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Rare disease research workflow using
multilayer networks elucidates the
molecular determinants of severity in
Congenital Myasthenic Syndromes

Iker Núñez-Carpintero 1, Maria Rigau 1,2,3, Mattia Bosio1,4, Emily O’Connor5,6,
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Salvador Capella-Gutiérrez 1,4, Davide Cirillo 1 ,
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Exploring the molecular basis of disease severity in rare disease scenarios is a
challenging task provided the limitations on data availability. Causative genes
have been described for Congenital Myasthenic Syndromes (CMS), a group of
diverse minority neuromuscular junction (NMJ) disorders; yet a molecular
explanation for the phenotypic severity differences remains unclear. Here, we
present a workflow to explore the functional relationships between CMS causal
genes and altered genes from each patient, based on multilayer network
community detection analysis of complementary biomedical information pro-
vided by relevant data sources, namely protein-protein interactions, pathways
and metabolomics. Our results show that CMS severity can be ascribed to the
personalized impairment of extracellular matrix components and postsynaptic
modulators of acetylcholine receptor (AChR) clustering. This work showcases
how couplingmultilayer network analysis with personalized -omics information
providesmolecular explanations to the varying severity of rare diseases; paving
the way for sorting out similar cases in other rare diseases.

Understanding phenotypic severity is crucial for prediction of dis-
ease outcomes, as well as for administration of personalized treat-
ments. Different severity levels among patients presenting the same
medical condition could be explained by characteristic relation-
ships between diverse molecular entities (i.e. gene products, meta-
bolites, etc) in each individual. In this setting, multi-omics data
integration is becoming a promising tool for research, as it has the
potential to gain complex insights of the molecular determinants
underlying disease heterogeneity. However, even in a scenario
where the level of biomedical detail available to study is
steadily growing1, the analysis of the molecular determinants of

disease severity is not typically addressed in rare disease research
literature2, despite its obvious relevance at the medical and clinical
level. Rare diseases represent a challenging setting for the applica-
tion of precision medicine because, by definition, they affect a small
number of patients, and therefore the data available for study is
considerably limited in comparison to other conditions. Accord-
ingly, leveraging the wealth of biomedical knowledge of diverse
nature coming frompublicly available databases has the potential to
address data limitations in rare diseases3,4. In this sense, multilayer
networks can offer a holistic representation of biomedical data
resources5,6, which may allow exploration of the biology related to a
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given disease independently of cohort sizes and their available
omics data.

Here, in order to evaluate and demonstrate the potential of mul-
tilayer networks as means of assessing severity in rare disease sce-
narios, we provide an illustrative case where we develop a framework
for analyzing a patient cohort affected by Congenital Myasthenic
Syndromes (CMS), a group of inherited rare disorders of the neuro-
muscular junction (NMJ). Fatigable weakness is a common hallmark of
these syndromes, that affects approximately 1 patient in 150,000
people worldwide. The inheritance of CMS is autosomal recessive in
the majority of patients. CMS can be considered a relevant use case
because, while patients share similar clinical and genetic features7,
phenotypic severity of CMSvaries greatly, with patients experiencing a
range of muscle weakness and movement impairment. While over 30
genes are known to be monogenic causes of different forms of CMS
(Table 1), these genes do not fully explain the ample range of observed
severities, which has been suggested to be determined by additional
factors involved in neuromuscular function. Examples of CMS-related
genes are AGRN, LRP4 and MUSK encoding for proteins that mediate
communication between the nerve ending and the muscle, which is
crucial for formation and maintenance of the NMJ (Fig. 1).

In particular, the AGRN-LRP4 receptor complex activates MUSK
by phosphorylation, inducing clustering of the acetylcholine receptor
(AChR) in the postsynaptic membrane. This allows the presynaptic
release of acetylcholine (ACh) to trigger muscle contraction8,9. Addi-
tional evidence of CMS severity heterogeneity emerged within the
NeurOmics and RD-Connect projects10 studying a small population
(about 100 individuals) that were described in the original publication
as being of ‘gypsy’ ethnic origin, from Bulgaria.

All affected individuals shared the same causal homozygous
mutation (a deletion within the AChR ε subunit, CHRNE c.1327delG11).
However, the severity of symptoms across this cohort varies con-
siderably regardless of age, gender and initiated therapy, suggesting
the existence of additional genetic causes for the diversity of disease
phenotypes. By analyzing multi-omics data, we performed an in-depth
characterization of 20 CMS patients, representing the two opposite
ends of the spectrum observed in the wider cohort, aiming to inves-
tigate themolecular bases of the observed differences in the individual
severity of the disease. Clinically, CMS severity ranges from minor
symptoms (e.g., exercise intolerance) to more severe CMS forms
depending on the causal genetic impairments12,13. Severe CMS is typi-
cally presented with reduced Forced Vital Capacity (FVC), severe
generalizedmuscle fatigue andweakness, proximal and bulbarmuscle
fatigue and weakness, impaired myopathic gait and hyperlordosis.
Two CMS severity levels have been identified for this cohort through
extensive phenotyping, namely a severe disease phenotype (8
patients) and a not-severe disease phenotype (2 intermediate and 10
mild patients) (Supplementary Dataset 1). Out of the tested demo-
graphic factors (age, sex) and clinical tests (speech, mobility, respira-
tory dysfunctions, among others), FVC and shoulder lifting ability
show a significant association with the severity classes (two-tailed
Fisher’s exact test p =0.0128 and p =0.0418, respectively; Supple-
mentary Fig. 1). We sought to interrogate whether severity was deter-
mined by additional genetic variations impacting neuromuscular
activity, on top of the causative CHRNE mutation. We analyzed three
main types of genetic variations: single nucleotide polymorphisms
(SNPs), copy number variations (CNVs), and compound heterozygous
variants (two recessive alleles located at different loci within the same
gene in a given individual). The extensive analysis of the genomic
information did not render any SNPs that could be considered a
unique cause of disease severity by being common to all the cases.
Nevertheless, a number of CNVs and compoundheterozygous variants
were found to appear exclusively in the different severity groups, in
one ormore patients.Moreover, the compound heterozygous variants

of the severe group are enriched in pathways related to the extra-
cellular matrix (ECM) receptors, which have been proposed as a target
for CMS therapy14.

To investigate the functional relationship between these variants
and CMS severity, we designed an analytical workflow based on mul-
tilayer networks (Fig. 2), allowing the integration of external biological
knowledge to acquire deeper functional insights. Amultilayer network
consists of several layers of nodes and edges describing different
aspects of a system15. In biomedicine, this data representation hasbeen
used to study biomolecular interactions16 and diseases6, facilitating

Table 1 | Location, phenotype, inheritance andgenes involved
in CMS (adapted from https://omim.org/phenotypicSeries/
PS601462 and http://www.musclegenetable.fr)

Location Phenotype Inheritance Gene

2q31.1 CMS1A, slow-channel AD CHRNA1

2q31.1 CMS1B, fast-channel AR, AD

17p13.1 CMS2A, slow-channel AD CHRNB1

17p13.1 CMS2C, associated with acetylcholine
receptor deficiency

AR

2q37.1 CMS3 A, slow-channel AD CHRND

2q37.1 CMS3 B, fast-channel AR

2q37.1 CMS3 C, associated with acetylcholine
receptor deficiency

AR

17p13.2 CMS4 A, slow-channel AR, AD CHRNE

17p13.2 CMS4 B, fast-channel AR

17p13.2 CMS4 C, associated with acetylcholine
receptor deficiency

AR

3p25.1 CMS5 AR COLQ

10q11.23 CMS6, presynaptic AR CHAT

1q32.1 CMS7, presynaptic AD SYT2

1p36.33 CMS8, with pre- and postsynaptic defects AR AGRN

9q31.3 CMS9, associated with acetylcholine
receptor deficiency

AR MUSK

4p16.3 CMS10 AR DOK7

11p11.2 CMS11, associated with acetylcholine
receptor deficiency

AR RAPSN

2p13.3 CMS12, with tubular aggregates AR GFPT1

11q23.3 CMS13, with tubular aggregates AR DPAGT1

9q22.33 CMS14, with tubular aggregates AR ALG2

1p21.3 CMS15, without tubular aggregates AR ALG14

17q23.3 CMS16 AR SCN4A

11p11.2 CMS17 AR LRP4

20p12.2 CMS18 AD SNAP25

10q22.1 CMS19 AR COL13A1

2q12.3 CMS20, presynaptic AR SLC5A7

10q11.23 CMS21, presynaptic AR SLC18A3

2p21 CMS22 AR PREPL

22q11.21 CMS23, presynaptic AR SLC25A1

15q23 CMS24, presynaptic AR MYO9A

12p13.31 CMS25, presynaptic AR VAMP1

3p21.31 CMS, related to GMPPB AR GMPBB

20q13.33 CMS, presynaptic AR LAMA5

3p21.31 CMS, with nephrotic syndrome AR LAMB2

8q24.3 CMS, with plectin defect AR PLEC

12q24.13 CMS, related to RPH3A AR RPH3A

9p13.3 CMS, presynaptic, related to MUNC13-1 AR UNC13B

2q37.1 Escobar syndrome AR CHRNG

AR autosomal recessive, AD autosomal dominant.
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integration and interpretation of heterogeneous sources of data.
Several established tools for network analysis have been recently
adapted for multilayer networks, such as random walk with restart17,18,
community detection algorithms19 and node embeddings20. By cross-
ingpatient genomicdatawith the informationprovidedby amultilayer
network encompassing biomedical knowledge, we are able to describe
the functional relationships of new genetic modifiers responsible for
the different phenotypic severity levels, showcasing the potential of
multilayer networks to provide support on the analysis of rare disease
patients.

Results
Variants do not segregate with patient severity
Wefirst searched for variants able to segregate the disease phenotypes
(severe and not-severe) by analyzing a large panel ofmutational events
(mutations in isoforms, splicing sites, small and long noncoding genes,
promoters, transcription start site (TSS), predicted pathogenic muta-
tions, loss of function mutations, among others). We could not find
one single mutation or combinations of mutations that were able to
completely segregate the two groups (Supplementary Information,

Supplementary Fig. S1) although partial segregation can be observed
(Suppl. Dataset 2). As already described for monogenic diseases21 and
cancer22, we hypothesized that distinct weak disease-promoting
effects may represent patient-specific causes to CMS severity, which
bring damage to sets of genes that are functionally related. To find
these effects, we sought to search for variants with the potential to
alter gene functions, such as CNVs and compound heterozygous var-
iants, which have been previously reported to be key to CMS12,23–25.

Compound heterozygous variants are functionally related
In order to explore the hypothesis that disease severity in this cohort
may be due to variants in patient-specific critical elements, we sought
to identify potentially damaging compoundheterozygous variants and
CNVs. We analyzed the gene lists associated with these mutations to
search for evidence of alterations in relevant pathways for the severe
(n = 8) and not-severe cases (n = 12). We first performed a functional
enrichment analysis (Methods) of the genes with CNVs found in the
two groups. The set of affected genes in the severe group is composed
of 26 unique genes (10 private to the severe group), while the not-
severe group presented 86 unique genes (Supplementary Dataset 3).
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Fig. 1 | A schematic depiction of the main molecular activities of known Con-
genital Myasthenic Syndromes (CMS) causal genes (Methods) taking place at
the neuromuscular junction (NMJ) in the presynaptic terminal (in blue),
synaptic cleft (in white), and skeletal muscle fiber (in red) (for a detailed
description of this system see Supplementary Information, Functions of CMS-

associated genes in the neuromuscular junction). ChAT Choline O-Acetyl-
transferase, LRP4 LDL Receptor Related Protein 4, AChR Acetylcholine Receptor,
MuSKMuscle Associated Receptor Tyrosine Kinase, Na(V) 1.4 Nav1.4 voltage-gated
sodium channel.
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None of these gene sets showed any functional enrichment. Moreover,
none of these genes had been described as causal for CMS, and none
carried compound heterozygous variants (Supplementary Fig. 2). As
for compound heterozygous variants, the set of affected genes in the
severe group is composedof 112 unique genes (89private to the severe
group), while the not-severe group resulted in 152 unique genes
(Supplementary Dataset 3). We found that the severe group shows
significant enrichment in genes belonging to extracellular matrix
(ECM) pathways, in particular ECM receptor interactions (KEGG
hsa04512, p adjusted =0.002337) and ECM proteoglycans (Reactome
R-HSA-30001787, p adjusted =0.001237), which are the top-hit path-
ways when the 89 genes appearing only in the severe group are con-
sidered. Both these pathways share common genes, namely TNXB,
LAMA2, TNC, and AGRN. The role of extracellular matrix proteins for
the formation and maintenance of the NMJ has recently drawn atten-
tion to the study of CMS26,27. In particular, within the genes linked with
ECM pathways, AGRN and LAMA2 stand out for their implication in
CMS and other rare neuromuscular diseases28–30. ECM-related path-
ways are not enriched in the not-severe set of genes (KEGGhsa04512, p
adjusted =0.6170).Moreover, top-hit pathways of the not-severe set of
genes are not explicitly related to ECM and not consistent between
Reactome and KEGG (Reactome Susceptibility to colorectal cancer R-
HSA-5083636, p adjusted = 4.131e−7, genes MUC3A/5B/12/16/17/19;
KEGG Huntington’s disease hsa05016, p adjusted =0.07103, genes
REST, CREB3L4, CLTCL1, DNAH2/8/10/11). These findings support our

hypothesis that the severe patients might present disruptions in NMJ
functionally related genes that, combined with CHRNE causative
alteration, may be responsible for the worsening of symptoms.

CMS-specific monolayer and multilayer community detection
As disease-related genes tend to be interconnected31, we sought to
analyze the relationships among the CMS linked genes (i.e. known
CMS causal genes, and severe and not-severe compound hetero-
zygous variants and CNVs; Methods) using network community
clustering analysis. We employed the Louvain algorithm (Methods)
to find groups of interrelated genes in three monolayer networks
that represent biological knowledge contained in databases, sepa-
rately: the Reactome database32, the Recon3D Virtual Metabolic
Human database33, and from the Integrated Interaction Database
(IID)34 (Supplementary Fig. 3). The first network consists of 10,618
nodes (genes) and 875,436 edges, representing shared pathways
between genes. The second network consists of 1863 nodes (genes)
and 902,188 edges, representing shared reaction metabolites
between genes. The third network consists of 18,018 nodes (genes)
and 947,606 edges, representing aggregated protein-protein inter-
actions from all tissues (Methods: Monolayer community detec-
tion). The last two networks, represent the ‘metabolome’ and the
‘interactome’ data, respectively. Measurement of network overlap
and community similarity (Methods) revealed high specificity of
their edges, as well as that the same CMS linked genes did not form
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Fig. 2 | Analytical workflow designed to address the severity of a cohort of
patients affected by Congenital Myasthenic Syndromes (CMS). A multi-scale
functional analysis approach, based on multilayer networks, was used to identify
the functional relationships between genetic alterations obtained from omics data
(Whole Genome Sequencing, WGS; RNA-sequencing, RNAseq) with known CMS

causal genes. In green, compound heterozygous variants; in yellow, copy number
variants (CNVs); in purple, known CMS causal genes. Modules of CMS linked genes
are detected using graph community detection at a resolution range (γ) (Methods)
where the most prominent changes in community structure occur. Modules that
emerged from this analysis were characterized at single individual level.
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the same communities across the different networks (Supplemen-
tary Fig. 4).

These results show that, although disease-related genes are prone
to form well-defined communities in distinct networks35,36, different
facets of biological information reflect diverse participationmodalities
of such genes into communities. In order to deliver an integrated
analysis of such heterogeneous information, we further consider them
as a multilayer network5 (Methods: Monolayer community detection
and Multilayer community detection).

Large-scale multilayer community detection of disease
associated genes
We first sought to test the hypothesis that disease-related genes tend
to be part of the same communities also in a multilayer network set-
ting. We used the curated gene-disease associations database
DisGeNET37, showing that disease-associated genes are significantly
found to be members of the same multilayer communities (Wilcoxon
test p <0.001 in a range of resolution parameters described in the
Methods). We pre-processed DisGeNET database by filtering out dis-
eases and disease groups with only one associated gene (6352 dis-
eases), and those whose number of associated genes was more
than 1.5 * interquartile range (IQR) of the gene associated per disease
distribution (823 diseases with more than 33 associated genes) (Sup-
plementary Fig. 5A, B). This procedure prevents a possible analytical
bias due to the higher amounts of genes annotated to specific disease
groups (e.g. entry C4020899, Autosomal recessive predisposition,
annotates 1445 genes). We then retrieved the communities of each
associated gene, excluding 428 genes not present in our multilayer
network and the diseases left with only one associated gene. The final
analysis comprised a total of 5892 diseases with an average number of
7.38 genes per disease.

For each disease, we counted the number of times that disease-
associated genes are found in the same multilayer communities, and
compared the distribution of such frequencies with that of balanced
random associations (1000 randomizations). Results show that
disease-associated genes are significantly found in the samemultilayer
communities across the resolution interval (Suppl. Figure 5C).

Modules within the CMS multilayer communities
We define a module as a group of CMS linked genes that are system-
atically found to be part of the same multilayer community while
increasing the multilayer network community resolution parameter
(Methods; Supplementary Information, Supplementary Fig. S2; Figs. 3
and 4).

Within each of these communities, we identified smaller modules
of CMS linked genes that are specific to the severe and not-severe
groups. We tested the significance of obtaining these exact genes in
the severe and not-severe largest modules upon severity class label
shuffling among all individuals (1000 randomizations). We found that
13 (p adjusted =0.022) and 14 (p adjusted =0.027) are the minimum
number of genes composing the modules that are not expected to be
found at random in the severe and not-severe largest components,
respectively (Supplementary Fig. 6).

In the two groups, the significantly largest module that contains
known CMS causal genes is composed of 15 genes (Fig. 4). 6 out of
these 15 are previously describedCMScausal genes (Methods), namely
the ECM heparan sulfate proteoglycan agrin (AGRN); the cytoskeleton
component plectin (PLEC), causative ofmyasthenic disease38; the agrin
receptor LRP4, key for AChR clustering at NMJ39 and causative of CMS
by compound heterozygous variants40; the ECM components LAMA5
and LAMB2 laminins, and COL13A1 collagen. Considering all nodes (not
only CMS linked), the number of nodes in the module is 482. All the

Fig. 3 | Identification of the largest module containing genes that are found in
the same community in a range of modularity resolution (Methods). In each
module, genes are connected if they are found in the samemultilayer communities
at n values of the resolution parameter γwithin the range under consideration (γ∈
(0,4]). The arrows indicate the systematic increase of n. At n = 8, the module con-
tains genes that are always found in the same community in the entire range of

resolution (see Supplementary Information, Multilayer community detection ana-
lysis). The largest module containing the CMS linked gene set (highlighted in red),
which includes known CMS causal genes, severe-specific heterozygous compound
variants and CNVs, is shown. Source data are provided in the Github repository of
the project (see Data Availability section).
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other genes of the two modules are involved in a varied spectrum of
muscular dysfunctions, discussed in the following sections. As the
location of the causal gene products determine the most common
classification of the disease (i.e. presynaptic, synaptic, and post-
synaptic CMS)27, we determined class and localization of the members
of the found modules (Table 2).

Laminins, well-known CMS glycoproteins, are affected in both
severe (LAMA2,USH2A) andnot-severe (LAMB4) groups, and are bound
by specific receptors that are damaged in the not-severe group
(MCAM)41. Collagens, known CMS-related factors, are associated with
the not-severe group (COL6A5), and bound by specific receptors that
are damaged in the not-severe group (MSR1)42.

However, overall collagen biosynthesis is affected in both severe
and not-severe groups. Indeed, metalloproteinases, damaged in the
not-severe group, are responsible for the proteolytic processing of
lysyl oxidases (LOXL3), which are implicated in collagen biosynthesis43

and damaged in the severe group. Alterations in proteoglycans (AGRN,
HSPG2, VCAN, COL15A1)44, tenascins (TNC, TNXB)45,46, and chromo-
granins (CHGB)47 are specific of the severe group. We observed no
genes associated with proteoglycan damage in the not-severe group,
suggesting a direct involvement of ECM in CMS severity.

Personalized analysis of the severe cases
We sought to analyze the 15 genes of the largest module of the severe
group in each one of the 8 patients, hereafter referred to using the
WGS sample labels (SupplementaryDataset 1). At the topological level,
all incident interactions existing between the genes of the severe
module (Fig. 4B) are related to the protein-protein interaction and
pathway layers (Fig. 5). Overall, these genes have a varied range of
expression levels in tissues of interest (Supplementary Fig. 7), for
instance in skeletal muscle HSPG2, LAMA2, PLEC and LAMB2 show
medium expression levels (9 to 107 TPM) while the others show low
expression levels (0.6 to 9 TPM) (Methods). Patient 2, a 15 years old
male, presents compound heterozygous variants in tenascin C (TNC),
mediating acute ECM response in muscle damage45,48, and CNVs
(specifically, a partial heterozygous copy number loss) in usherin

(USH2A), which have been associated with hearing and vision loss49.
Patient 16, a 25 years old female, presents compound variants in
tenascin XB (TNXB), which is mutated in Ehlers-Danlos syndrome, a
disease that has already been reported to have phenotypic overlap
with muscle weakness50–53 and whose compound heterozygous var-
iants have been reported for a primarymyopathy case54,55; and versican
(VCAN), which has been suggested to modify tenascin C expression56

and is upregulated in Duchenne muscular dystrophy mouse
models57,58. Patient 13, a 26 years old male, presents compound
mutations in laminin α2 chain (LAMA2), a previously reported gene
related to various muscle disorders59–61 whose mutations cause
reduction of neuromuscular junction folds62, and collagen type XV α
chain (COL15A1), which is involved in guiding motor axon
development63 and functionally linked to a skeletal muscle
myopathy64,65. Patient 12, a 49 years old female, presents compound
mutations in chromogranin B4 (CHGB), potentially associated with
amyotrophic lateral sclerosis early onset66,67. Patient 18, a 51 years old
man, presents compound mutations in agrin (AGRN), a CMS causal
gene thatmediates AChR clustering in the skeletal fibermembrane68,69.
Patient 20, a 57 years old male, presents compound mutations in lysyl
oxidase-like 3 (LOXL3), involved in myofiber extracellular matrix
development by improving integrin signaling through fibronectin
oxidation and interaction with laminins70, and perlecan (HSPG2)71, a
protein present on skeletal muscle basal lamina72,73, whose deficiency
leads to muscular hypertrophy74, that is also mutated in Schwartz-
Jampel syndrome75, Dyssegmental dysplasia Silverman-Handmaker
type (DDSH)76 and fibrosis77, such as Patient 19, a 62 years old female.
Furthermore, based on the estimated familial relatedness (Methods)
and personal communication (February 2018, Teodora Chamova),
patients 19 and 20 are siblings (Supplementary Dataset 4).

Functional consequences of variants in the severe-
specific module
Studying the functional impact of the compound heterozygous var-
iants in the severe-specific genes of the module, we observed that in 6
of the 8 patients at least one of the variants is predicted to be

Fig. 4 | Largest multilayer network modules containing known CMS causal
genes. The largest modules, containing known CMS causal genes, within the mul-
tilayer communities of CMS linked genes specific to the not-severe (A) and severe
(B) groups are reported. In green, compound heterozygous variants; in yellow,

CNVs; in purple, known CMS causal genes. Being a CMS causal gene bearing
compound heterozygous variants, AGRN is depicted using both green and purple.
Source Cytoscape session is provided in the Github repository of the project (see
Data Availability section).
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deleterious by the Ensembl Variant Effect Predictor (VEP)78 (Methods;
SupplementaryDataset 5). For example, as for Patient 18, who presents
3 different variants in AGRN gene, only rs200607541 is predicted to be
deleterious by VEP’s Condel (score = 0.756), SIFT (score = 0.02), and

PolyPhen (score = 0.925). In particular, the variant (C > T transition)
presents an allele frequency (AF) of 4.56E−03 (gnomAD exomes)79 and
affects a region encoding a position related to a EGF-like domain
(SMART:SM00181) and a Follistatin-N-terminal like domain

Table 2 | Localization and functions of proteins encoded by the genes found in the largest modules of the multilayer com-
munities of severe and not-severe groups

Activity
localization

Class CMS cau-
sal gene

Phenotype group Function Synaptic localization
(Manual curation)

Localization (UniProt)

Not-severe Severe

ECM (ECM) Proteoglycans AGRN – AGRN Cell hydration and growth
factor trapping

Pre- and postsynaptic
(PMID:
29462312)

Synaptic basal
lamina/ECM

– – HSPG2 Basement membrane
(PMID:30453502)

Basement mem-
brane/ECM

– – VCAN ECM
(PMID:29211034)

ECM

– – COL15A1 Basement membrane
(PMID:26937007)

ECM

Collagens COL13A1 – – Structural support Basement membrane
(PMID:
30768864)

Post-synaptic cell
membrane

– COL6A5 – Basement membrane
(PMID:23869615)

Extracellular matrix

Laminins LAMA5 – – Web-like structures Pre-synaptic
(PMID:28544784)

Basement mem-
brane/ECM

LAMB2 – – Basement membrane
(PMID:27614294)

Basement membrane/
ECM/Synaptic cleft

– LAMB4 – Myenteric plexus basement
membrane
(PMID:
28595269)

Basement mem-
brane/ECM

– – LAMA2 Pre-synaptic
(PMID:9396756)

Basement mem-
brane/ECM

– – USH2A Neuronal projection of ste-
reocilia
(PMID:19023448)

Stereocilia membrane/
Secreted
(Extracellular region)

Fibulins – HMCN1 – Scaffolding Glomerular Extracellular
matrix
(PMID:
29488390)

Basement mem-
brane/ECM

Tenascins – – TNC Anti-adhesion Basement membrane
(PMID:
29466693)

ECM/Perisynaptic ECM
(Ensembl)

TNXB Basement membrane
(PMID:
23768946)

ECM

LOXL3 Collagen assembly Basement membrane
(PMID:26954549)

Secreted
(extracellular region)

ADAMTS9 – Proteoglycan cleavage Secreted to ECM
(PMID:30626608)

ECM

ADAM28 – ECM
(PMID:24613731)

Cell membrane/Secreted
(extracellular region)

Neuropeptides – – CHGB Regulatory peptides
precursor

Pre- and postsynaptic
(PMID:7526287)

Secreted
(extracellular region)

Others – ITIH5 – Hyaluronic acid binding ECM
(PMID:27143355)

Secreted
(extracellular region)

Cell surface Receptors – MSR1 – Proteoglycan and col-
lagen binding

Macrophage surface Sca-
venger Receptor
(PMID:12488451)

Plasma membrane

MCAM Plasma membrane
(PMID:28923978)

Plasma membrane

LRP4 – – Laminin binding Post-synaptic
(PMID:25319686)

Post-synaptic cell
membrane

Cytoplasm Cytoskeleton PLEC – – Structural support Post-synaptic
(PMID:20624679)

Post-synaptic
cytoskeleton

Synaptic localization was retrieved from manual curation and Uniprot database (Methods).
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(SMART:SM00274). Both of these domains are part of the Kazal
domain superfamilywhich is specially found in the extracellular part of
agrins (PFAM: CL0005)80,81. On the other hand, Patient 16 presents a
total of 38 TNXB transcripts affected by three gene variants
(rs201510617, rs144415985, rs367685759) that are all predicted to be
deleterious by the three scoring systems, have allele frequencies of
3.17E−02, 4.83E−02 and 5.90E−03, respectively; and in overall, are
affecting two conserved domains. The first consists of a fibrinogen
related domain that is present in most types of tenascins
(SMART:SM00186), while the second is a fibronectin type 3 domain
(SMART:SM00060) that is found in various animal protein families
such as muscle proteins and extracellular-matrix molecules82. Two of
the severe patients (Patients 12 and 19) present severe-only specific
compound heterozygous variants that are not predicted to be dele-
terious. However, one variant in the CHGB gene (rs742710, AF = 1.07E
−01), present in patient 12, has been previously reported to be
potentially causative for amyotrophic lateral sclerosis early onset66,67.
This gene has also been strongly suggested in literature as a possible
marker for onset prediction in multiple sclerosis83, and other related
neural diseases like Parkinson’s84 and Alzheimer’s disease85. As for
Patient 19, the variant rs146309392 (AF = 8.40E−04) in the geneHSPG2
has been previously referred to be causal of Dyssegmental dysplasia as
a compound heterozygous mutation76. This variant, as pointed out
before, is shared with sibling patient 20. One severe individual (Patient
3), a 37 years old female, does not carry compound heterozygous
variants included in this module but others at a lower resolution

parameter value (Supplementary Fig. 8; Supplementary Dataset 6).
Interestingly, most of the genes carrying severe-specific deleterious
compound heterozygous variants in this patient (CDH3, FAAP100,
FCGBP, GFY, RPTN) are not related to processes at the NMJ level86–90.
Nevertheless, three of these variants occur in genes potentially
involved in NMJ functionality. In particular, variants rs111709242
(AF = 2.64E−03) and rs77975665 (AF = 3.03E−02) affect gene PPFIBP2,
which encodes a member of the liprin family (liprin-β) that has been
described to control synapse formation and postsynaptic element
development91,92. Furthermore, the variant rs111709242 is predicted to
be deleterious by the SIFT algorithm (see Supplementary Dataset 6).
Interestingly, PPFIBP2 appears in modules at lower resolution para-
meter values associated with known CMS causal genes (e.g. DOK7,
RPSN, RPH3A, VAMP1, UNC13B) (Supplementary Fig. 8). In addition,
variant rs151154986 (AF = 2.18E−02) affects the acyl-CoA thioesterase
ACOT2, which generate CoA and free fatty acids from acyl-CoA esters
in peroxisomes93. While ACOT2 is not retained across the entire reso-
lution range explored, community detection at the individual layer
level (i.e. Louvain community detection for each network) revealed
relationships with causal CMS genes at all layers (Supplementary
Fig. 3). Namely, ACOT2 shares community membership with ALG14,
DPAGT1, GFPT1, GMPPB and SLC25A1A at the protein-protein interac-
tion layer; with CHAT and SLC5A7 at the pathways layer; and with
GMPBB, SLC25A1 and CHAT at the metabolomic layer. A role for CoA
levels in skeletal muscle for this enzyme class has been previously
described94. Moreover, this patient presents high relatedness with

Fig. 5 | Incident interactions between the genes identified in the severe-specific
module in the multilayer network. LOXL3 is not depicted as it has incident
interactions with genes in the module that are not CMS linked. USH2A is not

present in the pathways layer, thus it is only depicted in the protein-protein
interaction layer.
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three not-severe patients (Patients 8, 9, and 10) who in turn display a
very high relatedness among them (Supplementary Dataset 4).

Potential pharmacological implications
Finding a personalized genetic diagnosis might help select the
appropriate medication for each patient. For instance, fluoxetine and
quinine are used for treating the slow-channel syndrome, an auto-
somal dominant type of CMS caused bymutations affecting the ligand
binding or pore domains of AChR, but this treatment should be avoi-
ded in patientswith fast-channel CMS95.Withinour cohort, 13 (7mild, 2
moderate and 4 severe) out of 20 individuals fromour CMS cohort are
receiving a pharmacological treatment consisting of pyridostigmine,
an acetylcholinesterase inhibitor used to treat muscle weakness in
myasthenia gravis and CMS96. This treatment slows down acetylcho-
line hydrolysis, elevating acetylcholine levels at the NMJ, which even-
tually extends the synaptic process duration when the AChR are
mutated. Although the severity could potentially be related to how
well a patient responds to the treatment with the AchE inhibitors, we
could not find a clear correlation between severity and pyridostigmine
treatment (two-tailed Fisher’s exact test p adjusted = 0.356; Supple-
mentary Fig. 1). In Addition to the causal mutation in CHRNE, our
results indicate that severity is related to AChR clustering at the Agrin-
Plectin-LRP4-Laminins axis level, suggesting the potential benefit of
pharmaceutical intervention enhancing the downstream process of
AChR clustering. For example, beta-2 adrenergic receptor agonists like
ephedrine and salbutamol have been documented as capable of
enhancing AChR clustering97 and proved to be successful in the
treatment for severeAChRdeficiency syndromes98,99. Furthermore, the
addition of salbutamol in pyridostigmine treatments has been descri-
bed as being able to ameliorate the secondary effects of pyr-
idostigmine in the postsynaptic structure100.

Discussion
In thiswork, we have developed a framework for the analysis of disease
severity in scenarios heavily impacted by sample size. Presenting lim-
ited numbers of cases is one of the main obstacles for the application
of precision medicine methods in rare disease research, as it critically
affects the level of expected statistical power, a common hallmark in
the analysis of minority conditions101. This fact hampers exploring the
molecular relationships that define the inherently heterogeneous
levels of disease severity observed in rare disease populations, making
it an atypically addressed biomedical problem2. Our approach, based
on the application of multilayer networks, enable the user to account
for the many interdependencies that are not properly captured by a
single source of information, effectively combining the available
patient genomic informationwith general biomedical knowledge from
relevant databases representing different aspects of molecular biol-
ogy. The application to a relevant clinical case, where we tested the
hypothesis that the severity of CMS may determined by patient-
specific alterations that impact NMJ functionality, provided evidence
on how themethodology is able to recover themolecular relationships
between the candidate patient-specific genomic variants, the observed
causal AChR mutation and previously described CMS causal genes
(Table 1).

Our in-depth functional analysis focused on a cohort of 20 CMS
patients, from a narrow, geographically isolated and ethnically
homogenous population, who share the same causative mutation in
the AChR ε subunit (CHRNE) but show different levels of severity. The
isolation and endogamy that characterize the population from which
these patients come from might have favored the accumulation of
damaging variants102,103, giving rise to the emergence of compound
effects on relevant genes for CMS. This observation has previously
been made in similar syndromes104,105 and in a number of other neu-
romuscular diseases106,107. Compound heterozygosity is known to
happen in CMS108,109. The initial analysis of compound heterozygous

variants revealed a significant enrichment of functional categories that
are specific to the severe cases, namely ECM functions. This suggests
the existence of functional relationships between major actors of the
NMJ that are affected by severity-associated damaging mutations.
Such interactors include already known CMS causal genes (e.g. AGRN,
LRP4, PLEC) as well as genes known to interact with them. While
severity-specific compound heterozygous variants and CNVs are
observed, demographic factors (e.g. sex, age), pharmacological treat-
ment, and personalized omics data (e.g. variant calling, differential
gene expression, allele specific expression, splicing isoforms) do not
segregate with patient severity.

Therefore, this motivated the development of our multilayer
network community analysis to investigate the relationship between
known CMS causal genes and severity-associated variants (compound
heterozygous variants and CNVs), integrating pathways, metabolic
reactions, and protein-protein interactions. Recently, we used a mul-
tilayer network as a means to perform dimensionality reduction tasks
for patient stratification in medulloblastoma, a childhood brain
tumor110. Here, we started by analyzing DisGeNET data in order to
verify that disease-associated genes tend to belong to the same mul-
tilayer communities. We then identified stable and significantly large
gene modules within our CMS cohort’s multilayer communities and
mapped the corresponding damaging mutations back to the single
patients, providing a personalizedmechanistic explanation of severity
differences. Given the difficulties of cohort recruitment for rare dis-
eases, this approach could be used to investigate forms of CMS and
other phenotypically variable rare diseases caused by a common
mutation.

Overall, our approach revealedmajor relationships at the protein-
protein and pathway layers. The personalized analysis of these muta-
tions further suggests that CMSseverity can be ascribed to the damage
of specific molecular functions of the NMJ which involve genes
belonging to distinct classes and localizations, namely ECM compo-
nents (proteoglycans, tenascins, chromogranins) and postsynaptic
modulators of AChR clustering (LRP4, PLEC) (Table 2). Alterations of
other genes related to ECM components, such as laminins and col-
lagen, are observed but are not specific to the severity levels.

Although at first the use of metabolomic knowledge in the mul-
tilayer networkdidnot seem toprovide highly relevant information for
the cohort, it provided relevant insights for the personalized analysis
of Patient 3, whose mutations presented functional relationships in all
layers with other CMS causal genes outside of the presented severe-
specific module (Supplementary Fig. 3).

Finding a personalized genetic diagnosis for phenotypic severity
might help select the appropriate medication for each patient. Within
our cohort, 13 out of 20 individuals fromour CMS cohort are receiving
a pharmacological treatment consisting of pyridostigmine, an acet-
ylcholinesterase inhibitor used to treatmuscleweakness inmyasthenia
gravis and CMS96. Although the severity could potentially be related to
how well a patient responds to the standard treatment with the AchE
inhibitors, we could not find a clear correlation between severity and
pyridostigmine treatment (two-tailed Fisher’s exact test p adjusted =
0.356; Supplementary Fig. 1). Our results indicate that severity is
related to AChR clustering at the Agrin-Plectin-LRP4-Laminins axis
level, suggesting the potential benefit of pharmaceutical intervention
enhancing the downstream process of AChR clustering. Strikingly,
beta-2 adrenergic receptor agonists like ephedrine and salbutamol
have been documented as capable of enhancing AChR clustering97 and
proved to be successful in the treatment for severe AChR deficiency
syndromes98–100,111, but a strong molecular explanation for the
observed favorable effects was still missing. This study provides pos-
sible molecular explanations for the reported successful use of such
treatments by relating CMS phenotypic severity with formation of
AChR clusters at the motor neuron membrane. Several of the genes
identified in this analysis do not have previous associations with the
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NMJ, such as the Usher syndrome and Retinitis pigmentosa associated
gene; USH2a, identified as a copy number loss in patient 2. Previous
studies have commented on USH2A presence on the basement mem-
branes of perineurium nerve fibers112,113, however, further studies in a
mammalian model and/or using zebrafish mutants rather than tran-
sient knockdownwill be required to determine the presence of USH2a
at the NMJ, and whether loss of USH2a alone can impact NMJ signaling
or whether co-occurrence with CHRNE CMS is required. In this regard,
we report evidence of USH2A presence at the tibialis anterior muscle
(Supplementary Fig. 9A) and the soleus muscle (Supplementary
Fig. 9B) (Methods) in 10-week-old C57BL/6J (Jax)malemice. Additional
functional work is also required to ascertain the importance of other
potential modifiers identified in this study. Particularly, a prospective
analysis on the potential NMJ involvement of the unique variants
detected for the non-severe group could be of special interest for the
study of CMS, potentially discerning their functional relationship to
causal CMS genes.

Our work represents a thorough study of a narrow population
showing a differential accumulation of damagingmutations in patients
with CMS who have varying phenotypic severities, building on the
initial impact ofCHRNEmutations on theNMJ. It is important to remark
that CMS is of particular interest among rare diseases, since drugs that
influence neuromuscular transmission can produce clear improve-
ments in the affected patients114. In this sense, identifying meaningful
molecular relationships between gene variants allow us to gain insight
into the diseasemechanisms through a biomedical multilayer network
framework, paving the way for a whole new set of computational
approximations for rare disease research.

Methods
Ethics approval
This study was approved by the Ethics committee of Sofia Medical
University (protocol 4/15-April-2013). Written informed consent was
obtained from all the participants in the study, including more than
two indirect identifiers. The study abides by the Declaration of Hel-
sinki; no compensation was given to the participants. All animal
experiments were approved by the University of Ottawa animal care
and veterinary service department (protocol #3089) and complied
with the guidelines of the Canadian Council on Animal Care and the
Animals for Research Act. Reporting of animal sex, age and strain
details comply with the ARRIVE guidelines.

WGS and RNA-seq
Whole genome sequencing (WGS) data have been obtained from
blood using the Illumina TruSeq PCR-free library preparation kit.
Sample sequencing was performed with the HiSeqX sequencing plat-
form (HiseqX v1 or v2 SBS kit, 2 × 150 cycles), with an average mean
depth coverage ≥30X. Samples have been analyzed using the RD-
Connect pipeline: BWA-mem for alignment; Picard for duplicate
marking andGATK 3.6.0 for variant calling. RNA sequencing (RNA-seq)
data have been obtained from fibroblasts, using Illumina TruSeq RNA
Library Preparation Kit v2, sequencing with an average of 60M reads
per sample (paired-end 2 × 125 cycles). Data has been processed with
the following pipeline115: STAR 2.35a for alignment, RSEM 1.3.0 for
quantification, and GATK 3.6.0 for variant calling. All analyses have
been performed using the human genome GRCh37d5 as reference.

Copy number variations
Copy Number Variations (CNVs) have been extracted using ClinCNV
(https://github.com/imgag/ClinCNV) by employing a set of Eastern
European samples as a background control group. Out of the 569
autosomal CNVs we selected as potential candidates the CNVs of the
following types that overlapped with protein-coding genes: 1) whole
gene gains or losses, and 2) partial losses (deletions overlapping with
exons but not with the whole gene). The list of potential candidates

included 55 CNVs that created a total of 82 whole gene gains or losses
and 28 partial losses.

Compound heterozygous variants
Compound heterozygous variants have been obtained by phasing the
WGS variant calls with the RNA-seq aligned BAM files using phASER116.
At first, variants are imputed using Sanger Imputation Service with
EAGLE2 pre-phasing step117. PhASER is then applied to extend phased
regions to gene-wide haplotypes. By accurately reflecting the muscle
transcriptome, fibroblasts have been previously proved to be excellent
and minimally invasive diagnostic tools for rare neuromuscular
diseases118. We then annotated variants with eDiVA tool (www.ediva.
crg.es)119, and removed all mutations with Genome Aggregation Data-
base (gnomAD)120 that show allele frequency >3% globally, all variants
outside exonic and splicing regions using Ensembl annotation, all
synonymous mutations, and all variants with read depth (coverage)
smaller than 8. Afterwards we selected all genes with at least two hits
on different alleles as affected by damaging compound heterozygous
variants. Each sample has been processed individually throughout the
whole process.

Monolayer community detection
We performed a network community detection analysis using the
Louvain clustering algorithm121 implemented in R package igraph
(https://igraph.org/) with default parameters. We carried out the ana-
lysis using three (monolayer) networks, obtained from Reactome
database32, from the Recon3D Virtual Metabolic Human database33

(both downloaded in May 2018), and from the Integrated Interaction
Database (IID)34 (downloaded in October 2018). Additional informa-
tion onnetwork connectivitymetrics (e.g. node centrality distributions
and specific centrality information for severe-specificmodule genes) is
conveniently provided as a Jupyter Notebook, accessible at the fol-
lowing link: https://github.com/ikernunezca/CMS/blob/master/
Scripts/Multilayer_Network_Information_and_Connectivity_
Patterns.ipynb.

All gene identifiers of each network were converted to NCBI
Entrez gene identifiers using R packages AnnotationDbi v1.44.0 and
org.Hs.eg.db v3.7.0 (http://bioconductor.org/). After detecting the
community structure from each layer independently, we retrieved the
community membership of the genes of interest, henceforth called
CMS linked genes, i.e. known CMS causal genes, and severe and not-
severe compound heterozygous variants and CNVs.We then defined a
community similarity measure as Jaccard Index, i.e. the number of
shared genes of interest between the communities divided by the sum
of the total number of genes of each community.

Multilayer community detection
We constructed a multilayer gene network composed of the three
monolayer networks described in the previous section (Reactome,
VirtualMetabolicHumanand Integrated InteractionDatabase). Eachof
these three networks represents one layer of the multilayer network
and, in general, three facets of fundamentalmolecular processes in the
cell (Suppl. Figure 10). The multilayer community detection analysis
was performed using MolTi software19, which adapts the Louvain
clustering algorithm with modularity maximization to multilayer net-
works. The algorithm is parametrized by the resolution (γ): the higher
the value of γ, the smaller the size of the detected multilayer com-
munities. By varying the resolution parameter γ it is possible to
uncover the modular structure of network communities122.

By exploring a wide range of resolution parameter values, we
identified γ = 4 (727 communities, each one composed of 26.46 genes
on average) as an extreme value before both size and number of the
detected multilayer communities stabilize (Supplementary Fig. 11).
The most dramatic changes in number and composition of detected
communities are observed in the resolution parameter interval γ ∈
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(0,4].We, therefore, used thisparameter interval to test thehypothesis
that disease-related genes consistently appear in the same multilayer
communities, as well as to identify modules containing CMS linked
genes within them. In this analysis, we define a module as a group of
CMS linked genes that are systematically found to be part of the same
multilayer community while increasing the resolution parameter (see
Supplementary Information, Multilayer community detection
analysis).

Additional analyses
We retrieved known CMS causal genes from the GeneTable of Neu-
romuscular Disorders (http://www.musclegenetable.fr, version
November 2018)123. Segregation analysis of WGS data has been per-
formed using Rbbt124. DisGeNET database37 was downloaded in
November 2018. The association between CMS severity, demographic
factors and clinical tests was assessed with a two-tailed Fisher’s test
using R statistical environment (www.R-project.org). Networks were
rendered with Cytoscape125. We used VCFtools126 to compute familial
relatedness Ω among patients, scaled to -log2(2Ω). We used Enrichr127

for the functional enrichment analysis of the gene lists under study.We
used Ensembl Variant Effect Predictor (VEP)78 to assess the impact of
the compound heterozygous variants in the genes of the severe-
specific largest module. Expression levels in tissues of interest (GTEx
and Illumina Body Map) were retrieved from EBI Expression Atlas
(www.ebi.ac.uk/) by filtering with the following keywords: ‘nerve’,
‘muscle cell’, ‘fibroblast’ and ‘nervous system’ (0.5 TPM default cutoff).
We used Expression Atlas expression level categories: low (0.5 to 10
TPM), medium (11 to 1000 TPM), and high (more than 1000 TPM).
Synaptic localizationwas retrieved from the UniProt database (https://
www.uniprot.org/).

Western Blot and Immunostaining of USH2A on mouse neuro-
muscular junctions
For Western Blotting 40mg of protein was run on a 10% gel and
transferred to a membrane using the BioRad Trans Turbo semi-dry
transfer machine. The membrane was blocked in milk for 1 h and
Usherin (FabGennix, USH2A-112AP, 1:2000) was added (5% BSA in
TBST) overnight. Secondary antibodies were diluted 1:1000 in milk.

Labeling of the neuromuscular junction (NMJ) was performed on
soleus muscle in 10-week-old C57BL/6 J (Jax) male mice. Muscles were
washed in ice-cold PBS (2 × 10min) and then separated out into small
bundles under a stereo-microscope. They were fixed overnight at 4 °C
in 2% PFA, washed 2 × 1 h with ice-cold PBS, and treated with Analar
Ethanol and Methanol both at −20 °C (10min each). Tissues were then
incubated with blocking/permeabilization solution (5% horse serum,
5% BSA, 2% Triton X-100 in PBS) for 4 h (room temp (RT)) with gentle
agitation.

Muscle bundles were incubated with antibodies, diluted in
blocking buffer without triton, against Usherin-FITC (Rb polyclonal,
FabGennix USH.101-FITC,1:100) overnight (4 °C) with agitation and
then for a further 2 h (RT) the following morning. Muscles were then
washed in blocking buffer 4 × 1 h (RT) and incubated with Alexa 594-
Conjugated α-Bungarotoxin (ThermoFisherScientific, B13423, 1:250),
for 4 h (RT). Samples were washed 4 × 1 h in PBS and then mounted
using Vectashield hardset mounting medium. Images were captured
using Olympus FV1000c scanning confocal microscope using FV1000
application software (FV10-ASW) software at x63 oil immersion
objective.

Animals were housed under 12 h light/dark cycles and had ad
libitum access to standard chow (Teklad Global 18% protein Rodent
Diet) and water.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
WGS metadata and variant data, and patient phenotypic descriptions
have been deposited in the RD-Connect GPAP: https://platform.rd-
connect.eu/#/. This data is available under controlled access for
registered users of the GPAP. Details on access to GPAP can be found
in: https://platform.rd-connect.eu/userregistration. Biobank sample
accession identifiers are provided in Supplementary Table 1. The raw
RNA-Seq dataset analyzed in this study is not publicly available due to
sensible content (patient molecular data on a rare disease). Minimal,
pre-processed RNA-Seq data for reproducibility is provided within the
github repository of the project: https://github.com/ikernunezca/
CMS/tree/master/data/fibroblast_expression. Given the sensitive nat-
ure of this data, accessibility shouldbe requested toHanns Lochmüller
(Children’s Hospital of Eastern Ontario Research Institute; Ottawa,
Canada) at hlochmuller@toh.ca. A reasonable timeframe for a
response could be within two weeks of sending the request. All source
data and code files for reproducing all the Figures are provided within
the github repository of the project: https://github.com/ikernunezca/
CMS. Information on the source data can be accessed from: https://
github.com/ikernunezca/CMS/blob/master/Source_Information_
README. We specifically provide the Cytoscape Session file (‘cys’)
containing all the plots used to produce Figs. 3 and 4, as well as Sup-
plementary Figs. 3, 6, and 8 in this link: https://github.com/
ikernunezca/CMS/blob/master/Cytoscape_Session/CMS_Session.cys.
Specific input Source Data files for creating the Cytoscape Session
used to build Figs. 3, 4A, B, 6 and 8 can be accessed from the following
link as csv files: https://github.com/ikernunezca/CMS/tree/master/
Cytoscape_Session. Additionally, the Cytoscape Session provides an
extra plot with the incident interactions considered to render Fig. 5.
Supplementary Fig. 1 source data is provided as Supplementary
Table 1. Input Data for reproducing Supplementary Fig. 2 can be
accessed from: https://github.com/ikernunezca/CMS/tree/master/
data/InputGenes. Input for plotting Supplementary Figure 11 as well
as information on the files is available at: https://github.com/
ikernunezca/CMS/tree/master/data/MolTi/Community_Analysis.

Code availability
All generetad code and the Cytoscape session rendering Figs. 3 and 4,
as well as Supplementary Figs. 3, 6 and 9 are available for reproduci-
bility purposes at: https://github.com/ikernunezca/CMS. The analysis
of multilayer communities can also be performed using CmmD110

(https://github.com/ikernunezca/CmmD) with parameters: resolu-
tion_start: 0, resolution_end: 4, interval: 0.5 and the CMS linked genes
as nodelist. Code can also be referenced using Zenodo128.
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