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Protein structure generation via folding
diffusion

Kevin E. Wu1,2,3, Kevin K. Yang4, Rianne van den Berg5, Sarah Alamdari4,
James Y. Zou 1,3, Alex X. Lu4 & Ava P. Amini 4

The ability to computationally generate novel yet physically foldable protein
structures could lead to new biological discoveries and new treatments tar-
geting yet incurable diseases. Despite recent advances in protein structure
prediction, directly generating diverse, novel protein structures from neural
networks remains difficult. In this work, we present a diffusion-based gen-
erative model that generates protein backbone structures via a procedure
inspired by the natural folding process. We describe a protein backbone
structure as a sequence of angles capturing the relative orientation of the
constituent backbone atoms, and generate structures by denoising from a
random, unfolded state towards a stable folded structure. Not only does this
mirror how proteins natively twist into energetically favorable conformations,
the inherent shift and rotational invariance of this representation crucially
alleviates the need for more complex equivariant networks. We train a
denoising diffusion probabilistic model with a simple transformer backbone
and demonstrate that our resulting model unconditionally generates highly
realistic protein structures with complexity and structural patterns akin to
those of naturally-occurring proteins. As a useful resource, we release an open-
source codebase and trained models for protein structure diffusion.

Proteins are critical for life, playing a role in almost every biological
process, from relaying signals across neurons1 to recognizing
microscopic invaders and subsequently activating the immune
response2, from producing energy3 to transporting molecules
along cellular highways4. Misbehaving proteins, on the other hand,
cause some of the most challenging ailments in human healthcare,
including Alzheimer’s disease, Parkinson’s disease, Huntington’s
disease, and cystic fibrosis5. Due to their ability to perform complex
functions with high specificity, proteins have been extensively
studied as a therapeutic medium6–8 and constitute a rapidly grow-
ing segment of approved therapies9. Thus, the ability to computa-
tionally generate novel yet physically foldable protein structures
could open the door to discovering novel ways to harness cellular
pathways and eventually lead to new treatments targeting yet
incurable diseases.

Many works have tackled the problem of computationally gen-
erating new protein structures, but have generally run into challenges
with creating diverse yet realistic folds. Traditional approaches typi-
cally apply heuristics to assemble fragments of experimentally profiled
proteins into new structures, much like piecing together puzzle
pieces10,11. Such approaches are limited by the boundaries of expert
knowledge and available data. More recently, deep generative models
have been proposed for protein structure generation. However, due to
the incredibly complex structure of proteins, these commonly do not
directly generate protein structures, but rather sets of constraints
(such as pairwise distances between residues) that are heavily post-
processed to obtain structures12,13. Not only does this add complexity
to the designpipeline, but noise in thesepredicted constraints can also
be compounded during post-processing, resulting in unrealistic
structures—that is, if the constraints are even satisfiable. Other
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generative models rely on complex equivariant network architectures
or loss functions to learn to generate a 3D point cloud that describes a
protein structure14–19. Of notable success among these methods is
RFDiffusion18, which not only presents a myriad of conditional gen-
eration applications that can design proteins binding specific targets,
but also performs thorough experimental validation of computation-
ally generated proteins. Such equivariant architectures can ensure that
the probability density from which protein structures are sampled is
invariant under translation and rotation. However, translation- and
rotation-equivariant architectures are often also symmetric under
reflection, leading to violations of fundamental structural properties of
proteins like chirality15. Intuitively, this point cloud formulation is
detached from how proteins biologically fold—by twisting to adopt
energetically favorable configurations20,21.

Here, inspiredby thebiophysics of theprotein folding process,we
introduce a generative model that acts on the inter-residue angles in
protein backbones instead of on Cartesian atomic coordinates (Fig. 1a,
b). This treats each residue as an independent reference frame, thus
shifting the equivariance requirements from the neural network to the
coordinate system itself. While a similar angular representation has
been used in some protein structure prediction works22–24, it has only
received cursory exploration in the context of generative modeling,
and only for simple, helix-only protein structures25. For generation, we
use a denoising diffusion probabilistic model (diffusion model, for
brevity)26,27 with a vanilla transformer parameterization without any
equivariance constraints (Fig. 1c). Such models have been highly suc-
cessful in a wide range of data modalities from images28,29 to audio30,31,
and are easier to train with better modal coverage than methods like
generative adversarial networks (GANs)32,33. Combining these ideas,
our framework generates backbones by starting from a set of random
angles that correspond to a random, unfolded state and iteratively
denoising the underlying angles to arrive at a final backbone structure
(Fig. 1d). Although this angular denoising procedure does not directly
capture any biophysical folding processes, it draws inspiration from
howproteins twist and fold into theirfinal structures; as such,we name
our method FoldingDiff. We present a suite of validations to demon-
strate quantitatively that unconditional sampling from our model
directly generates realistic protein backbones—from recapitulating the
natural distribution of protein inter-residue angles, to producing

overall structures with rich arrangements of multiple structural
building block motifs. We show that our generated backbones are
diverse and designable, and thus span biologically plausible and
interesting protein structures (Fig. 1a). Our work demonstrates the
power of biologically inspiredproblem formulations and represents an
important step towards accelerating the development of proteins and
protein-based therapies.

Results
Representing protein backbones using internal angles
A machine learning method capable of generating protein backbone
structures requires a representation to encode structures, as well as a
computational model that acts upon that representation. To for-
mulate the FoldingDiff generative model, we propose a simplified
framing of protein backbones that inherently embeds geometric
invariance within the representation, thus removing the need for
complex equivariant networks. We represent a protein backbone
structure of N amino acids as a sequence of angle sets comprising 3
bond and 3 dihedral angles formed for each residue, i.e.,
x 2 ½�π,πÞ N�1ð Þ×6. That is, each set of six angles describes the relative
position of all backbone atoms in the next residue given the position
of the current residue’s backbone. These six angles are defined pre-
cisely in Table 1 and illustrated in Fig. 1b. Notably, these angles do not
specify side chain identity or orientation; like other works tackling
backbone structure generation, FoldingDiff focuses on designing
backbones and relies on external methods to subsequently infer
amino acids that fold into designed structures. These internal angles
can be easily computed using trigonometry, and converted back to
3D Cartesian coordinates by iteratively adding atoms to the protein
backbone34, fixing bond distances to average lengths (Figure S1). One
concern of this iterative reconstruction process is that small errors
may accumulate into significant global errors. To rule this out and
confirm that our proposed representation can accurately describe
longer protein structures, we convert a set of proteins of varying
lengths from coordinate to angular representation and back, and find
minimal differences between the original and reconstructed coor-
dinates (Figure S2). We similarly investigate the potential for our
angular formation to result in structures with atomic clashes, and
find that although these clashes do appear, they can be easily

a c

b d

Fig. 1 | Overview of FoldingDiff. a FoldingDiff generates protein backbone struc-
tures via a diffusion-based generative model. Generated protein backbones are
evaluated for their quality, designability, and diversity. b Protein backbones are
represented as a sequence of bond (green) and dihedral (orange) angle sets.
c Diffusion models consist of a forward, stochastic noising process and a reverse,
learned denoising process. During FoldingDiff’s forward process, noise sampled
from a wrapped Gaussian (accounting for the periodicity of angles) is iteratively
added to an experimentally observed backbone x0 over T discrete steps, where
each timestep t adds a small, incremental amount of noise drawn from q xt jxt�1

� �

until the angles are indistinguishable from a Gaussian wrapped about ½�π,πÞ at xT .
In the reverse process, FoldingDiff is trained to approximate the reverse noise
removal procedure pξ xt�1jxt

� �
. d Visualization of FoldingDiff’s sampling approach.

The heatmap on the left represents a set of angles randomly sampled from ½�π,πÞ;
these random angles specify a misshapen, unfolded structure represented below
the heatmap. FoldingDiff iteratively removes noise from these angles to obtain a
structured set of angles depicted in the heatmapon the right, corresponding to the
structure in the bottom right colored in rainbow spectrum fromN (blue) to C (red)
terminus.
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remedied with common structural relaxation methods (see Supple-
mentary Information; Figure S5, Table S1).

This internal angle formulation has several key advantages. Most
importantly, since each residue forms its own independent reference
frame, there is no need for an equivariant neural network, as required
by diffusion models that work on Cartesian coordinates of protein
structure14,15. No matter how the protein is rotated or translated, the
angles specifying the next atom given the current atom never change.
In fact, we demonstrate that our model becomes brittle upon sub-
stituting our translation- and rotation-invariant internal angle repre-
sentation with Cartesian coordinates, keeping all other design choices
identical (Figure S6). While extensive data augmentations might help
overcome this fragility to some extent, it is simpler and more efficient
to use a model intrinsically designed to leverage geometric properties
of protein structures.

Designing and training FoldingDiff
Having defined a simplified but complete angle-based representation
of protein structures, our next goal was to train a generative model
capable of learning the natural distribution over these sets of angles.
We designed a denoising diffusion probabilistic model, or diffusion
model for short, capable of generating backbone angles from random
noise26,27. To learn to do this, diffusionmodels are trained to iteratively
denoise data. During training, starting with a data sample x0, noise is
iteratively added over T discrete steps until it is indistinguishable from
random noise at xT . In Fig. 1c, this noising procedure is done via the
Markov process q xt jxt�1

� �
. The diffusion model is trained to predict

the noise added at each step26, learning a model pξ xt�1jxt

� �
that per-

forms the reverse denoising process (Fig. 1c). After training is com-
plete, to generate new data points, the diffusion model starts from
random noise and applies T steps of iterative denoising where the
output of each prior denoising step is used to prepare the input for the
next cycle of denoising, culminating in a clean sample (Algorithm 1,
Fig. 1d). Importantly, this noising and denoising procedure does not
model any biophysical processes of protein folding.

FoldingDiff trains such a diffusionmodel to generate new protein
backbone structures using our angular formulation. Since our diffu-
sion model acts upon periodic angular values, we ensure that noising
and denoising procedures are wrapped about the domain ½�π,πÞ. We
formulate the denoising model p with a bidirectional transformer
model and set T = 1000 noising steps. Notably, this transformer
architecture does not provide rotation or translation equivariance, as
our input representation itself is intrinsically rotation- and translation-
invariant. FoldingDiff is trained on a dataset of CATH protein
domains35 between 40 and 128 residues in length; structures with
fewer than 40 amino acids are discarded and structures with more
than 128 residues are randomly croppedduring each training epoch. In
total, wewere able to successfully train ourmodel using 30,395 unique
protein domains, randomly divided into training, validation, and test
sets in a 80/10/10 ratio. See Methods for full model specification and
training details.

Generating protein internal angles
After training our FoldingDiff model, we first verified that FoldingDiff
generates a realistic distribution of dihedral and bond angles in pro-
teins.Weunconditionally generated 10backbone chains each for every
length l 2 ½50,128Þ (see Methods, Fig. 2a, S8), generating a total of 780
backbones. To ensure that the angles generated by our model are
general across proteins (and not just memorized from the training
dataset), we compared the distributions of angles from these 780
structures to those from a test set of experimental structures not seen
during training. Tomatch the length of backbone chainswe generated,
the test set also consists of structures less than 128 residues in length.
We observe that, across all angles, the generated distribution almost
exactly recapitulates the test distribution (Fig. 2b, S9). This is true both
for angles whose distributions resemble low-variance wrapped Gaus-
sians ω,θ1,θ2,θ3

� �
as well as for angles with multi-modal, high-variance

distributions ϕ,ψð Þ. Angles with significant mass wrapping about the
�π=π boundary (ω) are correctly handled as well. Compared to similar
plots generated from other protein diffusion methods (see Fig. 3A
from Anand and Achim14), we qualitatively observe that our method
produces a much tighter distribution that more closely matches the
natural distribution of bond angles.

However, the individual distributions of each angle alone do not
capture the fact that these angles are not independently distributed,
but rather exhibit significant correlations. To test if our model cor-
rectly captures these correlations, we produced Ramachandran plots
of the joint distribution for the the dihedral anglesϕ andψ36. Figure 2c
shows the Ramachandran plot for (experimentally-determined) test
set chains with fewer than 128 residues, compared to our 780 gener-
ated structures. The Ramachandran plot for natural structures con-
tains threemajor concentrated regions corresponding to right-handed
α helices, left-handed α helices, and β sheets. All three of these regions
are recapitulated in our generated structures (Fig. 2c), suggesting that
FoldingDiff generates all three major secondary structure elements in
protein backbones. Furthermore, we see that our model correctly
learns that right-handed α helices are much more common than left-
handed α helices37, suggesting that FoldingDiff learns and respects the
chirality of protein structures. Prior works that use equivariant net-
works, such as ref. 15, cannot differentiate between these two types of
helices due to network equivariance to reflection.

Structural characterization of FoldingDiff generations
Our results demonstrate that FoldingDiff generates angles whose
individual and joint distributions match those of natural protein
structures. However, these prior evaluations only assess if individual
pairs of residues form angles consistent with fragments of secondary
structures, and not if the overall secondary structure composition of
the protein is biologically reasonable, which requires assessing fea-
tures like the presence and co-occurrence of secondary structures.

We thus sought to assess if the number and co-occurence of
secondary structure elements in our generated structures matched
those seen in natural backbones. To do this, we used P-SEA38, a com-
putational algorithm that annotates secondary structure elements for
each backbone. We applied P-SEA both to our test set of natural
structures and our generated backbones, counted the number of α
helices and β sheets detected, and measured these secondary struc-
tures’ frequencies of co-occurrence (Fig. 3a, b). Similar to the natural
structures, our generated structures frequently contain multiple sec-
ondary structure elements, and exhibit similar co-occurrence patterns
to natural structures (e.g., α helices being more common on average
compared to β sheets). FoldingDiff thus appears to generate rich
structural information akin to that of natural protein domains, and
does so consistently across multiple independent rounds of genera-
tion (Figure S7).

To gain a more nuanced understanding of the types of protein
backbone structures generated by FoldingDiff, we visualize the

Table 1 | Internal angles used to specify protein backbone
structure

Angle Description

ψ Dihedral torsion about Ni � Cαi � Ci � Ni+ 1

ω Dihedral torsion about Cαi � Ci � Ni+ 1 � Cαi+ 1

ϕ Dihedral torsion about Ci � Ni+ 1 � Cαi+ 1 � Ci+ 1

θ1 Bond angle about Ni � Cαi � Ci

θ2 Bond angle about Cαi � Ci � Ni+ 1

θ3 Bond angle about Ci � Ni+ 1 � Cαi+ 1

Some of these involvemultiple residues, indicated via i index subscripts. These are illustrated in
Fig. 1b.
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a

b

c

Fig. 2 | FoldingDiff generates realistic distributions of bond and dihedral
angles. a FoldingDiff iteratively denoises the underlying angles from an unfolded
structure (left) towards angles corresponding to afinal folded structure (right). Shifts in
angle distributions, e.g., of an example dihedral ψð Þ, accordingly occur over this gen-
erative process. b Distributions of individual angles for backbones sampled from Fol-
dingDiff (Sampled, orange), compared to that of natural backbones (Test, blue).
Sampling was repeated 10 times for each backbone length l 2 ½50,128Þ yielding a total

of 780 generated backbones. cCo-occurrence ofϕ andψ dihedral angles, visualized as
Ramachandran plots, over natural proteins (left) and generations sampled from Fol-
dingDiff (right). Arrows indicate ϕ,ψð Þ value sets corresponding to three major sec-
ondary structure elements: right-handed α helices (α helix, RH), left-handed α helices
(α helix, LH), and β sheets (β sheet). Faint vertical/horizontal lines are artifacts of
replacing and imputing null values.
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landscape of the generated proteins via their embeddings. Specifically,
we embed our generated proteins using 31-dimensional Gauss
integrals39 using the PHAISTOS software suite40, whichwe then project
to two-dimensions using uniform manifold approximation and pro-
jection (UMAP)41 for visualization. We annotated this plot according to
several descriptors—length, number of helices, and number of sheets—
and observed that the design space of generated backbones spans a
large range of these descriptors (Fig. 3d–f). Jointly visualizing these
embeddings in the context ofCATHtest set structures of similar length
(Figure S10) reveals that FoldingDiff’s generations share regions of
overlapwith natural structures while also exploring embedding spaces
only sparsely populated by natural structures. This suggests that Fol-
dingDiff has the potential to sample backbones occupying a range of
similarities to known structures.

We include several baseline methods to demonstrate that gen-
erating backbones with diverse secondary structures is a challenging
task. Autoregressive training strategies have been successfully applied
to generative modeling of sequences of language tokens in natural
language processing42,43 and amino acid tokens in protein language
models44–46. Thus, we similarly trained an autoregressive (AR) model
using the same angular representation as FoldingDiff (seeMethods for
additional details) as a baseline generativemodel over the sequence of
angles specifying protein structures. However, annotating the sec-
ondary structure content of the AR model’s generated structures
revealed a failure mode of exclusively producing singular α helices
(Fig. 3c, S11, S12). As anadditional baseline, we employed a randomized
sampling approach, where we shuffle naturally occurring angles and
use these shuffled angles to reconstruct a structure (see Methods for
additional details). This shuffling preserves the natural distribution of
angles and their pairwise correlations (e.g., Ramachandandran plot),
but disrupts how they are relatively ordered. This random shuffling
baseline produced very few detectable secondary structures; those
that are detected are likely a product of random chance (Figure S13).
Together, these results demonstrate that FoldingDiff generates pro-
tein backbones with secondary structure elements that mirror natural

proteins in their relative frequencies, and that doing so cannot be
simply achievedusing less principledmodel designs or naive baselines.

Designability of generated backbones
Having assessed the biological plausibility of our generated structures
from multiple aspects, both at the level of generated angles and the
overall secondary structure composition of entire protein backbones,
we next sought to assess whether the structures generated by Fol-
dingDiff are designable. In protein design, the designability of a
structure reflects whether we can identify, with current methods, an
amino acid sequence likely to fold into that designated backbone
structure. A generative model that produces a high proportion of
designable structures is a more useful model for downstream protein
engineering applications.

Previousworks have evaluateddesignability in silicoby predicting
possible amino acid chains that fold into a generated backbone and
evaluating if the structure originating from these sequences matches
the original backbone13,15. Due to the resource-intensive nature of
experimental validations, most works compare generated structures
against the structure predicted from sequence by a machine learning
model (Fig. 4a)13,15. To generate candidate amino acid sequences for a
generated structure s, we use the ProteinMPNN47 inverse folding
model to output 8 different candidate sequences. For each, we predict
the corresponding 3D structure ŝ1, . . . ,ŝ8 using the OmegaFold struc-
ture prediction method48. Finally, we score the structural similarity
between the original generated backbone s and predicted structure ŝ
by computing their TMscore49, a commonly usedmetric for evaluating
backbone similarity. TMscores range from 0,1½ � with larger values
indicating greater similarity. The maximum score across the 8 candi-
datesmaxi2 1,8½ �TMalign s,ŝi

� �
is taken as the self-consistencyTM (scTM)

score. As a TM score ≥0:5 generally indicates the two backbones are in
the same protein fold50, we likewise consider a scTM ≥0:5 to be self-
consistent and thus designable (see Methods for additional details).

Using this procedure, we find that 177 of our 780 structures, or
22.7%, are designable with an scTM score ≥0:5 (Fig. 4b) without any

a

d

b

e

c

f

Fig. 3 | FoldingDiff designs protein backbones with rich secondary structure
content. a–c Secondary structure content within a set of natural protein backbone
structures (a), generations from FoldingDiff (b), and generations from an auto-
regressive deep learning model (c). The frequency of various combinations of x α

helices and y β sheets are visualized as a 2D histogram. d–fUMAP of Gauss integral
embeddings of backbone generations from FoldingDiff n= 780ð Þ, with individual
generations colored by their corresponding backbone length (d), number of α
helices (e), and number of β sheets (f).
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post-processing such as structural refinement or relaxation. This des-
ignability is consistent across independent generation runs (Table S2),
and is likewise consistent when substituting AlphaFold2 without
MSAs51 in place of OmegaFold (163=780, or 20.9%, designable with
AlphaFold2). ProtDiff15 uses an identical scTM evaluation pipeline
leveraging ProteinMPNN and AlphaFold2, and reports a significantly

lower proportion of designable structures (92=780 designable,
p= 1:8× 10�8, Chi-square test). Compared to this prior work, Folding-
Diff improves the designability of both short sequences (up to 70
residues, 76=210 designable compared to 36=210, p= 1:7 × 10�5, Chi-
square test) and long sequences (beyond 70 residues, 87=570 desig-
nable compared to 56=570, p= 5:6× 10�3, Chi-square test). Despite

a

b

d

c
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these consistent improvements in designability relative to ProtDiff, we
similarly find that longer generated structures tend to have poorer
designability (Spearman’s ρ= � 0:38,p=3:12 × 10�28,n= 780, Fig-
ure S14). While ProteinSGM (ESM-IF1 for inverse folding, AlphaFold2
for fold prediction) reports an even higher designability proportion of
50:5%, this value is not directly comparable, as ProteinSGM generates
constraints that are subsequently folded using Rosetta13,52. Therefore,
the designability reported in ProteinSGM does not directly reflect its
generative process, as Rosetta post-processing significantly improves
the viability of their structures. We also find that confidence scores
produced by OmegaFold and AlphaFold2 correlate well with scTM
(Figure S16), suggesting that applications leveraging FoldingDiff could
directly use these scores to identify high-quality generations.

To further contextualize the designability ratio achieved by Fol-
dingDiff, we similarly evaluate scTM scores for the set of structures
previously obtained using randomized angle shuffling. None of these
randomized structures are designable, and the scTM scores are sig-
nificantly lower than those produced by FoldingDiff (p= 1:6× 10�121,
two-sided Mann–Whitney test, n = 1560, Figure S17). Conversely, we
evaluate experimental structures to establish an upper bound for
designability. 87% of natural structures have an scTM ≥0:5 (Fig-
ure S17). The fact that even real structures do not have perfect desig-
nability demonstrates that the scTM evaluation pipeline can be fragile,
and that some fraction of FoldingDiff’s generations may produce
interesting, foldable proteins even if the scTM pipeline does not
identify them as such. Finally, we evaluate the designability of struc-
tures produced by the aforementioned autoregressive baseline. While
89% of these structures have an scTM ≥0:5 (Figure S12b), these
autoregressive generations are entirely comprised of singular α helices
(Figures S11, S12a), making these structures biologically uninteresting
even if they might be designable. Finally, we find that of our 177
backbones considered to be designable with OmegaFold, only 16
contain β sheets as annotated by P-SEA. Conversely, of the remaining
603 backbones with scTM < 0.5, 533 contain β sheets. This suggests
that FoldingDiff may have greater difficulty generating high scTM
structures with β sheets (p=4:6× 10�91, Chi-square test, Figure S15).
Although we believe that some degree of this is due to the fragility of
the scTM pipeline itself, there is certainlymuchwork that can be done
to improve FoldingDiff’s ability to model complex arrangements of
beta sheets.

Novelty and diversity of protein backbones generated by
FoldingDiff
The observed modal collapse of the autoregressive baseline strongly
illustrates the importance of measuring the diversity of generated
structures. To this end, we evaluate FoldingDiff’s generative diversity
using two metrics: novelty with respect to the training set of natural
backbones and diversity spanned by the pool of generated backbones.
To measure similarity to training data, we calculate the maximum TM
score of each generated backbone to any training set structure. We
observe that themaximum trainingTMscore is significantly correlated
with scTM (Spearman’s ρ=0:78, p= 7:9× 10�165, Fig. 4c), indicating
that structures more similar to the training set tend to be more des-
ignable. This correlation is in part consistent with the observation that
the scTM pipeline can be fragile and may fail even for natural struc-
tures (Figure S17)—if our generated structures deviate at all from the

data distribution of native proteins, as is the case for generations with
low training TM scores, such failures are invariably even more likely.
Moreover, the distribution of training TM scores indicates that Fol-
dingDiff does not merely memorize the training structures; doing so
would result in a distribution of training TM scoresmuchmore heavily
skewed towards 1.0, as is reported by methods such as ProteinSGM13.

Having evaluated designability and novelty through TM scores
(Figs. 4b, c), we next qualitatively explored the relationship between
the designability and novelty of generated protein backbone structures
(Fig. 4d). Among the three rows of representative generated structures
illustrated, the top row shows 4 distinct designable backbones gener-
ated by FoldingDiff; for each of these and their corresponding columns,
the middle row shows the best-matching OmegaFold predictions from
the scTM pipeline, and the bottom row shows the most similar training
structure by TM score. Comparing these structures suggests that Fol-
dingDiff’s generations may not be as similar to the training set as
training TM scores indicate. For example, considering the second
structure, FoldingDiff’s generation contains two pairs of antiparallel β
sheets not present in the closest training structure; similarly, for the
third structure, our generated structure contains several alpha helices,
whereas the closest training structure contains only a single helix. In
addition, OmegaFold’s predicted folds (middle row) are consistently
very similar to FoldingDiff’s initial generated backbone in each of these
cases, qualitatively suggesting that designability also may be greater
than scTM scores themselves might suggest. Figure S18 additionally
shows randomly selected structures spanning the entire range of scTM
designability scores. Overall, we observe that structures with very poor
designability (scTM <0:25) tend to include long, unstructured loop
regions connecting interspersed regions of beta sheets. Structures with
high designability (scTM ≥0:75) are not very diverse and tend to
incorporate mostly alpha helices with minimal, if any, kinks and turns.
Structures in the middle of this range (0:25≤ scTM <0:75) appear
qualitatively reasonable and contain a strong variety of combinations
of secondary structure motifs.

To quantitatively measure the structural diversity spanned by
FoldingDiff’s generations, we cluster all generated designable back-
bones (scTM ≥ 0.5) according to their pairwise TM scores (see
Methods for additional details). The resulting clustering and pairwise
distance heatmap (Figure S19a) suggests that FoldingDiff’s designable
backbones do not typically share large degrees of structural similarity,
and are thus structurally diverse. In fact, when compared to a similar
clustering of naturally occurring protein structures (Figure S19b),
FoldingDiff achieves a similar level of diversity. This sharply contrasts
with prior works15, whose generated protein structures appear to
mainly consist of minor variations on a handful of core structural
motifs, and with our autoregressive baseline, which exhibits extremely
poor diversity (Figure S19c). Overall, these results demonstrate that
FoldingDiff generates high-quality backbones that are designable,
diverse, and may include structures that are meaningfully different
from its training set. These three properties are hallmarks of a strong
generative model that can effectively explore the space of proteins
outside what is already known from biology.

Discussion
In this work, we present a parameterization of protein backbone struc-
tures that we couple with a powerful generative deep learning model to

Fig. 4 | FoldingDiff generates designable and novel protein backbones.
a Workflow for quantifying backbone designability. The self-consistency (scTM)
score is computed as the TMscore similarity between a generated backbone and
the predicted structure resulting from an in silico protein design process (inverse
folding followed by protein fold prediction). b Distribution of scTM scores for all
780 generated backbones, yielding 177 designable backbones with scTM ≥0:5,
with shorter backbones (≤ 70 aa, blue) exhibiting better designability on average

relative to longer backbones (>70 aa, orange). c Designability (y axis) versus max-
imum similarity to training set (x axis) for 780backbones generated by FoldingDiff.
dRepresentative examplesof generated backbones fromFoldingDiff (top row), the
corresponding closest predicted structure from inverse-folded amino acids (mid-
dle row), and the most similar training structure (bottom row). Structures are
colored in a rainbow spectrum from N (blue) to C (red) terminus.
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enable effective sampling of novel, diverse, and realistic protein back-
bone structures. Considering each residue to be its own reference
frame, we describe a protein using the resulting relative internal angle
representation. We show that a standard transformer can then be used
to build a diffusion model that generates high-quality, biologically
plausible, and diverse protein structures. These generated backbones
respect protein chirality and exhibit high designability.

While we demonstrate promising results with our model, we note
limitations to ourmethod thatmotivate opportunities for future work.
Although we show empirically that our angular representation can be
trained to generate high-quality backbones with up to 128 residues,
there is no guarantee that our framework scales effectively to longer
backbone lengths or more complex applications, such as modeling
much larger proteins with intricate arrangements of secondary struc-
tures like β barrels. Namely, although formulating a protein as a series
of angles enables use of simpler models without equivariance
mechanisms, this framing allows for single-angle errors to significantly
alter the overall generated structure—a sort of lever arm effect
(see Supplementary Information). Additionally, some generated
structures exhibit collisions where the generated structure crosses
through itself (see Supplementary Information). Future work could
explore methods to avoid these pitfalls using geometrically-informed
architectures such as those used in48. Our generated structures are still
of relatively short lengths compared to natural proteins, which typi-
cally have several hundred residues; futurework could extend towards
longer structures, potentially incorporating additional losses or inputs
that help checkpoint the structure and reduce accumulation of error.
Future work could also build upon FoldingDiff’s backbone generation
functionality to additionally perform amino acid sequence and side-
chain conformation generation, rather than relying on external inverse
folding methods.

Further work that guides or biases the generative process towards
backbones with desirable protein-protein interactions, structural
domains, or functional traits will help realize the potential of proteins
as therapeutic agents. Similarly, extending FoldingDiff to perform
structure diffusion guided by amino acid sequence could enable new
advances in protein fold prediction. Despite their lauded success,
models like AlphaFold2 have been shown to perform poorly on pro-
teins with highly dynamic folds, such as intrinsically disordered
proteins53,54. The conventional method for computationally modeling
these systems involves extensive molecular dynamics simulations that
are orders of magnitude slower than a typical deep learning model. A
sequence-guided generative model of structure might bypass such
expensive simulations and directly sample from the conditional dis-
tribution of conformations matching a given amino acid sequence.
Indeed, some works have already begun to leverage FoldingDiff’s
ability to rapidly generate many backbones to model disordered pro-
tein structural ensembles55.

In summary, our work provides an important step in leveraging
biologically inspired problem formulations for generative protein
design. Future work to develop and apply FoldingDiff and related
methods will unlock new capabilities not only in accelerating ther-
apeutic development, but also in rapidly exploring the structural space
of proteins, allowing for advances in fields like molecular dynamics.
More broadly, we envision that our method provides a framework for
how biologically grounded deep learning methods can lead to effec-
tive, powerful solutions to outstanding biomedical challenges.

Methods
Denoising diffusion probabilistic models
Denoising diffusion probabilistic models (or diffusion models, for
short) leverage a Markov process q xt jxt�1

� �
to corrupt a data sample

x0 over T discrete timesteps until it is indistinguishable from noise at
xT . A diffusion model pξ xt�1jxt

� �
parameterized by ξ is trained to

reverse this forward noising process, denoising pure noise towards

samples that appear drawn from the native data distribution27. Diffu-
sionmodels were first shown to achieve good generative performance
by ref. 26; we adapt this framework for generating protein backbones,
introducing necessary modifications to work with periodic angular
values.

We modify the standard Markov forward noising process that
adds noise at each discrete timestep t to sample from a wrapped
normal instead of a standard normal56:

q xt jxt�1

� �
=Nwrapped xt ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

q
xt�1,βt I

� �

/
X1

k =�1
exp

�jjxt �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� βt

p
xt�1 + 2πkjj2

2β2
t

 !

where βt 2 0,1ð ÞTt = 1 are set by a variance schedule. We use the cosine
variance schedule33 with T = 1000 timesteps:

βt = clip 1� �αt
�αt�1

, 0:999
� �

�αt =
f tð Þ
f 0ð Þ f tð Þ= cos

t=T + s
1 + s

� π
2

� �

where s =8× 10�3 is a small constant for numerical stability. We train
our model for pξ xt�1jxt

� �
with the simplified loss proposed by ref. 26,

using a neural network nnξ xt ,t
� �

that predicts the noise ϵ∼N 0,Ið Þ
present at a given timestep (rather than the denoised mean values
themselves). To handle the periodic nature of angular values, we
introduce a function to wrap values within the range ½�π,πÞ:
w xð Þ= x +πð Þmod2πð Þ � π. We use w to wrap a smooth L1 loss57 Lw,
which behaves like L1 loss when error is high, and like an L2 loss when
error is low; we set the transition between these two regimes at
βL =0:1π. While this loss is not as well-motivated as torsional losses
proposed by ref. 56, we find that it achieves strong empirical results.

dw =w ϵ� nnξ w
ffiffiffiffiffi
�αt

p
x0 +

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �αt

p
ϵ

� �
,t

� �� �

Lw =
0:5 d2

w
βL

ifjdwj<βL

jdwj � 0:5βL otherwise

(

During training, timesteps are sampled uniformly t ∼U 0,Tð Þ. We
normalize all angles in the training set to be zero mean by subtracting
their element-wise angular mean μ; validation and test sets are shifted
by this same offset.

Figure 1 illustrates this overall training process, including our
previously described internal angle framing. The internal angles
describing the folded chain x0 are corrupted until they become
indistinguishable from random angles, which results in a disordered
mass of residues atxT ; we sample points along this diffusionprocess to
train our model nnξ . Once trained, the reverse process of sampling
from pξ also requires modifications to account for the periodic nature
of angles, as described in Algorithm 1. The variance of this reverse

process is given by σt =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��αt�1
1��αt

� βt

q
.

Algorithm 1. Sampling from pξ with FoldingDiff
1: xT ∼wðNð0, IÞÞ ▷ Sample from a wrapped Gaussian
2: for t = T,…, 1 do
3: z =N 0, Ið Þ if t > 1 else z =0
4:xt�1 =w

�
1ffiffiffiffi
αt

p
�
xt� 1�αtffiffiffiffiffiffiffiffi

1��αt

p nnξ

�
xt , t

��
+ σtz

�
▷ Wrap sampled

values about[-π, π]
5: end for
6: return wðx0 +μÞ ▷ Un-shift generated values by original
mean shift.

This sampling process can be intuitively described as refining
internal angles from an unfolded state towards a folded state.
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Modeling and dataset
For our reverse (denoising) model pξ xt ,t

� �
, we adopt a vanilla bidir-

ectional transformer architecture58 with relative positional
embeddings59. Our six-dimensional input is linearly upscaled to the
model’s embedding dimension (d =384). To incorporate the timestep
t, we generate random Fourier feature embeddings60 as done in ref. 61
and add these embeddings to each upscaled input. To convert the
transformer’s final per-position representations to our six outputs, we
apply a regression head consisting of a densely connected layer, fol-
lowed by GELU activation62, layer normalization, and finally a fully
connected layer outputting our six values. In total, ourmodel has 14.56
million trainableparameters. As is typical of transformer architectures,
we use attentionmasking to allow ourmodel to batch across inputs of
variable lengths (both during training and generation). We train this
network with the AdamW optimizer63 over 10,000 epochs, with a
learning rate that linearly scales from 0 to 5× 10�5 over 1000 epochs,
and back to 0 over the final 9000 epochs. Validation loss appears to
plateau after ≈ 1400 epochs; additional training does not improve
validation loss, but appears to lead to a poorer diversity of generated
structures. We thus take a model checkpoint at 1488 epochs for all
subsequent analyses.

We train our model on the CATH dataset, which provides a de-
duplicated set of protein structural folds spanning a wide range of
functions where no two chains sharemore than 40% sequence identity
over 60%overlap35.We exclude any chainswith fewer than 40 residues.
Chains longer than 128 residues are randomly cropped to a 128-residue
window at each epoch. A random 80/10/10 training/validation/test
split yields 24,316 training backbones, 3039 validation backbones, and
3040 testbackbones.Note that sincewedonotuse test set accuracy or
reconstruction as a primary metric for evaluating our work, potential
overlaps and similarities between training and test data does not
artificially inflate any of the results we report.

Designability evaluation and self-consistency TM score
Our self-consistency TM score (scTM) evaluation pipeline is similar to
previous evaluations done by ref. 15 and 13, with the primary difference
that we use OmegaFold48 instead of AlphaFold51. OmegaFold is
designed without reliance on multiple sequence alignments (MSAs),
and performs similarly to AlphaFold while generalizing better to
orphan proteins that may not have such evolutionary neighbors48.
Furthermore, given that prior works use AlphaFold without MSA
information in their evaluation pipelines, OmegaFold appears to be a
more appropriate method for scTM evaluation.

OmegaFold is run using default parameters (and ʻrelease1ʼ
weights). We also run AlphaFold without MSA input for benchmarking
against15. We provide a single sequence reformatted tomimic aMSA to
the colabfold tool64 with 15 recycling iterations.While the full AlphFold
model runs 5 models and picks the best prediction, we use a singular
model (model1) to reduce runtime.

Ref. 15 use ProteinMPNN47 for inverse folding and generate 8
candidate sequences per structure, whereas ref. 13 use ESM-IF165 and
generate 10 candidate sequences for each structure. We performed
self-consistency TM score evaluation for both these methods, gen-
erating 8 candidate sequences using author-recommended tempera-
ture values (T = 1:0 for ESM-IF1, T =0:1 for ProteinMPNN). We use
OmegaFold to fold all amino acid sequences for this comparison. We
found that ProteinMPNN in Cα mode (i.e., alpha-carbon mode) con-
sistently yields much stronger scTM values (Tables S2, S3); we thus
adopt ProteinMPNN for our primary results. While generating more
candidate sequences leads to a higher scTM score (as there are more
chances to encounter a successfully folded sequence), we con-
servatively choose to run 8 samples to be directly comparable to ref. 15.
We also use the same generation strategy as ref. 15, generating
10 structures for each structure length l 2 ½50,128Þ —thus the only
difference in our scTM analyses is the generated structures themselves.

Shuffling angles to generate “random” structures
To contextualize FoldingDiff’s generations, we implement a naive
angle generation baseline. We take our test dataset angles, and
concatenate all examples into a matrix of x̂ 2 ½�π,πÞN̂ ×6, where N̂
denotes the total number of angle sets in our test dataset, aggre-
gating across all individual chains. To generate a backbone structure
of length l, we simply sample l indices from U 0,N̂

� �
. This creates a

chain that perfectly matches the natural distribution of protein
internal angles, while also perfectly reproducing the pairwise corre-
lations, i.e., of dihedrals in a Ramachandran plot, but critically loses
the correct ordering of these angles. We randomly generate 780 such
structures (10 samples for each integer value of l 2 ½50,128Þ). This is
the same distribution of lengths as the generated set in our main
analysis. For each of these, we perform secondary structure anno-
tation as well as scTM evaluation.

Autoregressive baseline model
As a baseline method for our generative diffusion model, we also
implemented an autoregressive (AR) transformer f AR that predicts the
next set of six angles in a backbone structure (i.e., the sameangles used
by FoldingDiff, described in Fig. 1b and Table 1) given all prior angles.

Architecturally, this model consists of the same transformer
backbone as used in FoldingDiff combined with the same regression
head converting per-token embeddings to angle outputs, though it is
trained using absolute positional embeddings rather than relative
embeddings as this improved validation loss. The total length of the
sequence is encoded using random Fourier feature embeddings,
similarly to how time was encoded in FoldingDiff, and this embed-
ding is similarly added to each position in the sequence of angles.
The model, which consists of 14.41 million trainable parameters, is
trained to predict the i-th set of six angles given all prior angles, using
attention masking to hide the i-th angle and onwards. We use the
same wrapped smooth L1 loss as our main FoldingDiff model to
handle the fact that these angle predictions exist in the range ½�π,πÞ;
specifically: Lw x ið Þ, f AR x 0,...,i�1ð Þ� �� �

where superscripts indicate posi-
tional indexing. This approach is conceptually similar to causal lan-
guage modeling66, with the important difference that the inputs and
outputs are continuous values, rather than (probabilities over) dis-
crete tokens.

Thismodel is trained using the same dataset and data splits as our
main FoldingDiff model with the same preprocessing and normal-
ization. We train fAR using the AdamW optimizer with weight decay
set to 0.01. We use a batch size of 256 over 10,000 epochs, linearly
scaling the learning rate from 0 to 5× 10�5 over the first 1000 epochs,
and back to 0 over the remaining 9000 epochs. We find that the
validation loss does not improve beyond 1446 epochs of training, and
use this model checkpoint for generation.

To generate structures from fAR, we seed the autoregressive
model with 4 sets of 6 angles taken from the corresponding first 4
angle sets in a randomly chosen naturally occurring protein structure.
This serves as a random, but biologically realistic, prompt for the
model to begin generation. We then supply a fixed length l and
repeatedly run fAR to obtain the next i-th set of angles, appending
each prediction to the existing i� 1 values in order to predict the i+ 1
set of angles. We repeat this until we reach our desired structure
length.

Clustering protein backbones
Toevaluate the diversity of a set of protein backbones, we cluster them
according to a pairwise distancemetric betweenproteinsp1,p2 defined
as d = 1� TMscore p1,p2

� �
. After calculating the pairwise distance

matrix between all proteins in the set of backbones, we apply hier-
archical clustering with average linkage. This clustering is the same as
performed by ref. 15, which allows us to directly compare clustering
results and plots. We apply this clustering procedure to protein sets
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generated by FoldingDiff, as well as a comparable set of naturally
occurring proteins to establish a reference.

3D visualization of protein structures
3D visualizations of protein structures are done via PyMOL67. For
CATH structures and structures generated by AlphaFold2 and
OmegaFold, secondary structure cartoons are drawn based on
annotations from PyMOL’s built-in “dss” method. Structures gener-
ated by FoldingDiff do not have side chain information, and thus do
not contain the hydrogen bonding information required for “dss” to
work properly. To illustrate FoldingDiff’s final generations, we
instead draw secondary structures as annotated by P-SEA38, which we
also use throughout our manuscript for secondary structure eva-
luation. We additionally note that oxygen atoms must be present for
PyMOL’s cartoons to display properly; thus, we insert oxygen atoms
in our generated backbone structures (which canonically include
only N � Cα � C atoms) in a coplanar, trans configuration with
respect to the peptide bond68.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon request. The CATH dataset (version 4.3.0) used in this
study to train the FoldingDiff model is publicly available [http://
download.cathdb.info/cath/releases/all-releases/v4_3_0/non-redundant-
data-sets/], and a copy is deposited in Zenodo at https://doi.org/10.5281/
zenodo.8388270 [https://zenodo.org/records/8388270]. The 780 struc-
tures generated in this study along with metadata tables with desig-
nability scores, training set similarities, secondary structure content, and
Gauss integral embeddings (for both FoldingDiff generations and test
set structures) are deposited in Zenodo at https://doi.org/10.5281/
zenodo.8388286 [https://zenodo.org/records/8388286]. We also refer-
ence the PDB structure 1CRN (https://doi.org/10.2210/pdb1CRN/pdb).

Code availability
All code for training FoldingDiff and performing downstream analyses
is implemented in Python (version 3.8) and various open-source
packages, notably PyTorch (version 1.12)69 and PyTorch Lightning
(version 1.6.4)70 for modeling, and biotite (version 0.34)71, scikit-learn
(version 1.2.1)72, numpy (version 1.22.3)73, and pandas (version 1.1.5)74,75

for analysis. Plots were generated using matplotlib76, seaborn77, and
PyMOL (version 2.5.4)67. All training and sampling code, trainedmodel
weights, plotting code78–81, and scripts to generate all results in this
manuscript are available at [https://github.com/microsoft/foldingdiff]
and are citeable on Zenodo at https://doi.org/10.5281/zenodo.
10365890 [https://zenodo.org/records/10365890].
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