
position (bottom). B Schematic of the evaluation procedure: each dataset is split
into 10 different train-test splits using a 50/50 split. Datasets of size 100, 250 and
500 cells are then sampled from the training dataset using active learning, adaptive

reweighting and a random sampling (baseline). SingleR, scmap, CyTOF-LDA, a
random forest model, singleCellNet, and a support vector machine is then trained
using ground truth labels and evaluated by quantifying cell type prediction accu-
racy on the held-out test set. Source data are provided on zenodo: https://doi.org/
10.5281/zenodo.10403475.
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below these values44. Finally, to ensure our active learning methodol-
ogy is valid, we calculated the performance of the active learning
classifierwith each iteration. This showed a steady increase in accuracy
(Supplementary Figs. 2 and 3), indicating that our implementation
works as intended. Using this active learning setup, we then created
training datasets of sizes 100, 250 and 500 cells, and labeled these cells
with ground truth labels. Using our benchmarking pipeline (Fig. 1B) we
replicated existing results17 and found that our random forest model
also outperformed the logistic regression model (Fig. 2A, Supple-
mentary Figs. 4 and 5).

Next, we explored howthe initial set of cells uponwhich the active
learning model is trained impacts performance. We hypothesized that
exploiting known information about marker genes with cell type spe-
cific expression could help select the initial cells and improve active
learning results. To test this, we ranked all cells by the expression of a
set of cell type marker genes that were either provided by the dataset
authors, derived from the data, or identified from an external
database45. We then iterated through all expected cell types and
selected the cell with the highest score for that type. We repeated this
process until we selected 20 cells to serve as the initial set of cells to
train an active learning model. As expected, this approach created
datasets with an increased number of represented cell types relative to
a random selection of cells (Fig. 2B).

When benchmarking as previously described (Fig. 1B), selecting the
initial set of cells by ranking their expression resulted in an improved
classification performance across datasets. This was particularly notable
in situations where few cells were labeled (Fig. 2C, Supplementary
Figs. 6 and 7), likely because a larger diversity of cell types is present
since the initial training, which becomes less important asmore cells are
labeled. Overall, we replicate existing results17 suggesting that random
forest based active learning approaches outperform logistic regression
in real world circumstances. In addition, we show that active learning
can further be improved by selecting the initial set of training cells
through a prior-knowledge informed ranking procedure.

Marker-informed adaptive reweighting complements active
learning as a cell selection procedure
Next, we considered the failure modes of existing active learning
approaches on single-cell data. While active learning approaches
prioritize cells with high predictive uncertainty, they require an accurate
prediction model which may be difficult to achieve in certain circum-
stances. To address this, we developed adaptive reweighting, a
straightforward heuristic procedure that attempts to generate an arti-
ficially balanced cell set for labeling. Since clusters derived from unsu-
pervised methods are often representative of individual cell types, we
hypothesized that sampling a fixed number of cells from each cluster
could obtain an approximately balanced dataset with respect to the
ground truth cell type labels (Fig. 3A). However, this heuristic is not
perfect, as cells of a single cell type can be represented by multiple
clusters. Therefore, we introduced a cell-type aware strategy that
putatively assigns each cluster to an expected cell type using the aver-
age expression of marker genes (methods) and sample evenly from cell
types rather than clusters. We used several clustering parameters but
found no difference in their performance (Supplementary Figs. 8 and 9).

Overall, no singular method is consistently best. However active
learning does outperform random selection and adaptive reweighting
across most datasets, though adaptive reweighting remains competi-
tive in some situations (Fig. 3B). Specifically, the highest entropy and
lowest maximum probability selection strategies consistently outper-
form random cell selections. Selecting cells at the 75th and 25th
entropy and maximum probability percentile threshold however
consistently performed worse than random. As expected, the marker
aware adaptive reweighting strategy generally outperforms the non-
marker aware strategy, likely because it has access to prior knowledge
in the form of marker genes. Nonetheless, care should be taken when

Fig. 2 | Active learning ismost effectivewith randomforest classifiers andwhen
selecting the initial set of cells by marker expression. A Performance compar-
ison of classifiers trained using a random forest and logistic regression to provide
predictive uncertainty estimates for active learning. The relative difference in F1
improvement score is calculated as the difference in F1-score between the random
forest and logistic regressionmodels and standardized by the logistic regression F1-
score. This score is averaged across train-test splits and cell type prediction meth-
ods. The initial set of cells was selected randomly. B Proportion of all cell types
represented in the ground truth dataset selected by the random and ranking
selection procedures for each of the 10 train test splits. Boxplots depict the median
as the center line, the boxes define interquartile range (IQR), thewhiskers extend up
to 1.5 times the IQR and all points depict outliers from this range. C Same as (A) with
the improvement score as the difference between the performance when the initial
cells are selected based on cell typemarker information and random selection. This
score is averaged across train-test splits, active learning algorithms, and cell type
prediction methods. The cell number specifies the total size of the training set.
Source data are provided on zenodo: https://doi.org/10.5281/zenodo.10403475.
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defining a set of markers, as corruption in these can lead to decreases
in performance (Supplementary Fig. 10).Whilewe focusedour analysis
on balanced accuracy and sensitivity for the sake of clarity, all five
metrics are highly correlated (Supplementary Fig. 11). Finally, we found
that no selection strategy was too run-time intensive for practical
purposes (Supplementary Fig. 12).

Active learning outperforms alternativemethods in imbalanced
settings
We next sought to understand the effect of cell type imbalance on
active learning and adaptive reweighting given that such imbalance
is common within the field of single cell biology27, and has been
shown to affect active learning results in adjacent fields46,47. Across
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all datasets we sampled 450 cells of one type and 50 of another to
create artificially imbalanced datasets with 500 cells. Since cell type
similarity can influence performance (whereby classifying cells of
similar types is harder)48 we repeated this analysis twice: once with
two distinct cell types and oncewith similar cell types. In the case of
the snRNASeq the similar dataset was composed of tumor and aty-
picalductal cells for themajorityandminoritycell typerespectively,
while the distinct dataset was composed of tumor and immune cells
for themajority andminority cell type respectively (Supplementary
Fig. 1). In addition, we also created a balanced dataset with 250 cells
of each type as a control (Table 1). Next, we sampled 100 cells from
theseartificially imbalanceddatasetsusingactive learning, adaptive
reweighting and random selection.We then used the set of 100 cells
as a training set using our benchmarking pipeline (Fig. 1B).

We found that active learning approaches generally out-
performed both random and adaptive reweighting approaches in
imbalanced settings (Fig. 3C, Supplementary Figs. 13–27). As
expected, the drop in performance in imbalanced settings was
higher for cell types that were highly similar, while it was less pro-
nouncedwhen the cell types selectedweredistinct fromeachother.
Overall, these results indicate that active learning approaches
should be considered first if there is a large suspected cell type
imbalance. We next sought to understand the impact of dataset
imbalance in a complex dataset with more than two cell types. We
created balanced datasets containing 100 cells of five different cell
types and imbalanced datasetswith 400 cells fromone cell type and
25 cells from four cell types (Table 2). Overall, we found active
learning to also outperform other selection approaches in these
settings (Supplementary Figs. 28–30).

Active learning can identify distinct novel cell types
Next, we tested the ability of active learning approaches to identify cell
types that were completely unlabeled in the initial training set. We
trained our active learningmodels with 20 initial cells and ensured this
dataset contained a specific cell type 0, 1, 2 or 3 times, while the
remaining cells were selected either randomly or by ranking their
expression as previously described. Upon training on this set of 20
cells, we then predicted cell type probabilities across the unannotated
cells, calculated their entropies, and contextualized these values using
ground truth labels.

The results show that when a cell type was excluded from the
training set, the entropies for that cell type were generally higher
relative to training sets that included 1, 2 or 3 cells of that type (Fig. 4A).
While this increase in predictive entropy varied across datasets, it was
most drastic when using logistic regression, though it was still appre-
ciable when using a random forest classifier (Fig. 4A, Supplementary
Fig. 31). In addition, even the logistic regression classifier showed little
change in entropy values when some cell types (e.g. schwann cells)
were removed (Fig. 4C). This is likely due to the similarity between
schwann and endothelial cells (Supplementary Fig. 1), as when both
were removed, schwann cells had appreciably higher entropies when
no cells of this type were present than when a fewwere added (Fig. 4C,
last panel). Based on these results we conclude that logistic regression
based active learning approaches are likely to identify novel cell types
quickly even if these were not selected in the initial training phase if
these cell types are sufficiently distinct from one another.

Self-training can further improve classificationperformanceand
detect mis-annotated cell types
Next, we investigated the utility of self-training—a form of self-
supervised learning—to boost cell type classification performance

Fig. 3 | Investigating the effect of different cell selectionmethods onpredictive
performance. A Schematic depicting the adaptive reweighting algorithm. First, the
full dataset is clustered using existing methods. In the non-marker-informed case
(top) a subsampled dataset to be labeled is created by randomly selecting a set
number of cells from each cluster. In the marker-informed case (bottom), each
cluster is assigned a putative cell type based on the average expression of marker
genes. A subsampled dataset of the size requested by the user is then created by
sampling an equal number of cells from all putative cell types.B Performance of all
selectionmethods tested across tendifferent train test splits (AL active learning, AR
adaptive reweighting). Each selection method is ranked by the median balanced
accuracy and sensitivity across seeds and cell type assignment methods. For the
active learning results, the initial cell selectionwas ranked, and a random forest was

used.CThedifference in balanced accuracybetween an imbalanced and abalanced
dataset standardized by the balanced dataset for the snRNASeq cohort indicates
improved classification accuracy by active learning approaches in imbalanced
settings. Selection procedures are ordered by the average change in balanced
accuracy. The balanced dataset is composed of two cell types with 250 cells each,
while the imbalanced dataset is composed of 50 cells of one type, and 450 of
another. In the snRNASeq cohort the similar dataset is composed of tumor and
atypical ductal cells, while the different dataset is composed of tumor and immune
cells. Boxplots depict the median as the center line, the boxes define interquartile
range (IQR), the whiskers extend up to 1.5 times the IQR and all points depict
outliers from this range. Source data are provided on zenodo: https://doi.org/10.
5281/zenodo.10403475.

Table 1 | Cell types used to generate imbalanced datasets for
the first analysis considering cell type similarity

Similar Different

Majority Minority Majority Minority

scRNASeq
Breast can-
cer cell lines

HCC1937 CAL851 HCC1937 MDAMB468

snRNASeq
Pancreas
cancer

Tumor Atypical ductal Tumor Immune

CyTOF
Bone
marrow

Intermediate
monocytes

Eosinophils Intermediate
monocytes

IgD+ IgM+
B cells

scRNASeq
Lung cancer
cell lines

HCC827 H1975 HCC827 A549

scRNASeq
Liver

T cells Resident NK T cells Mono+mono
derived cells

scRNASeq
Vasculature

Smooth mus-
cle cell

Pericyte cell Smooth mus-
cle cell

Endothelial
cell

Table 2 | Cell types used to generate the second set of
imbalanced datasets

Majority Minority

scRNASeq
Breast cancer
cell lines

MDAMB468 CAL51, HCC1937, CAL851, MCF7

snRNASeq
Pancreas cancer

Tumor Fibroblast, Immune, Ductal,
Endothelial

CyTOF
Bone marrow

IgDpos IgMpos
B cells

Classical Monocytes, Intermediate
Monocytes, Eosinophils, IgD- IgMpos
B cells

scRNASeq
Lung cancer
cell lines

A549 H838, H2228, HCC827, H1975

scRNASeq
Liver

T cells Resident NK, Mono+mono derived
cells, Macrophages, Neutrophils

scRNASeq
Vasculature

fibroblast macrophage, smooth muscle cell,
endothelial cell, pericyte cell
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without requiring additional manual labeling. Self-training or pseudo-
labelling is a technique that uses a small, labeled dataset to train a
classifier that is then used to predict the label of all remaining
(unlabeled) samples49. The most confidently labeled cells (based on
the lowest entropy) are combined with the manually labeled cells to
create a larger labeled dataset, which can then be used to train
subsequent cell type annotation algorithms. In adjacent fields, self-
training has been demonstrated to improve classification
performance34, though its efficacy for efficient cell type annotation
remains unexplored.

To investigate this, we implemented random forest and logistic
regression classifiers as self-training algorithms, and labeled the top
10%, 50% and 100%most confident cells with the predicted label on the
three datasets from before. As expected, the accuracy of these classi-
fiers was inversely correlated with the prediction confidence of the
cells included (Fig. 5A, Supplementary Figs. 32 and 33).

We benchmarked the impact of self-training on the cell type
annotation performance by combining the manually annotated data-
set with a varying percentage of themost confidently labeled cells. We
then used these datasets to train all the cell type annotation methods

previously implemented (Fig. 1B) and evaluated their performance on
the test set. When comparing the performance of each classifier
trained on only the manually annotated data to the same classifier
trained on the manually annotated data including the self-trained
labels, we found that in general there is an increase in predictive per-
formance when using self-training, especially for datasets with dis-
similar cell types (Fig. 5B, Supplementary Figs. 1, 34–39). The change in
performance gained from self-training is most noticeable in situations
with few annotated cells and is lostonce500cells havebeen annotated
(Supplementary Fig. 40). To further understand if any selection pro-
cedures particularly benefit from including self-training data, we cor-
related the classification improvement gained by adding self-trained
data with the F1-score of the baseline performance achieved on only
the initially labeled cells. We find that selection procedures with lower
accuracies benefit most from self-training (Fig. 5C). This is likely
because little performance gains can bemadewhen a classifier already
achieves a classification accuracy (F1-score) that is near-optimal.

Finally, we investigated whether self-training can be used to
identifymis-labeled cells. To address this, we took a random sample of
250 cells from each of the train splits and corrupted the ground truth

CyTOF
Bone marrow

scRNASeq
Breast cancer cell lines

scRNASeq
Liver

scRNASeq
Lung cancer cell lines

scRNASeq
Vasculature

snRNASeq
Pancreas cancer

LR
R

F

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Number of missing cells

S
ca

le
d 

m
ed

ia
n 

en
tr

op
y

Cell type not removed Cell type removed

A

AU565 JIMT1

LR
R

F

AU56
5

BT48
3

CAL5
1

CAL8
51

CAM
A1

HCC19
37

HDQP1

JIM
T1

M
CF7

M
DAM

B46
8

AU56
5

BT48
3

CAL5
1

CAL8
51

CAM
A1

HCC19
37

HDQP1

JIM
T1

M
CF7

M
DAM

B46
8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ground truth cell type

S
ca

le
d 

en
tr

op
y

B

Schwann Endothelial, Schwann

Ductal Endothelial

Acin
ar

Atyp
ica

l_D
uc

ta
l

Duc
ta

l

End
oc

rin
e

End
ot

he
lia

l

Fibr
ob

las
t

Im
m

un
e

Sch
wan

n

Sm
oo

th
M

us
cle

Tu
m

or

Acin
ar

Atyp
ica

l_D
uc

ta
l

Duc
ta

l

End
oc

rin
e

End
ot

he
lia

l

Fibr
ob

las
t

Im
m

un
e

Sch
wan

n

Sm
oo

th
M

us
cle

Tu
m

or

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ground truth cell type

S
ca

le
d 

en
tr

op
y

C

Classical Monocytes

CD8 T cells

CD4 
T ce

lls

CD8 
T ce

lls

Clas
sic

al 
M

on
oc

yte
s

Eos
ino

ph
ils

Ig
D− 

Ig
M

po
s B

 ce
lls

Ig
Dpo

s I
gM

po
s B

 ce
lls

Ig
M

− 
Ig

D− 
B−c

ell
s

In
te

rm
ed

iat
e 

M
on

oc
yte

s

NK ce
lls

NKT ce
lls
pD

Cs

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ground truth cell type

S
ca

le
d 

en
tr

op
y

D

Number of cells of the type removed in dataset 0 1 2 3

Fig. 4 | Unlabeled cells have higher entropy values. A Median scaled entropy
values for each cohort when all cells of a type were removed (purple) and all other
cells (yellow).B Entropyof the cell typepredictive distribution for all cells not in the
initial training set of 20 cells for the scRNASeq breast cancer dataset. Boxplots are
colored by the number of cells present of a particular type (shown in the plot title),
while the x axis shows the ground truth cell type label. C For the snRNASeq pan-
creas cancer dataset, with the bottom right panel depicting the effect of removed
endothelial and schwann cells and (D) effect of removing CD8 T cells and classical

monocytes from the CyTOF bone marrow dataset. As entropy is bounded by the
total number of classes, the entropy values depicted were scaled by the maximum
possible value for each experiment. Shown are the results across the 10 different
train test splits. All boxplots depict the median as the center line, the boxes define
interquartile range (IQR), the whiskers extend up to 1.5 times the IQR and all points
depict outliers from this range. Abbreviations: logistic regression (LR), random
forest (RF). Source data are provided on zenodo: https://doi.org/10.5281/zenodo.
10403475.
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cell type for 10% of cells, such that their label was mis-assigned. We
then trained logistic regression and random forest models on these
250cells, including themisannotatedones. Next,we used this classifier
to calculate the entropy for each cell in the training dataset. The results
of this analysis clearly show increased entropy levels for those cells
whose cell type labels were misassigned (Fig. 5D). Thus, we conclude

that self-training can also be used to detect mislabeled cells within the
training set used for the self-training classifier.

Discussion
To our knowledge, this is the first benchmarking analysis of active
learning methods for cell type annotation based on real world
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assumptions.We have conducted a thorough investigation using three
different modalities across six datasets, six cell type assignment
methods, and have also shown that self-training can be used to boost
performance. We distill the results of this benchmarking into a set of
easy-to-follow guidelines for users (Fig. 6).

Nonetheless, our work has several important limitations. First,
there is a tradeoff between the number of datasets used to benchmark
and the comprehensivenessof thebenchmarking, as doingboth is very
computationally expensive. As part of this work, we chose to bench-
mark many hyperparameter and cell type annotation tools at the
expense of investigating a large number of datasets. Secondly, we
relied here on “ground truth” cell type labels derived from previous
studies. While we attempted to address this by using a mixture of
“gold” and “silver”-standard labels as introduced in previous studies41,
there is still a fundamental trade-off of defining exactly what the
ground-truth of a cell type label means in single-cell biology. While in
practice a user would manually annotate cells, relying on manual
annotation for this work was not feasible due to the large number of

experiments performed. Instead, we simulated the manual annotation
process using existing cell type annotations. There is also circularity in
the way some of our cell type markers are defined, especially for the
cell line data, as these are derived from a differential expression
between the cell lines. However, there is a tradeoff for this part of the
analysis: while well validated marker genes exist for “real” datasets, no
ground truth cell type labels exist, and conversely for cell line data,
ground truth “cell types” exist but no cell type markers. To minimize
the bias this induces, for other experiments we used markers from a
third-party database45 where available and benchmarked the effect of
marker corruption on adaptive reweighting (Supplementary Fig. 10).
Finally, we note that our benchmarking approach to cell type assign-
ment relies on labeling individual cells rather than clusters of cells. We
chose this approach as it has previously been shown to improve clas-
sification accuracy17,18. This is likely due to imperfect clustering leading
to erroneous cell type assignments and difficulties in setting cluster
resolution to match expected cell types exactly. However, such a
cluster-based approach would ameliorate assignment issues due to

Fig. 5 | Self-training can increase performance of some cell type assignment
algorithms. A F1-score of each self-training algorithm for each cohort decreases as
a larger set of predictively-labeled cells are included. The x-axis shows the percent
of cells with highest confidence of the overall dataset that were labeled using the
self-training method. The initial set of training cells were picked using active
learning.BOverall improvement in F1-scorewhen including cells labeled using self-
training relative to the baseline accuracy (only training on the cells labeled with
ground truth values). Shown are the results using an initial training set of 100 cells
thatwere selected using active learning and a self-training strategy. The percentage
specifies the percent of most confident cells that are self-labeled. C Correlation

between self-training improvement and original performance.D Entropy of all cells
represented in the randomly selected 250 cell training datasets shown for each of
the 10 train splits. The x-axis denotes the ground truth cell type, while each boxplot
is colored by whether the cell was corrupted to a different cell type. Like Fig. 4,
because entropy is bounded by the total number of classes, the entropy values
depicted were scaled by the maximum possible value for each experiment. All
boxplots depict the median as the center line, the boxes define interquartile range
(IQR), thewhiskers extendup to 1.5 times the IQRand all points depict outliers from
this range. Source data are provided on zenodo: https://doi.org/10.5281/zenodo.
10403475.

Fig. 6 | Recommendations for practitioners. A set of instructions outlining the
criteria based on which practitioners should decide which cell type selection
method to choose to aid inmachine-learningbased efficient annotation. The choice

will heavily depend on the amount of prior knowledge available to the user in the
formofpossible cell typemarkers, dataset imbalanceand thenumber of cells a user
wishes to annotate.
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dropout where individual genes are detected in one cell, but not
another50 due to low sequencing depth. This phenomenon could
complicate cell type annotation at the single cell level if specific cell
type markers are not expressed.

Future work to extend from this study could focus on several
directions. For example, there is scope to extend this benchmarking
across many additional datasets and modalities. In addition, an
accessible web platform to enable manual annotation of cells is
required for this work to be easily translatable to end users. To address
the dropout issue while maintaining the accuracy benefit of labeling
individual cells, hybrid approaches could be developed that employ
active learning and clustering. For instance, meta-cells consisting of
the combined expression of a small number of highly similar cells
could be labeled, thereby reducing the chance of erroneous clustering
while blunting the dropout issue. We also envision space for future
work on increasing labeled datasets with semi-supervised learning
approaches. Specifically, future work could focus on identifying the
best certainty threshold to select cells to label using self-training.
Finally, while we have shown that mislabeled cells have higher entro-
pies, we only used standard machine learning tools and expect that
approaches tailored to single cell data may outperform our
implementations.

Methods
Adaptive reweighting
The goal of adaptive reweighting is to generate a balanced dataset by
selecting a specified number of cells from a larger dataset without
requiring any cell type labels. Thus, rather than sampling cells ran-
domly, adaptive reweighting attempts to sample cells from each
cluster toget an evennumber of cells fromall cell types.To accomplish
this, we cluster with Seurat13. Next, we sampled cells from the resulting
clusters such that the same number of cells is taken from each cluster.
Specifically, the total number of cells requested is divided by the
number of clusters to get the total number of cells to sample fromeach
cluster. Should a cluster have fewer cells than this, all cells from this
cluster are sampled and the remaining cells are taken evenly from
other clusters.

To further boost performance we also implemented a cell type
marker aware version of adaptive reweighting. This variation performs
the same type of clustering already described, but instead of sampling
from the clusters directly it first attempts to assign the most likely cell
type to each cluster. Specifically, the average expression of a set of
marker genes provided by the user is calculated for each cell type and
cluster individually. This process is repeated for all the cell types listed
by the user resulting in a cluster by expected cell type matrix con-
taining the average expressionofmarker genes for that cell type in that
cluster. If negative selection markers are provided, their average
expression is also calculated and subtracted from the average positive
marker expression. Finally, each cluster is ‘assigned’ the expected cell
type for which it has the highest enrichment score. To get a set of cells
to annotate, cells are randomly sampled in equal numbers from the
‘assigned’ cell types. If all cells from an ‘assigned’ cluster are sampled
but more cells are requested, the remaining cells are sampled at equal
proportions from the other ‘assigned’ clusters. As part of the bench-
marking for this work, Seurat was run using the first 30 principal
components, resolution parameters of 0.4, 0.8 and 1.2, and nearest
neighbor parameters of 10, 20 and 30 were tested. However, no
meaningful differences were found between the different parameters.

Datasets and data processing
Six datasets with publicly available ground truth cell type labels were
used in this study: four single cell RNA-Seq, a single nucleus RNA-Seq,
and a CyTOF dataset. The first single cell RNA-Seq dataset was com-
posed of breast cancer cell lines35 downloaded from https://figshare.
com/articles/dataset/Single_Cell_Breast_Cancer_cell-line_Atlas/

15022698 and was randomly subsampled to 10 cell lines for compu-
tational efficiency, the second RNA-Seq dataset was composed of five
lung cancer cell lines36 downloaded fromhttps://github.com/LuyiTian/
sc_mixology. We selected cell lines as they have previously been used
as a surrogate for cell type in benchmarking analysis as a “gold stan-
dard” ground truth41. The tabula dataset40 was downloaded
from https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_
0/14267219, the liver dataset39 was downloaded from https://www.
livercellatlas.org and the nuclear RNA-Seq dataset composed of
untreated pancreatic cancer patient specimens comprising 11
cell types37 was subsampled to 6,000 cells and downloaded
from https://singlecell.broadinstitute.org/single_cell/study/SCP1089/
human-treatment-naive-pdac-snuc-seq. The CyTOF dataset is com-
posed of 24 cell types from the bone marrow of 10 different mice38. It
was downloaded using the HDCytoData R package51 and the most
abundant cell types from a 10,000 cell subsample were used as the
final dataset. Any cells annotated as being of an unknown type were
removed. Each dataset was then randomly split into ten different train
and test datasets using a 50:50 split while stratifying by cell type to
retain the original dataset imbalance. As recommended51, the CyTOF
dataset was arcsinh transformed using a cofactor of 5. For the
scRNASeq and snRNASeq datasets we calculated logcounts and nor-
malized with the size factor using the scuttle R package52.

For the cell line datasets, marker files were generated by con-
ducting a differential expression analysis between a cell line and all
others using the findMarkers function from scran53. While this is cir-
cular reasoning it is the only way to derive cell line marker genes as
markers do not exist the way they do for “real cell types”. A marker file
for the snRNA-Seqdatasetwas adaptedbasedon informationprovided
by the authors (personal communication), while themarker file for the
CyTOF dataset was adapted from the gating strategy used by the
dataset authors. To avoid circularity, the marker files for the tabula
datasetswere createdbasedon the 20most sensitivemarkers from the
PanglaoDB database45.

Cell type similarity calculation
To quantify the similarity between cell types we calculated the
weighted cosine distance between all cell types in PCA space. Specifi-
cally, we calculated a PCA embedding for each cohort and used the
first 20 principal components to calculate the cosine distance weigh-
ted by the variance explained by each principal component between
the center (average) representation of each cell type and all other
cell types.

Statistics and reproducibility
No statistical method was used to predetermine sample size. No data
were excluded from the analyses. The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Benchmarking cell selection approaches
We benchmarked three cell selection methods: random selection,
active learning approaches, and adaptive reweighting, a method
introduced in thiswork. Using eachapproachwe selected 100, 250 and
500 cells from the training dataset to be labeled. The selected and
labeled cells were then used to train an array of cell type prediction
methods that were subsequently evaluated using the test dataset. We
repeated this procedure 10 times with 10 different train test splits.

Initial cell selection procedures for active learning
To implement an active learning approach an initial set of cells needs
to be labeled to train amodel that can then suggest the next set of cells
to label. We tested two approaches: in the first a random set of 20 cells
is selected and annotated. In the second approach, cells arefirst scored
by the average expression of the respectivemarker genes for the set of
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pre-specified cell types. Then the highest ranked cell for each cell type
is selected one at a time until 20 cells have been selected (e.g. the
highest ranking cell for cell type one is selected first, then cell type two,
etc. If necessary this process loops and selects multiple putative cells
from the same cell type).

Active learning strategies
Active learning is based on the idea that the cells a classifier is least
certain about are most useful in increasing the predictive accuracy
when labeled. Upon having the initial set of labeled cells, we trained a
random forest and a logistic regression classifier using the first 20
principal components of scaled and centered logcount expression
data as input using the caret R package54 with default parameters. The
trained classifier is then used to predict across all unlabeled cells, and
the predicted probabilities are used to quantify the uncertainty of the
predictions for each individual cell. Out of the many active learning
sampling strategies proposed55 we chose to evaluate a maximum
probability and an entropy-based method. The maximum probability
measure is simply the highest predicted probability of each cell, with
the lowest values corresponding to the least certain predictions. The
entropy H for each cell is calculated as follows:

HðpÞ= �
XC

i = 1

pilog2ðpiÞ ð1Þ

Where C is the set of cell types defined in the marker file by the user,
and p is the probability that a cell is of cell type Ci. Here, the highest
values correspond to the least certain predictions.

Since the number of cells annotated with each iteration has been
shown to not have a meaningful effect on performance17, we selected
the set of 10 cells with the highest uncertainty to label using ground
truth data. After this set of cells is labeled, the classifier is trained again
and the loop repeats. Since there may be doublets or even some
mislabeled cells in the ground truth dataset, these would likely have
the highest uncertainty thus possibly corrupting the efficacy of our
active learning approach. To protect against these cells being pre-
ferentially selected, we selected cells at three different certainty
thresholds for eachmetric: cellswith the highest entropy and cells that
lie at the 95th and the 75th percentile of the entropy distribution
(corresponding to the lowest maximum probability, 5th and 25th
percentile of the probability distribution). This should be an effective
way to select singlets as the multiplet rate is generally below these
values44.

Implementation of cell type prediction methods
To benchmark each cell type selection method we trained several cell
type prediction methods on the generated training sets, and tested
their accuracy on the held out test set. For all transcriptomic methods
we implemented singleR23 and SingleCellNet56 using default para-
meters, SVMpred as previously implemented57 and sc-map22 by pro-
jecting to individual cells (scmap-cell) and clusters (scmap-clusters).
For the CyTOF dataset we implemented CyTOF-LDA24, which was
specifically developed for cytometry data using default parameters. In
addition, we also implemented a custom random forest predictor. For
this method, logcount or arcsinh transformed expression values are
scaled and PCA transformed prior to training. The classifier is trained
using five fold cross validation, and the parameters explored are 4, 6
and 10 maximum features, 100 and 150 estimators as well as 25 or 50
principal components for the transcriptomic datasets and 20 or 39
(the total number of markers) for the CyTOF dataset. Each model was
then evaluated using a total of five metrics: sensitivity, F1-score, Mat-
thew’s correlation coefficient, Cohen’s kappa and balanced accuracy.
Any cells predicted as ‘unassigned’ were removed prior to calculating
these metrics.

Adaptive reweighting marker corruption
To measure the effect of mis-specified markers on adaptive
reweighting, we took the original marker file defined for each dataset
and randomly corrupted 10, 25, 50, 75 and 100% of markers. Each of
these randomly selectedmarkerswas replacedwith a randomgenenot
in the original marker file that was also among the 10,000most highly
expressed genes in the dataset.

Creating imbalanced datasets
To benchmark the effect of cell type imbalance on the performance of
selection methods, we created four datasets per cohort. Specifically,
we created two imbalanced datasets with 450 cells of one type and 50
of another, with cell types that were similar and distinct from each
other. We also created two additional balanced datasets as a com-
parison using the same cell types. The exact cell types used in each
case are shown in Table 1. Only two cell types were included in this
analysis to ensure we could control for cell type similarity.

To generate a more realistic scenario with more than two cell
types we generated another set of balanced and imbalanced datasets
for each cohort. Specifically, we randomly selected 500 cells with 100
from the majority cell type and 25 from eachminority cell type for the
imbalanced dataset and 100 cells from each cell type for the balanced
dataset (Table 2).

Self-training
Inspired by AlphaFold234, we trained a logistic regression and random
forest model on the labeled cells and predicted the cell types of the
remaining cells in the training dataset. We then selected the top 10, 50
and 100%most confidently predicted cells based on their entropy and
labeled these using the prediction values obtained. These predictively
labeled cells were then combined with the originally labeled cells and
used as a training set for the cell type prediction methods. The effec-
tiveness of self-training was measured by comparing the accuracy of
predictions on the test set when a cell type prediction method was
trained on the originally labeled data with or without the self-
trained data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its Supplementary Information files. All data
used as part of this work is publicly available from the cited
studies. The scRNASeq breast cancer dataset was downloaded from:
https://figshare.com/articles/dataset/Single_Cell_Breast_Cancer_cell-
line_Atlas/15022698. The scRNASeq lung cancer cell line dataset
was downloaded from: https://github.com/LuyiTian/sc_mixology.
The scRNASeq tabula sapiens vasculature dataset was downloaded
from: https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_
0/14267219. The scRNASeq liver cell atlas dataset was downloaded
from: https://www.livercellatlas.org. The pancreatic cancer snRNASeq
dataset was downloaded from: https://singlecell.broadinstitute.org/
single_cell/study/SCP1089/human-treatment-naive-pdac-snuc-seq,
and the CyTOF bone marrow dataset was downloaded using the
HDCytoData R package. Cell type markers were either taken from the
supplementary data of the original publication or downloaded from
pangaloDB at https://panglaodb.se. Source data to re-create figures
has been deposited on zenodo: https://doi.org/10.5281/zenodo.
10403475.

Code availability
All code required to reproduce this study can be found at https://
github.com/camlab-bioml/active-learning-benchmarking and https://
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doi.org/10.5281/zenodo.1039782858. All software packages used are
listed in the Docker and Pipfile on the GitHub repository and on
Zenodo.
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