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Robustly federated learning model for
identifying high-risk patients with post-
operative gastric cancer recurrence

Bao Feng1,2,7, Jiangfeng Shi2,3,7, Liebin Huang1,7, Zhiqi Yang4, Shi-Ting Feng5,
Jianpeng Li6, Qinxian Chen1, Huimin Xue1, Xiangguang Chen4, Cuixia Wan4,
Qinghui Hu2, Enming Cui 1, Yehang Chen 2 & Wansheng Long 1

The prediction of patient disease risk via computed tomography (CT) images
and artificial intelligence techniques shows great potential. However, training
a robust artificial intelligence model typically requires large-scale data sup-
port. In practice, the collection of medical data faces obstacles related to
privacy protection. Therefore, the present study aims to establish a robust
federated learning model to overcome the data island problem and identify
high-risk patients with postoperative gastric cancer recurrence in a multi-
centre, cross-institution setting, thereby enabling robust treatment with sig-
nificant value. In the present study, we collect data from four independent
medical institutions for experimentation. The robust federated learningmodel
algorithm yields area under the receiver operating characteristic curve (AUC)
values of 0.710, 0.798, 0.809, and 0.869 across four data centres. Additionally,
the effectiveness of the algorithm is evaluated, and both adaptive and com-
mon features are identified through analysis.

Gastric cancer is one of the most prevalent malignancies1. Most
patients with gastric cancer are diagnosed at an advanced stage2.
Although surgical resection is regarded as the primary curative treat-
ment for advanced gastric cancer (AGC), survival is unsatisfactory
owing to the high incidence of recurrence after surgery3,4. Previous
studies have shown that the Tumour Node Metastasis (TNM) staging
system is the primary foundation for treatment planning and prog-
nosis evaluation in AGC patients5. Unfortunately, even among patients
with the same TNM stage, the clinical prognosis often varies. The TNM
staging system lacks information on various tumour-related factors
and tumour margin features, which are crucial for predicting post-
operative recurrence in AGC patients3,6,7. Therefore, there is an urgent
need to develop a method that can be used to identify high-risk
patients prone to recurrence after curative gastrectomy, thereby

enabling early intervention (such as adjuvant chemotherapy and close
follow-up) and improving patient outcomes.

In recent years, artificial intelligence (AI) technology has received
widespread attention in the medical field and has shown exciting
results8–10. However, a stable andeffectiveAI-assisteddiagnosticmodel
relies not only on appropriate algorithms but also on large training
datasets11,12. This large training dataset requires patient data to be
shared across medical centres. At this time, medical organisations
relinquish control of their own data. The security and privacy of
patient data is difficult to protect, especially between countries, even
creating a data monopoly situation. Therefore, multicentre data
sharing is difficult to achieve.

Several researchers have proposed federated learning (FL), which
trains a single shared model on a centre by aggregating local models
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that are trained using only its own data from each medical centre. FL
ensures data security while encouraging multicentre collaboration,
which may lead to the development of more accurate and general AI-
assisted diagnostic systems13. However, due to the differences in
medical image collection equipment and regions at various medical
centres, multicentre data may have problems with nonindependent
and identically distributed data (such as different ratios of positive and
negative data samples, as well as different distributions of image
data)14–16. Thus, the shared model in federated learning is unable to
meet the needs of all centres; for example, the performance of the
shared model centre A is better, and the performance of the shared
model in centre B is worse.

Driven by these real-world issues, we developed a robust feder-
ated learning model (RFLM) in the present study to accurately predict
the risk of postoperative recurrence in patients with AGC. By effec-
tively combining raw computed tomography (CT) image data from
multiple centres while ensuring the privacy of individual patients, the
present model significantly enhances predictive performance and
generalisability without relying on centralised control over the final
model. Moreover, we verified the effectiveness of the RFLM by evalu-
ating the features extracted by the RFLM.

Results
The RFLM predicts postoperative recurrence in gastric cancer
patients
The present study demonstrated that the proposed RFLM exhibited
greater diagnostic efficiencywhen applied todata fromthe four centres.
The area under the curve (AUC) values obtained from the test sets of the
centres were 0.7101, 0.7981, 0.8091, and 0.8691. Comparison of the
performance of the RFLM to that of the clinical model demonstrated an
overall improvement in accuracy of 32.36% on the test dataset from all
four centres. Furthermore, the RFLM successfully reduced the mis-
diagnosis rate of local recurrence of gastric cancer by 42.23% (Table S1).

The superior performance of the RFLM compared to that of the
clinical model was likely attributed to its capacity to extract highly
relevant common features that were closely linked to the specific task,
which enabled the RFLM to effectively differentiate between images of
local recurrence and nonrecurrence in gastric cancer patients. The
integrated discrimination improvement (IDI) and net reclassification
index (NRI) further confirmed that the RFLM significantly out-
performed the clinical model on the data from each centre (Table S2).

The RFLM outperforms other algorithms
To further assess the performance of the RFLM, a comparison with
four traditional federated learning algorithms, namely, FedAvg15,
FedProx16, Moon17, and HarmoFL18, as well as two robust federated
learning algorithms, namely, pFedMe14 and pFedFSL19, was conducted.

Figure S1 displays the receiver operating characteristic (ROC)
curves, while Fig. 1 illustrates the decision curve analysis (DCA) curves
for all seven models using the data from the four centres. The RFLM
consistently achieves the highest AUC results across all four centres
(Table 1), with detailed diagnostic performance parameters presented
in Table S3.

The RFLM exhibits strong robustness
In deep learning, the performance of a model can be influenced by the
dataset distribution. To evaluate the robustness of the proposed
algorithm, we conducted five random permutations of the training
dataset distribution across multiple centres, which demonstrated that
the permutation of datasets had aminimal impact on the performance
of the multicentre model. The AUC values of the four centres for the
five experiments were 0.704 ±0.008, 0.777 ±0.020, 0.780±0.019,
and 0.836 ±0.009 (Fig. S2).

To further verify the robustness of the model, the results of
multicentre RFLM were verified by threefold cross-validation. The

average AUC values for cross-validation across the four data centres
were 0.722, 0.774 0.755, and 0.813 (Fig. 2).

To determine that the performance of the RFLM algorithm was
independent of patient characteristics, such as sex and age, a stratified
analysis was conducted to evaluate whether the performance of
the algorithm significantly varied based on these factors. The perfor-
mance of the RFLM algorithm was not affected by patient sex or age.
These findings were confirmed by the DeLong test, which indicated
that all p values were greater than 0.05 (Fig. S3).

The RFLM identifies both common and adaptive features across
different data centres
To analyse the federated features of the RFLM, the common and
adaptive features were examined. Common features refer to the
category features shared by patients with and without gastric cancer
recurrence, whereas adaptive features refer to the distinctive features
specific to different data centres. To facilitate the demonstration of
these joint features of common and adaptive features, 5 common
features and 5 adaptive features were selected from 200 radiomic
features at each data centre to generate joint feature heatmaps, pro-
viding illustrative representations of common and adaptive features
across data centres.

Figure 3 shows the heatmaps of common features. In Centre A,
features 1, 2, and 3 exhibited stronger correlations with features in the
other three centres. Similarly, inCentre B, features 2, 3, and 5 exhibited
stronger correlations with features in the other three centres. Centre C
demonstrated stronger correlations between features 3, 4, and 5 and
features in the other three centres. In Centre D, features 2, 3, and 4
displayed stronger correlations with features in the other three cen-
tres. In addition, examination of adaptive features indicated a strong
correlation among the five features within each of the four data cen-
tres. However, the correlation with features from the other groups was
relatively weaker. The federated feature heatmap related to NR-AGC is
shown in Fig. S4.

To investigate the interpretability and classification basis of the
federated learning radiomic features for the two categories, a category
visualisation was conducted. Figure 4a shows the federated feature
visualisation images of eight patients, including both nonrecurrent
and recurrent patients. The federated learning radiomic features
exhibited a greater lesion focus in the recurrence category than in the
no-recurrence category. The Euclidean distance between the common
and adaptive features across the four centres demonstrated that the
similarity among common features was greater than that among
adaptive features (Fig. 4b). Figure 4c shows the prediction scores of
the RFLM for the two categories, which demonstrated a noticeable
difference in prediction scores, enabling effective differentiation
between the two subtypes (R-AGC and NR-AGC).

RFLM ablation experiment
To verify the effectiveness of each component in the RFLM, ablation
studies were performed on the components of the RFLM, except for
the GAN component, which relies on the GCN component to
strengthen the algorithm. The specific AUC results are shown in
Table 2.

In the ablation experiments, Groups 2 and 4 showed that the
spatial attention mechanism introduced by CBAM in the Resnet18
network better extracted spatial information from lesions, thereby
improving the diagnostic performance of the model. Groups 3 and 4
indicated that using GCN networks to learn domain-specific infor-
mation from different datasets and incorporating this domain-
specific information into robust strategies effectively improved the
diagnostic performance across all four centres. In the ablation
experiments, when GAN components were not used, the Euclidean
distances between the parameters of each central model were used as
the robust input matrix.
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Research on other tasks
To demonstrate the applicability of the proposed RFLM algorithm to
other tasks, a dataset collected from the Lung Image Database Con-
sortium (LIDC-IDRI) for lung cancer diagnosis (https://wiki.
cancerimagingarchive.net/display/Public/LIDC-IDRI) was utilised. The
LIDC data was collected from 7 research institutions and 8 medical
imaging companies, resulting in a total of 1018 patients. The malig-
nancy of lung nodules ≥3mm can be classified into grades 1–5, with
grade 3 being an indeterminate malignancy20. In the present study,
lesionswith amalignancyofGrades 1–2were classified as benign,while
those with a malignancy of Grades 4–5 were classified as malignant. In
total, 1746 lesions were included in the dataset. Due to the removal of
medical information from each centre in the LIDC dataset, the entire
LIDC dataset was divided into four groups, labelled A to D, using a
random grouping approach to evaluate the performance of the RFLM
algorithm. The LIDC data distribution is shown in Table S4.

The same preprocessing procedures were then applied to both
the LIDC andmulticentre gastric cancer datasets, and the results were
validated using the RFLM algorithm. The diagnostic performance is
shown in Table 3.

Discussion
Accurate prognosis assessment plays a crucial role in determining
individualised and precise treatments for gastric cancer patients.
Currently, the TNM staging system21,22 is commonly used for prognosis
evaluation in gastric cancer patients. This system categorises patients

based on the depth of tumour invasion, extent of lymph node invol-
vement, and presence of metastasis, providing an estimation of the
patient’s risk level. However, relying solely on the TNM staging system
for prognosis assessment may not provide a comprehensive evalua-
tion of the risk of recurrence. The TNM staging system primarily
focuses on tumour anatomical characteristics and lacks consideration
of tumour heterogeneity and patient-specific predictive information.
Consequently, achieving individualised and precise assessment
becomes challenging using this systemalone. To improve the accuracy
of prognosis assessment, additional factors that account for tumour
heterogeneity and patient-specific predictive information must be
incorporated.

In recent years, computer-aided diagnosis has played a significant
role in studying the postoperative recurrence of gastric cancer. Zhou
et al. utilised machine learning methods and established models, such
as random forest, decision tree, and logistic regression models, to
predict postoperative recurrence of gastric cancer; they combined
factors, such as BMI, operation time, weight, and age, to achieve AUC
values of 0.922 in the training cohort (with 1607 patients) and 0.771 in
the test cohort (with 405 patients)23. Jiang et al. developed a deep
neural network, called S-net, for predicting disease-free survival in
gastric cancer patients; they evaluated a cohort of 457 patients and
achieved AUC values ranging from 0.792 to 0.802, and they also
conducted a larger cohort study, including 1615 patients24.

The previous methods were based on single-centre data, in which
fixed machines and image acquisition protocols were used. However,
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Fig. 1 | DCA curves of sevenmodels using data from four data centres. The solid
grey line assumes that all patientswere involved in the R-AGC groupwhile the black
line assumes no patients were involved. The threshold probability was the point
where the expected benefit of the treatment and treatment avoidance were equal.

The result showed that the net benefit of the RFLM was greater than that of the
clinical model (range, 0.00–1.00). RFLM robust federated learning model, FedAvg,
Fedprox, Moon, HarmoFL, pFedFSL and pFedMe are the comparison test
algorithms.
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in scenarios involving multiple centres, institutions, and operators,
traditional deep learningmethods and clinical diagnosticmodels often
face challenges due to data heterogeneity, resulting in a decline in
diagnostic performance. Several issues contribute to this situation.
First, diagnosticmodels basedon clinical experience are susceptible to
significant interobserver variability, leading to poor diagnostic con-
sistency amongmultiple physicians. This inconsistency can impact the
overall diagnostic performance when applied across different centres.
Second, the limited number of patients whose clinical informationwas
collected from a single centre may not accurately capture the decisive
role of certain clinical indicators in postoperative gastric cancer
recurrence. This limitation may hinder the generalisability of the
diagnostic models to different populations. Finally, different centres
may employ distinct data collection devices and may be subject to
geographical variations. As a result, the data collected may exhibit
nonindependent and non-IID features. The inconsistency in the data
distributions between different images poses challenges for model
development and generalisation.

In the present study, the developed RFLM demonstrated superior
performance compared to both the clinicalmodel and other federated
learning algorithms, demonstrating its effectiveness in predicting
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Fig. 2 | Threefold cross-validation ROC curves for the four centres. The blue
curve represents the average AUC of the threefold curve. The grey areas represent
the upper and lower limits of the ROC curve. The error band in the grey areas is the

upper and lower boundary of the three-fold cross-verified ROC curve. Mean the
AUC average for three-fold cross-validation, Std standard deviation.

Table 1 | AUC of the sevenmodels using four central datasets
of patients in the relapse and nonrelapse models

Method Evaluation Centre A Centre B Centre C Centre D

FedAvg AUC 0.672 0.726 0.711 0.798

Accuracy 0.634 0.536 0.660 0.639

FedProx AUC 0.658 0.718 0.731 0.766

Accuracy 0.607 0.681 0.660 0.557

Moon AUC 0.663 0.661 0.724 0.775

Accuracy 0.634 0.565 0.679 0.689

HarmoFL AUC 0.684 0.723 0.707 0.773

Accuracy 0.616 0.696 0.604 0.820

pFedMe AUC 0.689 0.706 0.744 0.769

Accuracy 0.634 0.681 0.623 0.787

pFedFSL AUC 0.649 0.742 0.728 0.796

Accuracy 0.652 0.623 0.679 0.656

RFLM AUC 0.710 0.798 0.809 0.869

Accuracy 0.598 0.710 0.755 0.689

RFLM robust federated learning model.
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postoperative recurrence in gastric cancer patients. Additionally,
compared to all treatment or nontreatment options, the RFLM pro-
vided better outcomes for patients after gastric cancer surgery.
Robustness testing further validated the performance of the RFLM, as
it exhibited good resistance to interference. The following AUC value
ranges were observed after robustness testing: 0.700–0.717,
0.750–0.799, 0.750–0.809, and 0.826–0.846.

The proposed offers several advantages. First, the RFLM ensures
the privacy and security of patient data, which is achieved by utilising a
Wasserstein generative adversarial network (WGAN) to generate a
partial representative dataset during the robust process. This
approach allows the introduction of interdomain information and
topological structure information from data from different centres,
enhancing the generalisation performance of the model across mul-
tiple central institutions. Figure 5 shows a portionof the representative

dataset generated using the WGAN. Second, the RFLM leverages
domain-related information and the topological relationships among
data during the robust trainingof different localmodels throughgraph
convolutional networks (GCNs). The local models within the RFLM
incorporate domain-specific information and capture the topological
structure from the data of different centres, enabling them to effec-
tively capture adaptive features from local data.

In addition to its advantages, the RFLM also demonstrated strong
diagnostic performance and robustness. The RFLM effectively identi-
fies themost important common features that exhibit a high degree of
similarity between each data centre, allowing for accurate differ-
entiation between recurrent and nonrecurrent stomach cancer across
different data centres. Simultaneously, the RFLM identifies adaptive
features that exhibit a high degree of similarity within each data centre
and a low degree of similarity within each data centre, facilitating local
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Fig. 4 | RFLM Algorithm Result Analysis Diagram. a The heatmap shows the
information acquired by the RFLM for images in the recurrent and nonrecurrent
classes. The red areas indicate a high level of model attention, while the blue
areas indicate a low level of model attention. b The Euclidean distance plots
depict the distance between the common and adaptive features of the four
central data points. The left side represents common features, while the right

side represents adaptive features. c The score charts illustrate the positive and
negative images of the four data centres evaluated by the RFLM. Statistical test:
Independent t-test (two-tailed). RFLM robust federated learning model, NR-AGC
no recurrent advanced gastric cancer, R-AGC recurrent advanced gastric cancer,
p significance value.

Fig. 3 | Correlation heatmap of common recurrence features and adaptive features. a R-AGC common features correlation heatmap. b R-AGC adaptive features
correlation heatmap. A_1 first feature at centre A, R-AGC recurrent advanced gastric cancer.

Article https://doi.org/10.1038/s41467-024-44946-4

Nature Communications |          (2024) 15:742 5



data differentiation. Compared to other robust federated learning
algorithms, theRFLMensures data privacyby preserving the privacyof
multicentredata by incorporating information fromother data centres
during the robust process, not sharing the original CT images between
data centres, and relying solely on model parameters, including those
trained on CT images (generated through the WGAN). This approach
minimises the disparity between the global model and the robust
model to the fullest extent. By mitigating the interference caused by
heterogeneous features on local models, the RFLM effectively
addresses the issue of parameter drift between the global centre and

local models. Moreover, previous studies have reported a post-
operative recurrence rate for AGC ranging from 20.1 to 50.7%25,26. This
variance results in a substantial disparity in sample proportions
between data centres for the two types (NR-AGC and R-AGC), poten-
tially introducing bias into the model outcomes. To mitigate the
impact of imbalanced data samples, the present study employed focal
lossduringmodel training tomitigate thebias towards a larger sample,
thereby alleviating the impact of imbalanced data samples.

The present study had several limitations. First, the present did
not explore intercentre similarities, indicating that further investiga-
tions are needed to explore potential similarities among datasets from
different centres to enhance the robustness of the proposed approach
by revealing common features and identifying areas where the model
can effectively leverage data from multiple centres. Second, the pre-
sent study didnot characterise the common and adaptive features. It is
important to feature the knowledge incorporated in robust models
from different centres. Specifically, understanding whether common
features originate from all centres collectively while adaptive features
are solely derived from local data would provide valuable insights into
the mechanisms underlying the robust federated learning framework.

Methods
Patients
The present study adopted a retrospective data collection methodol-
ogy and included patients diagnosed with gastric cancer, which was
confirmed by surgical pathology, from April 2008 to November 2019

R-AGC NR-AGC

Fig. 5 | A representative dataset was generated based on the WGAN. NR-AGC nonrecurrent advanced gastric cancer, R-AGC recurrent advanced gastric cancer.

Table 3 | LIDC multicentre diagnostic performance

Method Evaluation Centre A Centre B Centre C Centre D

RFLM (Train) AUC 0.865 0.842 0.868 0.831

Sensitivity 0.732 (52/71) 0.761 (67/88) 0.781 (64/82) 0.776 (52/67)

Specificity 0.907 (166/183) 0.833 (145/174) 0.806 (179/222) 0.778 (140/180)

Accuracy 0.858 (218/254) 0.809 (212/262) 0.799 (243/304) 0.777 (192/247)

PPV 0.754 (52/69) 0.698 (67/96) 0.598 (64/107) 0.565 (52/92)

NPV 0.897 (166/185) 0.874 (145/166) 0.909 (179/197) 0.903 (140/155)

RFLM (Test) AUC 0.816 0.811 0.852 0.824

Sensitivity 0.681 (32/47) 0.650 (26/40) 0.807 (25/31) 0.778 (28/36)

Specificity 0.803 (98/122) 0.812 (121/149) 0.763 (71/93) 0.684 (108/158)

Accuracy 0.796 (130/169) 0.778 (147/189) 0.774 (96/124) 0.701 (136/194)

PPV 0.571 (32/56) 0.482 (26/54) 0.532 (25/47) 0.359 (28/78)

NPV 0.867 (98/113) 0.896 (121/135) 0.922 (71/77) 0.931 (108/116)

AUC area under the curve, PPV positive predictive value, NPV negative predictive value.

Table 2 | AUC results for the RFLM ablation experiment

CBAM FED GCN GAN Cohort Centre
A

Centre
B

Centre
C

Centre
D

√ √ Train 0.745 0.847 0.803 0.853

Test 0.650 0.787 0.708 0.782

√ √ √ Train 0.719 0.783 0.862 0.941

Test 0.654 0.709 0.724 0.807

√ √ √ Train 0.751 0.778 0.805 0.802

Test 0.688 0.685 0.719 0.762

√ √ √ √ Train 0.750 0.814 0.811 0.875

Test 0.710 0.798 0.809 0.869

RFLM robust federated learning model, FED conventional federated learning, GCN graph con-
volutional neural network, GAN generative adversarial network.
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across four medical centres. This study was implemented under the
approval of the Jiangmen Central Hospital, Meizhou People’s Hospital,
The First Affiliated Hospital of Sun Yat-sen University, and Dongguan
People’s Hospital, and conducted in accordance with the 1964Helsinki
Declaration and its later amendments or comparable ethical standards.
Informed consent was waived by our Institutional Review Board
because of the retrospective nature of our study.

The inclusion criteria were as follows: (1) complete preoperative
contrast-enhanced abdominal CT images were available; (2) the
interval between the preoperative CT examination and surgery was
less than 2 weeks; (3) gastric adenocarcinoma was confirmed via sur-
gical pathology; (4) comprehensive clinical data and regular follow-up
information were available; and (5) patients who experienced recur-
rence, with a minimum follow-up time of 2 years, were excluded.

The exclusion criteria were as follows: (1) poor-quality CT images
where lesion visualisation was unclear; and (2) other malignant
tumours detected via CT scans. The primary endpoints were local
recurrence and nonrecurrence (NR) cases, with a minimum follow-up
time of 5 years for all the other cases. Patients underwent follow-up
appointments every 3–6 months during the first 2 years, every
6–12 months over the following 3 years, and annually thereafter. The
primary follow-up methods included contrast-enhanced abdominal
CT, gastroscopy, and tumour biomarker examinations. Following the
aforementioned screening, a total of 641 patients were included in the
study. The dataset was divided by a random method, and the basic
patient information is listed in Table 4.

Definition of gastric cancer recurrence
According to the National Comprehensive Cancer Network (NCCN)
Guidelines for Gastric Cancer (version 2.2019), the recurrence patterns
of gastric cancer (GC) include locoregional recurrence (LR) and
metastatic disease. Metastatic disease can be divided into peritoneal
dissemination and distant metastasis. In the present study, patients
were classified according to their recurrence pattern as LR, peritoneal
metastasis, or distant metastasis. LR included recurrence in the gastric
bed, gastric remnant of the anastomosis, duodenal stump, and/or
lymph node recurrence in the gastric region. Peritoneal metastasis
included metastasis in the peritoneum, omentum, and mesentery.

Distant metastases included those that occurred in other organs and
nongastric regional lymph nodes27,28.

Recurrence in the gastric bed and in the gastric remnant of the
anastomosis was confirmed by gastroscopic biopsy. The recurrence of
gastric region lymph nodes and duodenal stumps was mainly deter-
mined by dynamic follow-up observation via postoperative enhanced
CT. During the follow-up with enhanced CT, when the lymph nodes in
the gastric region were enlarged with necrosis or gradually enlarged
during the dynamic follow-up, regional lymph node recurrence was
considered after excluding tuberculosis and other factors. Peritoneal
metastasis was considered to have occurred in the following instances:
when postoperative CT examination revealed nodular or mass-like
thickening of the peritoneum, omentum, ormesentery; when therewas
an increase in the number of foci or enlargement of the foci ondynamic
follow-up; or when the ascites was positive for cancer cells. Distant
metastasis was confirmed by dynamic postoperative CT observation.

According to the National Comprehensive Cancer Network
(NCCN) Guidelines for Gastric Cancer (version 2.2019), most post-
operative recurrences of GC occur within 2 years after surgery.
Patients, except for recurrent patients, were followed up for at least 2
years in the present study. As shown in Fig. S5, the patients were fol-
lowedup every 3–6months in thefirst 2 years, once every 6–12months
in the following 3 years, and once a year thereafter. Themain follow-up
examinations includedabdominal contrast-enhancedCT,gastroscopy,
and tumour biomarker detection.

ROI acquisition
In the initial stage of the study, radiologists with more than 10 years of
abdominal imaging diagnostic experience defined the region of
interest (ROI) as the input for the client models. This process involved
accurately outlining the contours of the lesion. Subsequently, a rec-
tangular frame was constructed based on the exact contour of the
lesion, encompassing the entire lesion boundary,making the selection
of the ROI less susceptible to the subjective experiences of
clinicians29,30. Deep learning methods can automatically extract ROIs,
eliminating the need for precise manual delineation of ROIs. The
details of the data preprocessing procedure are provided in Supple-
mentary S1.

Table 4 | Basic patient information

Centre Set Disease type Gender Age (Mean ± Std) N-stage T-stage CA199

Male Female 0 1 2 3a 3b 1 2 3 4 Absent Present

Centre A (293) Train (181) R-AGC (51) 33 18 59.84 ± 11.80 8 4 15 10 14 0 2 32 17 45 6

NR-AGC (130) 88 42 60.28 ± 12.85 39 24 20 40 7 0 13 79 38 112 18

Test (112) R-AGC (40) 25 15 60.73 ± 10.36 4 1 15 13 7 0 0 25 15 34 6

NR-AGC (72) 39 33 60.19 ± 12.59 22 11 12 18 9 0 8 32 32 61 11

Centre B (140) Train (71) R-AGC (22) 17 5 65.63 ± 10.28 3 3 6 7 3 0 0 13 9 17 5

NR-AGC (49) 33 16 61.27 ± 11.20 19 9 9 8 4 0 6 23 20 44 5

Test (69) R-AGC (27) 22 5 63.27 ± 10.35 4 2 7 7 7 0 2 17 8 25 2

NR-AGC (42) 25 17 61.35 ± 11.02 7 10 12 6 7 0 8 21 13 34 8

Centre C (109) Train (56) R-AGC (24) 15 9 58.46 ± 12.74 7 3 5 6 3 0 6 5 13 21 3

NR-AGC (32) 19 13 54.84 ± 10.46 13 6 5 7 1 0 8 6 18 28 4

Test (53) R-AGC (26) 16 10 58.19 ± 13.64 7 4 7 6 2 0 7 6 13 17 9

NR-AGC (27) 14 13 53.26 ± 13.17 8 8 6 4 1 0 8 3 16 22 5

Centre D (99) Train (38) R-AGC (4) 2 2 53.75 ± 12.45 2 1 0 1 0 0 2 1 1 3 1

NR-AGC (34) 20 14 57.85 ± 11.66 11 8 6 5 4 4 7 9 14 30 4

Test (61) R-AGC (11) 7 4 54.64 ± 13.68 1 0 5 5 0 1 0 8 2 8 3

NR-AGC (50) 26 24 55.00 ± 12.81 22 12 6 6 4 14 8 17 11 45 5

NR-AGC no recurrent advanced gastric cancer, R-AGC recurrent advanced gastric cancer, Std standard deviation.
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Construction of the RFLM
Directly using the global model parameters for each local model may
lead to poor parameter consistency among local models when
addressing the nonindependent and independently distributed (non-
IID) issues present in the data from different centres31,32. Therefore, in
the search for common features, it is necessary to perform robust
learning on the global model from the central model to adapt it to the
local data of each centre. In the present study, the RFLM introduced
two key improvements (Fig. 6).

On the premise of ensuring data security, a representative dataset
reflecting the data characteristics of each centre was generated using
the Wasserstein generative adversarial network (WGAN)33. This repre-
sentative dataset was based on the data from each centre. Subse-
quently, a local model relationship matrix was created by each client’s
local model using the representative dataset, which provided the
preference level of each local model for the same data and reflected
the correlation information between the domains of each local model.
Furthermore, the present study considered the potential risk of priv-
acy leakage from the uploaded data generated by the WGAN. To
address this issue, a random Gaussian perturbation matrix was added
to the data generated by the WGAN, thus ensuring the privacy pro-
tection of the local data. Detailed information for the WGAN is pro-
vided in Supplementary S2.

Based on the acquired local model relationship matrix, graph
convolutional networks (GCNs)34 were employed to generate an adja-
cency matrix. This adjacency matrix captured the related information
among local models from each data centre. Subsequently, the adja-
cency matrix was combined with each local model to obtain robust
local models. These improvements enhanced the generalisability of
the model by incorporating client-specific information from different
clients’ data, which allowed the model to learn from the unique char-
acteristics and patterns present in each client’s data, leading to more
robust and effective predictions. Of note, all the client models utilised
deep learning techniques in the present study. More detailed infor-
mation for the algorithm is provided in Supplementary S3.

To enhance utilisation of the robust model features, each data
centre utilised the convolutional kernels of its own robust local model
as feature extractors. Multiple feature maps were extracted from the
local CT image data of each patient within the local dataset. Subse-
quently, the average valueof each featuremapwascomputed to create
a unified radiomic feature (Fig. S6). Because the robust local model
consisted of a total of 4449 convolutional kernels, a total of 4449
federated radiomic featureswere extracted, serving as the basis for the
RFLM classification task. To select the most significant and dis-
criminative radiomic features, the Mann‒Whitney U-test was applied,
which identified features that exhibited significant differences
between the two groups. Subsequently, the maximum relevance
minimumredundancy (mRMR) algorithmwasused to furtherfilter and
retain the most valuable radiomic features. Finally, the constructed
RFLM utilised a sparse Bayesian extreme learning machine35 (Fig. S7).
Due to the positive and negative samples, the results of the overall
model may be biased, which will affect the overall performance of the
model. Therefore, the focal loss36 was used for all loss functions in the
present study to alleviate the problem of a large gap between the two
types of samples.

Assessment of common and adaptive features of the RFLM
To explore the basis of inference from the robust models of each
centre and identify common features for class predictions, as well as
adaptive features for the differences between centre data, the present
study extracted federated radiomic features from each centre using
robust models. Specifically, four sets of federated radiomic features
were extracted from all the data samples using individualised models.

The Mann‒Whitney U-test and the mRMR algorithm were subse-
quently applied to select the 200most valuable radiomic features from
each feature set. The correlations between the four sets of federated
radiomic features were then computed. The features displaying the
highest correlation within each data centre and between different data
centreswere identified asadaptive and common features, respectively.
The present study used the Pearson correlation coefficient37, and
detailed information is provided in Supplementary S4.

Evaluation and comparison of models
To comprehensively evaluate the performance of the RFLM in a
multicentre setting, the present study conducted a comparison with
other models, including a clinical feature-based CM model, tradi-
tional federated learning models (FedAvg15, FedProx16, Moon17, and
HarmoFL18), and the latest robust federated learning models
(pFedMe14 and pFedFSL19). In the present study, the clinical features
included T stage, N stage, and CA199 status, and the random forest
algorithm was used to construct clinical models for the four data
centres (Supplementary S5). The details of the subjective CT and
pathological assessments are provided in Supplementary S6.

To further validate the robustnessof theRFLM,five roundsofdata
shuffling and threefold cross-validation across multiple centres were
performed. This process involved randompermutations of the dataset
distribution among the centres to comprehensively assess the impact
of changes in the data distribution on model performance.

Common and adaptive features in federated radiomics
For the evaluation of common and adaptive features in federated
radiomics, categorical heatmaps were utilised to construct visual
representations of the attention given by the RFLM to the two types of
image data from different centres. The heatmaps provided insights
into how the model focused on common and adaptive features within
the data. In addition, the similarity between the adaptive and common
features was assessed by calculating the correlation matrix of feder-
ated radiomic features across different centres, providing an under-
standing of the relationships and similarities among the features
across centres.Moreover, the Euclideandistance between featureswas
computed to quantify the dissimilarity between adaptive and common
features, which provided valuable information about the differences
and variations present among the features. By employing these
methods, the present study evaluated the common and adaptive fea-
tures in federated radiomics, shedding light on the attention and
relationships of the RFLM towards different types of features and data
from various centres.

Statistical analyses
To comprehensively evaluate the performance of various algorithms,
quantitative indicators, such as the area under the curve (AUC), spe-
cificity, sensitivity, accuracy (ACC), positive predictive value (PPV), and
negative predictive value (NPV), were utilised to validate the predic-
tion results. The integrated discrimination improvement (IDI) and net
reclassification index (NRI) were also used to assess whether the RFLM
exhibited statistically significant differences in predicting post-
operative gastric cancer recurrence. These evaluation metrics pro-
vided a comprehensive assessment of the predictive capabilities of the
algorithms and allowed for statistical comparisons between different
models. The ROC curve was used to illustrate the overall performance
of the different modelling methods, and DCA was used to evaluate the
clinical effectiveness of the model in predicting postoperative recur-
rence of gastric cancer. The robustness test suggested that the model
was less affected by the local data distribution.

Statistical analyses were conducted using two-tailed tests, and a
p value < 0.05 was considered statistically significant.
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Experimental equipment
Statistical analysis was performed using R software (version 3.4.0,
http://www.Rproject.org) and IBM SPSS Statistics 20.0 software (SPSS,
Chicago, IL, USA).

For deep learning tasks, an NVIDIA RTX A6000 graphics card
with CUDA version 10.2 and 48 GB of GPU memory was utilised.
The deep learning framework used was PyTorch 1.7.1 with graphics

processing unit (GPU) support, implemented in Python 3.6.
Additionally, MATLAB version 2020b was used for certain
analysis tasks.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Fig. 6 | RFLM algorithm diagram. a Construction process of the robust local
model in the RFLM. bDetails of generating robust weight parameters in the robust
local model. c Feature extraction and feature classification in the RFLM. CBAM

convolutional block attention module, NR-AGC nonrecurrent advanced gastric
cancer, R-AGC recurrent advanced gastric cancer, GCN graph convolutional neural
network, WGAN Wasserstein generative adversarial network.

Article https://doi.org/10.1038/s41467-024-44946-4

Nature Communications |          (2024) 15:742 9

http://www.Rproject.org


Data availability
The Multicentre CT data of gastric cancer in the current study are not
publicly available for patient privacy policy. However, if researchers
wish to access our data solely for scientific research purposes, the
corresponding author can share the relevant data. Requests will be
processed by the corresponding author within 3 months and followed
up with the requesting party. Any requests will be pending prior
approval and revision by the Ethics Committee of Jiangmen Central
Hospital, the Ethics Committee of Meizhou People’s Hospital, the
Ethics Committee of The First Affiliated Hospital of Sun Yat-sen Uni-
versity, and the Ethics Committee of Dongguan People’s Hospital,
which retain all rights to deny access. Additionally, we have used
publicly available LIDC dataset in this study as Supplementary Data 1.
The deidentified data generated during and/or analysed during the
current study are provided as source data file. Source data are pro-
vided with this paper.

Code availability
The codes are provided at GitHub (https://github.com/baofengguat/
RFLM-project/tree/master). Supplementary Code is a detailed sup-
plement to the article code.
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