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Emerging opportunities and challenges for
the future of reservoir computing

Min Yan 1, Can Huang 1 , Peter Bienstman2, Peter Tino3, Wei Lin 4,5 &
Jie Sun 1

Reservoir computing originates in the early 2000s, the core idea being to
utilize dynamical systems as reservoirs (nonlinear generalizations of standard
bases) to adaptively learn spatiotemporal features and hidden patterns in
complex time series. Shown tohave thepotential of achievinghigher-precision
prediction in chaotic systems, those pioneeringworks led to a great amount of
interest and follow-ups in the community of nonlinear dynamics and complex
systems. To unlock the full capabilities of reservoir computing towards a fast,
lightweight, and significantly more interpretable learning framework for
temporal dynamical systems, substantially more research is needed. This
Perspective intends to elucidate the parallel progress of mathematical theory,
algorithm design and experimental realizations of reservoir computing, and
identify emerging opportunities as well as existing challenges for large-scale
industrial adoption of reservoir computing, together with a few ideas and
viewpoints on how some of those challenges might be resolved with joint
efforts by academic and industrial researchers across multiple disciplines.

At the core of today’s technological challenges is the ability to process
information at massively superior speed and accuracy. Despite large-
scale success of deep learning approaches in producing exciting new
possibilities1–7, such methods generally rely on training big models of
neural networks posing severe limitations on their deployment in the
most common applications8. In fact, there is a growing demand for
developing small, lightweightmodels that are capable of fast inference
and also fast adaptation - inspired by the fact that biological systems
such as human brains are able to accomplish highly accurate and
reliable information processing across different scenarios while cost-
ing only a tiny fraction of the energy that would have been needed
using big neural networks.

As an alternative direction to the current deep learning paradigm,
research into the so-called neuromorphic computing has been
attracting significant interest9. Neuromorphic computing generally
focuses on developing novel types of computing systems that operate
at a fraction of the energy comparing against current transistor-based

computers, often deviating from the von-Neumann architecture and
drawing inspirations from biological and physical principles10. Within
the broader field of neuromorphic computing, an important family of
models known as reservoir computing (RC) has progressed sig-
nificantly over the past twodecades11,12. RC conceptualizes howabrain-
like system operates, with a core three-layer architecture (see Box 1
and Box 2): An input (sensing) layer which receives information and
performs some pre-processing, a middle (processing) layer typically
defined by some nonlinear recurrent network dynamics with input
signals acting as stimulus and an output (control) layer that recom-
bines signals from the processing layer to produce the final output.
Reminiscent of many biological neuronal systems, the front end of an
RC network, including its input and processing layers, is fixed and non-
adaptive, which transforms input signals before reaching the output
layer; in the last, output part of anRC the signals are combined in some
optimized way to achieve the desired task. An important aspect of the
output layer is its simplicity, where typically a weighted sum is
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BOX 1

Comparison bettwen deep learning and reservoir computing
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(b) RC versus DL in terms of the number of parameters and 
computational cost (measured in the amount of petaflops) 
required for training [160]. 
* Estimation of memory storage of the parameters, assuming 

Deep learning (DL) and reservoir computing (RC) are both machine learning techniques. They share some 
common characteristics. For example, both of them are data-driven frameworks for learning, taking inputs and 
transform them (nonlinearly) to match desired outputs. By learning the features from the input data, they are 
shown to be universal function approximation, so as to fulfill sophisticated tasks.  

However, deep learning and reservoir compuitng are different in some degrees:
1. Architecture design: DL and RC can be distinguished directly from their structures. As shown in Fig. (a), in DL, 
all the parameters are fully trainable, namely all connections are continuously updated during the training phase. 
While in RC, only the readout weights are trained. Other connections among neurons are fixed once generated 
and are not updated any further. This structural difference indicates that RC usually has smaller parameter size 
than those of DL. 

2. Training procedure: Different architectures determine that DL and RC are trained distinctly. In DL, there have 
been many training algorithms and tools developed, such as backpropagation (BP), stochastic gradient descent 
(SGD), Newton’s method (NM), and so on. However, in RC, it is simple regression (e.g., linear regression, Lasso 
regression and ridge regression) that are usually adopted in training. The small parameter size and simple 
training procedure of RC together lead to much less training time and resource consumption.

3. Model complexity & performance: DL and RC have distinct model size, training comlexity and performance. In 
Fig. (b), we summrize the parameter size and required training petaflops of DL and RC. As the capacity of deep 
learning increases, the parameter size also grows, which is a challenge for practical application. For example, 
the memory of smart watch is around typically 2GB, so it can be equipped with GPT (~0.5 GB) or BERT-Large 
(~1.3 GB). For large networks such as GPT3 (~652 GB) and GPT4 (~6557 GB), only workstations or high 
performance cluster (HPC) can incorporate them. Inversely, since RC has much less parameters, it can be 
applied on diverse devices flexibly. Is has been shown that RC can realize image recognition with around 10-5-5

petaflops [161], indicating wide scope for further explorations. In addition, although parameter size is smaller, RC 
is utilized in improving the accuracy in climate modeling [117] and fulfilling weather forecast [118], which had 
been realized by deep learning previously.

As one of the most popular machine learning algorithms, DL has been studied widely. Nevertheless, RC seems 
to remain at primary stage, no matter in theoretical or algorithm level. It is still an open question where the full 
potential of RC is (as indicated by a question mark in Fig. (b)), and how is the training complexity if RC involves 
around billions of parameters, for which we draw our hypothesis in dotted lines in Fig (b). 
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(a) The architecture of DL versus RC. For DL, all connections are 
trainable (denoted by wavy lines). While in RC, only readout 
weights are trainable, and other connections are fixed once 
generated (denoted by straight lines).
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sufficient, reminding a great deal of how common mechanical and
electrical systems operate - with a complicated core that operates
internally and a control layer that enables simple adaptation according
to the specific application scenario.

Can such an architecture work? This inquiry was attempted in the
early 2000s by Jaeger (echo state networks (ESNs)11) and Maass (liquid
statemachines (LSMs),12), achieving surprisingly high level of prediction
accuracy in systems that exhibit strong nonlinearity and chaotic
behavior. These two initially distinct lines ofworkwere later reconciled
into a unified, reservoir computing framework by Schrauwen and
Verstraeten13, explicitly defining a new area of research that touches
upon nonlinear dynamics, complex networks and machine learning.
Research in RC over the past twenty years has produced significant
results in the mathematical theory, computational methods as well as
experimental prototypes and realizations, summarized in Fig. 1.
Despite successes in those respective directions, large-scale industry-
wide adoption of RC or broadly convincing “killer-applications”
beyond synthetic and lab experiments are still not available. This is not
due to the lack of potential applications. In fact, thanks to its compact
design and fast training, RChas longbeen sought as an ideal solution in
many industry-level signal processing and learning tasks including
nonlinear distortion compensation in optical communications, real-
time speech recognition, active noise control, among others. For
practical applications, an integrated RC approach is much needed and
can hardly be derived from existing work that focuses on either the
algorithm or the experiment alone. This perspective offers a unified

overview of the current status in theoretical, algorithmic and experi-
mental RCs, to identify critical gaps that prevents industry adoption of
RC and to discuss remedies.

Theory and algorithm design of RC systems
The core idea of RC is to design and use a dynamical system as
reservoir that adaptively generates signal basis according to the input
data and combines them in some optimal way to mimic the dynamic
behavior of a desired process. Under this angle, we review and discuss
important results on representing, designing and analyzing RC
systems.

Mathematical representation of an RC system
The mathematical abstraction of an RC can generally be described in
the language of dynamical systems, as follows. Consider a coupled
system of equations

Δx = Fðx;u;pÞ,
y=Gðx;u;qÞ:

�
ð1Þ

Here the operatorΔ acting on x becomes dx
dt for a continuous-time

system, x(t + 1) − x(t) for a discrete-time system, and a compound of
these two operations for a hybrid system. Additionally, u 2 Rd ,
x 2 Rn, and y 2 Rm aregenerally referred to as the input, internal state
and output of the system, respectively, with vector field F, output
function G and parameters p (fixed) and q (learnable) representing

BOX 2

Schematic representation of the reservoir computing (RC) framework
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their functional couplings. Once set up by fixing the vector field F and
the output function G and the parameters p, one can utilize the RC
system to perform learning tasks, typically in time-series data. Given a
time series fzðtÞ 2 Rmgt2N, an optimization problem is usually for-
mulated to determine the best q:

min
q

Z
t
kGðxðtÞ;uðtÞ; qÞ � zðtÞk2 +βRðqÞ� �

dt, ð2Þ

where R(q) is a regularization term.
Also, when z(t) is seen as a driving signal, the optimization pro-

blem can be regarded as a driving-response synchronization problem
finding appropriate parameters q14. Since RC is often simulated on

classical computers, most commonly used RC takes discrete time
steps:

xðt + 1Þ= ð1� γÞxðtÞ+ γf ðWxðtÞ+W ðinÞuðtÞ+bÞ,
yðtÞ=W ðoutÞxðtÞ,

(
ð3Þ

which is a special form of (1), but now with time steps and network
parameters more explicitly expressed. In this form, f is usually a
component-wise nonlinear activation function (e.g., tanh), the input-
to-internal and internal-to-output mappings are encoded by the
matrices W(in) and W(out), whereas the internal network is represented
by the matrixW. The additional parameters b and γ are used to ensure
that the dynamics of x is bounded, non-diminishing and (ideally)

Fig. 1 | Selected research milestones of RC encompassing system and algorithm designs, representing theory, experimental realizations as well as applications.
For each category a selection of the representative publications were highlighted.

Perspective https://doi.org/10.1038/s41467-024-45187-1

Nature Communications |         (2024) 15:2056 4



exhibits rich patterns that enable later extraction. Given some training
time series data {z(t)} (assumed to be scalar for notational conve-
nience), once the RC system is set up by fixing the choice of f, γ, b,W(in)

andW, the output weight matrix W(out) can be obtained by attempting
to minimize a loss function. A commonly used loss function is

W ðoutÞ> = argmin
w

kXw� zk2 +β kwk2� �
, ð4Þ

where X = ðxð1Þ>, xð2Þ>, . . . , xðTÞ>Þ>, z = (z(1), z(2),…, z(T))⊤ and
β∈ [0, 1] is a prescribed parameter. This problem is in a special formof
Tikhonov regularization and yields an explicit solu-
tion W ðoutÞ> = X>X + β2I

� ��1
X>z.

Common RC designs
Designing is a crucial step for acquiring a powerful RC network. There
are still no complete instructions on how to design optimal RC net-
works based on various necessities.With the unified forms Eqs. (1) and
(2) in mind, a standard RC system as initially proposed contains
everything randomand fixed including the input and internalmatrices
W(in) and W, leaving the choice of parameters γ and β according to
some heuristic rules. Based on this default setting, we show how dif-
ferent RC designs can generally be interpreted as optimizing in one
and/or multiple parts along the following directions. Firstly, in RC
coupling parameter search, with the goal of selecting a good and
potentially optimal coupling parameter γ tomaintain the RC dynamics
bounded and produces rich pattern that allow for the internal states to
form a signal bases that can later be combined to approximate the
desired series {z(t)}. Empirical studies have shown that γ chosen so that
the system is around the edge of chaos15 typically produces the best
outcome, which is supported by a necessary but not sufficient condi-
tion - imposed on the largest singular value of the effective stability
matrix Wγ = (1 − γ) + γW. Then, in RC output training, whose design
commonly amounts to two aspects. One is to determine the right
optimization objective, for instance the one in Eq. (4) with common
generalizations include to change the norms used in the objective in
particular the term ∥w∥ to enforce sparsity or to impose additional
prior information by changing β∥w∥ into ∥Lw∥ with some matrix L
encoding the prior information. On the other hand, (upon choice of
the objective) to further determine the parameter, e.g., β as in Eq. (4).
Although there is no general theoretically guaranteed optimal choice,
several common methods can be utilized, e.g., cross-validation tech-
niques that hadbeenwell-developed in the literature of computational
inverse problems. RC network design is crucial to determine the
dynamic characteristics. With the goal of determining a good internal
coupling network W. This has received much attention and has
attractedmany novel proposals, which include structured graphs with
random as well as non-random weights16,17, and networks that are
layered and deep or hierarchically coupled18–20. Furthermore, some-
times thosedesigns are themselves coupledwith theway the input and
output parts of the system are used, for example in solving partial
differential equations (PDEs)21,22 or representing the dynamics of
multivariate time series23. Finally, as for RC input design, although
received relatively little attention until recently, it turns out that the
input part of an RC can play very important roles in the system’s per-
formance. Here input design is generally interpreted to include not
only the design of the input coupling matrix W(in) but also potentially
some (non)linear transformation on the input u(t) and/or target vari-
able z(t) prior to setting up the rest of the RC system. The so-called
next-generation RC (NG-RC) is one such example24, showing great
potential of input design in improving the data efficiency (less data
required to train) of an RC.

In addition to the separate designs of the individualparts of anRC,
the novel concept of neural architecture search (NAS) has motivated
the research of hyperparmeter optimization25 and Automated RC
design to (optimally) design an RC system for not just one, but an

entire class of problems and ask what might be the best RC archi-
tecture - including its input and internal coupling dynamics and
training objective25,26, for instance using Bayesian optimization27. Fur-
thermore, nonlinear functions beyond the component-wise f = tanh
are often encountered in experimental settings and an active line of
research is to explore new types of nonlinear dynamics suchas electro-
optic phase-delay dynamics28–30, optical scattering31,32, dynamic
memristors33–36, enlarged memory capacity in chaotic dynamics37,
solitons38 and quantum states39,40.

Mathematical theory behind RC
The fundamental questions of exactly why, when and how RC learns a
general dynamical process are important mathematical questions
whose answers are expected to provide guidelines for the practical
design and implementation of RC systems. These lines of queries have
led to a number of important analytical results which we classify into
four categories.

The first category of work focuses on the echo state property
(ESP): Equivalent to state contracting, state forgetting, and input
forgetting - refers to RC networks whose asymptotic states x(t→∞)
depends only on the input sequence and not on the initial network
states. This property leads to a continuity property of the system
known as the fading memory property where current state of the
system mostly depends on near-term history and not long past11.
Ref. 11 considers RC network with sigmoid nonlinearity and unit
output function and showed that if the largest singular value of the
weight matrixW is less than one then the system has ESP, and if the
spectral radius of W is larger than one then the system is asymp-
totically unstable and thus cannot has ESP. Tighter bounds were
subsequently derived in41. In particular, the spectral radius condi-
tion provides a practical way of ruling out bad RCs and can be seen
a necessary condition for RC to properly function.

The second category is about memory capacity. Defined by the
summation of delay linear correlations of the input sequence and
output states, was shown to not exceed N for under iid input stream42,
can be approached with arbitrary precision using simple linear cyclic
reservoirs16, and canbe improved using the time delays in the reservoir
neurons43.

Universal approximation theorems can be regarded as a single
category. Prior to the research of RC, universal representation theo-
rems by Boyd and Chua showed that any time-invariant continuous
nonlinear operator can be approximated either by a Volterra series or
alternatively by a linear dynamical system with nonlinear readout44.
RC’s representation power has attracted significant recent interest:
ESNs are shown to be universally approximating for discrete-time
fading memory processes that are uniformly bounded45 and further
that the approximating family can be associated with networks with
ESP and fading memory46. For discrete-time stochastic inputs, linear
reservoir systems with either polynomial or neural network readout
maps are universal and so are ESNs with linear outputs under further
exponential moment constraints imposed on the input process47. For
structurally stable systems, they can be approximated (upon topolo-
gical conjugacy) by a sufficiently large ESN48. In particular, ESNs whose
output states are trained with Tikhonov regularization are shown to
approximate ergodic dynamical systems49. Also rigorously, the
dynamics of RC is validated as a higher-dimensional embedding of the
input nonlinear dynamics43. In addition, explicit error bounds are
derived for ESNs and general RCs with ESP and fading memory prop-
erties under input sequences with given dependency structures50.
Finally, according to conventional and generalized embedding the-
ories, the RCs with time delays are established with significantly-
reduced network sizes, and sometimes can achieve dynamics recon-
struction even in the reservoir with a single neuron43.

The last category includes research about linear versus nonlinear
transformations and next-generation RC. Focusing on linear reservoirs
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(possibly upon pre-transformations of the input states), recent work
showed that the output states of an RC can be expressed in terms of a
controllability matrix together with the network encoded inputs17.
Moreover, a simplified class of RCs are shown to be equivalent to
general vector autoregressive (VAR) processes51 - with possible non-
linear basis expansions it forms theoretical foundations for the
recently coined concept of next-generation RC24.

Research of how to design RC architectures, how to train them
and why they work have, over the past two decades following the
pioneering works of Jaeger andMaass, led tomuch evolved view of the
capabilities as well as limitations of the RC framework for learning. On
the one hand, simulation and numerical research has produced many
new network architectures improving the performance of RC beyond
purely randomconnections; futureworks can either adopt a one-fits-all
approach to investigate very large random RCs or perhaps more likely
to follow the concept of domain-specific architecture (DSA)52 to
explore structured classes of RCs that achieve optimal performance
for particular types of applications, with Bayesian optimization26,27 and
NAS as powerful tools of investigation53. On the other hand, for a long
time only few theoretical guidelines based on ESP were available for
practical design of RCs; more recently several important theoretical

discoveries weremade establishing universal approximation theorems
of RC - those results, although not yet directly useful for constructing
optimal RCs, may nevertheless boost confidence and stimulate expli-
citly ideas of designing and even optimizing RCs for learning. In par-
ticular, despite having randomly assigned weights that are not trained,
RC models are nevertheless shown to possess strong representation
power with rigorous theoretical guarantees.

Physical design of RC systems: from integrated
circuits to silicon photonics
To archive a controllable nonlinear high-dimensional system with
short-term memory, some specific physical systems with nonlinear
dynamic characteristics can be used to implement reservoirs
(see Box 3), where network connections are determined by the phy-
sical interactions. As the development of integration technology for
electrical and optical component, the computational efficiency can be
greatly improved compared to traditional Boolean logic methods. The
implementation of physical reservoir is similar to the software
approach, but slightly different.

In recent years, there has been extensive research on designing
and realizing RC using physical systems. A detailed review can be

BOX 3

Schematic diagram of physical reservoir computing
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found in reference54. Physical reservoirs can be roughly divided into
three types based on their topological structure: discrete physical
nodes reservoir, single-node reservoirs with delayed feedback and
continuous medium type reservoirs. Discrete physical nodes reservoir
is composed of interacting nonlinear components, such as
memristors35, spintronics55, oscillators56, optical nodes32, etc. The
nodes form a coupling network through real physical connections.
They can be simply enlarged by increasing the number of network
elements to obtain higher dimensions. Single-node reservoir is com-
posed of a single nonlinear node and a time delay loop, which can
transform the input signal into a virtual high-dimensional space
through time division multiplexing using single nonlinear physical
nodes, such as analog circuits57, lasers58, etc. This type of reservoir
avoids the problem of large-scale interconnection, making it more
hardware friendly. However, designing and implementing appropriate
delayed feedback loops is not a simple task. Continuous-medium
reservoir mainly utilizes the physical phenomena of various waves in a
continuous medium, such as fluid and elastic media. This type of
physical system can utilize the physical properties of waves, such as
interference, resonance, and synchronization, to achieve extremely
efficient physical RC59. In terms of specific physical schemes, there are
also physical reservoirs implemented by mechanical60, biological61,
quantum systems39 and superconductors62. In this article, we mainly
focus on comparing various physical implementation solutions in
terms of integration, power consumption, processing speed, and
programmability, as shown in Table 1. Typical high-performance phy-
sical reservoirs include traditional electronic schemes represented by
Boolean logic circuits such as FPGA63 and ASICs64; Non-Von Neumann
electrical reservoir scheme represented by memristor33 and
spintronics65 devices; And photonic schemes represented by silicon
photonics66, fiber optics29,67,68 and free-space optics69.

In principle, existing morphological circuits, such as FPGAs and
ASICs, can be implemented as an electronic reservoir. With its bit-level
fine-grained customized structure, parallel computing ability, and
efficient energy consumption, FPGAs exhibit unique advantages in
deep learning applications. Using FPGAs for reservoir computing is
also advantageous, as sparse connections in the reservoir model allow
for simple routing techniques that match FPGA requirements. Cur-
rently, several FPGA methods have been proposed70–72. In addition,
considering the high programming requirements of FPGAs, people
have proposed the implementation of RC algorithm using Application
Specific Integrated Circuits (ASICs)73, which can help improve chip
performance andpower consumption ratio. The disadvantage of ASIC-
based RC is that circuit design customization leads to relatively long
development cycles, inability to scale, and high costs. But research in
this area is also actively advancing74,75.

Besides the electric reservoir that is based on Boolean logic and
von-Neumann architecture, people have been pursuing higher effi-
ciency and lower energy consumption methods. For the reservoir
model, the nonlinear analog electronic circuit can be used to directly
build the reservoirmodel, such as theMackey -Glass circuit76. Basedon
nonlinear electronic circuits, a single electric node, such as a mem-
ristor, or a spintronic device, with delay lines that can be constructed
and combined with other digital hardware components for pre-
processing andpost-processing77. Thememristor has the dimension of
resistance, but its resistance value is determined by the charge flowing
through it. It functions as a memory, and can generate rich reservoir
states under anappropriate timedivisionmultiplexingmechanism35. In
addition, it is also possible to construct 2D/3D memristor crossbar
arrays and encode matrix elements into the embedded memristor
conductance78. This programming can be accomplished using voltage
pulses with minimal energy required. On the other hand, micro/nano
spin electronic devices constructed using electron spin degrees of
freedomcanexhibit the physical properties of tinymagnets and canbe
used to simulate synaptic behavior in biological nerves65. At present,Ta
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people have proposed several reservoir schemes based on the physical
phenomena related to spintronics79.

On the other hand, development of photonic technology has
brought hope for ultra-high speed and low energy consumption
hardware systems, especially for neural network training80. Optical
systems have significant advantages over traditional microelectronic
technologies in terms of high bandwidth, low latency, and low energy
consumption. Reservoir networks based on optical systems have also
made significant progress81, such as multi-scattering nodes in free
space32, single nonlinear nodes with fiber loop58, and integrated on-
chip reservoirs66. The free-space reservoir is generally achieved using
spatial optics and scattering media, such as diffractive optical ele-
ments (DOE), to achieve coupling between spatial optical nodes.
Interconnection between neurons in the reservoir are realized through
complex scatteringprocesses32. Single nonlinearoptical nodes, suchas
semiconductor optical amplifiers (SOAs), saturable absorbers
(SESAM), as well as semiconductor lasers can form optical reservoirs
with special fiber loop designs81. Integrated on-chip optical reservoir
are often archived by interaction between nonlinear micro/nano
optical devices, such as micro-rings81. Unlike the fiber delay loop
architecture, utilizing multiple on chip nonlinear optical nodes makes
it more convenient to take advantage of optical parallel computing.

Comparatively speaking, reservoir schemes based on FPGAs and
ASICs can greatly improve the computing speed and power con-
sumption compared with the general CPU electronic architecture, due
to its non-VonNeumann/in-memory nature of the computing. Besides,
there is no need for photoelectric conversion at either the input
or output ends, making it convenient in data scaling and processing.
However, the computing efficiency is close to the theoretical limit. For
electrical non-Von Neumann architectures, such as memristors, more
efficient computation can be realized theoretically, but due to their
analog nature, it is usually difficult to realize ideal nonlinear mappings
and high-precision matrix calculations, and the integration and stabi-
lity of such devices also need to be improved. As for spintronics
reservoirs, so far,most studies have only explored nanomagnetic RC in
simulations, and it also faces the scalability problem similar to mem-
ristor. For optical reservoir schemes, the low delay and low energy
consumption characteristics of optical devices are generally only
reflected in the reservoir layer. Currently, most schemes require pho-
toelectric conversion in data preprocessing and post-processing, and
the response time of the system is essentially limited by photo-
detectors and the time delay of electronic control circuits. At the same
time, optical processing errors and the power consumption of external
auxiliary devices also pose strict limitations on the scale of the system.
So it seems there is currently no solution that canbesaid tobe thebest.
In the short term, electronic solutions such as FPGAs do not require
photoelectric conversion in the input and output processes, and are
measurement friendly, thus having advantages in hardware imple-
mentation. However, considering issues such as power consumption
and latency, specializedphotonic reservoirswill havemore advantages
in the future. Perhaps utilizing their respective advantages compre-
hensively and adopting a heterogeneous integration solution is a fea-
sible path.

Application benchmarks of RC
Applications of RC are quite diverse and can be mainly divided into
several categories: signal classification (e.g., spoken digit recognition),
time series prediction (e.g., chaos prediction such as in the Mackey-
Glass dynamics), control of system dynamics (e.g., learning to control
robots in real-time) and PDE computations (e.g., fast simulation of
Kuramoto-Sivashinsky equations), which we discuss below
respectively.

In signal classification tasks, the input of RC are usually broadly-
interpreted (physical) signals such as audio, image or temporal waves.
The target output are the corresponding labels which can be spoken

digits16,28,29,34,35,65,68,82–84, image labels33,35,85–87, bit-symbols16,29,68,88–93 and
so on. The effectiveness of traditional neural networks in classification
tasks has been verified in lots of work. However, dealing with temporal
input signal is still a challenge. Compared with traditional neural net-
works, RC can map temporal signals with multiple timescales to high
dimension, encoding these signals with its various internal states.
Furthermore, RCnetworkhasmuch less parameters thus requiring less
training resources. Therefore, RC can be a good candidate to be uti-
lized in temporal signal classification tasks. The signals are in various
types (audio, image or temporal waves), and usually require some
preprocessing before injecting to RC network. For example, in the
spoken-digit recognition task, the raw signal is first transformed to
frequency domain in terms of multiple frequency channels via Lyon’s
passive ear model, as shown in Fig. 2a. Then the 2-D signals can be
directlymapped to the RC network as input u(t) via input mask, or can
be transformed to 1-D input sequence u(t) by connecting each row
successively. The targets are a vector of size ten corresponding to digit
number from 0 to 9. The state-of-the-art of RC currently can reach a
word error rate (WER) of 0.4% from memristor chip RC35, and 0.2%
from electronic RC94.

For time series prediction, RC assumes the role of regression,
taking input as a segment of time series up to a certain time and draws
predictions for the next (few) time steps. Examples are abundant,
including prediction of chaotic dynamics such as Mackey-Glass
equations11,31,34,51,95, Lorenz system22,26,49,51,95–97, Santa Fe Chaotic time
series16,86,89,95, Ikeda system95, auto-regressive moving average
(NARMA) sequence16,28,29,93,94,98, Hénon map16,35,95,98, radar signal68, lan-
guage sentence36, stocks data61, sea surface temperatures (SST)99,
traffic breakdown100–102, tool wear detection97 and wind power103. Given
a training time series fzðtÞgt2Z and prescribed prediction horizon τ, the
input sequence of RC can be defined as u(t) = z(t) while the target
output as y(t) = z(t + τ). (For one-step prediction we use τ = 1.) Once the
parameters of RC is learned, it canbeused as apredictivemodel, taking
a temporal input and predicts its next steps. In particular, RC trained
with one-step prediction can nevertheless be used to make multi-step
predictions, in the following way. Suppose that a finite-length time
series {u(t)}t=1,…,T is provided, we feed it into RC to compute a state
y(t + 1) as a one-stepprediction.We then append this state to the end of
the input effectively defining u(t + 1) = y(t + 1) and through RC to com-
pute a next state y(t + 2), and so on and so forth to obtain a series of
next steps y(t + 1, t + 2,…, t + h). A schematic example of nonlinear time
series prediction task is shown in Fig. 2b. In order to realize long-term
prediction, there is another training scheme in which the target
sequence is inserted periodically. In particular, the input to the RC now
comes from its feedback or target sequence alternately, as shown in
Fig. 2b (method 2). Compared with the previous case which can be
regarded as an offline training scheme, here RC can acquire target data
periodically, then retraining andupdating theoutputweights regularly.
This is an online training scheme. Since RC has access to target data
during its evolution, it can adjust the output weights to prevent the
predictive output data from diverging. Therefore, the online training
typically yields longer prediction period and better prediction
performances.

RC can play important roles in the control of nonlinear dynamical
systems104–109. In particular, in the model predictive control (MPC)
framework, control actions are derived based on a predictivemodel of
the system dynamics. The predictive model is typically linear due to
simplicity and low computational cost. RC as an alternative can
potentially improves upon the linear prediction without introducing
toomuch additional computational overhead, as shown in Fig. 2c. As a
concrete example, in the controlling robot armmovement task104, the
mechanical arm gives input data such as joint arm angles, destination
position coordinates and joint armtorques calculated fromLagrangian
equation. RC is trained with the targets which are successive joint
torques needed to gradually move to the destination. In the testing
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phase, as long as the destination is given, the robot arm can evolve by
itself to approximate to the target point. Additionally, RC jointly with
adaptive feedbackcontrol technique canbeused to track theunknown
and unstable periodic orbits and stabilize them even when the chaotic
time series are only available14.

RC can be applied for scientific computation such as in the
numerical solution of PDEs21,22,32. For these tasks, RC is typically
used to evolve the states of the system toward the temporal
direction with a flow diagram shown in Fig. 2d. To decrease the
difficulty for a single reservoir to process all inputs and improve the
training efficiency, parallel reservoir architecture was proposed21,22

which allows multiple small reservoirs to deal with different parts
of input data. The input vector is split into multiple small groups
with each group includes some extra adjacent points serving as
extra information provided to the corresponding small reservoirs.
The target is the next time step vector of the PDE. Accompanied
with a nonlinear readout function, the RC network can learn and
evolve Kuramoto-Sivashinsky (KS) equation relatively accurate up
to a time length of around 5 Lyapunov times21.

Overall, RC has demonstrated strong performance across a
range of benchmarks and tasks, with ongoing efforts to further

improve results. A summary of trends in RC performances in typical
application scenarios is shown in Fig. 3. For example, in spoken
digit recognition, WER is reaching near-perfect levels (0.014%)58.
Similarly, handwritten digit recognition boasts an accuracy of
around 97.6%35. While RC currently has limitations in action
recognition and requires preprocessing, there is potential for
future development in expanding recognition abilities and redu-
cing preprocessing needs. In time series prediction, RC excels in
chaotic sequences such as Mackey–Glass, Lorenz, and Santa Fe, but
real-world data such as weather110,111, stocks, and wind power show
less impressive performance. RC is primarily used in dynamic
control for MPC systems, but as system complexity increases, real-
time control with greater accuracy and efficiency is necessary.
Lastly, RC has been shown to compute PDEs effectively, but prac-
tical applications of this ability have yet to be fully realized. Despite
attempts and preliminary successes in applying RC to problems
endowed with real-world datasets, nearly none of those attempts
have led to an industry-level adoption and application. An impor-
tant reason is that the performance of RC on common tasks such as
image classification, audio signal processing have not reached or
shown to have the potential to approach the SOTA metrics offered

Fig. 2 | Example applications of RC. Flow diagrams showing how RC is applied in
different types of applications, here referring to as signal classification, nonlinear
time series prediction, dynamical control and PDE computing, respectively. a RC
for spoken-digit recognition16,28,29,34,35,65,68,82–84, when the targets are a vector of digit
numbers corresponding to 0–9. b RC for time series prediction with Mackey-Glass
equations11,31,34,51,95 as an example. In method 1 with off-line training, the training
sequence starts with the first point (black point), while the target sequence starts
with the secondone (orangepoint). Inmethod2withon-line retraining, the training

and testing are alternately presented. c RC acts as the prediction optimizer in the
general model predictive control (MPC)104–109 framework. Top: The MPC diagram.
Bottom: HowRCworks in theMPC system. dRC for PDE computation21,22,32 with the
Kuramoto-Sivashinsky (KS) equations as an example. The hidden layer consists of
parallelmultiple reservoirs, and each of themdeal with part of the input data, while
a nonlinear transformation is typically inserted before training the parameters of
the readout layer.
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by deep-learning based methods. Given that theoretically RC has
universal approximation capacities just as general neural networks,
in principle nothing seems to be holding back RC models to push
the frontiers of most challenging AI tasks, and this should be amain
goal of the entire RC community.

Opportunities and technical challenges for future
development of RC
We expect that research in RC can play important roles in several
important application domains, which we discuss as follows. As
technology continues to rapidly advance, there is an increasing
demand to develop intelligent information processing systems

that are both dynamic and lightweight, yet widely deployable at
low cost. According to estimates, by the years 2030–2035, both
wireless and optical communication will usher in the sixth gen-
eration (6G/F6G), providing connections for tens of billions of
devices and multi-billion users112,113. It is also expected that global
data centers will have a throughput of trillions of GB and require
over 200 terawatt hours of power consumption114. Furthermore,
tens and hundreds of millions of robots are set to enter our daily
lives to improve labor efficiency at a low cost115. Virtual reality and
Metaverse rely heavily on real-time simulation of the physical
world116. These major applications require a large number of
capabilities, including accurate recognition of dynamic

Fig. 3 | Trends in RCperformance in typical application scenarios. Four kinds of
representative scenarios are: a signal classification tasks such as spoken-digit
recognition, nonlinear channel equation and optical channel equalization; b time
series prediction such as predicting the dynamics of Mackey-Glass equations,

Lorenz systems aswell as andSanta Fe chaotic time series; c control tasks anddPDE
computation. Thick, up-pointing arrows in the panels denote error values that are
not directly comparable with other works.
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uncertainty information, fast prediction and computation, and
dynamic control, all of which can be provided by RC systems, as
shown in Fig. 4. As a result, we expect that RC research will play a
critical role in several important application domains, as we will
discuss below.

6G
Opportunities. It is predicted that by 2030, wireless communication
will advance to its sixth generation, commonly referred to as 6G. The
main goal for 6G is to enhance important indicators such as trans-
mission speed, coverage density, time delay, and reliability by 10 to
100 times compared to 5G. This would provide a never-before-seen
connection experience across a wider area for numerous devices112,113.
Challenges. In order to realize the beyond-5G vision, several technical
challenges need to be addressed. The most crucial one is achieving
low-latency, high-reliability network connections for complex chan-
nel environments and providing deterministic communication
guarantees. The key to this is active signal processing through pre-
dicting potential changes in the channel based on the perception of
the environment. This requires overturning traditional passive
waveform design and channel coding, and instead, relying heavily on
active sensing, accurate prediction, and dynamic optimization of
complex channels to systematically optimize channel capacity. To
address these technical challenges while maintaining a lightweight
deployment cost, RC can play a significant role. For example,
essential modules such as waveform optimization and decoding can
greatly benefit from accurate identification and dynamic estimation
of channel state information integrated sensing and communication.
These modules can also be further improved by transforming from
responsive to predictive channel estimation. Finally, real-time chan-
nel optimization, such as using RIS techniques, would require fast
and adaptive control of potentially high-dimensional dynamics. Due
to its compact and lightweight network structure, rich functional

interfaces, and low-complexity training and computing nature, RC is
expected to become a key technology base for edge-side information
processing.

Next-generation optical networks
Opportunities. Optical fiber communication is often regarded as one
of themost significant scientific advancements of the 20th century,
as noted by Charles Kuen Kao, the Nobel Prize winner in Physics117.
The optical network derived from optical fiber technology has
become a fundamental infrastructure that supports the modern
information society, processing more than 95% of network traffic.
The next-generation optical fiber communication network aims to
achieve a Fiber to Everywhere vision118,119, featuring ultra-high
bandwidth (up to 800G~1.6Tbps transmission capacity per fiber),
all-optical connectivity (establishing an all-optical network with
ultra-low power consumption and extending fibers to deeper
indoor settings), and an ultimate experience (zero packet loss, no
sense of delay, and ultra-reliability). Challenges. To attain such a
significant vision, significant technological advancements must be
made in areas such as all-optical signal processing, system opti-
mization, and uncertainty control. These technical challenges can
benefit from new theories, algorithms, and system architectures of
RC. For instance, a silicon photonics integrated RC system, func-
tioning as a photonic neural network, can achieve end-to-end
optical domain signal processing with negligible power consump-
tion and time delay in principle, without relying on electro-optical/
optical conversion. As a result, it has the potential to become a key
technology in future all-optical networks. Additionally, adjusting
the internal structure of the optical fiber can enable the enhance-
ment of capacity by searching complex and diverse structures,
which can benefit from the effective and automated modeling of
the channel with RC. This approach transforms the original black-
box optimization of the system into the white-box optimization of

Fig. 4 | Application domains in which RC potentially can play important roles.
Each domain corresponds to three specific example application scenarios. Six
domains are 6G136–140, Next Generation (NG) Optical Networks92,93,141–143, Internet of

Things (IoT)61,144,145, Green Data Center120,146,147, Intelligent Robots148–150 and AI for
Science151–157 and Digital Twins99,103,158–161.
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the RC’s output layer, likely able to improve the optimization effi-
ciency. In terms of low-latency and reliability assurance at the
optical network level, RC research can play a critical role in link
failure prediction early warning, fault localization, and dynamical
control. Due to the compact design of RC, embedded devices can
perform intelligent processing tasks as a natural part of the net-
work system, without requiring a centralized power center.

Internet of Things (IoT)
Opportunities. In comparison to traditional communication and
interconnection services for computers and mobile phones, the
Internet of Things (IoT) caters to a wider range of devices with
broader coverage, posing several new technological challenges.
With IoT, the quantity and types of objects served are sig-
nificantly higher, including smart temperature and light
control120,121, open-space noise cancellation122, air quality
monitoring123, among others, all of which are key features of
smart homes. Communication technologies used to realize the
interconnection of these devices are diverse, including Blue-
tooth, NFC, visible light, RFID, WiFi, ZigBee, and so on. Chal-
lenges. Unlike high-end devices such as computers and mobile
phones, a vast majority of IoT connected devices cannot rely on
energy-hungry integrated chip technology to achieve advanced
computing performance due to power consumption and volume
limitations. Consequently, IoT end-side systems must utilize low-
power, programmable techniques to achieve adaptive perception
and computing necessary for edge intelligence. The lightweight
and dynamically controllable nature of such requirements make
RC systems particularly advantageous over large AI models. With
the success of domain-specific chips for audio and video pro-
cessing, there is expected to be significant demand for embedded
smart chips in the IoT field, which will open up new opportunities
for the application of RC research.

Green data centers
Opportunities. Data centers have become an essential infrastructure
for the new generation of information society due to the substantial
increase in demand for massive computing and data storage. It is
estimated that by 2030, global data centers will process a trillionGB of
data every day, and their power consumption is expected to account
for over 60% of total power generation. However, the large amount of
electricity consumption and heat emissions required to operate these
centers have a significant impact on the environment. Therefore, the
design and development of new generation green data centers with
low energy consumption and high reliability are crucial for the sus-
tainable development of society. Challenges. The realization of low-
energy data centers relies on numerous technological breakthroughs.
Energy consumption in data transfer accounts for a significant pro-
portion, with optical modules playing a central role. Therefore,
achieving low energy consumption requires reducing the energy
consumption of optical modules. One promising approach is to
implement all-optical signal processing based on the integrated silicon
photonics on-chip RC system. Additionally, data centers comprise
many components that form an extremely complex dynamic system.
Maintaining the system’s normal operation at the least possible cost of
energy consumption, such as keeping the overall temperature stable at
a low-range, can be viewed as an optimal control problem. A potential
solution to this problem is through data-driven models with physical
priors, which combines a structured model derived from the connec-
tion relationship and functions of physical equipment and data-driven
methods to build a dynamic control framework. By monitoring and
adjusting the parameter configuration of eachmodule of the system in
real-time, this framework can achieve the optimal operating status and
energy consumption cost. RC has the potential to play a crucial role in
this approach.

Intelligent robots
Opportunities. Robots are becoming increasingly important in today’s
information society due to their ability to take many forms, including
intelligent physical manifestations. One example of this is large-scale
commercial sweeping robots used in smart homes115, which have
replaced traditionalmanual operations in various scenarios, improving
both production efficiency and living standards. With advances in
technology, more types of intelligent robots are expected to emerge
over the next decade, capable of completing complicated tasks
through autonomous perception, calculation, optimization, and con-
trol in complex environments like failure detection,medical diagnosis,
and search-and-rescue operations. Biological intelligence serves as
inspiration for achieving robot intelligence, which relies on three key
elements: real-time intensive information collection and perception
capabilities (made possible by technologies such as flexible sensing,
electronic skin, and multi-dimensional environment modeling), fast
information processing capabilities (enabled by technologies like
decision-making optimization and dynamic control), and physical
control capabilities (facilitated by nonlinear modeling and electro-
mechanical control). Challenges. Due to physical constraints such as
battery capacity and deployment environment uncertainty, the core
modules supporting robot intelligence are expected to be embedded
in the physical entity of the robot in an offline manner rather than
relying on cloud and network capabilities to provide potential large
model capabilities. Similar to the IoT scenario,machine learning that is
widely relied on in robot intelligence must have the characteristics of
miniaturization, low energy consumption, and easy deployment, while
requiring the ability to recognize, predict, calculate, and control
dynamic processes. This presents an excellent application field for RC
systems to play a role. In MPC, since the role of RC merely replaces a
linear predictor theoverall controller architecture remains transparent
and intact. In principle, it is possible to adopt RC for general controller
design beyond usage in the MPC framework, e.g., directly learning
control rules from data together with (some) prior model knowledge.
However, the main challenge would be to pose theoretical guarantees
on error and convergence neither of which have been resolved by
existing works of RC.

AI for science and digital twins
Opportunities. To fully realize the ongoing information revolution, it is
essential to rethink and reshape crucial aspects of industrial manu-
facturing through the innovative framework of AI for science and
digital twins. This involves achieving full perception and precise con-
trol of physical systems through interactions and iterative feedback
between digital models and entities in the physical world. Essentially,
digital twins establish a synchronous relationship between physical
systems and their digital representations. Using this synchronous
function, simulations can be run in the digital world, and optimized
designs can repeatedly and iteratively be imported into the physical
system, ultimately leading to optimization and control. For systems
with clear and complete physical mechanisms, synchronization mod-
els that digital twins rely on are usually sets of ODEs/PDEs. For exam-
ple, simulating full three-dimensional turbulence, weather forecasting,
laser dynamics, etc. Preliminary studies suggest that reservoir com-
puting canbeused to reduce the computational resources required for
these expensive simulations. Arcomano et al.111 developed a low-
resolution global prediction model based on reservoir computing and
investigated the applicability of RC in weather forecasting. They
demonstrated that a parallel ML model based on RC can predict the
global atmospheric state in the same grid format as the numerical
(physics-based) global weather forecast model. They also found that
the current version of the ML model has potential in short-term
weather forecasting. They further discovered that when full-state
dynamics are available for training, RC outperforms the time-based
backpropagation through time (BPTT) method in terms of prediction
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performance and capturing long-term statistical data while requiring
less training time. Challenges. Calculations of these physics-inferred
equations can be challenging. Inmore complex industrial applications,
multiple coupling modules are often present, and interactions
between the system and the open environment cannot be fully
described by physical mechanisms or mathematical functions. There-
fore, it is necessary to consider fast calculation techniques, but also
find ways to build synchronizationmodels for non-white-box complex
dynamic systems. Mathematical modeling of fusion between physical
mechanisms and data-driven techniques has been significantly devel-
oped in the past decade. For instance, Physics-inspired Neural Net-
works (PINN) embed the structure and form of physical equations into
neural network loss functions, which guides the neural network to
approximate provided physics equations during parameter training124.
Another type of physics-inspired computing system, RC, inherently
provides an embedding method of the mechanism model, which is
expected to provide a powerful supplement to the solver for basic
physical models of industrial simulation, focusing on offering a
dynamic modeling framework for the fusion of mechanisms and data.
However, for reduced-order data, large-scale RC models may be
unstable and more likely to exhibit bias than the BPTT algorithm. In
another example of research on nonlinear laser dynamics, the authors
found that RC methods have simpler training mechanisms and can
reduce training time compared to deep neural networks125. For prac-
tical problems involving complex nonlinear physical processes, we
have reason to believe that RCmethodsmay provide us with solutions
for computational acceleration.

Outlook
In summary, although RC has the potential for large-scale application
in terms of functions, in order to truly solve the technical problems in
the above-mentioned various major applications, there are still many
key challenges in the existing RC system in various aspects. For
example, in theoretical research, although the universal approxima-
tion theory of RC has advanced significantly in recent years, most of
the theoretical results focus on existence proofs and lack structural
design. Hence, the current approximation theory has not yet played an
important guiding role in RC network architecture design, training
methods, etc., nor can it quantitatively evaluate the approximation
potential of a specific RC scheme for dynamic systems or time series.
An important reason to further advance themathematical theoryof RC
is for data-driven control applications. In most of those applications,
rigorous theory on control error and convergence are necessary for
the corresponding controller to be considered usable in an industrial
setting. However, so far very little work has been done to address these
important problems. As for algorithmic challenges, most industrial
applications do not require a universal approximator, but in the same
field, the approximation model needs to be generalizable. Existing RC
research has very little exploration in domain-specific architecture
optimization. Problems in the industrialfield are divided into scenarios
and categories. Therefore, it is important to construct general-purpose
RC models possibly by means of architecture search. In addition,
leaving aside thepracticality of RC for the timebeing, past researchhas
turned its advantages into constraints, such as small size, simple
training, and so on. However, how strong is RC’s learning ability
(whether there is an RC architecture that can compare with GPT’s
ability), it is still unknown.

At the experimental level, there are still some gaps whenmapping
RC models to physical systems. The first is timescale problem of
physical substrate RC: Matching the timescales between the compu-
tational challenge and the internal dynamics of the physical RC sub-
strate is a key issue in reservoir computing. If the timescale of the
problem is much faster than the response time of the physical system,
the response of the reservoir will be too small or the fadingmemory of
the reservoir will not be properly utilized, rendering the physical

reservoir computing system ineffective. One intuitive solution is to
adjust the physical parameters of the reservoir to match the timescale
of the computational problem. This poses high requirements for the
design of RC network structures and training algorithms. Using other
technologies such as super-resolution and compressive sensing to
overcome the resolution problem of single-point measurement and
processing in RC systems may be a viable solution. The second is the
real-time data processing problem: One of the significant advantages
of reservoir computing is lightweight and fast computation. However,
in practical physical systems, it is often unrealistic to sample and store
a large number of node responses to a certain input due to limitations
such as sampling bandwidth, storage depth and bandwidth, or their
combinations. It is simply not feasible inmany cases to probe a system
with a large number of probes (10s–1000s) interfaced with AD con-
verters. In addition to these practical challenges, hardware drift often
requires regular repetition of calibration procedures, hence it cannot
be a one-of optimization. Furthermore, data preprocessing and post-
processing also limit the overall computational speed of the physical
RC system. One approach to address this issue is to use hardware-
based readout instead of software-based readout126–129.

Moving forward, it is crucial that we thoroughly explore the
potential of intelligent learningmachines based ondynamical systems.
In the realm of theoretical and algorithmic research, it is necessary to
continuously push the boundaries of performance and offer guidance
for experimental design. Reservoir computing (RC) research can take
root in theory and algorithms, with experiments serving as approx-
imations to theoretical and algorithmic results. However, one dis-
advantage of this approach is that it can be challenging to identify
equivalent devices in experiments that can achieve the nonlinear
properties of RC in theory, which can lead to reduced accuracy.
Alternatively, researchers can focus on building physical RC system as
the ultimate goal, which requires close collaboration between theo-
retical and experimental teams to optimize the system jointly. This
approach has the advantage of considering physical constraints and
application characteristics when designing algorithms,making itmore
likely to achieve better solutions at the implementation level. This also
raises the bar for interdisciplinary research, as participants will need to
possess cross-disciplinary communication skills and knowledge, along
with an openness towards multi-module complex coupling
optimization.

Looking ahead, unlocking the full potential of RC and neuro-
morphic computing in general is critical yet challenging. In fact, this
goes beyond just putting out open-source codes or solve a few specific
problems. Innovative ideas and interdisciplinary research formats are
much needed. As concrete suggestions, researchers of the applied
mathematics and nonlinear dynamics communities who have been the
main players in RC will need to get close(r) to the mainstream AI
applications and try to develop next-generation RC systems to com-
pete in these scenarios where the value of application has been
established and recognized by the industry. A good starting point can
be open-source tasks and datasets such as Kaggle, and more generally
to directly partner with industrial research labs to put RC into real
applications. On the other hand, raising awareness of the (potential)
utility of RC requires attracting interest from researchers and decision-
makers who are traditionally outside of the field. For instance, themed
conferences and workshops may be organized to foster such discus-
sions among scientists and researchers from diverse fields across
academia and industry. Despite the many challenges, with persistence
and innovations a new and future paradigm of intelligent learning and
computing may possibly emerge from the works of RC and neuro-
morphic computing.
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